Abstract
Renal cells isolated from vitamin D-deficient chicks had an increased Na+-dependent phosphate uptake when preincubated with 1,25-dihydroxycholecalciferol [1,25-(OH)2D3]. Phosphate uptake in the absence of Na+ and methyl alpha-glucoside uptake dependent on Na+ were not affected. Phosphate uptake was stimulated 15% by 0.010 pM 1,25-(OH)2D3. Maximal enhancement of 30% was obtained with 100 pM. The uptake when fully stimulated by preincubation in vitro approximated the uptake of cells isolated from chicks that were previously repleted with 1,25-(OH)2D3 in vivo. Cells from repleted chicks were not stimulated additionally when preincubated with 1,25-(OH)2D3 in vitro. The increase in phosphate uptake could be measured after a 1-hr preincubation period; full response required at least 2 hr. Phosphate uptake induced by 1,25-(OH)2D3 was blocked by cycloheximide and actinomycin D. Enhancement of phosphate uptake was relatively specific for the 1,25-(OH)2D3 analog of vitamin D3. The potency order was 1,25-(OH)2D3 greater than 25-(OH)D3 = 1-(OH)D3 greater than 24,25-(OH)2D3 greater than D3. Kinetically, 1,25-(OH)2D3 increased the Vmax of the phosphate uptake system; the affinity for phosphate was unaffected. 3H-Labeled 1,25-(OH)2D3 was taken up by the isolated renal cells. It was estimated that the stimulation of phosphate uptake might be initiated by very few molecules of 1,25-(OH)2D3 per cell. It is proposed that 1,25-(OH)2D3 contributes importantly to the mechanisms by which phosphate transport is regulated in the kidney.
Full text
PDF![3532](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a16/346455/b6d7a474af36/pnas00450-0146.png)
![3533](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a16/346455/71d193de4fce/pnas00450-0147.png)
![3534](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a16/346455/59b4c9cef4f9/pnas00450-0148.png)
![3535](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a16/346455/d46f14bf84b7/pnas00450-0149.png)
![3536](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a16/346455/7f8662d19744/pnas00450-0150.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baumann K., de Rouffignac C., Roinel N., Rumrich G., Ullrich K. J. Renal phosphate transport: inhomogeneity of local proximal transport rates and sodium dependence. Pflugers Arch. 1975;356(4):287–298. doi: 10.1007/BF00580003. [DOI] [PubMed] [Google Scholar]
- Birge S. J., Avioli R. C. Intestinal phosphate transport and alkaline phosphatase activity in the chick. Am J Physiol. 1981 Apr;240(4):E384–E390. doi: 10.1152/ajpendo.1981.240.4.E384. [DOI] [PubMed] [Google Scholar]
- Birge S. J., Miller R. The role of phosphate in the action of vitamin D on the intestine. J Clin Invest. 1977 Nov;60(5):980–988. doi: 10.1172/JCI108878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonjour J. P., Preston C., Fleisch H. Effect of 1,25-dihydroxyvitamin D3 on the renal handling of Pi in thyroparathyroidectomized rats. J Clin Invest. 1977 Dec;60(6):1419–1428. doi: 10.1172/JCI108903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen T. C., Castillo L., Korycka-Dahl M., DeLuca H. F. Role of vitamin D metabolites in phosphate transport of rat intestine. J Nutr. 1974 Aug;104(8):1056–1060. doi: 10.1093/jn/104.8.1056. [DOI] [PubMed] [Google Scholar]
- Chen T. C., Deluca H. F. Stimulation of (3H)uridine incorporation into nuclear RNA of rat kidney by vitamin D metabolites. Arch Biochem Biophys. 1973 May;156(1):321–327. doi: 10.1016/0003-9861(73)90370-6. [DOI] [PubMed] [Google Scholar]
- Cheng L., Sacktor B. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. J Biol Chem. 1981 Feb 25;256(4):1556–1564. [PubMed] [Google Scholar]
- Christakos S., Norman A. W. Studies on the mode of action of calciferol. XVIII. Evidence for a specific high affinity binding protein for 1,25 dihydroxyvitamin D3 in chick kidney and pancreas. Biochem Biophys Res Commun. 1979 Jul 12;89(1):56–63. doi: 10.1016/0006-291x(79)90942-2. [DOI] [PubMed] [Google Scholar]
- DeLuca H. F. The vitamin D system in the regulation of calcium and phosphorus metabolism. Nutr Rev. 1979 Jun;37(6):161–193. doi: 10.1111/j.1753-4887.1979.tb06660.x. [DOI] [PubMed] [Google Scholar]
- Dennis V. W., Brazy P. C. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney. J Clin Invest. 1978 Aug;62(2):387–397. doi: 10.1172/JCI109140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franceschi R. T., Simpson R. U., DeLuca H. F. Binding proteins for vitamin D metabolites: serum carriers and intracellular receptors. Arch Biochem Biophys. 1981 Aug;210(1):1–13. doi: 10.1016/0003-9861(81)90157-0. [DOI] [PubMed] [Google Scholar]
- Fuchs R., Peterlik M. Vitamin D-induced phosphate transport in intestinal brush border membrane vesicles. Biochem Biophys Res Commun. 1980 Mar 13;93(1):87–92. doi: 10.1016/s0006-291x(80)80249-x. [DOI] [PubMed] [Google Scholar]
- HARRISON H. E., HARRISON H. C. Transfer of Ca45 across intestinal wall in vitro in relation to action of vitamin D and cortisol. Am J Physiol. 1960 Aug;199:265–271. doi: 10.1152/ajplegacy.1960.199.2.265. [DOI] [PubMed] [Google Scholar]
- Hoffmann N., Thees M., Kinne R. Phosphate transport by isolated renal brush border vesicles. Pflugers Arch. 1976 Mar 30;362(2):147–156. doi: 10.1007/BF00583641. [DOI] [PubMed] [Google Scholar]
- Kowarski S., Schachter D. Effects of vitamin D on phosphate transport and incorporation into mucosal constituents of rat intestinal mucosa. J Biol Chem. 1969 Jan 10;244(1):211–217. [PubMed] [Google Scholar]
- Matsumoto T., Fontaine O., Rasmussen H. Effect of 1,25-dihydroxyvitamin D-3 on phosphate uptake into chick intestinal brush border membrane vesicles. Biochim Biophys Acta. 1980 Jun 20;599(1):13–23. doi: 10.1016/0005-2736(80)90052-8. [DOI] [PubMed] [Google Scholar]
- Peterlik M., Wasserman R. H. Effect of vitamin D on transepithelial phosphate transport in chick intestine. Am J Physiol. 1978 Apr;234(4):E379–E388. doi: 10.1152/ajpendo.1978.234.4.E379. [DOI] [PubMed] [Google Scholar]
- Popovtzer M. M., Robinette J. B., DeLuca H. F., Holick M. F. The acute effect of 25-hydroxycholecalciferol on renal handling of phosphorus. Evidence for a parathyroid hormone-dependent mechanism. J Clin Invest. 1974 Mar;53(3):913–921. doi: 10.1172/JCI107632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puschett J. B., Fernandez P. C., Boyle I. T., Gray R. W., Omdahl J. L., DeLuca H. F. The acute renal tubular effects of 1,25-dihydroxycholecalciferol. Proc Soc Exp Biol Med. 1972 Oct;141(1):379–384. doi: 10.3181/00379727-141-36781. [DOI] [PubMed] [Google Scholar]
- Simpson R. U., Franceschi R. T., DeLuca H. F. Characterization of a specific, high affinity binding macromolecule for 1 alpha, 25-dihydroxyvitamin D3 in cultured chick kidney cells. J Biol Chem. 1980 Nov 10;255(21):10160–10166. [PubMed] [Google Scholar]
- Steele T. H., Engle J. E., Tanaka Y., Lorenc R. S., Dudgeon K. L., DeLuca H. F. Phosphatemic action of 1,25-dihydroxyvitamin D3. Am J Physiol. 1975 Aug;229(2):489–495. doi: 10.1152/ajplegacy.1975.229.2.489. [DOI] [PubMed] [Google Scholar]
- Stoll R., Kinne R., Murer H., Fleisch H., Bonjour J. P. Phosphate transport by rat renal brush border membrane vesicles: influence of dietary phosphate, thyroparathyroidectomy, and 1,25-dihydroxyvitamin D3. Pflugers Arch. 1979 May 15;380(1):47–52. doi: 10.1007/BF00582611. [DOI] [PubMed] [Google Scholar]
- Wasserman R. H. Intestinal absorption of calcium and phosphorus. Fed Proc. 1981 Jan;40(1):68–72. [PubMed] [Google Scholar]