Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2004 Mar;30(1):33–81. doi: 10.1023/B:JOBP.0000016438.86794.8e

Wavelet Analysis of DNA Bending Profiles reveals Structural Constraints on the Evolution of Genomic Sequences

Benjamin Audit 1, Cédric Vaillant 1, Alain Arnéodo 1,, Yves d'Aubenton-Carafa 2, Claude Thermes 2
PMCID: PMC3456503  PMID: 23345861

Abstract

Analyses of genomic DNA sequences have shown in previous works that base pairs are correlated at large distances with scale-invariant statistical properties. We show in the present study that these correlations between nucleotides (letters) result in fact from long-range correlations (LRC) between sequence-dependent DNA structural elements (words) involved in the packaging of DNA in chromatin. Using the wavelet transform technique, we perform a comparative analysis of the DNA text and of the corresponding bending profiles generated with curvature tables based on nucleosome positioning data. This exploration through the optics of the so-called `wavelet transform microscope' reveals a characteristic scale of 100-200 bp that separates two regimes of different LRC. We focus here on the existence of LRC in the small-scale regime (≲ 200 bp). Analysis of genomes in the three kingdoms reveals that this regime is specifically associated to the presence of nucleosomes. Indeed, small scale LRC are observed in eukaryotic genomes and to a less extent in archaeal genomes, in contrast with their absence in eubacterial genomes. Similarly, this regime is observed in eukaryotic but not in bacterial viral DNA genomes. There is one exception for genomes of Poxviruses, the only animal DNA viruses that do not replicate in the cell nucleus and do not present small scale LRC. Furthermore, no small scale LRC are detected in the genomes of all examined RNA viruses, with one exception in the case of retroviruses. Altogether, these results strongly suggest that small-scale LRC are a signature of the nucleosomal structure. Finally, we discuss possible interpretations of these small-scale LRC in terms of the mechanisms that govern the positioning, the stability and the dynamics of the nucleosomes along the DNA chain. This paper is maily devoted to a pedagogical presentation of the theoretical concepts and physical methods which are well suited to perform a statistical analysis of genomic sequences. We review the results obtained with the so-called wavelet-based multifractal analysis when investigating the DNA sequences of various organisms in the three kingdoms. Some of these results have been announced in B. Audit et al. [1, 2].

Keywords: chromatin, DNA bending profile, fractals, genomic DNA sequence, long-range correlations, nucleosome, scale-invariance, wavelet transform

Full Text

The Full Text of this article is available as a PDF (550.6 KB).

References

  • 1.Audit B., Thermes C., Vaillant C., d'Aubenton-Carafa Y., Muzy J.-F., Arneodo A. Long-range Correlations in Genomic DNA: A Signature of the Nucleosomal Structure. Phys. Rev. Lett. 2001;86:2471–2474. doi: 10.1103/PhysRevLett.86.2471. [DOI] [PubMed] [Google Scholar]
  • 2.Audit B., Vaillant C., Arneodo A., d'Aubenton-Carafa Y., Thermes C. Long-Range Correlations between DNA Bending Sites: Relation to the Structure and Dynamics of Nucleosomes. J. Mol. Biol. 2002;316:903–918. doi: 10.1006/jmbi.2001.5363. [DOI] [PubMed] [Google Scholar]
  • 3.Kornberg R.D. Structure of Chromatin. Annu. Rev. Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
  • 4.Klug A., Rhodes D., Smith J., Finch T.J., Thomas J.O. A Low Resolution Structure for the Histone Core of the Nucleosome. Nature. 1980;287:509–516. doi: 10.1038/287509a0. [DOI] [PubMed] [Google Scholar]
  • 5.Richmond T.J., Finch J.T., Rusliton B., Rhodes D., Klug A. Structure of the Nucleosome Core Particle at 7Å Resolution. Nature. 1984;311:532–537. doi: 10.1038/311532a0. [DOI] [PubMed] [Google Scholar]
  • 6.Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal Structure of the Nucleosome Core Particle at 2.8 Å Resolution. Nature. 1997;389:251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  • 7.van Holde K.E. Chromatin. New York: Springer; 1989. [Google Scholar]
  • 8.Wolffe A.P. Chromatin Structure and Function. London: Academic Press; 1995. [Google Scholar]
  • 9.Finch J.T., Klug A. Solenoidal Model for Superstructure in Chromatin. Proc. Natl. Acad. Sci. USA. 1976;73:1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Widom J., Klug A. Structure of the 300Å Chromatin Filament: X-Ray Diffraction from Oriented Samples. Cell. 1985;43:207–213. doi: 10.1016/0092-8674(85)90025-x. [DOI] [PubMed] [Google Scholar]
  • 11.Yang G., Leuba S.H., Bustamante C., Zlatanova J., van Holde K. Role of Linker Histones in Extended Chromatin Fibre Structure. Nat. Struct. Biol. 1994;1:761–763. doi: 10.1038/nsb1194-761. [DOI] [PubMed] [Google Scholar]
  • 12.Furrer P., Bednar J., Dubochet J., Hamiche A., Prunell A. DNA at the Entry-Exit of the Nucleosome observed by Cryoelectron Microscopy. J. P. Struct. Biol. 1995;114:177–183. doi: 10.1006/jsbi.1995.1017. [DOI] [PubMed] [Google Scholar]
  • 13.Woodcock C.L., Horowitz R.A. Electron Microscopic Imaging of Chromatin with Nucleosome Resolution. Methods Cell Biol. 1998;53:167–186. doi: 10.1016/s0091-679x(08)60879-1. [DOI] [PubMed] [Google Scholar]
  • 14.Cui Y., Bustamante C. Pulling a Single Chromatin Fiber reveals the Forces that Maintain its Higher-Order Structure. Proc. Natl. Acad. Sci. USA. 2000;57:127–132. doi: 10.1073/pnas.97.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Travers A.A. DNA Conformation and Protein Binding. Annu. Rev. Biochem. 1989;58:427–452. doi: 10.1146/annurev.bi.58.070189.002235. [DOI] [PubMed] [Google Scholar]
  • 16.Yao J., Lowary P.T., Widom J. Direct Detection of Linker DNA Bending in Defined-Length Oligomers of Chromatin. Proc. Natl. Acad. Sci. USA. 1990;87:7603–7607. doi: 10.1073/pnas.87.19.7603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.van Holde K., Zlatanova J. What determines the Folding of the Chromatin Fiber? Proc. Natl. Acad. Sci. USA. 1996;93:10548–10555. doi: 10.1073/pnas.93.20.10548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Widom J. Structure, Dynamics and Function of Chromatin in vitro. Annu. Rev. Biophys. Biomol. Struct. 1998;27:285–327. doi: 10.1146/annurev.biophys.27.1.285. [DOI] [PubMed] [Google Scholar]
  • 19.Anselmi C., Bocchinfuso G., De Santis P., Savino M., Scipioni A. Dual Role of DNA Intrinsic Curvature and Flexibility in Determining Nucleosome Stability. J. Mol. Biol. 1999;286:1293–1301. doi: 10.1006/jmbi.1998.2575. [DOI] [PubMed] [Google Scholar]
  • 20.Trifonov E.N., Sussman J.L. The Pitch of Chromatin DNA is reflected in its Nucleotide Sequence. Proc. Natl. Acad. Sci. USA. 1980;77:3816–3820. doi: 10.1073/pnas.77.7.3816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Drew H.R., Travers A.A. DNA Bending and its Relation to Nucleosome Positioning. J. Mol. Biol. 1985;186:773–790. doi: 10.1016/0022-2836(85)90396-1. [DOI] [PubMed] [Google Scholar]
  • 22.Baldi P., Brunak S., Chauvin Y., Krogh A. Naturally occurring Nucleosome Positioning Signals in Human Exons and Introns. J. Mol. Biol. 1996;263:503–510. doi: 10.1006/jmbi.1996.0592. [DOI] [PubMed] [Google Scholar]
  • 23.Widom J. Short-Range Order in Two Eukaryotic Genomes: Relation to Chromosome Structure. J. Mol. Biol. 1996;259:579–588. doi: 10.1006/jmbi.1996.0341. [DOI] [PubMed] [Google Scholar]
  • 24.Liu K., Stein A. DNA Sequence Encodes Information for Nucleosome Array Formation. J. Mol. Biol. 1997;270:559–573. doi: 10.1006/jmbi.1997.1136. [DOI] [PubMed] [Google Scholar]
  • 25.Herzel H., Weiss O., Trifonov E.N. 10-11bp Periodicities in Complete Genomes Reflect Protein Structure and DNA Folding. Bioinformatics. 1999;15:187–193. doi: 10.1093/bioinformatics/15.3.187. [DOI] [PubMed] [Google Scholar]
  • 26.Thaström A., Lowary P.T., Widlund H.R., Cao H., Kubista M., Widom J. Sequence Motifs and Free Energies of Selected Natural and Non-Natural Nucleosome Positioning DNA Sequences. J. Mol. Biol. 1999;288:213–219. doi: 10.1006/jmbi.1999.2686. [DOI] [PubMed] [Google Scholar]
  • 27.Simpson R.T. Nucleosome Positioning: Occurence, Mechanisms and Functional Consequences. Prog. Nucl. Acid. Res. 1991;40:143–184. doi: 10.1016/s0079-6603(08)60841-7. [DOI] [PubMed] [Google Scholar]
  • 28.Grunstein M., Durrin L.K., Mann R.K., Fisher-Adams G., Johnson L.M. Histones: Regulators of Transcription in Yeast. In: McKnight S., Yamamoto K., editors. Transcriptional Regulation. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1992. pp. 1295–1315. [Google Scholar]
  • 29.Wolffe A.P. Transcription: In Tune with the Histones. Cell. 1994;77:13–16. doi: 10.1016/0092-8674(94)90229-1. [DOI] [PubMed] [Google Scholar]
  • 30.Felsenfeld G. Chromatin Unfolds. Cell. 1996;86:13–19. doi: 10.1016/s0092-8674(00)80073-2. [DOI] [PubMed] [Google Scholar]
  • 31.Protacio R.U., Polach K.J., Widom J. Coupled-Enzymatic Assays for the Rate and Mechanism of DNA Site Exposure in a Nucleosome. J. Mol. Biol. 1997;274:708–721. doi: 10.1006/jmbi.1997.1440. [DOI] [PubMed] [Google Scholar]
  • 32.Sudarsanam P., Winston F. The Swi/Snf Family Nucleosome-Remodeling Complexes and Transcriptional Control. Trends Genet. 2000;16:345–351. doi: 10.1016/s0168-9525(00)02060-6. [DOI] [PubMed] [Google Scholar]
  • 33.Suto R.K., Clarkson M.J., Tremethick D.J., Luger K. Crystal Structure of a Nucleosome Core Particle Containing the Variant Histone H2A.Z. Nat. Struct. Biol. 2000;7:1121–1124. doi: 10.1038/81971. [DOI] [PubMed] [Google Scholar]
  • 34.Wu J., Grunstein M. 25 Years after the Nucleosome Model: Chromatin Modifications. Trends Biochem. Sci. 2000;25:619–623. doi: 10.1016/s0968-0004(00)01718-7. [DOI] [PubMed] [Google Scholar]
  • 35.Romero D., Martinez-Salazar J., Ortiz E., Rodriguez C., Valencia-Morales E. Repeated Sequences in Bacterial Chromosomes and Plasmids: A Glimpse from Sequenced Genomes. Res. Microbiol. 1999;150:735–743. doi: 10.1016/s0923-2508(99)00119-9. [DOI] [PubMed] [Google Scholar]
  • 36.Gaut B.S., Le Thierry d'Ennequin M., Peek A.S., Sawkins M.C. Maize as a Model for the Evolution of Plant Nuclear Genomes. Proc. Natl. Acad. Sci. USA. 2000;97:7008–7015. doi: 10.1073/pnas.97.13.7008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Ioshikhes I., Bolshoy A., Derenshteyn K., Borodovsky M., Trifonov E.N. Nucleosome DNA Sequence Pattern revealed by Multiple Alignment of Experimentally Mapped Sequences. J. Mol. Biol. 1996;262:129–139. doi: 10.1006/jmbi.1996.0503. [DOI] [PubMed] [Google Scholar]
  • 38.Trifonov E.N. 3-, 10.5-, 200-and 400-Base Periodicities in Genome Sequences. Physica A. 1998;249:511–516. [Google Scholar]
  • 39.Ioshikhes I., Trifonov E., Zhang M. Periodical Distribution Factor Sites in Promoter Regions and Connection with Chromatin Structure. Proc. Natl. Acad. Sci. USA. 1999;96:2891–2895. doi: 10.1073/pnas.96.6.2891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Bailey K.A., Pereira S.L., Widom J., Reeve J.N. Archaeal Histone Selection of Nucleosome Positioning Sequences and the Procaryotic Origin of Histone-Dependent Genome Evolution. J. Mol. Biol. 2000;303:25–34. doi: 10.1006/jmbi.2000.4128. [DOI] [PubMed] [Google Scholar]
  • 41.Zhurkin V.B. Periodicity in DNA Primary Structure is Defined by Secondary Structure of the Coded Protein. Nucl. Acids Res. 1981;9:1963–1971. doi: 10.1093/nar/9.8.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Creighton T.E. Proteins: Structure and Molecular Properties. New York: Freeman; 1993. [Google Scholar]
  • 43.Satchwell S.C., Drew H.R., Travers A.A. Sequence Periodicities in Chicken Nucleosome core DNA. J. Mol. Biol. 1986;191:659–675. doi: 10.1016/0022-2836(86)90452-3. [DOI] [PubMed] [Google Scholar]
  • 44.Ioshikhes I., Bolshoy A., Trifonov E.N. Preferred Positions of AA and TT Dinucleotides in Aligned Nucleosomal DNA Sequences. J. Biomol. Struct. Dynam. 1992;9:1111–1117. doi: 10.1080/07391102.1992.10507982. [DOI] [PubMed] [Google Scholar]
  • 45.Bina M. Periodicity of Dinucleotides in Nucleosomes Derived from Simian Virus 40 Chromatin. J. Mol. Biol. 1994;235:198–208. doi: 10.1016/s0022-2836(05)80026-9. [DOI] [PubMed] [Google Scholar]
  • 46.Staffelbach H., Koller T., Burks C. DNA Structure Patterns and Nucleosome Positioning. J. Biomol. Struct. Dynam. 1994;12:301–325. doi: 10.1080/07391102.1994.10508742. [DOI] [PubMed] [Google Scholar]
  • 47.Bolshoy A. CC Dinucleotides Contribute to the Bending of DNA in Chromatin. Nature Struct. Biol. 1995;2:446–448. doi: 10.1038/nsb0695-446. [DOI] [PubMed] [Google Scholar]
  • 48.Stein A., Bina M. A Signal Encoded in Vertebrate DNA that Influences Nucleosome Positioning and Alignment. Nucl. Acids Res. 1999;27:848–853. doi: 10.1093/nar/27.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Trifonov E.N., et al. Hidden Segmentation of Protein Sequences: Structural Connection with DNA. In: Pullman A., et al., editors. Modelling of Biomolecular Structures and Mechanisms. Dordrecht: Kluwer; 1995. pp. 473–479. [Google Scholar]
  • 50.Trifonov E.N., Mengeritsky G. Bent DNA in Chromatin versus Force Curved DNA. In: Olson W.K., Sarma M.H., Sarma R.H., Sundaraligam M., editors. Structure and Expression. Shenectady, NY: Adenine Press; 1988. pp. 159–167. [Google Scholar]
  • 51.Goodsell D.S., Dickerson R.E. Bending and Curvature Calculations in B-DNA. Nucl. Acids Res. 1994;22:5497–5503. doi: 10.1093/nar/22.24.5497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Brukner I., Sanchez R., Suck D., Pongor S. Sequence-Dependent Bending Propensity of DNA as revealed by DNase I: Parameters for Trinucleotides. The EMBO Journal. 1995;14:1812–1818. doi: 10.1002/j.1460-2075.1995.tb07169.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Trifonov E.N. Segmented Structure of Separate and Transposable DNA and RNA Elements as Suggested by Their Size Distributions. J. Biomol. Struct. Dynam. 1997;14:449–457. doi: 10.1080/07391102.1997.10508144. [DOI] [PubMed] [Google Scholar]
  • 54.Vologodskii A., Cozzarelli N. Conformational and Thermodynamic Properties of Supercoiled DNA. Annu. Rev. Biophys. Biomol. Struct. 1994;23:609–643. doi: 10.1146/annurev.bb.23.060194.003141. [DOI] [PubMed] [Google Scholar]
  • 55.Sawitzke J., Austin S. Suppression of Chromosome Segregation Defects of Escherichia coli Muk Mutants by Mutations in Topoisomerase I. Proc. Natl. Acad. Sci. USA. 2000;97:1671–1676. doi: 10.1073/pnas.030528397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Holmes V., Cozzarelli N. Closing the Ring: Links between SMC Proteins and Chromosome Partitioning, Condensation and Supercoiling. Proc. Natl. Acad. Sci. USA. 2000;97:1322–1324. doi: 10.1073/pnas.040576797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Lopez-Garcia P., Forterre P. DNA Topology in Hyperthermophilic Archae: Reference States and Their Variation with Growth Phase, Growth Temperature, and Temperature Stresses. Mol. Microbiol. 1997;23:1267–1279. doi: 10.1046/j.1365-2958.1997.3051668.x. [DOI] [PubMed] [Google Scholar]
  • 58.Decanniere K., Babu A., Sandman K., Reeve J.N., Heinemann U. Crystal Structures of Recombinant Histones HMfA and HMfB from the Hyperthermophilic Archaeon Methanothermus Fervidus. J. Mol. Biol. 2000;303:35–47. doi: 10.1006/jmbi.2000.4104. [DOI] [PubMed] [Google Scholar]
  • 59.Musgrave D., Forterre P., Slesarev A. Negative Constrained DNA Supercoiling in Archaeal Nucleosomes. Mol. Microbiol. 2000;35:341–349. doi: 10.1046/j.1365-2958.2000.01689.x. [DOI] [PubMed] [Google Scholar]
  • 60.Sandman K., Reeve J.N. Structure and Functional Relationships of Archaeal and Eukaryal Histones and Nucleosomes. Microbiol. 2000;173:165–169. doi: 10.1007/s002039900122. [DOI] [PubMed] [Google Scholar]
  • 61.Li W. Generating Non Trivial Long-Range Correlations and 1/f Spectra by Replication and Mutation. Int. J. Bifurc. Chaos. 1992;2:137–154. [Google Scholar]
  • 62.Li W., Kaneko K. Long-Range Correlation and Partial 1/fα Spectrum in a Noncoding DNA Sequence. Europhys. Lett. 1992;17:655–660. [Google Scholar]
  • 63.Li W., Kaneko K. DNA Correlations. Nature. 1992;360:635–636. doi: 10.1038/360635b0. [DOI] [PubMed] [Google Scholar]
  • 64.Peng C.-K., Buldyrev S.V., Goldberger A.L., Havlin S., Sciortino F., Simons M., Stanley H.E. Long-Range Correlations in Nucleotide Sequences. Nature. 1992;356:168–170. doi: 10.1038/356168a0. [DOI] [PubMed] [Google Scholar]
  • 65.Voss R.F. Evolution of Long-Range Fractal Correlations and 1/f Noise in DNA Base Sequences. Phys. Rev. Lett. 1992;68:3805–3808. doi: 10.1103/PhysRevLett.68.3805. [DOI] [PubMed] [Google Scholar]
  • 66.Voss R.F.Long-Range Power-Law Correlations in DNA (reply) Phys. Rev. Lett. 1993711777–1777.10054496 [Google Scholar]
  • 67.Voss R.F. Long-Range Fractal Correlations in DNA Introns and Exons. Fractals. 1994;2:1–6. [Google Scholar]
  • 68.Borštnik B., Pumpernik D., Lukman D. Analysis of Apparent 1/fα Spectrum in DNA Sequences. Europhys. Lett. 1993;23:389–394. [Google Scholar]
  • 69.Buldyrev S.V., Goldberger A.L., Havlin S., Peng C.-K., Simons M., Sciortino F., Stanley H.E. Long-Range Power-Law Correlations in DNA (comment) Phys. Rev. Lett. 1993;71:1776–1776. doi: 10.1103/PhysRevLett.71.1776. [DOI] [PubMed] [Google Scholar]
  • 70.Azbel' M.Y. Universality in a DNA Statistical Structure. Phys. Rev. Lett. 1995;75:168–171. doi: 10.1103/PhysRevLett.75.168. [DOI] [PubMed] [Google Scholar]
  • 71.Herzel H., Grosse I. Measuring Correlations in Symbol Sequence. Physica A. 1995;216:518–542. [Google Scholar]
  • 72.Gates M.A. A Simple Way to Look at DNA. J. Theor. Biol. 1986;119:319–328. doi: 10.1016/s0022-5193(86)80144-8. [DOI] [PubMed] [Google Scholar]
  • 73.Jeffrey H.J. Chaos Game Representation of Gene Structure. Nucl. Acids Res. 1990;18:2163–2170. doi: 10.1093/nar/18.8.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Berthelsen C.L., Glazier J.A., Skolnick M.H. Global Fractal Dimension of Human DNA Sequences treated as Pseudorandom Walks. Phys. Rev. A. 1992;45:8902–8913. doi: 10.1103/physreva.45.8902. [DOI] [PubMed] [Google Scholar]
  • 75.Stanley H.E., Buldyrev S.V., Goldberger A.L., Havlin S., Ossadnik S.M., Peng C.-K., Simons M. Fractal Landscapes in Biological Systems. Fractals. 1993;1:283–301. [Google Scholar]
  • 76.Solovyev V.V., Korolev S.V., Lim H.A. A New Approach for the Classification of the Functional Regions of DNA Sequences based on Fractal Representation. Int. J. Gen. Res. 1993;1:109–128. [Google Scholar]
  • 77.Li W. Mutual Information Function versus Correlation Functions. J. Stat. Phys. 1990;60:823–837. [Google Scholar]
  • 78.Herzel H., Grosse I. Correlations in DNA Sequences: The Role of Protein Coding Segments. Phys. Rev. E. 1997;55:800–810. [Google Scholar]
  • 79.Nee S. Uncorrelated DNA Walks. Nature. 1992;357:450–450. doi: 10.1038/357450a0. [DOI] [PubMed] [Google Scholar]
  • 80.Prabhu V.V., Claverie J.-M. Correlations in Intronless DNA. Nature. 1992;357:782–782. doi: 10.1038/359782a0. [DOI] [PubMed] [Google Scholar]
  • 81.Munson P.J., Taylor R.C., Michaels G.S. DNA Correlations. Nature. 1992;360:635–636. doi: 10.1038/360636a0. [DOI] [PubMed] [Google Scholar]
  • 82.Karlin S., Brendel V. Patchiness and Correlations in DNA Sequences. Science. 1993;259:677–679. doi: 10.1126/science.8430316. [DOI] [PubMed] [Google Scholar]
  • 83.Chatzidimitriou-Dreismann C.A., Larhammar D. Long-Range Correlations in DNA. Nature. 1993;361:212–213. doi: 10.1038/361212b0. [DOI] [PubMed] [Google Scholar]
  • 84.Larhammar D., Chatzidimitriou-Dreismann C.A. Biological Origins of Long-Range Correlations and Compositional Variations in DNA. Nucl. Acids Res. 1993;21:5167–5170. doi: 10.1093/nar/21.22.5167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Mantegna R.N., Buldyrev S.V., Goldberger A.L., Havlin S., Peng C.-K., Simons M., Stanley H.E. Linguistic Features of Noncoding Sequences. Phys. Rev. Lett. 1994;73:3169–3172. doi: 10.1103/PhysRevLett.73.3169. [DOI] [PubMed] [Google Scholar]
  • 86.Mantegna R.N., Buldyrev S.V., Goldberger A.L., Havlin S., Peng C.-K., Simons M., Stanley H.E. Systematic Analysis of Coding and Noncoding DNA Sequences using Methods of Statistical Linguistics. Phys. Rev. E. 1995;52:2939–2950. doi: 10.1103/physreve.52.2939. [DOI] [PubMed] [Google Scholar]
  • 87.Havlin S., Buldyrev S.V., Goldberger A.L., Mantegna R.N., Peng C.-K., Simons M., Stanley H.E. Statistical and Linguistic Features of DNA Sequences. Fractals. 1995;3:269–284. doi: 10.1142/s0218348x95000229. [DOI] [PubMed] [Google Scholar]
  • 88.Herzel H., Ebeling W., Schmitt A.O. Entropies of Biosequences: The Role of Repeats. Phys. Rev. E. 1994;50:5061–5071. doi: 10.1103/physreve.50.5061. [DOI] [PubMed] [Google Scholar]
  • 89.Bernaola-Galván P., Román-Roldán R., Oliver J.L. Compositional Segmentation and Long-Range Fractal Correlations in DNA Sequences. Phys. Rev. E. 1996;53:5181–5189. doi: 10.1103/physreve.53.5181. [DOI] [PubMed] [Google Scholar]
  • 90.Li W. The Measure of Compositional Heterogeneity in DNA Sequences is related to Measures of Complexity. Complexity. 1997;3:33–37. [Google Scholar]
  • 91.Román-Roldán R., Bernaola-Galván P., Oliver J.L. Sequence Compositional Complexity of DNA through an Entropic Segmentation Method. Phys. Rev. Lett. 1998;80:1344–1347. [Google Scholar]
  • 92.Borštnik B. The Character of the Correlations in DNA Sequences. Int. J. of Quantum Chemistry. 1994;52:457–463. [Google Scholar]
  • 93.Buldyrev S.V., Goldberger A.L., Havlin S., Peng C.-K., Simons M., Stanley H.E. Generalized Lévy-Walk Model for DNA Nucleotide Sequences. Phys. Rev. E. 1993;47:4514–4523. doi: 10.1103/physreve.47.4514. [DOI] [PubMed] [Google Scholar]
  • 94.Buldyrev S.V., Goldberger A.L., Havlin S., Stanley H.E., Stanley M.H.R., Simons M. Fractal Landscapes and Molecular Evolution: Modeling the Myosin Heavy Chain Gene Family. Biophys. J. 1993;65:2673–2679. doi: 10.1016/S0006-3495(93)81290-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Li W., Marr T.G., Kaneko K. Understanding Long-Range Correlations in DNA Sequences. Physica D. 1994;75:392–416. [Google Scholar]
  • 96.Li W. The Study of Correlation Structure of DNA Sequences: A Critical Review. Comp. Chem. 1997;21:257–272. doi: 10.1016/s0097-8485(97)00022-3. [DOI] [PubMed] [Google Scholar]
  • 97.Dokholyan N.V., Buldyrev S.V., Havlin S., Stanley H.E. Model of Unequal Chromosomal Crossing over in DNA Sequences. Physica A. 1998;249:594–599. [Google Scholar]
  • 98.Provata A. Random Aggregation Models for the Formation and Evolution of Coding and Non-Coding DNA. Physica A. 1999;264:570–580. [Google Scholar]
  • 99.Buldyrev S.V., Goldberger A.L., Havlin S., Peng C.-K., Stanley H.E. Fractals in Biology and Medecine: from DNA to Heartbeat. In: Bunde A., Havlin S., editors. Fractals in Science. Berlin: Springer-Verlag; 1994. pp. 49–87. [Google Scholar]
  • 100.Peng C.-K., Buldyrev S.V., Goldberger A.L., Havlin S., Simons M., Stanley H.E. Finite-Size Effects on Long-Range Correlations: Implications for Analysing DNA Sequences. Phys. Rev. E. 1993;47:3730–3733. doi: 10.1103/physreve.47.3730. [DOI] [PubMed] [Google Scholar]
  • 101.Berthelsen C.L., Glazier J.A., Raghavachari S. Effective Multifractal Spectrum of a Random Walk. Phys. Rev. E. 1994;49:1860–1864. doi: 10.1103/physreve.49.1860. [DOI] [PubMed] [Google Scholar]
  • 102.Arneodo A., d'Aubenton-Carafa Y., Bacry E., Graves P.V., Muzy J.-F., Thermes C. Wavelet based Fractal Analysis of DNA Sequences. Physica D. 1996;96:291–320. [Google Scholar]
  • 103.Gardiner K. Base Composition and Gene Distribution: Critical Patterns in Mammalian Genome Organization. Trends Genet. 1996;12:519–524. doi: 10.1016/s0168-9525(97)81400-x. [DOI] [PubMed] [Google Scholar]
  • 104.Barakat A., Matassi G., Bernardi G. Distribution of Genes in the Genome of Arabidopsis thaliana and its Implications for the Genome Organization of Plants. Proc. Natl. Acad. Sci. USA. 1998;95:10044–10049. doi: 10.1073/pnas.95.17.10044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Li W., Stolovitzky G., Bernaola-Galván P., Oliver J.L. Compositional Heterogeneity within, and Uniformity between, DNA Sequences of Yeast Chromosomes. Genome Research. 1998;8:916–928. doi: 10.1101/gr.8.9.916. [DOI] [PubMed] [Google Scholar]
  • 106.Bernardi G. Isochores and the Evolutionary Genomics of Vertebrates. Gene. 2000;241:3–17. doi: 10.1016/s0378-1119(99)00485-0. [DOI] [PubMed] [Google Scholar]
  • 107.Viswanathan G.M., Buldyrev S.V., Havlin S., Stanley H.E. Long-Range Correlation Measures for Quantifying Patchiness: Deviations from Uniform Power-Law Scaling in Genomic DNA. Physica A. 1998;249:581–586. [Google Scholar]
  • 108.Peng C.-K., Buldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L. Mosaic Organization of DNA Nucleotides. Phys. Rev. E. 1994;49:1685–1689. doi: 10.1103/physreve.49.1685. [DOI] [PubMed] [Google Scholar]
  • 109.Buldyrev S.V., Goldberger A.L., Havlin S., Mantegna R.N., Matsa M.E., Peng C.-K., Simons M., Stanley H.E. Long-Range Correlation Properties of Coding and Noncoding DNA Sequences: GenBank Analysis. Phys. Rev. E. 1995;51:5084–5091. doi: 10.1103/physreve.51.5084. [DOI] [PubMed] [Google Scholar]
  • 110.Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM; 1992. [Google Scholar]
  • 111.Meyer Y., editor. Wavelets and their Applications. Berlin: Springer; 1992. [Google Scholar]
  • 112.Meyer Y., Roques S., editors. Progress in Wavelets Analysis and Applications. Gif-sur-Yvette: Editions frontières; 1993. [Google Scholar]
  • 113.Arneodo A., Argoul F., Bacry E., Elezgaray J., Muzy J.-F. Ondelettes Multifractales et Turbulences: de l'ADN aux croissances cristallines. Paris: Diderot Editeur, Arts et Sciences; 1995. [Google Scholar]
  • 114.Mallat S. A Wavelet Tour of Signal Processing. New York: Academic Press; 1998. [Google Scholar]
  • 115.Arneodo A., Bacry E., Graves P.V., Muzy J.-F. Characterizing Long-Range Correlations in DNA Sequences from Wavelet Analysis. Phys. Rev. Lett. 1995;74:3293–3296. doi: 10.1103/PhysRevLett.74.3293. [DOI] [PubMed] [Google Scholar]
  • 116.Dodin G., Vandergheynst P., Levoir P., Cordier C., Marcourt L. Fourier and Wavelet Transform Analysis, a Tool for Visualizing Regular Patterns in DNA Sequences. J. Theor. Biol. 2000;206:323–326. doi: 10.1006/jtbi.2000.2127. [DOI] [PubMed] [Google Scholar]
  • 117.Holschneider M. On the Wavelet Transform of Fractal Objects. J. Stat. Phys. 1988;50:963–993. [Google Scholar]
  • 118.Arneodo A., Grasseau G., Holschneider M. Wavelet Transform of Multifractals. Phys. Rev. Lett. 1988;61:2281–2284. doi: 10.1103/PhysRevLett.61.2281. [DOI] [PubMed] [Google Scholar]
  • 119.Muzy J.-F., Bacry E., Arneodo A. The Multifractal Formalism Revisited with Wavelets. Int. J. Bifurc. Chaos. 1994;4:245–302. [Google Scholar]
  • 120.Arneodo A., Bacry E., Muzy J.-F. The Thermodynamics of Fractals Revisited with Wavelets. Physica A. 1995;213:232–275. [Google Scholar]
  • 121.Arneodo A., d'Aubenton-Carafa Y., Audit B., Bacry E., Muzy J.-F., Thermes C. What can we Learn with Wavelets about DNA Sequences? Physica A. 1998;249:439–448. [Google Scholar]
  • 122.Muzy J.-F., Bacry E., Arneodo A. Wavelets and Mulifractal Formalism for Singular Signals: Application to Turbulence Data. Phys. Rev. Lett. 1991;67:3515–3518. doi: 10.1103/PhysRevLett.67.3515. [DOI] [PubMed] [Google Scholar]
  • 123.Arneodo A., d'Aubenton-Carafa Y., Audit B., Bacry E., Muzy J.-F., Thermes C. Nucleotide Composition Effects on the Long-Range Correlations in Human Genes. Eur. Phys. J. B. 1998;1:259–263. [Google Scholar]
  • 124.Yeramian E. Gene and the Physics of the DNA Double-Helix. Gene. 2000;255:139–150. doi: 10.1016/s0378-1119(00)00301-2. [DOI] [PubMed] [Google Scholar]
  • 125.Gabrielian A., Pongor S. Correlation of Intrinsic DNA Curvature with DNA Property Periodicity. FEBS Letters. 1996;393:65–68. doi: 10.1016/0014-5793(96)00855-1. [DOI] [PubMed] [Google Scholar]
  • 126.Taqqu M.S., Teverovsky V., Willinger W. Estimator for Long-Range Dependence: An Empirical Study. Fractals. 1995;3:785–798. [Google Scholar]
  • 127.Audit B., Bacry E., Muzy J.-F., Arneodo A. Wavelet-Based Estimators of Scaling Behavior. IEEE Trans. Info. Theory. 2000;48:2938–2954. [Google Scholar]
  • 128.Mandelbrot B.B. The Fractal Geometry of Nature. San Franscisco: Freeman and Co.; 1982. [Google Scholar]
  • 129.Peitgen H.-O., Saupe D., editors. The Science of Fractal Images. New York: Springer Verlag; 1987. [Google Scholar]
  • 130.Weir B.S. Genetic Data Analysis, Methods for Discrete Population Genetic Data. Sunderland, Massachusets: Sinauer Associates Inc. Publishers; 1990. [Google Scholar]
  • 131.Torresani B. Analyse Continue par Ondelettes. Les Ulis: Editions de Physique; 1998. [Google Scholar]
  • 132.Goupillaud P., Grossmann A., Morlet J. Cycle-Octave and Related Transforms in Seismic Signal Analysis. Geoexploration. 1984;23:85–102. [Google Scholar]
  • 133.Grossmann A., Morlet J. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. S.I.A.M. J. of Math. Anal. 1984;15:723–736. [Google Scholar]
  • 134.Grossmann A., Morlet J. In: Mathematics and Physics, Lectures on Recent Results. Streit L., editor. Singapore: World Scientific; 1985. [Google Scholar]
  • 135.Kelly J. Animal Virus Replication. Annu. Rev. Biochem. 1989;58:671–717. doi: 10.1146/annurev.bi.58.070189.003323. [DOI] [PubMed] [Google Scholar]
  • 136.Deshmane S.L., Fraser N.W. During Latency, Herpes Simplex Virus Type 1 DNA is associated with Nucleosomes in a Chromatin Structure. J. Virol. 1989;63:943–947. doi: 10.1128/jvi.63.2.943-947.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Marcus-Sekura C.J., Carter B.J. Chromatin-Like Structure of Adeno-Associated Virus DNA in Infected Cells. J. Virol. 1983;48:79–87. doi: 10.1128/jvi.48.1.79-87.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Pereira S.L., Grayling R.A., Lurz R., Reeve J.N. Archael Nucleosomes. Proc. Natl. Acad. Sci. USA. 1997;94:12633–12637. doi: 10.1073/pnas.94.23.12633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Grosberg A., Rabin Y., Havlin S., Neer A. Crumpled Globule Model of the Three-Dimensional Structure of DNA. Europhys. Lett. 1993;23:373–378. [Google Scholar]
  • 140.Gabrielian A., Simoncsits A., Pongor S. Distribution of Bending Propensity in DNA Sequences. FEBS Letters. 1996;393:124–130. doi: 10.1016/0014-5793(96)00837-x. [DOI] [PubMed] [Google Scholar]
  • 141.Lowary P.T., Widom J. Nucleosome Packaging and Nucleosome Positioning of Genomic DNA. Proc. Natl. Acad. Sci. USA. 1997;94:1183–1188. doi: 10.1073/pnas.94.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Meisterernst M., Horikoshi M., Roeder R.G. Chromatin Disruption in the Promoter of Human Immunodeficiency Virus Type 1 during Transcriptional Activation. EMBO J. 1993;12:3249–3259. doi: 10.1002/j.1460-2075.1993.tb05994.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Polach K.J., Widom J. Mechanism of Protein Access to Specific DNA Sequences in Chromatin: A Dynamic Equilibrium Model for Gene Regulation. J. Mol. Biol. 1995;254:130–149. doi: 10.1006/jmbi.1995.0606. [DOI] [PubMed] [Google Scholar]
  • 144.Spadafora C., Oudet P., Chambon P. Rearrangement of Chromatin Structure Induced by Increasing Ionic Strength and Temperature. Eur. J. Biochem. 1979;100:225–235. doi: 10.1111/j.1432-1033.1979.tb02053.x. [DOI] [PubMed] [Google Scholar]
  • 145.Pennings S., Meersseman G., Bradbury E.M. Mobility of Positioned Nucleosomes on 5 S rDNA. J. Mol. Biol. 1991;220:101–110. doi: 10.1016/0022-2836(91)90384-i. [DOI] [PubMed] [Google Scholar]
  • 146.Meersseman G., Pennings S., Bradbury E.M. Mobile Nucleosomes — A General Behavior. EMBO J. 1992;11:2951–2959. doi: 10.1002/j.1460-2075.1992.tb05365.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Ura K., Hayes J.J., Wolffe A.P. A Positive Role for Nucleosome Mobility in the Transcriptional Activity of Chromatin Templates: Restriction by Linker Histones. EMBO J. 1995;14:3752–3765. doi: 10.1002/j.1460-2075.1995.tb00045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Hamiche A., Sandaltzopoulos R., Gdula D.A., Wu C. ATP-Dependent Histone Octamer Sliding Mediated by the Chromatin Remodeling Complex NURF. Cell. 1999;97:833–842. doi: 10.1016/s0092-8674(00)80796-5. [DOI] [PubMed] [Google Scholar]
  • 149.Langst G., Bonte E.J., Corona D.F., Becker P.B. Nucleosome Movement by CHRAC and ISWI without Disruption or Trans-Displacement of the Histone Octamer. Cell. 1999;97:843–852. doi: 10.1016/s0092-8674(00)80797-7. [DOI] [PubMed] [Google Scholar]
  • 150.Whitehouse I., Flaus A., Cairns B.R., White M., Workman J.L., Owen-Hughes T. Nucleosome Mobilization Catalysed by the Yeast SWI/SNF Complex. Nature. 1999;400:784–787. doi: 10.1038/23506. [DOI] [PubMed] [Google Scholar]
  • 151.Hirano T., Mitchison T.J. A Heterodimeric Coiled-Coil Protein Required for Mitotic Chromosome Condensation in vitro. Cell. 1994;79:449–458. doi: 10.1016/0092-8674(94)90254-2. [DOI] [PubMed] [Google Scholar]
  • 152.Kimura K., Hirano T. ATP-Dependent Positive Supercoiling of DNA by 13S Condensin: A Biochemical Implication for Chromosome Condensation. Cell. 1997;90:625–634. doi: 10.1016/s0092-8674(00)80524-3. [DOI] [PubMed] [Google Scholar]
  • 153.Kimura K., Rybenkov V.V., Crisona N.J., Hirano T., Cozzarelli N.R. 13S Condensin Actively Reconfigures DNA by Introducing Global Positive Writhe: Implications for Chromosome Condensation. Cell. 1999;98:239–248. doi: 10.1016/s0092-8674(00)81018-1. [DOI] [PubMed] [Google Scholar]
  • 154.Brukner I., Sanchez R., Suck D., Pongor S. Trinucleotide Models for DNA Bending Propensity: Comparison of Models Based on DNase I Digestion and Nucleosome Packaging Data. J. Biomol. Struct. Dynam. 1995;13:309–317. doi: 10.1080/07391102.1995.10508842. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES