Skip to main content
Age logoLink to Age
. 1998 Apr;21(2):47–76. doi: 10.1007/s11357-998-0007-7

Oxidative stress and superoxide dismutase in development, aging and gene regulation

Robert G Allen 1
PMCID: PMC3455717  PMID: 23604352

Abstract

Free radicals and other reactive oxygen species are produced in the metabolic pathways of aerobic cells and affect a number of biological processes. Oxidation reactions have been postulated to play a role in aging, a number of degenerative diseases, differentiation and development as well as serving as subcellular messengers in gene regulatory and signal transduction pathways. The discovery of the activity of superoxide dismutase is a seminal work in free radical biology, because it established that free radicals were generated by cells and because it made removal of a specific free radical substance possible for the first time, which greatly accelerated research in this area. In this review, the role of reactive oxygen in aging, amyotrophic lateral sclerosis (a neurodegenerative disease), development, differentiation, and signal transduction are discussed. Emphasis is also given to the role of superoxide dismutases in these phenomena.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

References

  • 1.Harman D. Aging: a theory based on free radical and radiation biology. J. Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. [DOI] [PubMed] [Google Scholar]
  • 2.Harman D. Free radicals in aging. Mol. Cell. Biol. 1984;84:155–161. doi: 10.1007/BF00421050. [DOI] [PubMed] [Google Scholar]
  • 3.Sohal R.S., Allen R.G. Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp. Geront. 1990;25:499–522. doi: 10.1016/0531-5565(90)90017-V. [DOI] [PubMed] [Google Scholar]
  • 4.Sohal R.S., Svensson I., Brunk U.T. Hydrogen peroxide production by liver mitochondria in different species. Mech. Ageing Dev. 1990;53:209–215. doi: 10.1016/0047-6374(90)90039-I. [DOI] [PubMed] [Google Scholar]
  • 5.Sohal R.S., Arnold L.A., Sohal B.H. Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Radic. Biol. Med. 1990;9:495–500. doi: 10.1016/0891-5849(90)90127-5. [DOI] [PubMed] [Google Scholar]
  • 6.Kong S., Davidson A.J. The role of the interactions between O2, H2O2, OH−, e−, and ′O2 in the free radical damage to biological systems. J. Biol. Chem. 1980;204:18–29. doi: 10.1016/0003-9861(80)90003-x. [DOI] [PubMed] [Google Scholar]
  • 7.Friguet, B, Stadtman, ER, and Szweda, LI: Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Formation of cross-linked protein that inhibits the multicatalytic protease. J. Biol. Chem., 269: 21639–21643, 1994. [PubMed]
  • 8.Stadtman E.R., Oliver C.N., Starke-Reed P.E., Rhee S.G. Age-related oxidation reaction in proteins. Toxicology & Industrial Health. 1993;9:187–196. doi: 10.1177/0748233793009001-213. [DOI] [PubMed] [Google Scholar]
  • 9.Stadtman E.R. Protein modification in aging. J. Gerontol. 1988;43:B112–B120. doi: 10.1093/geronj/43.5.b112. [DOI] [PubMed] [Google Scholar]
  • 10.Stadtman E.R. Covalent modification reactions are marking steps in protein turnover. Biochemistry. 1990;29:6323–6331. doi: 10.1021/bi00479a001. [DOI] [PubMed] [Google Scholar]
  • 11.Stadtman E.R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Ann. Rev. Biochem. 1993;62:797–821. doi: 10.1146/annurev.bi.62.070193.004053. [DOI] [PubMed] [Google Scholar]
  • 12.Szweda L.I., Uchida K., Tsai L., Stadtman E.R. Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J. Biol. Chem. 1993;268:3342–3347. [PubMed] [Google Scholar]
  • 13.Agarwal S., Sohal R.S. Relationship between aging and susceptability to protein oxidative damage. Biochem. Biophys. Res. Commun. 1993;194:1203–1206. doi: 10.1006/bbrc.1993.1950. [DOI] [PubMed] [Google Scholar]
  • 14.Brawn K., Fridovich I. Superoxide radical and superoxide dismutases: threat and defense. Acta Physiol. Scand. Suppl. 1980;492:9–18. [PubMed] [Google Scholar]
  • 15.Newton R.K., Ducore J.M., Sohal R.S. Effect of age on endogenous DNA single-strand breakage, strand break induction and repair in the adult housefly, Musca domestica. Mut. Res. 1989;219:113–120. doi: 10.1016/0921-8734(89)90022-2. [DOI] [PubMed] [Google Scholar]
  • 16.Agarwal, S, and Sohal, RS: DNA oxidative damage and life expectancy in houseflies. Proc. Natl. Acad. Sci. USA, 91: 12332–12335, 1994. [DOI] [PMC free article] [PubMed]
  • 17.von Zglinicki T., Saretzki G., Döcke W., Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp. Cell Res. 1995;220:186–192. doi: 10.1006/excr.1995.1305. [DOI] [PubMed] [Google Scholar]
  • 18.Yakes F.M., Houten B.V. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA. 1997;94:514–519. doi: 10.1073/pnas.94.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Reid T.M., Loeb L.A. Tandem double CC → TT mutations are produced by reactive oxygen species. Proc. Natl. Acad. Sci. USA. 1993;90:3904–3907. doi: 10.1073/pnas.90.9.3904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Ammendola, R, Mesuraca, M, Russo, T, and Cimino, F: Sp1 DNA binding efficiency is highly reduced in nuclear extracts from aged rat tissues. J. Biol. Chem., 267: 17944–17948, 1992. [PubMed]
  • 21.Ammendola R., Mesuraca M., Russo T., Cimino F. The DNA binding efficiency of Sp1 is affected by redox changes. Eur. J. Biochem. 1994;225:483–489. doi: 10.1111/j.1432-1033.1994.t01-1-00483.x. [DOI] [PubMed] [Google Scholar]
  • 22.Pryor W.A. The role of free radical reactions in biological systems. In: Pryor W.A., editor. Free Radicals in Biology. New York: Academic Press; 1976. pp. 1–49. [Google Scholar]
  • 23.Rosen G.M., Barber M.J., Rauckman E.J. Disruption of erythrocyte membrane organization by superoxide. J. Biol. Chem. 1983;258:2225–2228. [PubMed] [Google Scholar]
  • 24.Uchida, K, Toyokuni, S, Nishikawa, K, Kawakishi, S, Oda, H, Hiai, H, and Stadtman, ER: Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry, 33: 12487–12494, 1994. [DOI] [PubMed]
  • 25.Kramer J.H., Arroyo C.M., Dickens B.F., Weglicki W.B. Spin-trapping evidence that graded myocardial ishemia alters post-ischemic superoxide production. Free Radic. Biol. Med. 1987;3:153–159. doi: 10.1016/s0891-5849(87)80011-4. [DOI] [PubMed] [Google Scholar]
  • 26.McCord J.M. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 1985;312:159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  • 27.Darley-Usmar V.M., Smith D.R., O’Leary H., O’Leary D.L.V.J., Stone D., Clark J.B. Hyperoxia-reoxygenation induced damage in the myocardium: the role of mitochondria. Biochem. Soc. Trans. 1990;18:526–528. doi: 10.1042/bst0180526. [DOI] [PubMed] [Google Scholar]
  • 28.Oberley L.W. Superoxide dismutases in cancer. In: Oberley L.W., editor. Superoxide Dismutase. Boca Raton, FL: CRC Press; 1983. pp. 127–165. [Google Scholar]
  • 29.Oberley L.W., Oberley T.D. The role of superoxide dismutase and gene amplification in carcinogenesis. J. Theor. Biol. 1984;106:403–422. doi: 10.1016/0022-5193(84)90038-9. [DOI] [PubMed] [Google Scholar]
  • 30.Weitzman S., Schmeichel C., Turk P., Stevens C., Tolsma S., Bouck N. Phagocyte-mediated carcinogenesis: DNA from phagocyte transformed C3H T10 1/2 cells can transform NIH/3T3 cells. In: Galeotti T., Cittadini A., Neri G., Scarpa A., editors. Membrane in Cancer Cells. New York: Annals of the New York Academy of Sciences; 1988. pp. 103–110. [DOI] [PubMed] [Google Scholar]
  • 31.Safford S.E., Oberley T.D., Urano M., St. Clair D.K. Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res. 1994;54:4261–4265. [PubMed] [Google Scholar]
  • 32.McCord J.M., Fridovich I. Superoxide dismutase. J. Biol. Chem. 1969;244:6049–6055. [PubMed] [Google Scholar]
  • 33.Halliwell B. Free radicals, oxygen toxicity and aging. In: Sohal R.S., editor. Age Pigments. Amsterdam: Elsevier/North Holland; 1981. pp. 1–62. [Google Scholar]
  • 34.Foreman H.J., Fischer A.B. Antioxidant defenses. In: Gilbert D.L., editor. Oxygen and Living Processes. New York: Springer-Verlag; 1981. pp. 65–90. [Google Scholar]
  • 35.Allen R.G., Balin A.K. Oxidative influence on development and differentiation: an overview of a free radical theory of development. Free Radic. Biol. Med. 1989;6:631–661. doi: 10.1016/0891-5849(89)90071-3. [DOI] [PubMed] [Google Scholar]
  • 36.Allen R.G. Oxygen-reactive species and antioxidant responses during development: the metabolic paradox of cellular differentiation. Proc. Soc. Exp. Biol. Med. 1991;196:117–129. doi: 10.3181/00379727-196-43171a. [DOI] [PubMed] [Google Scholar]
  • 37.Allen R.G. Role of free radicals in senescence. In: Cristofalo V.J., Lawton M.P., editors. Annual Review of Gerontology and Geriatrics. New York: Springer Publishing Co.; 1990. pp. 198–213. [DOI] [PubMed] [Google Scholar]
  • 38.Oberley L.W., Oberley T.D. Free radicals cancer and aging. In: Johnson J.E., Walford R., Harman D., Miquel J., editors. Free Radicals, Aging and Degenerative Diseases. New York: Alan R. Liss, Inc.; 1986. pp. 325–371. [Google Scholar]
  • 39.Beyer W., Imlay J., Fridovich I. Superoxide dismutases. Prog. Nucl. Acid Res. Mol. Biol. 1991;40:221–253. doi: 10.1016/s0079-6603(08)60843-0. [DOI] [PubMed] [Google Scholar]
  • 40.Keller G.-A., Warner T.G., Steimer K.S., Hallewell R.A. Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc. Natl. Acad. Sci. USA. 1991;88:7381–7385. doi: 10.1073/pnas.88.16.7381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Dhaunsi G.S., Gulati S., Singh A.K., Orak J.H., Asayama K., Singh I. Demonstration of Cu-Zn superoxide dismutase in rat liver peroxisomes. J. Biol. Chem. 1992;267:6870–6873. [PubMed] [Google Scholar]
  • 42.Steinman H.M. Superoxide dismutase: protein chemistry and structure-function relationships. In: Oberley L.W., editor. Superoxide Dismutase. Boca Raton, FL: CRC Press; 1982. pp. 11–68. [Google Scholar]
  • 43.Marklund S.L. Extracellular superoxide dismutase in human tissues and human cell lines. J. Clin. Invest. 1984;74:1398–1403. doi: 10.1172/JCI111550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Sohal R.S. The free radical hypothesis of aging: an appraisal of the current status. Aging. 1993;5:3–17. doi: 10.1007/BF03324120. [DOI] [PubMed] [Google Scholar]
  • 45.Mehlhorn R.J., Cole G. The free radical theory of aging: a critical review. Adv. Free Rad. Biol. Med. 1985;1:165–223. doi: 10.1016/8755-9668(85)90007-9. [DOI] [Google Scholar]
  • 46.Allen R.G. Free radicals and differentiation: the interrelationship of development and aging. In: Yu B.P., editor. Free Radicals in Aging. Boca Raton, FL: CRC Press; 1993. pp. 11–37. [Google Scholar]
  • 47.Newton R.K., Ducore J.M., Sohal R.S. Relationship between life expectancy and endogenous DNA single-strand breakage, strand break induction and DNA repair capicity in the adult housefly, Musca clomestica. Mech. Ageing Dev. 1989;49:259–270. doi: 10.1016/0047-6374(89)90076-6. [DOI] [PubMed] [Google Scholar]
  • 48.McCord J.M. Human disease, free radicals, and the oxidant/antioxidant balance. Clin. Biochem. 1993;26:351–357. doi: 10.1016/0009-9120(93)90111-I. [DOI] [PubMed] [Google Scholar]
  • 49.Leff J.A., Parsons P.E., Day C.E., Taniguchi N., Jochum M., Fritz H., Moore F.A., Moore E.E., McCord J.M., Repine J.E. Serum antioxidants as predictors of adult respiratory distress syndrome in patients with sepsis. Lancet. 1993;341:777–780. doi: 10.1016/0140-6736(93)90558-X. [DOI] [PubMed] [Google Scholar]
  • 50.McCord J.M., Gao B., Left J., Flores S.C. Neutrophil-generated free radicals: possible mechanisms of injury in adult respiratory distress syndrome. Env. Health Per. 1994;102(Supp110):57–60. doi: 10.1289/ehp.94102s1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Oberley L.W. Free radicals and diabetes. Free Radic. Biol. Med. 1988;5:113–124. doi: 10.1016/0891-5849(88)90036-6. [DOI] [PubMed] [Google Scholar]
  • 52.Kubisch H.M., Wang J., Luche R., Carlson E., Bray T.M., Epstein C.J., Phillips J.P. Transgenic copper/zinc superoxide dismutase modulates susceptibility to type I diabetes. Proc. Natl. Acad. Sci. USA. 1994;91:9956–9959. doi: 10.1073/pnas.91.21.9956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Asayama K., Uchida N., Nakane T., Hayashibe H., Dobashi K., Amemiya S., Kato K., Nakazawa S. Antioxidants in the serum of children with insulin-dependent diabetes mellitus. Free Radic. Biol. Med. 1993;15:597–602. doi: 10.1016/0891-5849(93)90162-N. [DOI] [PubMed] [Google Scholar]
  • 54.Juurlink B.H.J. Response of glial cells to ischemia-roles of reactive oxygen species and glutathione. Neuroscience & Biobehavioral Reviews. 1997;21:151–166. doi: 10.1016/S0149-7634(96)00005-X. [DOI] [PubMed] [Google Scholar]
  • 55.Mikawa S., Sharp F.R., Kamii H., Kinouchi H., Epstein C.J., Chan P.H. Expression of c-fos and hsp70 mRNA after tramatic brain injury in transgenic mice overexpressing Cu/Zn-superoxide dismutase. Mol. Brain Res. 1995;33:288–294. doi: 10.1016/0169-328X(95)00146-J. [DOI] [PubMed] [Google Scholar]
  • 56.Fabia R., Ar’Rajab. Willen R., Marklund S., Andersson R. The role of transient mucosal ischemia in acetic acid-induced colitis in the rat. J. Surg. Res. 1996;63:406–412. doi: 10.1006/jsre.1996.0284. [DOI] [PubMed] [Google Scholar]
  • 57.Ishimoto H., Natori M., Tanaka M., Miyazaki T., Kobayashi T., Yoshimura Y. Role of oxygen-derived free radicals in free growth retardation induced by ischemia-reperfusion in rats. Am. J. Physiol. 1997;272:H701–H705. doi: 10.1152/ajpheart.1997.272.2.H701. [DOI] [PubMed] [Google Scholar]
  • 58.Yamanoi A., Nagasue N., Kohno H., Kimoto T., Nakamura T. Clinical and enzymatic investigation of induction of oxygen free radicals by ischemia and reperfusion in human hepatocellular carcinoma and adjacent liver. HPB Surgery. 1995;8:193–199. doi: 10.1155/1995/16191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Hirano T., Furuyama H., Kawakami Y., Ando K., Tsuchitani T. Protective effects of prophylaxis with a protease inhibitor and a free radical scavenger against a temporary ischemia model of pancreatitis. Can. J. Surg. 1995;38:241–248. [PubMed] [Google Scholar]
  • 60.Pisarenko O.I., Studneva I.M., Lakomkin V.L., Timoshin A.A., Kapelko V.I. Human recombinant extracellular-superoxide dismutase type C improves cardioplegic protection against ischemia/reperfusion injury in isolated rat heart. Journal of Cardiovascular Pharmacology. 1994;24:655–663. doi: 10.1097/00005344-199410000-00017. [DOI] [PubMed] [Google Scholar]
  • 61.Karwinski W., Bolann B., Ulvik R., Farstad M., Soreide O. Normothermic liver ischemia in rats: xanthine oxidase is not the main source of oxygen free radicals. Res. Exp. Med. 1993;193:275–283. doi: 10.1007/BF02576235. [DOI] [PubMed] [Google Scholar]
  • 62.Yoritaka A., Hattori N., Uchida K., Tanaka M., Stadtman E.R., Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. USA. 1996;93:2696–2701. doi: 10.1073/pnas.93.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Nelson S.K., Wong G.H., McCord J.M. Leukemia inhibitory factor and tumor necrosis factor induce manganese superoxide dismutase and protect rabbit hearts from reperfusion injury. J. Mol. Cell. Cardiol. 1995;27:223–229. doi: 10.1016/s0022-2828(08)80021-1. [DOI] [PubMed] [Google Scholar]
  • 64.Chan P.H., Epstein C.J., Kinouchi H., Kamii H., Chen S.F., Carlson E., Gafni J., Yang G., Reola L. Neuroprotective role of CuZn-superoxide dismutase in ischemic brain damage. Adv. Neurol. 1996;71:271–280. [PubMed] [Google Scholar]
  • 65.Karlsson K., Sandstrom J., Edlund A., Edlund T., Marklund S.L. Pharmacokinetics of extracellular-superoxide dismutase in the vascular system. Free Radic. Biol. Med. 1993;14:185–190. doi: 10.1016/0891-5849(93)90009-J. [DOI] [PubMed] [Google Scholar]
  • 66.Omar B.A., McCord J.M. The cardioprotective effect of Mn-superoxide dismutase is lost at high doses in the postischemic isolated rabbit heart. Free Radic. Biol. Med. 1990;9:473–478. doi: 10.1016/0891-5849(90)90124-2. [DOI] [PubMed] [Google Scholar]
  • 67.Omar B.A., Gad N.M., Jordan M.C., Striplin S.P., Russell W.J., Downey J.M., McCord J.M. Cardioprotection by Cu,Zn-superoxide dismutase is lost at high doses in the reoxygenated heart. Free Radic. Biol. Med. 1990;9:465–471. doi: 10.1016/0891-5849(90)90123-Z. [DOI] [PubMed] [Google Scholar]
  • 68.Matsuo M. Age-related alterations in antioxidant defense. In: Yu B.P., editor. Free Radicals in Aging. Boca Raton, FL: CRC Press; 1993. pp. 143–181. [Google Scholar]
  • 69.Noy N., Schwartz H., Gafni A. Age-related changes in the redox status of rat muscle cells and their role in enzyme aging. Mech. Ageing Dev. 1985;29:63–69. doi: 10.1016/0047-6374(85)90047-8. [DOI] [PubMed] [Google Scholar]
  • 70.Sohal R.S., Farmer K.J., Allen R.G., Cohen N.R. Effects of age on oxygen consumption, superoxide dismutase, catalase, glutathione, inorganic peroxides, and chloroform-soluble antioxidants in the adult male housefly, Musca domestica. Mech. Ageing Dev. 1983;24:185–195. doi: 10.1016/0047-6374(84)90070-8. [DOI] [PubMed] [Google Scholar]
  • 71.Sohal R.S., Svensson I., Sohal B.H., Brunk U.T. Superoxide radical production in different animal species. Mech. Ageing Dev. 1989;49:129–135. doi: 10.1016/0047-6374(89)90096-1. [DOI] [PubMed] [Google Scholar]
  • 72.Farmer K.J., Sohal R.S. Relationship between superoxide anion generation and aging in the housefly, Musca domestica. Free Radic. Biol. Med. 1989;7:23–29. doi: 10.1016/0891-5849(89)90096-8. [DOI] [PubMed] [Google Scholar]
  • 73.Nohl H., Hegner D. Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 1978;82:563–567. doi: 10.1111/j.1432-1033.1978.tb12051.x. [DOI] [PubMed] [Google Scholar]
  • 74.Nohl H. Oxygen release in mitochondria: influence of age. In: Johnson J.E., Walford R., Harman D., Miquel J., editors. Free Radicals, Aging, and Degenerative Disease. New York: Alan Liss; 1986. pp. 79–97. [Google Scholar]
  • 75.Hegner D. Age-dependence of molecular and functional changes in biological membranes. Mech. Ageing Dev. 1980;14:101–118. doi: 10.1016/0047-6374(80)90109-8. [DOI] [PubMed] [Google Scholar]
  • 76.Ku H.-H., Brunk U.T., Sohal R.S. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic. Biol. Med. 1993;15:621–627. doi: 10.1016/0891-5849(93)90165-Q. [DOI] [PubMed] [Google Scholar]
  • 77.Allen R.G., Farmer K.J., Sohal R.S. Effect of catalase inactivation on the levels of inorganic peroxides, superoxide dismutase, glutathione, oxygen consumption and life span in adult houseflies. (Musca domestica) Biochem. J. 1983;216:503–506. doi: 10.1042/bj2160503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Sohal R.S. Aging, cytochrome oxidase activity, and hydrogen peroxide release by mitochondria. Free Radic. Biol. Med. 1993;14:583–588. doi: 10.1016/0891-5849(93)90139-L. [DOI] [PubMed] [Google Scholar]
  • 79.Sohal R.S., Sohal B.H. Hydrogen peroxide release by mitochondria increases during aging. Mech. Ageing Dev. 1991;57:187–202. doi: 10.1016/0047-6374(91)90034-W. [DOI] [PubMed] [Google Scholar]
  • 80.Lang C.A., Naryshkin S., Schneider D.L., Mills B.J., Linderman R.D. Low blood glutathione levels in healthy aging adults. J. Lab. Clin. Med. 1992;120:720–725. [PubMed] [Google Scholar]
  • 81.Rikans L.E., Moore D.R. Effects of aging on aqueous-phase antioxidants in tissues of male Fischer rats. Biochim. Biophys. Acta. 1988;966:269. doi: 10.1016/0304-4165(88)90076-1. [DOI] [PubMed] [Google Scholar]
  • 82.Orr W.C., Sohal R.S. Extension of lifespan by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994;263:1128–1130. doi: 10.1126/science.8108730. [DOI] [PubMed] [Google Scholar]
  • 83.Sohal, RS, Agarwal, A, Agarwal, S, and Orr, WC: Simultaneous overexpression of copper-and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem., 270: 15671–15674, 1995. [DOI] [PubMed]
  • 84.Benzi G., Pastoris O., Marzatico R.F., Villa R.F., Curti D. The mitochondrial electron transfer alterations as a factor involved in brain aging. Neurobiol. Aging. 1992;13:361–368. doi: 10.1016/0197-4580(92)90109-B. [DOI] [PubMed] [Google Scholar]
  • 85.Sugiyama S., Takasawa M., Hayakawa M., Ozawa T. Changes in skeletal muscle, heart and liver mitochondrial electron transport activities in rats and dogs of various ages. Biochem. Mol. Biol. Int. 1993;30:937–944. [PubMed] [Google Scholar]
  • 86.Boffoli D., Scacco S.C., Vergari R., Persio M.T., Solarino G., Laforgia R., Papa S. Ageing is associated in females with a decline in the content and activity of the b-c1 complex in skeletal muscle mitochondria. Biochim. Biophys. Acta. 1996;1315:66–72. doi: 10.1016/0925-4439(95)00107-7. [DOI] [PubMed] [Google Scholar]
  • 87.Boffoli D., Scacco S.C., Vergari R., Solarino G., Santacroce G., Papa S. Decline with age of the respiratory chain activity in human skeletal muscle. Biochim. Biophys. Acta. 1994;1226:73–82. doi: 10.1016/0925-4439(94)90061-2. [DOI] [PubMed] [Google Scholar]
  • 88.Hayashi J.-I., Ohta S., Kagawa Y., Kondo H., Kaneda H., Yonekawa H., Takai D., Miyabayashi S. Nuclear but not mitochondrial genome involvement in human age-related mitochondrial dysfunction. J. Biol. Chem. 1994;269:6878–6883. [PubMed] [Google Scholar]
  • 89.Brierley E.J., Johnson M.A., James O.F.W., Turnbull D.M. Mitochondrial involvement in the ageing process, facts and controversies. Mol. Cell. Biochem. 1997;174:325–328. doi: 10.1023/A:1006847319162. [DOI] [PubMed] [Google Scholar]
  • 90.Paradies G., Ruggiero F.M. Effect of aging on the activity of the phosphate carrier and on the lipid composition in rat liver mitochondria. Arch. Biochem. Biophys. 1991;284:332–337. doi: 10.1016/0003-9861(91)90304-2. [DOI] [PubMed] [Google Scholar]
  • 91.Vorbeck M.L., Martin A.P., Long J.W., Smith J.M., Orr R.R. Aging-dependent modification of lipid composition and lipid structural order of hepatic mitochondria. Arch. Biochem. Biophys. 1982;217:351–361. doi: 10.1016/0003-9861(82)90511-2. [DOI] [PubMed] [Google Scholar]
  • 92.Paradies G., Ruggiero M., Dinoi P. Decreased activity of the phosphate carrier and modification of lipids in cardiac mitochondria from senescent rats. Int. J. Biochem. 1992;24:783–787. doi: 10.1016/0020-711X(92)90012-P. [DOI] [PubMed] [Google Scholar]
  • 93.Paradies G., Ruggiero F.M., Petrosillo G., Gadaleta M.N., Quagliariello E. Effects of aging and acetyl-L-carnitine on the activity of cytochrome oxidase and adenine nucleotide translocase in rat heart mitochondria. FEBS Lett. 1994;350:213–215. doi: 10.1016/0014-5793(94)00763-2. [DOI] [PubMed] [Google Scholar]
  • 94.Paradies G., Ruggiero F.M., Gadaleta M.N., Quagliariello E. Effects of aging and acetyI-L-carnitine on the activity of the phosphate carrier and on the phospholipid composition in rat heart mitochondria. Biochim. Biophys. Acta. 1992;1103:324–326. doi: 10.1016/0005-2736(92)90103-s. [DOI] [PubMed] [Google Scholar]
  • 95.Hansford R.G., Hogue B.A., Mildaziene V. Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. Journal of Bioenergetics & Biomembranes. 1997;29:89–95. doi: 10.1023/A:1022420007908. [DOI] [PubMed] [Google Scholar]
  • 96.Zhan H., Sun C.-P., Liu C.-G., Zhou J.-H. Age-related change of free radical generation in liver and sex glands of rats. Mech. Ageing Dev. 1992;62:111–116. doi: 10.1016/0047-6374(92)90047-H. [DOI] [PubMed] [Google Scholar]
  • 97.Yu B.P., Yang R. Critical elvaluation of the free radical theory: a proposal for the oxidative stress hypothesis. Ann. New York Acad. Sci. 1996;786:1–11. doi: 10.1111/j.1749-6632.1996.tb39047.x. [DOI] [PubMed] [Google Scholar]
  • 98.Beal M.F. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 1995;38:357–366. doi: 10.1002/ana.410380304. [DOI] [PubMed] [Google Scholar]
  • 99.Bowling A.C., Beal M.F. Bioenergetic and oxidative stress in neurodegenerative disease. Life Sci. 1995;56:1151–1171. doi: 10.1016/0024-3205(95)00055-B. [DOI] [PubMed] [Google Scholar]
  • 100.Eisen A. Amyotrophic lateral sclerosis is a multifactorial disease. Muscle and Nerve. 1995;18:741–752. doi: 10.1002/mus.880180711. [DOI] [PubMed] [Google Scholar]
  • 101.Anderson P.L., Forsgren L., Binzer M., Nilsson P., Ala-Hurula V., Keränen M.-L., Bergmark L., Saarinen A., Haltia T., Tarvainen I., Kinnunen E., Udd B., Marklund S.L. Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation: A clinical and genealogical study of 36 patients. Brain. 1996;119:1153–1172. doi: 10.1093/brain/119.4.1153. [DOI] [PubMed] [Google Scholar]
  • 102.Gusella J.F., Wexler N.S., Conneally P.M., Naylor S.L., Anderson M.A., Tanzi R.E., Watkins P.C., Ottina K., Wallace M.R., Sakaguchi A.Y., Young A.B., Shoulson I., Bonilla E., Martin J.B. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature. 1983;306:234–238. doi: 10.1038/306234a0. [DOI] [PubMed] [Google Scholar]
  • 103.Aoki M., Abe K., Houi K., Ogasawara M., Matsubara Y., Kobayashi T., Mochio S., Narisawa K., Itoyama Variance of age at onset in a Japanese family with amyotrophic lateral sclerosis associated with a novel Cu/Zn superoxide dismutase mutation. Ann. Neurol. 1995;37:676–679. doi: 10.1002/ana.410370518. [DOI] [PubMed] [Google Scholar]
  • 104.Eisen A.A. Amyotrophic lateral sclerosis: a multifactorial disease. Adv. Neurol. 1995;68:121–134. [PubMed] [Google Scholar]
  • 105.Curti D., Malaspina A., Facchetti G., Camana C., Mazzini L., Tosca M.D., Zerbi F., Ceroni M. Amytrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes. Neurol. 1996;47:1060–1064. doi: 10.1212/wnl.47.4.1060. [DOI] [PubMed] [Google Scholar]
  • 106.Chandrasekaran K., Giordano T., Brady D.R., Stoll J., Martin L.J., Rapoport S.I. Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Mol. Brain Res. 1994;24:336–340. doi: 10.1016/0169-328X(94)90147-3. [DOI] [PubMed] [Google Scholar]
  • 107.Mutisya E.M., Bowling A.C., Beal M.F. Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J. Neurochem. 1994;63:2179–2184. doi: 10.1046/j.1471-4159.1994.63062179.x. [DOI] [PubMed] [Google Scholar]
  • 108.Bowling A.C., Schulz J.B., Brown R.H., Beal M.F. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem. 1993;61:2322–2325. doi: 10.1111/j.1471-4159.1993.tb07478.x. [DOI] [PubMed] [Google Scholar]
  • 109.Fujita K., Yamauchi M., Shibayama K., Ando M., Hondo M., Nagata Y. Decreased cytochrome c oxidase activity but unchanged superoxide dismutase and glutathione peroxidase activities in the spinal cords of patients with amyotrophic lateral sclerosis. J. Neurosci. Res. 1996;45:276–281. doi: 10.1002/(SICI)1097-4547(19960801)45:3<276::AID-JNR9>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  • 110.Hosler B.A., Brown R.H. Copper/Zinc superoxide dismutase mutations and free radical damage in amyotrophic lateral sclerosis. Adv. Neurol. 1995;68:41–46. [PubMed] [Google Scholar]
  • 111.Schapira A.H.V. Oxidative stress and mitochondrial dysfunction in neurodegeneration. Curr. Opin. Neurol. 1996;9:260–264. doi: 10.1097/00019052-199608000-00003. [DOI] [PubMed] [Google Scholar]
  • 112.Simonian N.A., Coyle J.T. Oxidative stress in neurodegenerative disease. Annu. Rev. Pharmacol. Toxicol. 1996;36:83–106. doi: 10.1146/annurev.pa.36.040196.000503. [DOI] [PubMed] [Google Scholar]
  • 113.Bergeron C. Oxidative stress: its role in the pathogenesis of amyotrophic lateral sclerosis. J. Neurol. Sci. 1995;129(Suppl.):81–84. doi: 10.1016/0022-510X(95)00071-9. [DOI] [PubMed] [Google Scholar]
  • 114.Rosen D.R., Siddique T., Patterson D., Figlewics D.A., Snapp P., Hentati A., Donaldson D., Goto J., Deng H.-X., Rahmani Z., Krizus A., McKenna-Yasek D., Cayabyab A., Gaston S.M., Berger R., Tanzi R.E., Halperin J.J., Hertzfeldt B., Van der Bergh R., Hung W.-Y., Bird T., Deng G., Mulder D.W., Smyth C., Laing N.G., Soriano E., Pericak-Vance M.A., Haines J., Rouleau G.A., Gusella J.S., Horvitz H.R., Brown R.H. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62. doi: 10.1038/362059a0. [DOI] [PubMed] [Google Scholar]
  • 115.Cudkowicz M.E., Brown R.H. An update on superoxide dismutase 1 in familial amyotrophic lateral sclerosis. J. Neurol. Sci. 1996;139(Suppl.):10–15. doi: 10.1016/0022-510X(96)00084-6. [DOI] [PubMed] [Google Scholar]
  • 116.Mulder D.W., Kurland L.T., Offord K.P., Beard C.M. Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurol. 1986;36:511–517. doi: 10.1212/wnl.36.4.511. [DOI] [PubMed] [Google Scholar]
  • 117.Przedborski S., Dhawan V., Donaldson D.M., Murphy P.L., McKenna-Yasek D., Mandel F.S., Brown R.H., Eidelberg D. Nigrostriatal dopaminergic function in familial amyotrophic lateral sclerosis patients with and without copper/zinc superoxide dismutase mutations. Neurol. 1996;47:1546–1551. doi: 10.1212/wnl.47.6.1546. [DOI] [PubMed] [Google Scholar]
  • 118.Radunovic A., Leigh P.N. Cu/Zn superoxide dismutase gene mutations in amyotrophic lateral sclerosis: correlation between genotype and clinical features. J. Neurol. Neurosurg. Psychiatry. 1996;61:565–572. doi: 10.1136/jnnp.61.6.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Orrell R.W., King A.W., Hilton D.A., Campbell M.J., Lane R.J.M., de Belleroche J.S. Familial amyotrophic lateral sclerosis with a point mutation of SOD-1: intrafamilial heterogeneity of disease duration associated with neurofibrillary tangles. J. Neurol. Neurosurg. Psychiatry. 1995;59:266–270. doi: 10.1136/jnnp.59.3.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Rouleau G.A., Clark A.W., Rooke K., Pramatarova A., Krizus A., Suchowersky O., Julien J.-P., Figlewicz D. SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann. Neurol. 1996;39:128–131. doi: 10.1002/ana.410390119. [DOI] [PubMed] [Google Scholar]
  • 121.Calder V.L., Domigan N.M., George P.M., Donaldson I.M., Winterbourn C.C. Superoxide dismutase (glu100→gly) in a family with inherited neuron disease: detection of mutant superoxide dismutase activity and the presence of heterodimers. Neurosci. Lett. 1995;189:143–146. doi: 10.1016/0304-3940(95)11476-D. [DOI] [PubMed] [Google Scholar]
  • 122.Hosler B.A., Nicholson G.A., Sapp P.C., Chin W., Orrell R.W., de Belleroche J.S., Esteban J., Hayward L.J., McKenna-Yasek D., Yeung L., Cherryson A.K., Dench J.E., Wilton S.D., Laing N.G., Horvitz R.H., Brown R.H. Three novel mutations and two variants in the gene for Cu/Zn superoxide dismutase in familial amyotrophic lateral sclerosis. Neuromusc. Disord. 1996;6:361–366. doi: 10.1016/0960-8966(96)00353-7. [DOI] [PubMed] [Google Scholar]
  • 123.Luche R.M., Maiwald R., Carlson E.J., Epstein C.J. Novel mutations in an otherwise strictly conserved domain of CuZn superoxide dismutase. Mol. Cell. Biochem. 1997;168:191–194. doi: 10.1023/A:1006871524623. [DOI] [PubMed] [Google Scholar]
  • 124.Deng H.-X., Hentati A., Tainer J.A., Iqbal Z., Cayabyab A., Hung W.-Y., Getzoff E.D., Hu P., Herzfeldt B., Roos R.P., Warner C., Deng G., Soriano E., Smyth C., Parge H.E., Ahmed A., Roses A.D., Hallewell R.A., Pericak-Vance M.A., Siddique T. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science. 1993;261:1047–1051. doi: 10.1126/science.8351519. [DOI] [PubMed] [Google Scholar]
  • 125.Wiedau-Pazos M., Goto J.J., Rabizadeh S., Gralla E.B., Roe J.A., Lee M.K., Valentine J.S., Bredesen D.E. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science. 1996;271:515–517. doi: 10.1126/science.271.5248.515. [DOI] [PubMed] [Google Scholar]
  • 126.Shibata N., Hirano A., Kobashi M., Siddique T., Deng H.-X., Hung W.-Y., Kato T., Asayama K. Intense superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement. J. Neuropath. Exp. Neurol. 1996;55:481–490. doi: 10.1097/00005072-199604000-00011. [DOI] [PubMed] [Google Scholar]
  • 127.Nakano R., Sato S., Inuzuka T., Sakimura K., Mishina M., Takahashi H., Ikuta F., Honma Y., Fuji J., Taniguchi N., Tsui S. A novel mutation in Cu/Zn superoxide dismutase gene in Japanese familial amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 1994;200:695–703. doi: 10.1006/bbrc.1994.1506. [DOI] [PubMed] [Google Scholar]
  • 128.Nakano R., Inuzuka T., Kikugawa K., Takahashi H., Sakimura K., Fujji J., Taniguchi N., Tsuji S. Instability of mutant Cu/Zn superoxide dismutase (Ala4Thr) associated with familial amyotrophic lateral sclerosis. Neurosci. Lett. 1996;211:129–131. doi: 10.1016/0304-3940(96)12701-4. [DOI] [PubMed] [Google Scholar]
  • 129.Morita M., Aoki M., Abe K., Hasegawa T., Sakuma R., Onodera Y., Ichikawa N., Nishizawa M., Itoyama Y. A novel two-base mutation in the Cu/Zn superoxide dismutase gene associated with familial amyotrophic lateral sclerosis in Japan. Neurosci. Lett. 1996;205:79–82. doi: 10.1016/0304-3940(96)12378-8. [DOI] [PubMed] [Google Scholar]
  • 130.Deng H.X., Tainer J.A., Mitsuamoto H., Ohnishi A., He X., Hung W.Y., Zhao Y., Juneja T., Henati A., Siddique T. Two novel SOD1 mutations in patients with familial amyotrophic lateral sclerosis. Hum. Mol. Genet. 1995;4:1113–1116. doi: 10.1093/hmg/4.6.1113. [DOI] [PubMed] [Google Scholar]
  • 131.Jones C.T., Swingler R.J., Brock D.J. Identification of a novel SOD1 mutation in an apparently sporadic amyotrophic lateral sclerosis patient and the detection of IIe 113Thr in three others. Hum. Mol. Genet. 1994;3:649–650. doi: 10.1093/hmg/3.4.649. [DOI] [PubMed] [Google Scholar]
  • 132.Aoki M., Ogasawara M., Matsubara Y., Narisawa K., Nakamura S., Itoyama Y., Abe K. Mild ALS in japan associated with novel SOD mutation. Nature Genetics. 1993;5:323–324. doi: 10.1038/ng1293-323. [DOI] [PubMed] [Google Scholar]
  • 133.Abe K., Aoki M., Ikeda M., Watanabe M., Hirai S., Itoyama Y. Clinical characteristics of familial amyotrophic lateral sclerosis with Cu/Zn superoxide dismutase gene mutations. J. Neurol. Sci. 1996;136:108–116. doi: 10.1016/0022-510X(95)00314-R. [DOI] [PubMed] [Google Scholar]
  • 134.Enayat Z.E., Orrell R.W., Claus A., Ludolph A., Bachus R., Brockmüller J., Ray-Chaudhri K., Radunovic A., Shaw C., Wilkinson J., Swash M., Leigh P.N., de Belleroche J., Powell J. Two novel mutations in the gene for copper zinc superoxide dismutase in UK families with amyotrophic lateral sclerosis. Hum. Mol. Genet. 1995;4:1239–1240. doi: 10.1093/hmg/4.7.1239. [DOI] [PubMed] [Google Scholar]
  • 135.Kunst C.B., Mezey E., Brownstein M.J., Patterson D. Mutations in SOD1 associated with amyotrophic lateral sclerosis cause novel protein interactions. Nature Genetics. 1997;15:91–94. doi: 10.1038/ng0197-91. [DOI] [PubMed] [Google Scholar]
  • 136.Själander A., Beckman G., Deng H.-X., Iqbal Z., Tainer J.A., Siddique T. The D90A mutation results in a polymorphism of Cu,Zn superoxide dismutase that is prevalent in northern Sweden and Finland. Hum. Mol. Genet. 1995;4:1105–1108. doi: 10.1093/hmg/4.6.1105. [DOI] [PubMed] [Google Scholar]
  • 137.Anderson P.M., Nilsson P., Ala-Hurula V., Keränen M.-L., Tarvainer I., Hultia T., Nilsson L., Binzer M., Forsgren L., Marklund S.L. Amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala mutation in CuZn-superoxide dismutase. Nature Genetics. 1995;10:61–65. doi: 10.1038/ng0595-61. [DOI] [PubMed] [Google Scholar]
  • 138.Robberecht W., Aguirre T., Bosch V.D., Tilkin P., Cassiman J.J., Matthijs G. D90A heterozygosity in the SOD1 gene is associated with familial and apparently sporadic amyotrophic lateral sclerosis. Neurol. 1996;47:1336–1339. doi: 10.1212/wnl.47.5.1336. [DOI] [PubMed] [Google Scholar]
  • 139.Esteban J., Rosen D.R., Bowling A.C., Sapp P., McKenna-Yasek D., O’Regan J.P., Beal M.F., Horowitz H.R., Brown R.H. Identification of two novel mutations and a new polymorphism in the gene for Cu/Zn superoxide dismutase in patients with amyotrophic lateral sclerosis. Hum. Mol. Genet. 1994;3:997–998. doi: 10.1093/hmg/3.6.997. [DOI] [PubMed] [Google Scholar]
  • 140.Elshafey A., Lanyon W.G., Connor J.M. Identification of a new missense point mutation in exon 4 of the Cu/Zn superoxide dismutase (SOD-1) gene in a family with amyotrophic lateral sclerosis. Hum. Mol. Genet. 1994;3:363–364. doi: 10.1093/hmg/3.2.363. [DOI] [PubMed] [Google Scholar]
  • 141.Jones C.T., Swingle R.J., Simpson S.A., Brock D.J.H. Superoxide dismutase mutations in an unselected cohort of Scottish amyotrophic lateral sclerosis patients. J. Mol. Genet. 1995;32:290–292. doi: 10.1136/jmg.32.4.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Orrell R., de Belleroche J., Marklund S., Bowe F., Hallewell R. A novel SOD mutant and ALS. Nature. 1995;374:504–505. doi: 10.1038/374504a0. [DOI] [PubMed] [Google Scholar]
  • 143.Ince P.G., Shaw P.J., Slade J.Y., Jones C., Hudgson P. Familial amyotrophic lateral sclerosis with a mutation in exon 4 of the Cu/Zn superoxide dismutase gene: pathological and immunolo-cytochemical changes. Acta Neuropathol. 1996;92:395–403. doi: 10.1007/s004010050535. [DOI] [PubMed] [Google Scholar]
  • 144.Orrell R.W., Habgood J., Rudge P., Lane R.J.M., de Belleroche J.S. Difficulties in distinguishing sporadic from familial amyotrophic lateral sclerosis. Ann. Neurol. 1996;39:810–812. doi: 10.1002/ana.410390620. [DOI] [PubMed] [Google Scholar]
  • 145.Suthers G., Laing N., Wilton S., Dorosz S., Waddy H. “Sporadic” motoneuron disease due to familial SOD1 mutation with low penetrance. Lancet. 1994;344:1773. doi: 10.1016/S0140-6736(94)92913-0. [DOI] [PubMed] [Google Scholar]
  • 146.Yulug I.G., Katsanis N., de Belleroche J., Collinge J., Fisher E.M. An improved protocol for the analysis of SOD1 gene mutations, and a new mutation in exon 4. Hum. Mol. Genet. 1995;4:1101–1104. doi: 10.1093/hmg/4.6.1101. [DOI] [PubMed] [Google Scholar]
  • 147.Ikeda M., Abe K., Aoki M., Sahara M., Watanabe M., Shoji M., St. George-Hyslop P.H., Hirai S., Itoyama Y. Variable clinical symptoms in familial amyotrophic lateral sclerosis witha novel point mutation in the Cu/Zn superoxide dismutase gene. Neurol. 1995;45:2038–2042. doi: 10.1212/wnl.45.11.2038. [DOI] [PubMed] [Google Scholar]
  • 148.Hayward C., Swingler R.J., Simpson S.A., Brock D.J.H. A specific superoxide dismutase mutation is on the same genetic background in sporadic and familial cases of amyotrophic lateral sclerosis. Am. J. Hum. Genet. 1996;59:1165–1167. [PMC free article] [PubMed] [Google Scholar]
  • 149.Kostrzewa M., Burck-Lehmann U., Muller U. Autosomal dominant amyotrophic lateral sclerosis: a novel mutation in the Cu/Zn superoxide dismutase-1 gene. Hum. Mol. Genet. 1994;3:2261–2264. doi: 10.1093/hmg/3.12.2261. [DOI] [PubMed] [Google Scholar]
  • 150.Pramatarova A., Goto J., Nanba E., Nakashima K., Takahashi K., Takagi A., Kanazawa I., Figlewicz D.A., Rouleau G.A. A two basepair deletion in the SOD 1 gene causes familial amyotrophic lateral sclerosis. Hum. Mol. Genet. 1994;3:2061–2062. [PubMed] [Google Scholar]
  • 151.Watanabe Y., Kono Y., Nanba E., Ohama E., Nakashima K. Instability of expressed Cu/Zn superoxide dismutase with 2 bp deletion found in familial amyotrophic lateral sclerosis. FEBS Lett. 1997;400:108–112. doi: 10.1016/S0014-5793(96)01362-2. [DOI] [PubMed] [Google Scholar]
  • 152.Nakashima K., Watanabe Y., Kuno N., Nanba E., Takahashi K. Abnormality of Cu/Zn superoxide dismutase (SOD1) activity in Japanese familial amyotrophic lateral sclerosis with two base pair deletion in the SOD1 gene. Neurol. 1995;45:1019–1020. doi: 10.1212/wnl.45.5.1019-a. [DOI] [PubMed] [Google Scholar]
  • 153.Kato S., Shimoda M., Watanabe Y., Nakashima K., Takahashi K., Ohama E. Familial amyotrophic lateral sclerosis with a two base deletion in superoxide dismutase 1 gene: multisystem degeneration with intracytoplasmic hyline inclusions in astrocytes. J. Neuropath. Exp. Neurol. 1996;55:1089–1101. [PubMed] [Google Scholar]
  • 154.Pramatarova A., Figlewicz D.A., Krizus A., Han F.Y., Ceballos-Picot I., Nicole A., Dib M., Meinger V., Brown R.H., Rouleau G.A. Identification of new mutations in the Cu/Zn superoxide dismutase gene of patients with familial amyotrophic lateral sclerosis. Am. J. Hum. Genet. 1995;53:592–596. [PMC free article] [PubMed] [Google Scholar]
  • 155.Ikeda M., Abe K., Aoki M., Ogasawara M., Kameya T., Watanabe M., Shoji M., Hirai S., Hirai S., Itoyama Y. A novel gene mutation in the Cu/Zn superoxide dismutase gene in a patient with familial lateral sclerosis. Hum. Mol. Genet. 1995;4:491–492. doi: 10.1093/hmg/4.3.491. [DOI] [PubMed] [Google Scholar]
  • 156.Kostrzewa M., Damian M.S., Müller U. Superoxide dismutase 1: identification of a novel mutation in a case of familial amyotrophic lateral sclerosis. Hum. Genet. 1996;98:48–50. doi: 10.1007/s004390050157. [DOI] [PubMed] [Google Scholar]
  • 157.Sapp P.C., Rosen D.R., Hosler B.A., Esteban J., McKenna-Yasek D., O’Regan J.P., Horvitz H.R., Brown R.H. Identification of three novel mutations in gene for Cu/Zn superoxide dismutase in patients with familial amyotrophic lateral sclerosis. Neuromusc. Disord. 1995;5:353–357. doi: 10.1016/0960-8966(95)00007-A. [DOI] [PubMed] [Google Scholar]
  • 158.Parge H.E., Hallewell R.A., Tainer J.A. Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA. 1992;89:6109–6113. doi: 10.1073/pnas.89.13.6109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Garofalo O., Figlewicz D.A., Thomas S.M., Butler R., Lebuis L., Rouleau G., Meininger V., Leigh P.N. Superoxide dismutase activity in lymphoblastoid cells from motor neuron disease/amyotrophic lateral sclerosis (MNS/ALS) patients. J. Neurol. Sci. 1995;129(Suppl.):90–92. doi: 10.1016/0022-510X(95)00073-B. [DOI] [PubMed] [Google Scholar]
  • 160.Przedborski S., Donaldson D.M., Murphy P.L., Hirsch O., Lange D., Naini A.B., McKenna-Yasek D., Brown R.H. Blood superoxide dismutase, catalase and glutathione peroxidase activities in familial and sporadic amyotrophic lateral sclerosis. Neurodegen. 1996;5:57–64. doi: 10.1006/neur.1996.0008. [DOI] [PubMed] [Google Scholar]
  • 161.Brown R.H. Superoxide dismutase in familial amyotrophic lateral sclerosis: models for gain of function. Curr. Opin. Neurobiol. 1995;5:841–846. doi: 10.1016/0959-4388(95)80114-6. [DOI] [PubMed] [Google Scholar]
  • 162.Bowling A.C., Barkowski E.E., McKenna-Yasek D., Sapp P., Horvitz H.R., Beal M.F., Brown R.H. Superoxide dismutase concentration and activity in familial amyotrophic lateral sclerosis. J. Neurochem. 1995;64:2366–2369. doi: 10.1046/j.1471-4159.1995.64052366.x. [DOI] [PubMed] [Google Scholar]
  • 163.Brown R. Amyotrophic lateral sclerosis: recent insights from genetics and transgenic mice. Cell. 1995;80:687–692. doi: 10.1016/0092-8674(95)90346-1. [DOI] [PubMed] [Google Scholar]
  • 164.Vyth A., Timmer J.G., Bossuyt P.M.M., Louwerse E.S., Vianney de Jong J.M.B. Suvival in patients with amyotrophic lateral sclerosis, treated with an array of antioxidants. J. Neurol. Sci. 1996;139(Suppl.):99–103. doi: 10.1016/0022-510X(96)00071-8. [DOI] [PubMed] [Google Scholar]
  • 165.Louwerse E.S., Weverling G.J., Bossuyt P.M.M., Meyjes F.E.P., Vianney de Jong J.M.B. Randomized, double-blind, controlled trial of acetylcysteine in amyotrophic lateral sclerosis. Arch. Neurol. 1995;52:559–564. doi: 10.1001/archneur.1995.00540300031009. [DOI] [PubMed] [Google Scholar]
  • 166.Gurney M.E., Cutting F.B., Zhai P., Doble A., Taylor C.P., Andrus P.K., Hall E.D. Benefit of vitamin E, riluzole and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol. 1996;39:147–157. doi: 10.1002/ana.410390203. [DOI] [PubMed] [Google Scholar]
  • 167.Gurney M.E., Pu H., Chiu A.Y., Dal Canto M.C., Polchow C.Y., Alexander D.D., Caliendo J., Hentati A., Kwon Y.W., Deng H.-X., Chen W., Zhai P., Sufit R.L., Siddique T. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264:1772–1775. doi: 10.1126/science.8209258. [DOI] [PubMed] [Google Scholar]
  • 168.Ripps M.E., Huntley G.W., Hoff P.R., Morrison J.H., Gordon J.W. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA. 1995;92:689–693. doi: 10.1073/pnas.92.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Oberley T.D., Schultz J.L., Li N., Oberley L.W. Antioxidant enzyme levels as a function of growth state in cell culture. Free Radic. Biol. Med. 1995;19:53–65. doi: 10.1016/0891-5849(95)00012-M. [DOI] [PubMed] [Google Scholar]
  • 170.Beckman J.S., Carson M., Smith C.D., Koppenol W.H. ALS, SOD and peroxynitrite. Nature. 1993;364:584. doi: 10.1038/364584a0. [DOI] [PubMed] [Google Scholar]
  • 171.Beckman J.S., Ischiropoulos H., Zhu L., van der Woerd M., Smith C., Chen J., Harrison J., Martin J.C., Tsai M. Kinetics of superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 1992;298:438–445. doi: 10.1016/0003-9861(92)90432-V. [DOI] [PubMed] [Google Scholar]
  • 172.Chou S.M., Wang H.S., Taniguchi A. Role of SOD-1 and nitric oxide/cyclic GMP cascade on neurofilament aggregation in ALS/MND. J. Neurol. Sci. 1996;139(Suppl.):16–26. doi: 10.1016/0022-510X(96)00090-1. [DOI] [PubMed] [Google Scholar]
  • 173.Chou S.M., Wang H.S., Komai K. Colocalization of NOS and SOD1 in nurofilament accumulation within motor neurons of amyotrophic lateral sclerosis: an imm unohistochemical study. J. Chem. Neuroanat. 1996;10:249–258. doi: 10.1016/0891-0618(96)00137-8. [DOI] [PubMed] [Google Scholar]
  • 174.Lafon-Cazal M., Pletri S., Culcasi M., Bockaert J. NMDA-dependant superoxide production and neurotoxicity. Nature. 1983;364:535–537. doi: 10.1038/364535a0. [DOI] [PubMed] [Google Scholar]
  • 175.Beckamn J.S. Ischaemic injury mediator. Nature. 1990;345:27–28. doi: 10.1038/345027b0. [DOI] [PubMed] [Google Scholar]
  • 176.Rabizadeh S., Gralla E.B., Borchelt D.R., Gwinn R., Valentine J.S., Sisodia S., Wong P., Lee M., Hahn H., Breedesen D.E. Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc. Natl. Acad. Sci. USA. 1995;92:3024–3028. doi: 10.1073/pnas.92.7.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Yim M.B., Chock P.B., Stadtman E.R. Enzyme function of copper, zinc superoxide dismutase as a free radical generator. J. Biol. Chem. 1993;268:4099–4105. [PubMed] [Google Scholar]
  • 178.Yim M.B., Chock P.B., Stadtman E.R. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Proc. Natl. Acad. Sci. USA. 1990;87:5006–5010. doi: 10.1073/pnas.87.13.5006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Yim H.S., Kang J.H., Chock P.B., Stadtman E.R., Yim M.B. A familial amyotrophic lateral sclerosis-associated A4V Cu, Zn-superoxide dismutase mutant has a lower KM for hydrogen peroxide. Correlation between clinical severity and the Km value. J. Biol. Chem. 1997;272:8861–8863. doi: 10.1074/jbc.272.14.8861. [DOI] [PubMed] [Google Scholar]
  • 180.Yim M.B., Kang J.H., Yim H.S., Kwak H.S., Chock P.B., Stadtman E.R. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in KM for hydrogen peroxide. Proc. Natl. Acad. Sci. USA. 1996;93:5709–5714. doi: 10.1073/pnas.93.12.5709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Child C.M. Axial gradients in the early development of the starfish. Am. J. Physiol. 1915;37:203–219. [Google Scholar]
  • 182.Child C.M. Individuation and reproduction in organisms; Senescence and Rejuvenescence. Chicago: Chicago University Press; 1915. [Google Scholar]
  • 183.Child C.M. Axial susceptibility gradients in the early development of the sea urchin. Biol. Bull. 1916;30:391–405. [Google Scholar]
  • 184.Child C.M. Experimental control and modification of larval development in the sea urchin in relation to the axial gradients. J. Morph. 1916;28:65–131. doi: 10.1002/jmor.1050280103. [DOI] [Google Scholar]
  • 185.Child C.M. Physiological dominance and physiological isolation in development and reconstitution. Wilhelm Roux. Arch. Entw. Organ. 1929;113:556–581. doi: 10.1007/BF02110962. [DOI] [PubMed] [Google Scholar]
  • 186.Caplan A.I., Koutroupus S. The control of muscle and cartilage development in the chick limb: the role of differential vascularization. J. Embryol. Exp. Morph. 1973;29:571–583. [PubMed] [Google Scholar]
  • 187.Loudon C. Development of Tenebrio molitor in low oxygen levels. J. Insect Physiol. 1988;34:97–103. doi: 10.1016/0022-1910(88)90160-6. [DOI] [Google Scholar]
  • 188.Shaw J.L., Bassett C.A. The effects of varying oxygen concentrations on osteogenesis and embryonic cartilage in vitro. J. Bone. Joint. Surg. 1967;49-A:73–80. [PubMed] [Google Scholar]
  • 189.Erkell L.J. Differentiation of mouse neuroblastoma under increased oxygen tension. Exp. Cell Biol. 1980;48:374–380. doi: 10.1159/000163002. [DOI] [PubMed] [Google Scholar]
  • 190.Foreman H.J., Boveris A. Superoxide radical and hydrogen peroxide in mitochondria. In: Pryor W.A., editor. Free Radicals in Biology. New York: Academic Press; 1982. pp. 65–90. [Google Scholar]
  • 191.Turrens J.F., Freeman B.A., Levitt J.G., Crapo J.D. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 1982;217:401–410. doi: 10.1016/0003-9861(82)90518-5. [DOI] [PubMed] [Google Scholar]
  • 192.Sohal R.S., Allen R.G., Nations C. Oxygen free radicals play a role in cellular differentiation: an hypothesis. J. Free Rad. Biol. Med. 1986;2:175–181. doi: 10.1016/S0748-5514(86)80067-8. [DOI] [PubMed] [Google Scholar]
  • 193.McElroy M.C., Postle A.D., Kelly F.J. Catalase, superoxide dismutase and glutathione peroxidase activities of lung and liver during human development. Biochim. Biophys. Acta. 1992;1117:153–158. doi: 10.1016/0304-4165(92)90073-4. [DOI] [PubMed] [Google Scholar]
  • 194.Aliakbar S., Brown P.R., Bidwell D., Nicolaides K.H. Human erythrocyte superoxide dismutase in adults, neonates, and normal, hypoxaemic, anemic, and chromesomally abnormal fetuses. Clin. Biochem. 1993;26:109–115. doi: 10.1016/0009-9120(93)90037-7. [DOI] [PubMed] [Google Scholar]
  • 195.Hien P.V., Kovacs K., Matkovics B. Properties of enzymes. I. Study of superoxide dismutase activity changes in human placenta of different ages. Enzyme. 1974;18:341–347. [PubMed] [Google Scholar]
  • 196.Takehara Y., Yoshioka T., Sasaki J. Changes in the levels of lipoperoxide and antioxidant factors in human placenta during gestation. Acta Medical Okayama. 1990;44:103–111. doi: 10.18926/AMO/30438. [DOI] [PubMed] [Google Scholar]
  • 197.Sekiba K., Yoshioka T. Changes of lipid peroxidation and superoxide dismutase activity in human placenta. Am. J. Obstetr. Gynecol. 1979;135:368–371. doi: 10.1016/0002-9378(79)90707-5. [DOI] [PubMed] [Google Scholar]
  • 198.Nakagawara A., Nathan C.F., Cohn Z.A. Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J. Clin. Invest. 1981;68:1243–1252. doi: 10.1172/JCI110370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Gidrol N., Lin W.S., Degousee N., Yip S.F., Kush A. Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. Eur. J. Biochem. 1994;224:21–28. doi: 10.1111/j.1432-1033.1994.tb19990.x. [DOI] [PubMed] [Google Scholar]
  • 200.Lott T., Gorman S., Clark J. Superoxide dismutase in Didymium iridis: characterization of changes in activity during senescence and sporulation. Mech. Ageing Dev. 1981;17:119–130. doi: 10.1016/0047-6374(81)90078-6. [DOI] [PubMed] [Google Scholar]
  • 201.Allen R.G., Balin A.K., Reimer R.J., Sohal R.S., Nations C. Superoxide dismutase induces differentiation in the slime mold, Physarum polycephalum. Arch. 8iochem. Biophys. 1988;261:205–211. doi: 10.1016/0003-9861(88)90119-1. [DOI] [PubMed] [Google Scholar]
  • 202.Allen R.G., Newton R.K., Farmer K.J., Nations C. Effect of the free radical generator paraquat on differentiation, superoxide dismutase, glutathione and inorganic peroxides in microplasmodia of Physarum polycephalum. Cell Tissue Kinet. 1985;18:623–630. doi: 10.1111/j.1365-2184.1985.tb00705.x. [DOI] [PubMed] [Google Scholar]
  • 203.Nations C., Atlen R.G., Farmer K., Toy P.L., Sohal R.S. Superoxide dismutase activity during the plasmodial life cycle of Physarum polycephalum. Experientia. 1986;42:64–66. doi: 10.1007/BF01975898. [DOI] [Google Scholar]
  • 204.Smith J., Shrift A. Phylogenetic distribution of glutathione peroxidase. Comp. Biochem. Physiol. 1979;63B:39–44. doi: 10.1016/0305-0491(79)90231-1. [DOI] [PubMed] [Google Scholar]
  • 205.Allen R.G., Newton R.K., Sohal R.S., Shipley G.L., Nations C. Atterations in superoxide dismutase, glutathione, and peroxides in the plasmodial slime mold Physarum polycephalum during differentiation. J. Cell. Physiol. 1985;125:413–419. doi: 10.1002/jcp.1041250308. [DOI] [PubMed] [Google Scholar]
  • 206.Anderson G.L. Superoxide dismutase activity in Dauerlarvae of Caenorhabditis elegans (Nematoda: Rhabditidae) Can. J. Zool. 1982;60:288–291. doi: 10.1139/z82-038. [DOI] [Google Scholar]
  • 207.Fernandez-Souza J.M., Michelson A.M. Variations of the superoxide dismutases during the development of the fruitfly, Ceratitis capitata. Biochem. Biophys. Res. Commun. 1976;73:217–223. doi: 10.1016/0006-291X(76)90696-3. [DOI] [PubMed] [Google Scholar]
  • 208.Massie H.R., Aiello V.R., Williams T.R. Changes in superoxide dismutase activity and copper during development and ageing in the fruit fly Drosophila melanogaster. Mech. Ageing Dev. 1980;12:279–286. doi: 10.1016/0047-6374(80)90051-2. [DOI] [PubMed] [Google Scholar]
  • 209.Nickla H., Anderson J., Palzkill T. Enzymes involved in oxygen detoxification during development of Drosophila melanogaster. Experientia. 1983;39:610–612. doi: 10.1007/BF01971122. [DOI] [PubMed] [Google Scholar]
  • 210.Allen R.G., Oberley L.W., Elwell J.H., Sohal R.S. Developmental patterns in the antioxidant defenses of the housefly, Musca domestica. J. Cell. Physiol. 1991;146:270–276. doi: 10.1002/jcp.1041460212. [DOI] [PubMed] [Google Scholar]
  • 211.Barja de Quiroga G., Gutierrez P. Superoxide dismutase during the development of two amphibian species and its role in hyperoxia tolerance. Mol. Physiol. 1984;6:221–232. [Google Scholar]
  • 212.Montesano L., Carri M.T., Mariottini P., Amaldi F., Rotilio G. Developmental expression of Cu,Zn superoxide dismutase in Xenopus. Eur. J. Biochem. 1989;186:421–426. doi: 10.1111/j.1432-1033.1989.tb15226.x. [DOI] [PubMed] [Google Scholar]
  • 213.Wilson J.X., Lui E.M.K., Del Maestro R.F. Developmental profiles of antioxidant enzymes and trace metals in chick embryoes. Mech. Ageing Dev. 1992;65:51–64. doi: 10.1016/0047-6374(92)90125-W. [DOI] [PubMed] [Google Scholar]
  • 214.Frank L., Groseclose E.E. Preparation for birth into an O2-rich environment: the antioxidant enzymes in developing rabbit lung. Pediatr. Res. 1984;18:240–244. doi: 10.1203/00006450-198403000-00004. [DOI] [PubMed] [Google Scholar]
  • 215.Frank L., Sosenko I.R. Prenatal development of lung antioxidant enzymes in four species. J. Pediatr. 1987;110:106–110. doi: 10.1016/S0022-3476(87)80300-1. [DOI] [PubMed] [Google Scholar]
  • 216.Frank L., Bucher J.R., Roberts R.J. Oxygen toxicity in neonatal and adult animals of various species. J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 1978;45:699–704. doi: 10.1152/jappl.1978.45.5.699. [DOI] [PubMed] [Google Scholar]
  • 217.Autor A.P., Frank L., Roberts R.J. Developmental characteristics of pulmonary superoxide dismutase: relationship to idiopathic respiratory disress syndrome. Pediatr. Res. 1976;10:154–158. doi: 10.1203/00006450-197603000-00002. [DOI] [PubMed] [Google Scholar]
  • 218.Russanov E.M., Kirkova M.D., Setchenska M.S., Arnstein H.R.V. Enzymes of oxygen metabolism during erythrocyte differentiation. Biosci. Rep. 1981;1:927–931. doi: 10.1007/BF01114962. [DOI] [PubMed] [Google Scholar]
  • 219.Mavelli I., Mondovi B., Federico R., Rotilio G. Superoxide dismutase activity in developing rat brain. J. Neurochem. 1978;31:363–364. doi: 10.1111/j.1471-4159.1978.tb12472.x. [DOI] [PubMed] [Google Scholar]
  • 220.Tanswell A.K., Freeman B.A. Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat. I. Development profiles. Pediatr. Res. 1984;18:584–587. doi: 10.1203/00006450-198407000-00003. [DOI] [PubMed] [Google Scholar]
  • 221.Yam J., Frank L., Roberts R.J. Age-related development of pulmonary antioxidant enzymes in the rat (40040) Proc. Soc. Exp. Biol. Med. 1978;157:293–296. doi: 10.3181/00379727-157-40040. [DOI] [PubMed] [Google Scholar]
  • 222.Gerdin E., Tyden O., Eriksson U.J. The development of antioxidant enzymatic defense in the perinatal rat lung: activities of superoxide dismutase, glutathione peroxidase, and catalase. Pediatr. Res. 1985;19:687–691. doi: 10.1203/00006450-198507000-00010. [DOI] [PubMed] [Google Scholar]
  • 223.Clerch L.B., Massaro D. Rat lung antioxidant enzymes: differences in perinatal gene expression and regulation. Am. J. Physiol. 1992;263:L446–L470. doi: 10.1152/ajplung.1992.263.4.L466. [DOI] [PubMed] [Google Scholar]
  • 224.Dobashi K., Asayama K., Hayashibe H., Munim A., Kawaoi A., Morikawa M., Nakazawa S. Immunohistochemical study of copper-zinc and manganese superoxide dismutases in the lungs of human fetuses and newborn infants: developmental profile and alterations in hyaline membrane disease and bronchopulmonary dysplasia. Virchows Archiv-A, Pathological Anatomy & Histopathology. 1993;423:177–184. doi: 10.1007/BF01614768. [DOI] [PubMed] [Google Scholar]
  • 225.Chen Y., Frank L. Differential gene expression of antioxidant enzymes in the perinatal rat lung. Pediatr. Res. 1993;34:27–31. doi: 10.1203/00006450-199307000-00008. [DOI] [PubMed] [Google Scholar]
  • 226.Asayama K., Hayashibe H., Dobashi K., Uchida N., Kobayashi M., Kawaoi A., Kato K. Immunohistochemical study on perinatal development of rat superoxide dismutases in lungs and kidneys. Pediatr. Res. 1991;29:487–491. doi: 10.1203/00006450-199105010-00014. [DOI] [PubMed] [Google Scholar]
  • 227.Yoshioka T., Shimada T., Sekiba K. Lipid peroxidation and antioxidants in the rat lung during development. Biol. Neonate. 1980;38:161–168. doi: 10.1159/000241359. [DOI] [PubMed] [Google Scholar]
  • 228.Utsumi K., Yoshioka T., Yamanaka N., Nakazawa T. Increase in superoxide dismutase activity concomitant with a decrease in lipid peroxidation during post partum development. FEBS Lett. 1977;79:1–3. doi: 10.1016/0014-5793(77)80336-0. [DOI] [PubMed] [Google Scholar]
  • 229.Munim A., Asayama K., Dobashi K., Suzuki K., Kawaoi A., Kato K. Imunohistochemical localization of superoxide dismutases in fetal and neonatal rat tissues. J. Histochem. Cytochem. 1992;40:1705–1713. doi: 10.1177/40.11.1431059. [DOI] [PubMed] [Google Scholar]
  • 230.Pittschieler K., Lebenthal E., Bujanover Y., Petell J.K. Levels of Cu-Zn and Mn superoxide dismutases in rat liver during development. Gastroenterology. 1991;100:1062–1068. doi: 10.1016/0016-5085(91)90283-q. [DOI] [PubMed] [Google Scholar]
  • 231.Shivakumar B.R., Anandatheerthavarada H.K., Ravindranath V. Free radical scavenging systems in developing rat brain. Int. J. Devl. Neuroscience. 1991;9:181–185. doi: 10.1016/0736-5748(91)90010-J. [DOI] [PubMed] [Google Scholar]
  • 232.Mavelli I., Rigo A., Federico R., Ciriolo M.R., Rotilio G. Superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Biochem. J. 1982;204:535–540. doi: 10.1042/bj2040535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Petrovic V.M., Spasic M., Saicic Z., Milic B., Radojicic R. Increase in superoxide dismutase activity induced by thyroid hormones in the brains of neonate and adult rats. Experientia. 1982;38:1355–1356. doi: 10.1007/BF01954949. [DOI] [Google Scholar]
  • 234.Borrello S., De Leo M.E., Galeotti T. Transcriptional regulation of MnSOD by manganese in the liver of manganese-deficient mice and during rat development. Biochem. Int. 1992;28:595–601. [PubMed] [Google Scholar]
  • 235.Mariucci G., Ambrosini M.V., Colarieti L., Bruschelli G. Differential changes in Cu, Zn and Mn superoxide dismutase activity in developing rat brain and liver. Experientia. 1990;46:753–755. doi: 10.1007/BF01939957. [DOI] [PubMed] [Google Scholar]
  • 236.Yoshioka T., Utsumi K., Sekiba K. Superoxide dismutase activity and lipid peroxidation of the rat liver during development. Biol. Neonate. 1977;32:147–153. doi: 10.1159/000241009. [DOI] [PubMed] [Google Scholar]
  • 237.Ledig M., Fried R., Ziessel M., Mandel P. Regional distribution of superoxide dismutase in rat brain during postnatal development. Dev. Brain Res. 1982;4:333–337. doi: 10.1016/0165-3806(82)90145-6. [DOI] [PubMed] [Google Scholar]
  • 238.Aspberg A., Tottmar O. Development of antioxidant enzymes in rat brain and in reaggregation culture of fetal brain cells. Dev. Brain Res. 1992;66:55–58. doi: 10.1016/0165-3806(92)90139-N. [DOI] [PubMed] [Google Scholar]
  • 239.Hayashibe H., Asayama K., Dobashi K., Kato K. Prenatal development of antioxidant enzymes in rat lung, kidney, and heart: marked increase in immunoreactive superoxide dismutases, glutathione peroxidase, and catalase in the kidney. Pediatr. Res. 1990;27:472–475. doi: 10.1203/00006450-199005000-00011. [DOI] [PubMed] [Google Scholar]
  • 240.Jow W.W., Schlegel P.N., Cichon Z., Phillips D., Goldstein M., Bardin C.W. Identification and localization of copper-zinc superoxide dismuatse gene. Expression in rat testicular development. J. Androl. 1993;14:439–447. [PubMed] [Google Scholar]
  • 241.Paoletti F., Mocali A. Changes in CuZn-superoxide dismutase during induced differentiation of murine erythroleukemia. Cancer Res. 1988;48:6674–6677. [PubMed] [Google Scholar]
  • 242.El-Hage S., Singh S.M. Temporal expression of genes encoding free radical-metabolizing enzymes is associated with higher mRNA levels during In Utero development in mice. Dev. Genet. 1990;11:149–159. doi: 10.1002/dvg.1020110205. [DOI] [PubMed] [Google Scholar]
  • 243.Novak R., Matkovics M., Marik M., Fachet J. Changes in mouse liver superoxide dismutase activity and lipid peroxidation during embryonic and postpartum development. Experientia. 1978;34:1134–1135. doi: 10.1007/BF01922913. [DOI] [PubMed] [Google Scholar]
  • 244.Harman A.W., McKenna M., Adamson G.M. Postnatal development of enzyme activities associated woth protection against oxidative stress in the mouse. Biol. Neonate. 1990;57:187–193. doi: 10.1159/000195842. [DOI] [PubMed] [Google Scholar]
  • 245.Zelck U., Nowak R., Karnstedt U., Koitschev A., Käcker N. Specific activities of antioxidant enzymes in the cochlea of guinea pigs at different stages of development. Eur. Arch. Otorhinolyrngol. 1993;250:218–219. doi: 10.1007/BF00171527. [DOI] [PubMed] [Google Scholar]
  • 246.Walther F.J., Wade A.B., Warburton D., Foreman H.J. Ontogeny of antioxidant enzymes in the fetal lamb lung. Exp. Lung Res. 1991;17:39–45. doi: 10.3109/01902149109063280. [DOI] [PubMed] [Google Scholar]
  • 247.Carbone G.M.R., St. Clair D.K., Xu A., Rose J.C. Expression of manganese superoxide dismutase in ovine kidney cortex during development. Pediatr. Res. 1994;35:41–44. doi: 10.1203/00006450-199401000-00010. [DOI] [PubMed] [Google Scholar]
  • 248.Strange R.C., Cotton W., Fryer A.A., Drew R., Bradwell A.R., Marshall T., Collins M.F., Bell J., Hume R. Studies on the expression of Cu,Zn superoxide dismutase in human tissues during development. Biochim. Biophys. Acta. 1988;964:260–265. doi: 10.1016/0304-4165(88)90174-2. [DOI] [PubMed] [Google Scholar]
  • 249.Asayama K., Janco R.L., Burr I.M. Selective induction of manganous superoxide dismutase in human monocytes. Am. J. Physiol. 1985;249:C393–C397. doi: 10.1152/ajpcell.1985.249.5.C393. [DOI] [PubMed] [Google Scholar]
  • 250.Strange R.C., Cotton W., Fryer A.A., Jones P., Bell J., Hume R. Lipid peroxidation and expression of copper-zinc and manganese superoxide dismutase in lungs of premature infants with hyline membrane disease and broncopulmonary dysplasia. J. Clin. Lab. Med. 1990;116:666–673. [PubMed] [Google Scholar]
  • 251.Church S.L., Farmer D.R., Nelson D.M. Induction of manganese superoxide dismutase in cultured human trophoblast during in vitro differentiation. Dev. Biol. 1992;149:177–184. doi: 10.1016/0012-1606(92)90274-K. [DOI] [PubMed] [Google Scholar]
  • 252.Allen R.G., Balin A.K. Developmental changes in the superoxide dismutase activity of human skin fibroblasts are maintained in vitro and are not caused by oxygen. J. Clin. Invest. 1988;82:731–734. doi: 10.1172/JCI113654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Allen R.G., Keogh B.P., Gerhard G., Pignolo R., Horton J., Cristofalo V.J. Expression and regulation of SOD activity in human skin fibroblasts from donors of different ages. J. Cell. Physiol. 1995;165:576–587. doi: 10.1002/jcp.1041650316. [DOI] [PubMed] [Google Scholar]
  • 254.Borg L.A.H., Cagliero E., Sandier S., Welsh N., Eizirik D.L. Interleukin-1β increases the activity of superoxide dismutase in rat pancreatic islets. Endocrinology. 1992;130:2851–2857. doi: 10.1210/en.130.5.2851. [DOI] [PubMed] [Google Scholar]
  • 255.Whitsett J.A., Clark J.C., Wispe J.R., Pryhuber G.S. Effects of TNF-α and phorbol ester on human surfactant protein and MnSOD-gene transcription in vitro. Am. J. Physiol. 1992;262:L688–L693. doi: 10.1152/ajplung.1992.262.6.L688. [DOI] [PubMed] [Google Scholar]
  • 256.Fernandez A., Marin M.C., McDonnell T., Ananthaswamy H.N. Differential sensitivity of normal and Ha-ras-transformed C3H mouse embryo fibroblasts to tumor necrosis factor: induction of bcl-2, c-myc and manganese superoxide dismutase in resistant cells. Oncogene. 1994;9:2009–2017. [PubMed] [Google Scholar]
  • 257.Czaja M.J., Schilsky M.L., Xu Y., Schmiedeberg P., Compton A., Ridnour L., Oberley L.W. Induction of MnSOD gene expression in a hepatic model of TNF-α toxicity does not result in increased protein. Am. J. Physiol. 1994;266:G737–G744. doi: 10.1152/ajpgi.1994.266.4.G737. [DOI] [PubMed] [Google Scholar]
  • 258.Hunt J.S. Expression and regulation of the tumour necrosis factor-alpha gene in the female reproductive tract. Repro. Fert. and Dev. 1993;5:141–153. doi: 10.1071/RD9930141. [DOI] [PubMed] [Google Scholar]
  • 259.Kumar S., Vinci J.M., Millis A.J.T., Baglioni C. Expression of interleukin-lα and β in early passage fibroblasts from aging individuals. Exp. Geront. 1993;28:505–513. doi: 10.1016/0531-5565(93)90039-G. [DOI] [PubMed] [Google Scholar]
  • 260.Wan X.S., Devalaraja M.N., St. Clair D.K. Molecular structure and organization of the human manganese superoxide dismutase gene. DNA Cell Biol. 1994;13:1127–1136. doi: 10.1089/dna.1994.13.1127. [DOI] [PubMed] [Google Scholar]
  • 261.Meyrick B., Magnuson M.A. Identification and functional characterization of the bovine manganous superoxide dismutase promoter. Am. J. Resp. Cell Mol. Biol. 1994;10:113–121. doi: 10.1165/ajrcmb.10.1.8292376. [DOI] [PubMed] [Google Scholar]
  • 262.Ho Y.S., Howard A.J., Crapo J.D. Structure of a rat manganous superoxide dismutase gene. Am. J. Resp. Cell Mol. Biol. 1991;4:278–286. doi: 10.1165/ajrcmb/4.3.278. [DOI] [PubMed] [Google Scholar]
  • 263.Smale S.T., Schmidt M.C., Berk A.J., Baltimore D. Transcriptional activation by Sp1 as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc. Natl. Acad. Sci. USA. 1990;87:4509–4513. doi: 10.1073/pnas.87.12.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 264.Saffer J.D., Jackson S.F., Annarella M.B. Developmental expression of Sp1 in the mouse. Mol. Cell. Biol. 1991;11:2189–2199. doi: 10.1128/mcb.11.4.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Robidoux S., Gosselin P., Harvey M., Leclerc S., Guerin S.L. Trancription of the mouse secretory protease inhibitor p12 gene is activated by the developmentally regulated positive transcription factor Sp1. Mol. Cell. Biol. 1992;12:3796–3806. doi: 10.1128/mcb.12.9.3796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266.Innis, JW, Moore, DJ, Kash, SF, Ramamurthy, V, Sawadogo, M, and Kellems, RE: The murine deaminase promoter requires an atypical TATA box which binds transcription factor IID and transcriptional activity is stimulated by multiple upstream Sp1 sites. J. Biol. Chem., 266: 21765–21772, 1991. [PubMed]
  • 267.Li Y., Huang T.-T., Carlson E.J., Melov S., Ursell P.C., Olsen J.L., Noble L.J., Yoshimura M.P., Berger C., Chan P.H., Wallace D.C., Epstein C.J. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genetics. 1995;11:376–381. doi: 10.1038/ng1295-376. [DOI] [PubMed] [Google Scholar]
  • 268.Beckman B.S., Balin A.K., Allen R.G. Superoxide dismutase induces differentiation in Friend erythroleukemia cells. J. Cell. Physiol. 1989;139:370–376. doi: 10.1002/jcp.1041390220. [DOI] [PubMed] [Google Scholar]
  • 269.Church S.L., Grant J.W., Ridnour L.A., Oberley L.W., Swanson P.E., Meltzer P.S., Trent J.M. Increased manganese superoxide dismutase expression supresses the malignant phenotype of human melanoma cells. Proc. Natl. Acad. Sci. USA. 1993;90:3113–3117. doi: 10.1073/pnas.90.7.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.St. Clair D.K., Oberley T.D., Muse K.E., St. Clair W.H. Expression of manganese superoxide dismutase promotes cellular differentiation. Free Radic. Biol. Med. 1994;16:275–282. doi: 10.1016/0891-5849(94)90153-8. [DOI] [PubMed] [Google Scholar]
  • 271.Chernavskii D.S., Solyanik G.I., Belousov L.V. Relation of the intensity of metabolism with the process of determination in embryonic cell. Biol. Cybernetics. 1980;37:9–18. doi: 10.1007/BF00347637. [DOI] [PubMed] [Google Scholar]
  • 272.Hansberg W., De Groot H., Sies H. Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Radic. Biol. Med. 1993;14:287–293. doi: 10.1016/0891-5849(93)90025-P. [DOI] [PubMed] [Google Scholar]
  • 273.Frank L., Price L.T., Whitney P.L. Possible mechanism for late gestational development of the antioxidant enzymes in the fetal rat lung. Biol. Neonate. 1996;70:116–127. doi: 10.1159/000244356. [DOI] [PubMed] [Google Scholar]
  • 274.Nagy K., Pasti G., Bene L., Zs. Nagy I. Involvement of Fenton reaction products in differentiation of K562 human leukemia cells. Leuk. Res. 1995;19:203–212. doi: 10.1016/0145-2126(94)00138-Z. [DOI] [PubMed] [Google Scholar]
  • 275.Nagy K., Pásti G., Bene L., Zs.-Nagy I. Induction of granuloytic maturation of HL-60 human leukemia cells by free radicals: a hypothesis of cell differentiation involving hydroxyl radicals. Free Rad. Res. Commun. 1993;19:1–15. doi: 10.3109/10715769309056494. [DOI] [PubMed] [Google Scholar]
  • 276.Speier C., Newburger P.E. Changes in superoxide dismutase, catalase, and the glutathione cycle during induced myeloid differentiation. Arch. Biochem. Biophys. 1986;251:551–557. doi: 10.1016/0003-9861(86)90363-2. [DOI] [PubMed] [Google Scholar]
  • 277.Suda N., Morita I., Kuroda T., Murota S. Participation of oxidative stress in the process of osteoclast differentiation. Biochim. Biophys. Acta. 1993;1157:318–323. doi: 10.1016/0304-4165(93)90116-p. [DOI] [PubMed] [Google Scholar]
  • 278.Zhong W., Oberley L.W., Oberley T.D., Yan T., Domann F.E., St. Clair D.K. Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth Diff. 1996;7:1175–1186. [PubMed] [Google Scholar]
  • 279.Kreiger-Brauer H., Kather H. Antagonistic effects of different members of the fibroblast and platlet derived growth factor families on adipose conversion and NADPH-dependent H2O2 generation in 3T3 L1-cells. Biochem. J. 1995;307:549–556. doi: 10.1042/bj3070549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 280.Yang K.D., Shaio M.-F. Hydroxyl radicals as an early signal involved in phorbol ester-induced monocyte differentiation of HL60 cells. Biochem. Biophys. Res. Commun. 1994;200:1650–1657. doi: 10.1006/bbrc.1994.1641. [DOI] [PubMed] [Google Scholar]
  • 281.Elroy-Stein O., Bernstein Y., Groner Y. Over-production of human Cu/Zn superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation. EMBO J. 1986;5:615–622. doi: 10.1002/j.1460-2075.1986.tb04255.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 282.Mirochnitchenko O., Inouye M. Effect of overexpression of human Cu, Zn superoxide dismutase in transgenic mice on macrophage functions. J. Immunol. 1996;156:1578–1586. [PubMed] [Google Scholar]
  • 283.Reveillaud I., Neidzwiecki A., Bensch K.G., Fleming J.E. Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance to oxidative stress. Mol. Cell. Biol. 1991;11:632–640. doi: 10.1128/mcb.11.2.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284.Norris K.H., Hornsby P.J. Cytotoxic effects of expression of human superoxide dismutase in bovine adrenocortical cells. Mut. Res. 1990;237:95–106. doi: 10.1016/0921-8734(90)90015-j. [DOI] [PubMed] [Google Scholar]
  • 285.Teixeira H.D., Meneghini R. Chinese hamster fibroblasts overexpressing CuZn-superoxide dismutase undergo a global reduction in antioxidants and an increasing sensitivity of DNA to oxidative damage. Biochem. J. 1996;315:821–825. doi: 10.1042/bj3150821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 286.Mao G.D., Thomas P.D., Lopaschuk G.D., Poznansky M.J. Superoxide dismutase (SOD)-catalase conjugates. J. Biol. Chem. 1993;268:416–420. [PubMed] [Google Scholar]
  • 287.Hodgson E.K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry. 1975;14:5294–5299. doi: 10.1021/bi00695a010. [DOI] [PubMed] [Google Scholar]
  • 288.Hodgson E.K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: chemiluminescence and peroxidation. Biochemistry. 1975;14:5299–5303. doi: 10.1021/bi00695a011. [DOI] [PubMed] [Google Scholar]
  • 289.Paller M.S., Eaton J.W. Hazards of antioxidant combinations containing superoxide dismutase. Free Radic. Biol. Med. 1995;18:883–890. doi: 10.1016/0891-5849(94)00222-6. [DOI] [PubMed] [Google Scholar]
  • 290.Schreck R., Rieber P., Baeuerle P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κ-B transcription factor and HIV-I. EMBO J. 1991;10:2247–2258. doi: 10.1002/j.1460-2075.1991.tb07761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 291.Meyer M., Caselman W.H., Schlüter V., Schreck R., Hofschneider P.H., Baeuerle P.A. Hepatitis B virus transactivator MHBs1: activation of NF-κB, selective inhibition by antioxidants and integral membrane localization. EMBO J. 1992;11:2991–3001. doi: 10.1002/j.1460-2075.1992.tb05369.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 292.Israël N., Gougerot-Pocidalo M.-A., Aillet F., Virelizier J.-L. Redox status of cells influences constituative or induced NF-κB translocation and HIV long terminal repeat activity in human T and monocyte cell lines. J. Immunol. 1992;149:3386–3393. [PubMed] [Google Scholar]
  • 293.Toledano M.B., Leonard W.J. Modulation of transcription factor NF-κB binding activity by oxidation-reduction in vitro. Proc. Natl. Acad. Sci. USA. 1991;88:4328–4332. doi: 10.1073/pnas.88.10.4328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 294.Molitor J.A., Ballard D.W., Greene W.C. κB-specific DNA binding proteins are differentially inhibited by enhancer mutations and biological oxidation. The New Biologist. 1991;3:987–996. [PubMed] [Google Scholar]
  • 295.Wagner A.M. A role for active oxygen species as second messengers in the induction of alternate oxidase gene expression in Petunia hybrida cells. FEBS Lett. 1995;368:339–342. doi: 10.1016/0014-5793(95)00688-6. [DOI] [PubMed] [Google Scholar]
  • 296.Sundaresan M., Yu Z., Ferrans K.I., Finkel T. Requirement for generation of H2O2 for platlet-derived growth factor signal transduction. Science. 1995;270:296–299. doi: 10.1126/science.270.5234.296. [DOI] [PubMed] [Google Scholar]
  • 297.Chojkier, M, Houglum, K, Solis-Herruzo, J, and Brenner, DA: Stimulation of collagen gene expression by ascorbic acid in cultured human fibroblasts. J. Biol. Chem., 264: 16957–16962, 1989. [PubMed]
  • 298.Brenneisen P., Briviba K., Wlaschek M., Wenk J., Scharffetter-Kochanek K. Hydrogen peroxide (H2O2) increases the steady-state mRNA level of collagenase/MMP-1 in human dermal fibroblasts. Free Radic. Biol. Med. 1997;22:515–524. doi: 10.1016/S0891-5849(96)00404-2. [DOI] [PubMed] [Google Scholar]
  • 299.Hentze M.W., Rouault T.A., Harford J.B., Klausner R.D. Oxidative-reduction and the molecular mechanism of a regulatory RNA-protein interaction. Science. 1989;244:357–359. doi: 10.1126/science.2711187. [DOI] [PubMed] [Google Scholar]
  • 300.Casey J.L., Hentze M.W., Koeller D.M., Caughman S.W., Rouault T.A., Klausner R.D., Harford J.B. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science. 1988;240:924–928. doi: 10.1126/science.2452485. [DOI] [PubMed] [Google Scholar]
  • 301.Myrset a., Bostard A., Jamin N., Lirsac P.N., Toma F., Gabrielsen O.S. DNA and redox state induced conformational changes in the DNA-binding domain of the Myb oncoprotein. EMBO J. 1993;12:4625–4633. doi: 10.1002/j.1460-2075.1993.tb06151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 302.Huang R.-P., Adamson E.D. Characterization of the DNA-binding properties of the early growth response-1 (EGR-1) transcription factor: evidence for modulation by a redox mechanism. DNA Cell Biol. 1993;12:265–273. doi: 10.1089/dna.1993.12.265. [DOI] [PubMed] [Google Scholar]
  • 303.Abate C., Patel L., Rauscher F.J., Curran T. Redox regulation of FOS and JUN DNA-binding activity in vitro. Science. 1990;249:1157–1161. doi: 10.1126/science.2118682. [DOI] [PubMed] [Google Scholar]
  • 304.Keyse S.M., Emslie E.A. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature. 1992;359:644–647. doi: 10.1038/359644a0. [DOI] [PubMed] [Google Scholar]
  • 305.Yoshioka K., Deng T., Cavigelli M., Karin M. Antitumor promotion by phenolic antioxidants: inhibition of AP-1 activity through induction of Fra expression. Proc. Natl. Acad. Sci. USA. 1995;92:4972–4976. doi: 10.1073/pnas.92.11.4972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 306.Bannister A.J., Cook A., Kouzarides T. In vitro DNA binding of Fos/Jun and BZLF1 but not C/EBP is affected by redox changes. Oncogene. 1991;6:1243–1250. [PubMed] [Google Scholar]
  • 307.Adler, V, Schaffer, A, Kim, J, Dolan, L, and Ronai, Z: UV irradiation and heat shock mediate JNK activation via alternate pathways. J. Biol. Chem., 270: 26071–26077, 1995. [DOI] [PubMed]
  • 308.Galang C.K., Hauser C.A. Cooperative DNA binding of the Human HoxB5 (Hox-2.1) protein is under redox regulation in vitro. Mol. Cell. Biol. 1993;13:4609–4617. doi: 10.1128/mcb.13.8.4609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 309.DeForge, LE, Preston, AM, Takeuchi, E, Boxer, LA, and Remick, DG: Regulation of interleukin 8 gene expression by oxidant stress. J. Biol. Chem., 268: 25568–25576, 1993. [PubMed]
  • 310.Datta R., Hallahan D.E., Kharbanda S.M., Rubin E., Sherman M.L., Huberman E., Weichselbaum R.R., Kufe D.W. Involvement of reactive oxygen intermediates in the induction of c-jun gene transcription by ionizing radiation. Biochemistry. 1992;31:8300–8306. doi: 10.1021/bi00150a025. [DOI] [PubMed] [Google Scholar]
  • 311.Maki A., Berezesky I.K., Fargnoli J., Holbrook N.J., Trump B.F. Role of [Ca2+]j in induction ofc-fos, c-jun, and c-myc mRNA in rat PTE after oxidative stress. FASEB J. 1992;6:919–924. doi: 10.1096/fasebj.6.3.1740241. [DOI] [PubMed] [Google Scholar]
  • 312.Kurata S.I., Matsumoto M., Tsuji Y., Nakajima H. Lipopolysaccharide activates transcription of the heme oxygenase gene in mouse M1 cells through oxidative activation of nuclear factor kappa-b. Eur. J. Biochem. 1996;239:566–571. doi: 10.1111/j.1432-1033.1996.0566u.x. [DOI] [PubMed] [Google Scholar]
  • 313.Kurata S., Matsumoto M., Nakajima H. Transcriptional control of the heine oxygenase gene in mouse M1 cells during their TPA-induced differentiation into macrophages. J. Cell. Biochem. 1996;62:314–324. doi: 10.1002/(SICI)1097-4644(199609)62:3<314::AID-JCB2>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  • 314.Rao, GN, Glasgow, WC, Eling, TE, and Runge, MS: Role of hydroperoxyeicosatetraenoic acids in oxidative stress-induced activating protein 1 (AP-1) activity. J. Biol. Chem., 271: 27760–27764, 1996. [DOI] [PubMed]
  • 315.Das K.C., Lewis-Molock Y., White C.W. Activation of NF-κB and elevation of MnSOD gene expression by thiol reducing agents in lung adenocarcinoma (A549) cells. Am. J. Physiol. 1995;269:L588–L602. doi: 10.1152/ajplung.1995.269.5.L588. [DOI] [PubMed] [Google Scholar]
  • 316.Stevenson M.A., Pollock S.S., Coleman C.N., Calderwood S.K. X-irradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Res. 1994;54:12–15. [PubMed] [Google Scholar]
  • 317.Guyton K.Z., Liu Y., Gorospe M., Xu Q., Holbrook N.J. Activation of mitogen-activated protein kinase by H2O2. J. Biol. Chem. 1996;271:4138–4142. doi: 10.1074/jbc.271.7.3604. [DOI] [PubMed] [Google Scholar]
  • 318.Barker C.W., Fagan J.B., Pasco D.S. Down-regulation of P4501A1 and P4501A2 mRNA expression in isolated hepatocytes by oxidative stress. J. Biol. Chem. 1994;269:3985–3990. [PubMed] [Google Scholar]
  • 319.Miyazaki Y., Shinomura Y., Tsutsui S., Yasunaga Y., Zushi S., Higashiyama S., Taniguchi N., Matsuzawa Y. Oxidative stress increases gene expression of heparin-binding EGF-like growth factor and amphiregulin in cultured rat gastric epithelial cells. Biochem. Biophys. Res. Commun. 1996;226:542–546. doi: 10.1006/bbrc.1996.1391. [DOI] [PubMed] [Google Scholar]
  • 320.Tate D.J., Miceli M.V., Newsome D.A. Phagocytosis and H2O2 induced catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 1995;36:1271–1279. [PubMed] [Google Scholar]
  • 321.Hecht D., Zick Y. Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem. Biophys. Res. Commun. 1992;188:773–779. doi: 10.1016/0006-291X(92)91123-8. [DOI] [PubMed] [Google Scholar]
  • 322.Choi H.-S., Moore D.D. Induction of c-fos and c-jun gene expression by phenolic antioxidants. Mol. Endocrin. 1993;7:1596–1602. doi: 10.1210/me.7.12.1596. [DOI] [PubMed] [Google Scholar]
  • 323.Flohé L., Brigelius-Flohe R., Saliou C., Traber M.G., Packer L. Redox regulation of NF-kappa B activation. Free Radic. Biol. Med. 1997;22:1115–1126. doi: 10.1016/S0891-5849(96)00501-1. [DOI] [PubMed] [Google Scholar]
  • 324.Sen C.K., Packer L. Antioxidants and redox regulation of gene transcription. FASEB J. 1996;10:709–720. doi: 10.1096/fasebj.10.7.8635688. [DOI] [PubMed] [Google Scholar]
  • 325.Sun Y., Oberley L.W. Redox regulation of transcriptional activators. Free Radic. Biol. Med. 1996;21:335–348. doi: 10.1016/0891-5849(96)00109-8. [DOI] [PubMed] [Google Scholar]
  • 326.Meyer M., Pahl H.L., Baeuerle P.A. Regulation of the transcription factors NF-κB and AP-1 by redox changes. Chem.-Biol. Interactions. 1994;91:91–100. doi: 10.1016/0009-2797(94)90029-9. [DOI] [PubMed] [Google Scholar]
  • 327.Monterio H.P., Stern A. Redox regulation of tyrosine phosphorylation-dependent signal transduction pathways. Free Radic. Biol. Med. 1996;21:323–333. doi: 10.1016/0891-5849(96)00051-2. [DOI] [PubMed] [Google Scholar]
  • 328.Bauskin A.R., Alkalay I., Ben-Neriah Y. Redox regulation of protein tyrosine kinase in the endoplasmic reticulum. Cell. 1991;66:685–696. doi: 10.1016/0092-8674(91)90114-E. [DOI] [PubMed] [Google Scholar]
  • 329.Nakamura K., Hori T., Sato N., Sugie K., Kawakami T., Yodoi J. Redox regulation of a src family protein tyrosine kinase p56lck in T cells. Oncogene. 1993;8:3133–3139. [PubMed] [Google Scholar]
  • 330.Vallé A., Kinet J.P. N-acetyl-L-cysteine inhibits antigen-mediated Syk, but not Lyn tyrosine kinase activation in mast cells. FEBS Lett. 1995;357:41–44. doi: 10.1016/0014-5793(94)01329-Y. [DOI] [PubMed] [Google Scholar]
  • 331.Qin S.F., Minami Y., Hibi M., Kurosaki T., Yamamura H. Syk-dependent and-independent signaling cascades in B cells elicited by osmotic and oxidative stress. J. Biol. Chem. 1997;272:2098–2103. doi: 10.1074/jbc.272.4.2098. [DOI] [PubMed] [Google Scholar]
  • 332.Schieven, GL, Mittler, RS, Nadler, SG, Kirihara, JM, Bolen, JB, Kanner, SB, and Ledbetter, JA: ZAP-70 tyrosine kinase, CD45, and T cell receptor involvement in UV-and H2O2-induced T cell signal transduction. J. Biol. Chem., 269: 20718–20726, 1994. [PubMed]
  • 333.Wang G.L., Jiang B.-H., Semenza G.L. Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor I. Biochem. Biophys. Res. Commun. 1995;212:550–556. doi: 10.1006/bbrc.1995.2005. [DOI] [PubMed] [Google Scholar]
  • 334.Rao G.N. Hydrogen peroxide induces complex formation of SHC-Grb2-SOS with receptor tyrosine kinase and activates Ras and extracellular signal-regulated protein kinases group of mitogen-activated protein kinases. Oncogene. 1996;13:713–719. [PubMed] [Google Scholar]
  • 335.Knebel A., Rahmsdorf H.J., Ullrich A., Herrlich P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J. 1996;15:5314–5325. [PMC free article] [PubMed] [Google Scholar]
  • 336.Stein B., Rahmsdorf H.J., Steffen A., Litfin M., Herrlich P. UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type I, collagenase, c-fos, and metallothionine. Mol. Cell. Biol. 1989;9:5169–5181. doi: 10.1128/mcb.9.11.5169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 337.Dalton, TP, Li, Q, Bittle, D, Liang, L, and Andrews, GK: Oxidative stress activates metal-responsive transcription factor-1 binding activity. J. Biol. Chem., 271: 26233–26241, 1996. [DOI] [PubMed]
  • 338.Arnone, MI, Zannini, M, and Di Lauro, R: The DNA binding activity and dimerization ability of the thyroid transcription factor I are redox regulated. J. Biol. Chem., 270: 12048–12055, 1995. [DOI] [PubMed]
  • 339.Whisler R.L., Newhouse Y.G., Beiqing L., Karanfilov B.K., Goyette M.A., Hackshaw K.V. Regulation of protein kinase enzymatic activity in Jurkat T cells during oxidative stress uncoupled from protein tyrosine kinases: role of oxidative changes in protein kinase activation requirements and generation of second messengers. Lymphokine and Cytokine Research. 1994;13:399–410. [PubMed] [Google Scholar]
  • 340.Pombo C.M., Bonverntre J.V., Molnar A., Kyriakis J., Force T. Activation of human Ste-like kinase by oxidant stress defines novel stress response pathway. EMBO J. 1996;15:4537–4546. [PMC free article] [PubMed] [Google Scholar]
  • 341.Ohba M., Shibanuma M., Kuroki T., Nose K. Production of hydrogen peroxide by transforming growth factor-β1 and its involvement in induction of erg-1 in mouse osteoblastic cells. J. Cell Biol. 1994;126:1079–1088. doi: 10.1083/jcb.126.4.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 342.Nose K., Shibanuma K., Kikuchi K., Kageyama H., Sakiyama S., Kuroki T. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur. J. Biochem. 1991;201:99–106. doi: 10.1111/j.1432-1033.1991.tb16261.x. [DOI] [PubMed] [Google Scholar]
  • 343.Nose K., Ohba M. Functional activation of the erg-1 (early growth response-1) gene by hydrogen peroxide. Biochem. J. 1996;316:381–383. doi: 10.1042/bj3160381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 344.Fraticelli A., Serrano C.V., Bochner B.S., Capogrossi M.C., Zweier J.L. Hydrogen peroxide and superoxide modulate leukocyte adhesion molecule expression and leukocyte endothelial adhesion. Biochim. Biophys. Acta. 1996;1310:251–259. doi: 10.1016/0167-4889(95)00169-7. [DOI] [PubMed] [Google Scholar]
  • 345.Knoepfel L., Steinkühler C., Card M.-T., Rotilio G. Role of zinc-coordination and of glutathione redox couple in the redox susceptibility of human transcription factor Sp1. Biochem. Biophys. Res. Commun. 1994;201:871–877. doi: 10.1006/bbrc.1994.1782. [DOI] [PubMed] [Google Scholar]
  • 346.Crawford D.R., Schools G.P., Salmon S.L., Davies K.J.A. Hydrogen peroxide induces the expression of adapt 15, a novel RNA associated with polysomes in hamster HA-1 cells. Arch. Biochem. Biophys. 1996;325:256–264. doi: 10.1006/abbi.1996.0032. [DOI] [PubMed] [Google Scholar]
  • 347.Wang Y., Crawford D.R., Davies K.J.A. adapt33, a novel oxidant-inducible RNA from hamster HA-1 cells. Arch. Biochem. Biophys. 1996;332:255–260. doi: 10.1006/abbi.1996.0340. [DOI] [PubMed] [Google Scholar]
  • 348.Crawford D.R., Leahy K.P., Abramova N., Lan L., Wang Y., Davies K.J.A. Hamster adapt 78 mRNA is a down syndrome critical region homologue that is inducible by oxidative stress. Arch. Biochem. Biophys. 1997;342:6–12. doi: 10.1006/abbi.1997.0109. [DOI] [PubMed] [Google Scholar]
  • 349.Crawford D.R., Leahy K.P., Wang Y., Schools G.P., Kochheiser J.C., Davies K.J.A. Oxidative stress induces the levels of a maf G homolog in hamster HA-1 cells. Free Radic. Biol. Med. 1996;21:521–525. doi: 10.1016/0891-5849(96)00160-8. [DOI] [PubMed] [Google Scholar]
  • 350.Ishii T., Yanagawa T., Yuki K., Kawane T., Yoshida H., Bannai S. Low micromolar levels of hydrogen peroxide and proteasome inhibitors induce the 60-kDa A170 stress protein in murine peritoneal macrophages. Biochem. Biophys. Res. Commun. 1997;232:33–37. doi: 10.1006/bbrc.1997.6221. [DOI] [PubMed] [Google Scholar]
  • 351.Shibanuma M., Arata S., Murata M., Nose K. Activation of DNA synthesis and expression of the JE gene by catalase in mouse osteoblastic cells: possible involvement of hydrogen peroxide in negative growth regulation. Exp. Cell Res. 1995;218:132–136. doi: 10.1006/excr.1995.1139. [DOI] [PubMed] [Google Scholar]
  • 352.Keyse S.M., Tyrrell R.M. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA raiation, hydrogen peroxide and sodium arsenite. Proc. Natl. Acad. Sci. USA. 1989;86:99–103. doi: 10.1073/pnas.86.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 353.Vile G.F., Basu-Modak S., Waltner C., Tyrrell R.M. Heme oxygenase I mediates an adaptive response to oxidative stress in human skin fibroblasts. Proc. Natl. Acad. Sci. USA. 1994;91:2607–2610. doi: 10.1073/pnas.91.7.2607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 354.Nascimento A.L.T.O., Luscher P., Tyrrell R.M. Ultraviolet A (320–380 nm) radiation causes an alteration in the binding of a specific protein/protein complex to a short region of the promoter of the human heme oxygenase 1 gene. Nucleic Acids Res. 1993;21:1103–1109. doi: 10.1093/nar/21.5.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 355.Beiqing L., Chen M., Whisler R.L. Sublethal levels of oxidative stress stimulate transcriptional activation of c-jun and suppress IL-2 promoter activation in jurkat T cells. J. Immunol. 1996;157:160–169. [PubMed] [Google Scholar]
  • 356.Estes S.D., Stoler D.L., Anderson G.R. Normal fibroblasts induce the C/EBPβ and ATF-4 bZIP transcription factors in response to anoxia. Exp. Cell Res. 1995;220:47–54. doi: 10.1006/excr.1995.1290. [DOI] [PubMed] [Google Scholar]
  • 357.Tournier C., Thomas G., Pierre J., Jacquemin C., Pierre M., Saunier B. Mediation by arachidonic acid metabolites of the H2O2-induced stimulation of mitogen-activated protein kinases (extracellular-signal-regulated kinase and c-Jun NH2-terminal kinase) Eur. J. Biochem. 1997;244:587–595. doi: 10.1111/j.1432-1033.1997.00587.x. [DOI] [PubMed] [Google Scholar]
  • 358.Satriano J.A., Shuldiner M., Hora K., Xing Y., Shan Z., Schlondorff D. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-α and immunogloblin G. J. Clin. Invest. 1993;92:1564–1571. doi: 10.1172/JCI116737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 359.Kuroki M., Voest E.E., Amano S., Beerepoot L.V., Takashima S., Tolentino M., Kim R.Y., Rohan R.M., Colby K.A., Yeo K.T., Adamis A.P. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J. Clin. Invest. 1996;98:1667–1675. doi: 10.1172/JCI118962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 360.Herbert J.-M., Bono F., Savi P. The mitogenic effect of H2O2 for the vascular smooth muscle cells is mediated by an increase of the affinity of basic fibroblast growth factor for its receptor. FEBS Lett. 1996;395:43–47. doi: 10.1016/0014-5793(96)00998-2. [DOI] [PubMed] [Google Scholar]
  • 361.Taniguchi Y., Taniguchi-Ueda Y., Mori K., Yodoi J. A novel promoter sequence is involved in the oxidative stress-induced expression of the adult T-cell leukemia-derived factor (ADF)/human thioredoxin (Trx) gene. Nucleic Acids Res. 1996;24:2746–2752. doi: 10.1093/nar/24.14.2746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 362.Makino Y., Okamoto K., Yoshikawa N., Aoshima M., Hirota K., Yodoi J., Umesono K., Makino I., Tanaka H. Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. J. Clin. Invest. 1996;98:2469–2477. doi: 10.1172/JCI119065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 363.Papathanasiou M.A., Kerr N.C., Robbons J.H., McBride O.W., Alamo I., Barret S.F., Hickson I.D., Forace A.J. Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol. Cell. Biol. 1991;11:1009–1016. doi: 10.1128/mcb.11.2.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 364.Luethy, JD, Fargnoli, J, Park, JS, Fornace, AJ, Jr, and Holbrook, NJ: Isolation and characterization of the hamster gadd153 gene. Activation of promoter activity by agents that damage DNA. J. Biol. Chem., 265: 16521–16526, 1990. [PubMed]
  • 365.Pognonec, P, Kato, H, and Roeder, RG: The helix-loop-helix/leucine repeat transcription factor USF can be functionally regulated in a redox-independent manner. J. Biol. Chem., 267: 24563–24567, 1992. [PubMed]
  • 366.Legrand-Poels S., Bours V., Piret B., Pflaum M., Epe B., Rentier B., Piette J. Transcription factor NF-κB is activated by photosensitization generating oxidative DNA damages. J. Biol. Chem. 1995;270:6925–6934. doi: 10.1074/jbc.270.12.6925. [DOI] [PubMed] [Google Scholar]
  • 367.Li X.H., Song L., Jope R.S. Cholinergic stimulation of AP-1 and NF-κB transcription factors is differentially sensitive to oxidative stress in SH-SY5Y neuroblastoma-relationship to phospho-inositide hydrolysis. J. Neurosci. 1996;16:5914–5922. doi: 10.1523/JNEUROSCI.16-19-05914.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 368.Tanaka C., Kamata H., Takeshita H., Yagisawa H., Hirata H. Redox regulation of lipopolysaccharide (LPS)-induced interleukin-8 (IL-8) gene expression mediated by NF-κB and AP-1 in human astrocytoma U373 cells. Biochem. Biophys. Res. Commun. 1997;232:568–573. doi: 10.1006/bbrc.1997.6264. [DOI] [PubMed] [Google Scholar]
  • 369.Schenk H., Klein M., Erdbrügger W., Dröge W., Schulze-Otshoff K. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-κB and AP-1. Proc. Natl. Acad. Sci. USA. 1994;91:1672–1676. doi: 10.1073/pnas.91.5.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 370.Meyer M., Schreck R., Baeuerle P.A. H2O2 and antioxidants have opposite effects on the activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 1993;12:2005–2015. doi: 10.1002/j.1460-2075.1993.tb05850.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 371.Devary Y., Rosette C., DiDonato J.A., Karin M. NF-κB activation by ultraviolet light not dependent on a nuclear signal. Science. 1993;261:1442–1445. doi: 10.1126/science.8367725. [DOI] [PubMed] [Google Scholar]
  • 372.Tong L., Perezpolo J.R. Effect of nerve growth factor on AP-1, NF-κB, and Oct DNA binding activity in apoptotic PC12 cells-extrinsic and intrinsic elements. J. Neurosci. Res. 1996;45:1–12. doi: 10.1002/(SICI)1097-4547(19960701)45:1<1::AID-JNR1>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  • 373.Garcia-Ruiz C., Colell A., Morales A., Kaplowitz N., Fernandez-Checa J.C. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor Nuclear Factor κB: studies with isolated mitochonria and rat hepatocytes. Mol. Pharmacol. 1995;48:825–834. [PubMed] [Google Scholar]
  • 374.Schmidt K.N., Amstad P., Cerutti P., Baeuerle P.A. The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NF-κB. Chem. Biol. 1995;2:13–22. doi: 10.1016/1074-5521(95)90076-4. [DOI] [PubMed] [Google Scholar]
  • 375.Suzuki Y.J., Mizuno M., Packer L. Transient overexpression of catalase does not inhibit TNF-or PMA-induced NF-κB activation. Biochem. Biophys. Res. Commun. 1995;210:537–541. doi: 10.1006/bbrc.1995.1693. [DOI] [PubMed] [Google Scholar]
  • 376.Schreck R., Grassmann R., Fleckenstein B., Baeuerle P.A. Antioxidants selectively suppress activation of NF-κB by human T-cell leukemia virus type I Tax protein. J. Virol. 1992;66:6288–6293. doi: 10.1128/jvi.66.11.6288-6293.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 377.Kamii H., Kinouchi H., Sharp F.R., Koistinaho J., Epstein C.J., Chan P.H. Prolonged expression of hsp70 mRNA following transient focal cerebral ischemia in transgenic mice overexpressing CuZn-superoxide dismutase. J. Cereb. Blood Flow Metab. 1994;14:478–486. doi: 10.1038/jcbfm.1994.59. [DOI] [PubMed] [Google Scholar]
  • 378.Kamii H., Kinouchi H., Sharp F.R., Epstein C.J., Sagar S.M., Chan P.H. Expression of c-fos mRNA after a mild focal cerebral ischemia in SOD-1 transgenic mice. Brain Res. 1994;662:240–244. doi: 10.1016/0006-8993(94)90818-4. [DOI] [PubMed] [Google Scholar]
  • 379.Kondo T., Sharp F.R., Honkaniemi J., Mikawa S., Epstein C.J., Chan P.H. DNA fragmentation and Prolonged expression of c-fos, c-jun, and hsp70 in kainic acid-induced neuronal cell death in transgenic mice overexpressing human CuZn-superoxide dismutase. J. Cereb. Blood Flow Metab. 1997;17:241–256. doi: 10.1097/00004647-199703000-00001. [DOI] [PubMed] [Google Scholar]
  • 380.Vincent F., Corral M., Defer N., Adolphe M. Effects of oxygen free radicals on articular chondrocytes in culture: c-myc and c-Ha-ras messenger RNAs and proliferation kenetics. Exp. Cell Res. 1991;192:333–339. doi: 10.1016/0014-4827(91)90049-Z. [DOI] [PubMed] [Google Scholar]
  • 381.Rao G.N., Berk B.C. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ. Res. 1992;70:593–599. doi: 10.1161/01.res.70.3.593. [DOI] [PubMed] [Google Scholar]
  • 382.Crawford D., Zbinden I., Amstad P., Cerutti P. Oxidant stress induces the proto-oncogenes c-fos and c-jun in mouse epidermal cells. Oncogene. 1988;3:27–32. [PubMed] [Google Scholar]
  • 383.Büscher M., Rahmsdorf H.J., Litfin M., Karin M., Herrlich P. Activation of the c-fos gene by UV and phorbol ester: different signal transduction pathways converge to the same enhancer element. Oncogene. 1988;3:301–311. [PubMed] [Google Scholar]
  • 384.Devary Y., Gottlieb R.A., Lau L., Karin M. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol. Cell. Biol. 1991;11:2804–2811. doi: 10.1128/mcb.11.5.2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 385.Müller J.M., Cahill M.A., Rupec R.A., Baeuerle P.A., Nordheim A. Antioxidants as well as oxidants activate c-fos via Ras-dependent activation of extracellular-signal-regulated kinase 2 and Elk-l. Eur. J. Biochem. 1997;244:45–52. doi: 10.1111/j.1432-1033.1997.00045.x. [DOI] [PubMed] [Google Scholar]
  • 386.Rao G.N., Lasségue B., Griendling K.K., Alexander R.W., Berk B.C. Hydrogen peroxide-induced c-fos expression is mediated by arachidonic acid release: role of protein kinase C. Nucleic Acids Res. 1993;21:1259–1263. doi: 10.1093/nar/21.5.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 387.Li W.C., Spector A. Lens epithelial cell apoptosis is an early event in the development of UVB-induced cataract. Free Radic. Biol. Med. 1996;20:301–311. doi: 10.1016/0891-5849(96)02050-3. [DOI] [PubMed] [Google Scholar]
  • 388.Li W.C., Wang G.-M., Wang R.-R., Spector A. The redox active components H2O2 and N-acetyl-L-cysteine regulate expression of c-jun and c-fos in lens system. Exp. Eye Res. 1994;59:179–190. doi: 10.1006/exer.1994.1096. [DOI] [PubMed] [Google Scholar]
  • 389.Lee S.F., Hunag Y.T., Wu W.S., Lin J.K. Induction of c-jun protooncogene expression by hydrogen peroxide through hydroxyl radical generation and p60SRC tyrosine kinase activation. Free Radic. Biol. Med. 1996;21:437–448. doi: 10.1016/0891-5849(96)00040-8. [DOI] [PubMed] [Google Scholar]
  • 390.Collart F.R., Horio M., Huberman E. Heterogeneity in c-jun gene expression in normal and malignant cells exposed to either ionizing radiation or hydrogen peroxide. Radiat. Res. 1995;142:188–196. [PubMed] [Google Scholar]
  • 391.Rao G.N., Lasségue B., Griendling K.K., Alexander R.W. Hydrogen peroxide stimulates transcription in vascular smooth muscle cells: role of arachidonic acid. Oncogene. 1993;8:2759–2764. [PubMed] [Google Scholar]
  • 392.Manome, Y, Datta, R, Taneja, N, Shafman, T, Bump, E, Hass, R, Weichselbaum, R, and Kufe, D: Coinduction of c-jun gene expression and internucleosomal DNA fragmentation by ionizing radiation. Biochemistry, 32: 10607–10613, 1993. [DOI] [PubMed]
  • 393.Xanthoudakis S., Curran T. Identification of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J. 1992;11:653–665. doi: 10.1002/j.1460-2075.1992.tb05097.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 394.Xanthoudakis S., Miao G., Wang F., Pan Y.-C., Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 1992;11:3323–3335. doi: 10.1002/j.1460-2075.1992.tb05411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 395.Wilmer, WA, Tan, LC, Dickerson, JA, Danne, M, and Rovin, BH: Interleukin-1β induction of mitogen-activated protein kinases in human mesangial cells. Role of oxidation. J. Biol. Chem., 272: 10877–10881, 1997. [DOI] [PubMed]
  • 396.Rao, GN, Bass, AS, Glasgow, WC, Eling, TE, Runge, MS, and Alaxender, RW: Activation of mitogen-activated protein kinases by arachidonic acid and its metabolites in vascular smooth muscle cells. J. Biol. Chem., 269: 32586–32591, 1994. [PubMed]
  • 397.Abe, J, Kusuhara, M, Ulevitch, RJ, Berk, BC, and Lee, JD: Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J. Biol. Chem., 271: 16586–16590, 1996. [DOI] [PubMed]
  • 398.Cui X.L., Douglas J.G. Arachidonic acid activates c-jun N-terminal kinase through NADPH oxidase in rabbit proximal tubular epithelial cells. Proc. Natl. Acad. Sci. USA. 1997;94:3771–3776. doi: 10.1073/pnas.94.8.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 399.Lo, YYC, Wong, JMS, and Cruz, TF: Reactive oxygen species mediate cytokine activation of c-jun NH2-terminal kinases. J. Biol. Chem., 271: 15703–15707, 1996. [DOI] [PubMed]
  • 400.Dhar V., Adler V., Lehmann A., Ronai Z. Impaired jun-NH2-terminal kinase activation by ultraviolet irradiation in fibroblasts of patients with Cockayne syndrome complementation group B. Cell Growth Diff. 1996;7:841–846. [PubMed] [Google Scholar]
  • 401.Wagner B.J., Hayes T.E., Hoban C.J., Cochran B.H. The SIF binding element confers sis/PDGF inducibility onto the c-fos promotor. EMBO J. 1990;9:4477–4484. doi: 10.1002/j.1460-2075.1990.tb07898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 402.Whitmarsh A.J., Shore P., Sharrocks A.D., Davis R.J. Integration of MAP kinase signal transduction pathways at the serum responsive element. Science. 1995;269:403–407. doi: 10.1126/science.7618106. [DOI] [PubMed] [Google Scholar]
  • 403.Cerutti P., Shah G., Peskin A., Amstad P. Oxidant carcinogenesis and antioxidant defense. Ann. New York Acad. Sci. 1992;663:158–166. doi: 10.1111/j.1749-6632.1992.tb38659.x. [DOI] [PubMed] [Google Scholar]
  • 404.Kolch W., Heldecker G., Kochs G., Hummel R., Vahidl H., Mischak H., Finkenzeller G., Marme D., Rapp U.R. Protein kinase C-α activates RAF-1 by direct phosphorylation. Nature. 1993;364:249–252. doi: 10.1038/364249a0. [DOI] [PubMed] [Google Scholar]
  • 405.Norman C., Runswick M., Pollock R., Treisman R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum responsive element. Cell. 1988;55:989–1003. doi: 10.1016/0092-8674(88)90244-9. [DOI] [PubMed] [Google Scholar]
  • 406.Shaw P.E., Schröter H., Nordheim A. The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell. 1989;56:563–572. doi: 10.1016/0092-8674(89)90579-5. [DOI] [PubMed] [Google Scholar]
  • 407.Schröter H., Mueller C.G.F., Meese K., Nordheim A. Synergism in ternary complex formation between the dimeric glycoprotein p67SRF, polypeptide p62TCF and the c-fos serum response element. EMBO J. 1990;9:1123–1130. doi: 10.1002/j.1460-2075.1990.tb08218.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 408.Hill C.S., Marais R., John S., Wynne J., Dalton S., Treisman R. Functional analysis of a growth factor-responsive transcription factor complex. Cell. 1993;73:395–406. doi: 10.1016/0092-8674(93)90238-L. [DOI] [PubMed] [Google Scholar]
  • 409.Okuno H., Akahori A., Sato H., Xanthoudakis S., Curran T., Iba H. Escape from redox regulation enhances the transforming activity of Fos. Oncogene. 1993;8:695–701. [PubMed] [Google Scholar]
  • 410.Walters, DW, and Gilbert, HF: Thiol/disulfide exchange between rabbit muscle phosphofructokinase and glutathione. J. Biol. Chem., 261: 15372–15377, 1986. [PubMed]
  • 411.Cappel, RE, and Gilbert, HF: Thiol/dissulfide exchange between 3-hydroxy-3-methylglutaryl-CoA reductase and glutathione. A thermodynamically facile dithiol oxidation. J. Biol. Chem., 263: 12204–12212, 1988. [PubMed]
  • 412.Keogh B.P., Tresini M., Cristofalo V.J., Allen R.G. Effects of cellular aging on the induction of c-fos by antioxidant treatments. Mech. Ageing Dev. 1995;86:151–160. doi: 10.1016/0047-6374(95)01689-9. [DOI] [PubMed] [Google Scholar]

Articles from Age are provided here courtesy of American Aging Association

RESOURCES