Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Oct;50(4):499–502. doi: 10.1104/pp.50.4.499

Auxin Activity of 3-Methyleneoxindole in Wheat

P S Basu a, V Tuli a
PMCID: PMC366177  PMID: 16658204

Abstract

A product of the enzymatic oxidation of indole-3-acetic acid, 3-methyleneoxindole, is at least 50-fold more effective than indole-3-acetic acid in stimulating the growth of wheat (Triticum vulgare, red variety) coleoptiles. Ethylenediaminetetra-acetic acid can antagonize the growth-stimulating properties of the parent compound, indole-3-acetic acid, presumably by chelating Mn2+, which is required for the enzymatic oxidation of indole-3-acetic acid. The growth stimulating effect of 3-methyleneoxindole, a product of the blocked reaction, on the other hand, is still evident in the presence of ethylenedia-minetetraacetic acid. In the presence of 2-mercaptoethanol, indole-3-acetic acid fails to stimulate the elongation of wheat coleoptiles. The property of binding to sulfhydryl compounds including 2-mercaptoethanol is unique to 3-methyleneoxindole among indole-3-acetic acid and its oxidation products. These findings suggest that 3-methyleneoxindole is an obligatory intermediate in indole-3-acetic acid induced elongation of wheat coleoptiles.

Full text

PDF
501

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FUKUYAMA T. T., MOYED H. S. INHIBITION OF CELL GROWTH BY PHOTOOXIDATION PRODUCTS OF INDOLE-3-ACETIC ACID. J Biol Chem. 1964 Jul;239:2392–2397. [PubMed] [Google Scholar]
  2. HINMAN R. L., BAUMAN C., LANG J. The conversion of indole-3-acetic acid to 3-methyleneoxindole in the presence of peroxidase. Biochem Biophys Res Commun. 1961 Jul 26;5:250–254. doi: 10.1016/0006-291x(61)90156-5. [DOI] [PubMed] [Google Scholar]
  3. STILL C. C., FUKUYAMA T. T., MOYED H. S. INHIBITORY OXIDATION PRODUCTS OF INDOLE-3-ACETIC ACID. MECHANISM OF ACTION AND ROUTE OF DETOXIFICATION. J Biol Chem. 1965 Jun;240:2612–2618. [PubMed] [Google Scholar]
  4. Tuli V., Moyed H. S. Inhibitory oxidation products of indole-3-acetic Acid: 3-hydroxymethyloxindole and 3-methyleneoxindole as plant metabolites. Plant Physiol. 1967 Mar;42(3):425–430. doi: 10.1104/pp.42.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Tuli V., Moyed H. S. The role of 3-methyleneoxindole in auxin action. J Biol Chem. 1969 Sep 25;244(18):4916–4920. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES