Abstract
A product of the enzymatic oxidation of indole-3-acetic acid, 3-methyleneoxindole, is at least 50-fold more effective than indole-3-acetic acid in stimulating the growth of wheat (Triticum vulgare, red variety) coleoptiles. Ethylenediaminetetra-acetic acid can antagonize the growth-stimulating properties of the parent compound, indole-3-acetic acid, presumably by chelating Mn2+, which is required for the enzymatic oxidation of indole-3-acetic acid. The growth stimulating effect of 3-methyleneoxindole, a product of the blocked reaction, on the other hand, is still evident in the presence of ethylenedia-minetetraacetic acid. In the presence of 2-mercaptoethanol, indole-3-acetic acid fails to stimulate the elongation of wheat coleoptiles. The property of binding to sulfhydryl compounds including 2-mercaptoethanol is unique to 3-methyleneoxindole among indole-3-acetic acid and its oxidation products. These findings suggest that 3-methyleneoxindole is an obligatory intermediate in indole-3-acetic acid induced elongation of wheat coleoptiles.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- FUKUYAMA T. T., MOYED H. S. INHIBITION OF CELL GROWTH BY PHOTOOXIDATION PRODUCTS OF INDOLE-3-ACETIC ACID. J Biol Chem. 1964 Jul;239:2392–2397. [PubMed] [Google Scholar]
- HINMAN R. L., BAUMAN C., LANG J. The conversion of indole-3-acetic acid to 3-methyleneoxindole in the presence of peroxidase. Biochem Biophys Res Commun. 1961 Jul 26;5:250–254. doi: 10.1016/0006-291x(61)90156-5. [DOI] [PubMed] [Google Scholar]
- STILL C. C., FUKUYAMA T. T., MOYED H. S. INHIBITORY OXIDATION PRODUCTS OF INDOLE-3-ACETIC ACID. MECHANISM OF ACTION AND ROUTE OF DETOXIFICATION. J Biol Chem. 1965 Jun;240:2612–2618. [PubMed] [Google Scholar]
- Tuli V., Moyed H. S. Inhibitory oxidation products of indole-3-acetic Acid: 3-hydroxymethyloxindole and 3-methyleneoxindole as plant metabolites. Plant Physiol. 1967 Mar;42(3):425–430. doi: 10.1104/pp.42.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuli V., Moyed H. S. The role of 3-methyleneoxindole in auxin action. J Biol Chem. 1969 Sep 25;244(18):4916–4920. [PubMed] [Google Scholar]