Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1972 Jan;51(1):181–190. doi: 10.1172/JCI106790

Renomedullary Antihypertensive Function in Accelerated (Malignant) Hypertension

OBSERVATIONS ON RENOMEDULLARY INTERSTITIAL CELLS

E E Muirhead 1,2, B Brooks 1,2, J A Pitcock 1,2, P Stephenson 1,2
PMCID: PMC332944  PMID: 4108666

Abstract

The antihypertensive function of the renal medulla was tested on accelerated (malignant) hypertension of the rabbit. A procedure for the development of accelerated hypertension of the rabbit of lethal proportions within 3 wk was established. This procedure consisted of the application of a rigid clip with a fixed and unyielding gap to the left renal artery and removal of the right kidney. Three additional manipulations, other than simple nephrectomy, were performed on the right kidney after application of the rigid clip to the left renal artery. These were: (a) a sham operation, (b) removal of the kidney and separation of the renal cortex and its autotransplantation in a fragmented state, and (c) removal of the kidney and separation of the renal medulla and its autotransplantation in a fragmented state. After the sham-operated kidney and autotransplanted renal medulla, the standardized accelerated hypertension did not develop, whereas after autotransplanted renal cortex it did. After a period of protection against accelerated hypertension, removal of either the sham-operated kidney or the renomedullary transplants was followed by a prompt rise in arterial pressure and death of the animal. Thus, the antihypertensive action of renomedullary tissue was similar to that of the whole kidney. The main cell type noted in the protective renomedullary transplants had the microscopic characteristics of the lipid-containing interstitial cells. These cells occurred in clusters, often were near capillaries, and appeared hyperplastic. It is suggested that the renomedullary interstitial cell is the most eligible cell for exertion of the renomedullary antihypertensive action. Since vasoactive lipids are extractable from the renal medulla and its interstitial cells, the hypothesis that interstitial cells secrete antihypertensive substance(s) is attractive.

Full text

PDF
186

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooks B., Muirhead E. E. Rigid clip for standardized hypertension in the rabbit. J Appl Physiol. 1971 Aug;31(2):307–308. doi: 10.1152/jappl.1971.31.2.307. [DOI] [PubMed] [Google Scholar]
  2. Crowshaw K., McGiff J. C., Strand J. C., Lonigro A. J., Terrangno N. A. Prostaglandins in dog renal medulla. J Pharm Pharmacol. 1970 Apr;22(4):302–304. doi: 10.1111/j.2042-7158.1970.tb08523.x. [DOI] [PubMed] [Google Scholar]
  3. Daniels E. G., Hinman J. W., Leach B. E., Muirhead E. E. Identification of prostaglandin E2 as the principal vasodepressor lipid of rabbit renal medulla. Nature. 1967 Sep 16;215(5107):1298–1299. doi: 10.1038/2151298a0. [DOI] [PubMed] [Google Scholar]
  4. Edwards W. G., Jr, Strong C. G., Hunt J. C. A vasodepressor lipid resembling prostaglandin E2 (PGE2) in the renal venous blood of hypertensive patients. J Lab Clin Med. 1969 Sep;74(3):389–399. [PubMed] [Google Scholar]
  5. Fasciolo J. C., Houssay B. A., Taquini A. C. The blood-pressure raising secretion of the ischaemic kidney. J Physiol. 1938 Dec 14;94(3):281–293. doi: 10.1113/jphysiol.1938.sp003680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GOMEZ A. H., HOOBLER S. W., BLAQUIER P. Effect of addition and removal of a kidney transplant in renal and adrenocortical hypertensive rats. Circ Res. 1960 Mar;8:464–472. doi: 10.1161/01.res.8.2.464. [DOI] [PubMed] [Google Scholar]
  7. HICKLER R. B., LAULER D. P., SARAVIS C. A., VAGNUCCI A. I., STEINER G., THORN G. W. VASODEPRESSOR LIPID FROM THE RENAL MEDULLA. Can Med Assoc J. 1964 Jan 25;90:280–287. [PMC free article] [PubMed] [Google Scholar]
  8. Ishii M., Tobian L. Interstitial cell granules in renal papilla and the solute composition of renal tissue in rats with Goldblatt hypertension. J Lab Clin Med. 1969 Jul;74(1):47–52. [PubMed] [Google Scholar]
  9. JONES F., LESCH W., MUIRHEAD E. E., STIRMAN J. A. The reduction of postnephrectomy hypertension by renal homotransplant. Surg Gynecol Obstet. 1956 Dec;103(6):673–686. [PubMed] [Google Scholar]
  10. KOLFF W. J., PAGE I. H. Blood pressure reducing function of the kidney; reduction of renoprival hypertension by kidney perfusion. Am J Physiol. 1954 Jul;178(1):75–81. doi: 10.1152/ajplegacy.1954.178.1.75. [DOI] [PubMed] [Google Scholar]
  11. LEE J. B., COVINO B. G., TAKMAN B. H., SMITH E. R. RENOMEDULLARY VASODEPRESSOR SUBSTANCE, MEDULLIN: ISOLATION, CHEMICAL CHARACTERIZATION AND PHYSIOLOGICAL PROPERTIES. Circ Res. 1965 Jul;17:57–77. doi: 10.1161/01.res.17.1.57. [DOI] [PubMed] [Google Scholar]
  12. LEE J. B., HICKLER R. B., SARAVIS C. A., THORN G. W. SUSTAINED DEPRESSOR EFFECT OF RENAL MEDULLARY EXTRACT IN THE NORMOTENSIVE RAT. Circ Res. 1963 Oct;13:359–366. doi: 10.1161/01.res.13.4.359. [DOI] [PubMed] [Google Scholar]
  13. Lee J. B., Crowshaw K., Takman B. H., Attrep K. A. The identification of prostaglandins E(2), F(2alpha) and A(2) from rabbit kidney medulla. Biochem J. 1967 Dec;105(3):1251–1260. doi: 10.1042/bj1051251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MERRILL J. P., MURRAY J. E., HARRISON J. H., GUILD W. R. Successful homotransplantation of the human kidney between identical twins. J Am Med Assoc. 1956 Jan 28;160(4):277–282. doi: 10.1001/jama.1956.02960390027008. [DOI] [PubMed] [Google Scholar]
  15. MUIRHEAD E. E., JONES F., STIRMAN J. A. Antihypertensive property in renoprival hypertension of extract from renal medulla. J Lab Clin Med. 1960 Aug;56:167–180. [PubMed] [Google Scholar]
  16. MUIRHEAD E. E. Protection against sodium-overload hypertensive disease. Use of renal tissue and medullorenal extract. Arch Pathol. 1962 Sep;74:214–219. [PubMed] [Google Scholar]
  17. MUIRHEAD E. E., STIRMAN J. A., JONES F. Renal autoexplantation and protection against renoprival hypertensive cardiovascular disease and hemolysis. J Clin Invest. 1960 Feb;39:266–281. doi: 10.1172/JCI104037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MUIRHEAD E. E., VANATTA J., GROLLMAN A. Papillary necrosis of the kidney; a clinical and experimental correlation. J Am Med Assoc. 1950 Mar 4;142(9):627–631. doi: 10.1001/jama.1950.02910270017004. [DOI] [PubMed] [Google Scholar]
  19. McGiff J. C., Crowshaw K., Terragno N. A., Lonigro A. J. Release of a prostaglandin-like substance into renal venous blood in response to angiotensin II. Circ Res. 1970 Jul;27(1 Suppl 1):121–130. [PubMed] [Google Scholar]
  20. McGiff J. C., Crowshaw K., Terragno N. A., Lonigro A. J., Strand J. C., Williaon M. A., Lee J. B., Ng K. K. Prostaglandin-like substances appearing in canine renal venous blood during renal ischemia. Their patial characterization by pharmacologic and chromatographic procedures. Circ Res. 1970 Nov;27(5):765–782. doi: 10.1161/01.res.27.5.765. [DOI] [PubMed] [Google Scholar]
  21. Muehrcke R. C., Mandal A. K., Epstein M., Volini F. I. Cytoplasmic granularity of the renal medullary interstitial cells in experimental hypertension. J Lab Clin Med. 1969 Feb;73(2):299–308. [PubMed] [Google Scholar]
  22. Muehrecke R. C., Mandal A. K., Volini F. I. Renal interstitial cells: prostaglandins and hypertension. A pathophysiological review of the renal medullary interstitial cells and their medullary interstitial cells and their relationship to hypertension. Circ Res. 1970 Jul;27(1 Suppl 1):109–119. [PubMed] [Google Scholar]
  23. Muirhead E. E., Brooks B., Kosinski M., Daniels E. G., Hinman J. W. Renomedullary antihypertensive principle in renal hypertension. J Lab Clin Med. 1966 May;67(5):778–791. [PubMed] [Google Scholar]
  24. Muirhead E. E., Brown G. B., Germain G. S., Leach B. E. The renal medulla as an antihypertensive organ. J Lab Clin Med. 1970 Oct;76(4):641–651. [PubMed] [Google Scholar]
  25. Nissen H. M., Andersen H. On the activity of prostaglandin-dehydrogenase system in the kidney. A histochemical study during hydration-dehydration and salt-repletion-salt-depletion. Histochemie. 1969;17(3):241–247. doi: 10.1007/BF00309868. [DOI] [PubMed] [Google Scholar]
  26. Nissen H. M., Bojesen I. On lipid droplets in renal interstitial cells. IV. Isolation and identification. Z Zellforsch Mikrosk Anat. 1969 May 23;97(2):274–284. doi: 10.1007/BF00344762. [DOI] [PubMed] [Google Scholar]
  27. Osvaldo L., Latta H. Interstitial cells of the renal medulla. J Ultrastruct Res. 1966 Aug;15(5):589–613. doi: 10.1016/s0022-5320(66)80129-6. [DOI] [PubMed] [Google Scholar]
  28. TOBIAN L., SCHONNING S., SEEFELDT C. THE INFLUENCE OF ARTERIAL PRESSURE ON THE ANTIHYPERTENSIVE ACTION OF A NORMAL KIDNEY, A BIOLOGICAL SERVOMECHANISM. Ann Intern Med. 1964 Mar;60:378–383. doi: 10.7326/0003-4819-60-3-378. [DOI] [PubMed] [Google Scholar]
  29. Tobian L., Ishii M., Duke M. Relationship of cytoplasmic granules in renal papillary interstitial cells to "postsalt" hypertension. J Lab Clin Med. 1969 Feb;73(2):309–319. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES