Abstract
The chaos game representation (CGR) is a scatter plot derived from a DNA sequence, with each point of the plot corresponding to one base of the sequence. If the DNA sequence were a random collection of bases, the CGR would be a uniformly filled square; conversely, any patterns visible in the CGR represent some pattern (information) in the DNA sequence. In this paper, patterns previously observed in a variety of DNA sequences are explained solely in terms of nucleotide, dinucleotide and trinucleotide frequencies.
Full text
PDF![2487](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e8/309551/c28f0bc58e53/nar00059-0196.png)
![2488](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e8/309551/92d7a22c949f/nar00059-0197.png)
![2489](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e8/309551/ae1341e21648/nar00059-0198.png)
![2490](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e8/309551/1230cc04da82/nar00059-0199.png)
![2491](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e8/309551/bb7ebb51d275/nar00059-0200.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almagor H. A Markov analysis of DNA sequences. J Theor Biol. 1983 Oct 21;104(4):633–645. doi: 10.1016/0022-5193(83)90251-5. [DOI] [PubMed] [Google Scholar]
- Avery P. J. The analysis of intron data and their use in the detection of short signals. J Mol Evol. 1987;26(4):335–340. doi: 10.1007/BF02101152. [DOI] [PubMed] [Google Scholar]
- Bird A. P. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980 Apr 11;8(7):1499–1504. doi: 10.1093/nar/8.7.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaisdell B. E. Markov chain analysis finds a significant influence of neighboring bases on the occurrence of a base in eucaryotic nuclear DNA sequences both protein-coding and noncoding. J Mol Evol. 1984;21(3):278–288. doi: 10.1007/BF02102360. [DOI] [PubMed] [Google Scholar]
- Bulmer M. A statistical analysis of nucleotide sequences of introns and exons in human genes. Mol Biol Evol. 1987 Jul;4(4):395–405. doi: 10.1093/oxfordjournals.molbev.a040453. [DOI] [PubMed] [Google Scholar]
- Dutta C., Das J. Mathematical characterization of Chaos Game Representation. New algorithms for nucleotide sequence analysis. J Mol Biol. 1992 Dec 5;228(3):715–719. doi: 10.1016/0022-2836(92)90857-g. [DOI] [PubMed] [Google Scholar]
- Grantham R., Gautier C., Gouy M., Mercier R., Pavé A. Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 1980 Jan 11;8(1):r49–r62. doi: 10.1093/nar/8.1.197-c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill K. A., Schisler N. J., Singh S. M. Chaos game representation of coding regions of human globin genes and alcohol dehydrogenase genes of phylogenetically divergent species. J Mol Evol. 1992 Sep;35(3):261–269. doi: 10.1007/BF00178602. [DOI] [PubMed] [Google Scholar]
- JOSSE J., KAISER A. D., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J Biol Chem. 1961 Mar;236:864–875. [PubMed] [Google Scholar]
- Jeffrey H. J. Chaos game representation of gene structure. Nucleic Acids Res. 1990 Apr 25;18(8):2163–2170. doi: 10.1093/nar/18.8.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]