Abstract
To explain biochemical and genetic data on spontaneous nucleotide replacements in nucleic acid biosynthesis all the 8 mispairs in normal tautomeric forms have been considered. Possible B-conformations of DNA fragments containing each of such mispairs incorporated between Watson-Crick pairs have been found using computations of the energy of non-bonded interactions via classical potential functions. These conformations have no reduced interatomic contacts. The values of each dihedral angle of the sugar-phosphate backbone fall within the limits of those of double-helical fragments of B-DNA in crystals. These values differ from those of the corresponding angles for the low-energy polynucleotide conformations consisting of canonical pairs by no more than 30 degrees (except for the fragment with the U:U pair for which the C4'-C3'-O-P angle differs by about 50 degrees). The difference in experimentally observed frequencies of various nucleotide replacements in DNA biosynthesis correlates with the difference in the energy of non-bonded interactions and with the extent of the sugar-phosphate backbone distortion for the fragments containing the mispairs which serve as intermediates for the replacements.
Full text
PDF![141](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/df7f04630281/nar00295-0146.png)
![142](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/fae51cb57cab/nar00295-0147.png)
![143](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/657284c28c81/nar00295-0148.png)
![144](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/64bad24d45a5/nar00295-0149.png)
![145](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/800974c87633/nar00295-0150.png)
![146](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/44b1ba33ef29/nar00295-0151.png)
![147](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/ebb969695266/nar00295-0152.png)
![148](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/0c85e6769a60/nar00295-0153.png)
![149](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/fa5ae974e0ff/nar00295-0154.png)
![150](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/845991ed8125/nar00295-0155.png)
![151](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/efda65b48c26/nar00295-0156.png)
![152](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/228953775c23/nar00295-0157.png)
![153](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/f88b8b7481c4/nar00295-0158.png)
![154](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a3/340980/be3e89d2c57f/nar00295-0159.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernardi F., Ninio J. The accuracy of DNA replication. Biochimie. 1978;60(10):1083–1095. doi: 10.1016/s0300-9084(79)80343-0. [DOI] [PubMed] [Google Scholar]
- Bruskov V. I., Poltev V. I. On molecular mechanisms of nucleic acid synthesis. Fidelity aspects: 2. Contribution of protein-nucleotide recognition. J Theor Biol. 1979 May 7;78(1):29–41. doi: 10.1016/0022-5193(79)90323-0. [DOI] [PubMed] [Google Scholar]
- Chuprina V. P., Poltev V. I. Possible conformations of double-helical polynucleotides containing incorrect base pairs. Nucleic Acids Res. 1983 Aug 11;11(15):5205–5222. doi: 10.1093/nar/11.15.5205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drake J. W., Baltz R. H. The biochemistry of mutagenesis. Annu Rev Biochem. 1976;45:11–37. doi: 10.1146/annurev.bi.45.070176.000303. [DOI] [PubMed] [Google Scholar]
- Drew H. R., Wing R. M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. E. Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2179–2183. doi: 10.1073/pnas.78.4.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fersht A. R., Knill-Jones J. W. Fidelity of replication of bacteriophage phi X174 DNA in vitro and in vivo. J Mol Biol. 1983 Apr 25;165(4):633–654. doi: 10.1016/s0022-2836(83)80271-x. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Shi J. P., Tsui W. C. Kinetics of base misinsertion by DNA polymerase I of Escherichia coli. J Mol Biol. 1983 Apr 25;165(4):655–667. doi: 10.1016/s0022-2836(83)80272-1. [DOI] [PubMed] [Google Scholar]
- Grosse F., Krauss G., Knill-Jones J. W., Fersht A. R. Accuracy of DNA polymerase-alpha in copying natural DNA. EMBO J. 1983;2(9):1515–1519. doi: 10.1002/j.1460-2075.1983.tb01616.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue T., Orgel L. E. Oligomerization of (guanosine 5'-phosphor)-2-methylimidazolide on poly(C). An RNA polymerase model. J Mol Biol. 1982 Nov 25;162(1):201–217. doi: 10.1016/0022-2836(82)90169-3. [DOI] [PubMed] [Google Scholar]
- Kan L. S., Chandrasegaran S., Pulford S. M., Miller P. S. Detection of a guanine X adenine base pair in a decadeoxyribonucleotide by proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4263–4265. doi: 10.1073/pnas.80.14.4263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunkel T. A., Meyer R. R., Loeb L. A. Single-strand binding protein enhances fidelity of DNA synthesis in vitro. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6331–6335. doi: 10.1073/pnas.76.12.6331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loeb L. A., Kunkel T. A. Fidelity of DNA synthesis. Annu Rev Biochem. 1982;51:429–457. doi: 10.1146/annurev.bi.51.070182.002241. [DOI] [PubMed] [Google Scholar]
- Patel D. J., Kozlowski S. A., Marky L. A., Rice J. A., Broka C., Dallas J., Itakura K., Breslauer K. J. Structure, dynamics, and energetics of deoxyguanosine . thymidine wobble base pair formation in the self-complementary d(CGTGAATTCGCG) duplex in solution. Biochemistry. 1982 Feb 2;21(3):437–444. doi: 10.1021/bi00532a003. [DOI] [PubMed] [Google Scholar]
- Poltev V. I., Bruskov V. I. O molekuliarnykh mekhanizmakh spontannykh transversiii i tranzitsii. Mol Biol (Mosk) 1977 May-Jun;11(3):661–670. [PubMed] [Google Scholar]
- Poltev V. I., Bruskov V. I. On molecular mechanisms of nucleic acid synthesis fidelity aspects. 1. Contribution of base interactions. J Theor Biol. 1978 Jan 7;70(1):69–83. doi: 10.1016/0022-5193(78)90303-x. [DOI] [PubMed] [Google Scholar]
- Poltev V. I., Shuliupina N. V., Bruskov V. I. Molekuliarnye mekhanizmy oshibok biosinteza nukleinovykh kislot, indutsirovannykh alkilirovannem azotistykh osnovanii. Mol Biol (Mosk) 1981 Nov-Dec;15(6):1286–1294. [PubMed] [Google Scholar]
- Quigley G. J., Seeman N. C., Wang A. H., Suddath F. L., Rich A. Yeast phenylalanine transfer RNA: atomic coordinates and torsion angles. Nucleic Acids Res. 1975 Dec;2(12):2329–2341. doi: 10.1093/nar/2.12.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sankoff D., Cedergren R. J., Lapalme G. Frequency of insertion-deletion, transversion, and transition in the evolution of 5S ribosomal RNA. J Mol Evol. 1976 Mar 29;7(2):133–149. doi: 10.1007/BF01732471. [DOI] [PubMed] [Google Scholar]
- Sinha N. K., Haimes M. D. Molecular mechanisms of substitution mutagenesis. An experimental test of the Watson-Crick and topal-fresco models of base mispairings. J Biol Chem. 1981 Oct 25;256(20):10671–10683. [PubMed] [Google Scholar]
- Topal M. D., Fresco J. R. Complementary base pairing and the origin of substitution mutations. Nature. 1976 Sep 23;263(5575):285–289. doi: 10.1038/263285a0. [DOI] [PubMed] [Google Scholar]
- WATSON J. D., CRICK F. H. Genetical implications of the structure of deoxyribonucleic acid. Nature. 1953 May 30;171(4361):964–967. doi: 10.1038/171964b0. [DOI] [PubMed] [Google Scholar]