Abstract
An approximately 4 kb long sequence (designated dh) is located in the centromere regions of all three chromosomes of S. pombe. There is one copy each of dh per centromere in chromosomes I and II and multiples in the centromere of chromosome III. Nucleotide sequence determination shows that dhI and dhII are highly homologous. A part of the sequence (ca. 300-400 bp) contains short direct repeats, otherwise dh is in general internally non-repetitious. Although there are three segmental deletions (total 821 bp) and two insertions (27 bp) in dhII (an 80% overall homology to dhI), there are only nine substitutions between dhI and dhII in the remaining 3980 bp, giving a 99.77% homology. The substitutions are restricted to the non-repetitious domains and are only of the pyrimidine-pyrimidine or purine-purine types. A possible conformational role of dh is discussed.
Full text
PDF![4705](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/305913/e500cbad43fe/nar00256-0011.png)
![4706](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/305913/7552431ee8d3/nar00256-0012.png)
![4707](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/305913/2e5538aa4138/nar00256-0013.png)
![4708](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/305913/9af40041bb42/nar00256-0014.png)
![4709](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/305913/2039f10af698/nar00256-0015.png)
![4710](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/305913/7b35827f918b/nar00256-0016.png)
![4711](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/305913/a0dae5722aa1/nar00256-0017.png)
![4712](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/305913/af6be7863aaa/nar00256-0018.png)
![4713](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/305913/ffa2eab501b3/nar00256-0019.png)
![4714](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/305913/8e10b357de79/nar00256-0020.png)
![4715](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6615/305913/0db9e7ad1e3a/nar00256-0021.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blackburn E. H. The molecular structure of centromeres and telomeres. Annu Rev Biochem. 1984;53:163–194. doi: 10.1146/annurev.bi.53.070184.001115. [DOI] [PubMed] [Google Scholar]
- Botstein D., Falco S. C., Stewart S. E., Brennan M., Scherer S., Stinchcomb D. T., Struhl K., Davis R. W. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene. 1979 Dec;8(1):17–24. doi: 10.1016/0378-1119(79)90004-0. [DOI] [PubMed] [Google Scholar]
- Clarke L., Amstutz H., Fishel B., Carbon J. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8253–8257. doi: 10.1073/pnas.83.21.8253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke L., Carbon J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature. 1980 Oct 9;287(5782):504–509. doi: 10.1038/287504a0. [DOI] [PubMed] [Google Scholar]
- Clarke L., Carbon J. The structure and function of yeast centromeres. Annu Rev Genet. 1985;19:29–55. doi: 10.1146/annurev.ge.19.120185.000333. [DOI] [PubMed] [Google Scholar]
- Fitzgerald-Hayes M., Buhler J. M., Cooper T. G., Carbon J. Isolation and subcloning analysis of functional centromere DNA (CEN11) from Saccharomyces cerevisiae chromosome XI. Mol Cell Biol. 1982 Jan;2(1):82–87. doi: 10.1128/mcb.2.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hieter P., Pridmore D., Hegemann J. H., Thomas M., Davis R. W., Philippsen P. Functional selection and analysis of yeast centromeric DNA. Cell. 1985 Oct;42(3):913–921. doi: 10.1016/0092-8674(85)90287-9. [DOI] [PubMed] [Google Scholar]
- Hsiao C. L., Carbon J. Direct selection procedure for the isolation of functional centromeric DNA. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3760–3764. doi: 10.1073/pnas.78.6.3760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maine G. T., Surosky R. T., Tye B. K. Isolation and characterization of the centromere from chromosome V (CEN5) of Saccharomyces cerevisiae. Mol Cell Biol. 1984 Jan;4(1):86–91. doi: 10.1128/mcb.4.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray A. W., Szostak J. W. Chromosome segregation in mitosis and meiosis. Annu Rev Cell Biol. 1985;1:289–315. doi: 10.1146/annurev.cb.01.110185.001445. [DOI] [PubMed] [Google Scholar]
- Nakaseko Y., Adachi Y., Funahashi S., Niwa O., Yanagida M. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 1986 May;5(5):1011–1021. doi: 10.1002/j.1460-2075.1986.tb04316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panzeri L., Philippsen P. Centromeric DNA from chromosome VI in Saccharomyces cerevisiae strains. EMBO J. 1982;1(12):1605–1611. doi: 10.1002/j.1460-2075.1982.tb01362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pickett-Heaps J. D., Tippit D. H., Porter K. R. Rethinking mitosis. Cell. 1982 Jul;29(3):729–744. doi: 10.1016/0092-8674(82)90435-4. [DOI] [PubMed] [Google Scholar]
- Ris H., Witt P. L. Structure of the mammalian kinetochore. Chromosoma. 1981;82(2):153–170. doi: 10.1007/BF00286101. [DOI] [PubMed] [Google Scholar]
- Stinchcomb D. T., Mann C., Davis R. W. Centromeric DNA from Saccharomyces cerevisiae. J Mol Biol. 1982 Jun 25;158(2):157–190. doi: 10.1016/0022-2836(82)90427-2. [DOI] [PubMed] [Google Scholar]
- Struhl K., Stinchcomb D. T., Scherer S., Davis R. W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035–1039. doi: 10.1073/pnas.76.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]