Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 Feb;67(2):458–466. doi: 10.1172/JCI110054

Control of the Simian Fetal Hemoglobin Switch at the Progenitor Cell Level

Blanche P Alter 1,2,3,4,5,6, Benjamin T Jackson 1,2,3,4,5,6, Jeffrey M Lipton 1,2,3,4,5,6, George J Piasecki 1,2,3,4,5,6, Pamela L Jackson 1,2,3,4,5,6, Michele Kudisch 1,2,3,4,5,6, David G Nathan 1,2,3,4,5,6
PMCID: PMC370587  PMID: 6161945

Abstract

This investigation was designed to define the cellular level at which the gamma to beta globin switch is established in the developing simian fetus in order to determine whether the switch is controlled by environmental influences within differentiating erythroid precursors or predetermined by the genetic program of erythroid progenitors. Samples of marrow and liver were obtained from rhesus fetuses throughout the switch period, and marrow was obtained from adult rhesus monkeys. Globin chain synthesis was then measured in differentiated erythroblasts and in erythroid progenitor-derived colonies grown in semisolid media. The relative rates of synthesis of gamma and beta chains were determined by the uptake of [3H]leucine into the respective chains separated by Triton gel electrophoresis and in some cases by urea carboxymethyl cellulose chromatography. Four periods of the switch were defined during fetal development. In the preswitch period both erythroblasts and progenitor-derived colonies produced <5% beta globin. In the early switch erythroblasts produced 5-15% beta globin, while progenitor-derived colonies produced 10-35% beta globin. In mid-switch erythroblasts synthesized 50% beta globin, whereas progenitor-derived colonies produced only 15-35% beta. At the completion of the switch erythroblasts produced 100% beta globin, while progenitor-derived colonies produced as little as 40% beta chains. We conclude that the program of globin synthesis that characterizes the fetal switch is established at the level of erythroid progenitors. Fetal erythroid burst-forming units (BFU-E) dominate the marrow prior to the switch. The early switch period is heralded by the appearances of adult erythroid burst-forming units programmed to express increasing beta chain synthesis in colonies. By mid-switch a second class of adult erythroid progenitors capable of giving rise to fetal and adult hemoglobin synthesis in in vitro colonies becomes apparent. These shifting populations of erythroid progenitors with unique globin synthesis programs give rise to the erythroblasts that create the sigmoid pattern of the fetal to adult hemoglobin switch in the developing simian fetus.

Full text

PDF
459

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN D. W., JANDL J. H. Factors influencing relative rates of synthesis of adult and fetal hemoglobin in vitro. J Clin Invest. 1960 Jul;39:1107–1113. doi: 10.1172/JCI104125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alter B. P. Beta-thalassaemia trait: imprecision of diagnosis at birth. Br J Haematol. 1978 Mar;38(3):323–327. doi: 10.1111/j.1365-2141.1978.tb01050.x. [DOI] [PubMed] [Google Scholar]
  3. Alter B. P., Goff S. C., Efremov G. D., Gravely M. E., Huisman T. H. Globin chain electrophoresis: a new approach to the determination of the G gamma/A gamma ratio in fetal haemoglobin and to studies of globin synthesis. Br J Haematol. 1980 Apr;44(4):527–534. doi: 10.1111/j.1365-2141.1980.tb08706.x. [DOI] [PubMed] [Google Scholar]
  4. Alter B. P., Modell C. B., Fairweather D., Hobbins J. C., Mahoney M. J., Frigoletto F. D., Sherman A. S., Nathan D. G. Prenatal diagnosis of hemoglobinopathies. A review of 15 cases. N Engl J Med. 1976 Dec 23;295(26):1437–1443. doi: 10.1056/NEJM197612232952601. [DOI] [PubMed] [Google Scholar]
  5. Barker J. E. Hemoglobin switching in sheep: characteristics of BFU-E-derived colonies from fetal liver. Blood. 1980 Sep;56(3):495–500. [PubMed] [Google Scholar]
  6. Barker J. E., Pierce J. E., Kefauver B. C., Nienhuis A. W. Hemoglobin switching in sheep and goats: induction of hemoglobin C synthesis in cultures of sheep fetal erythroid cells. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5078–5082. doi: 10.1073/pnas.74.11.5078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beuzard Y., Vainchenker W., Testa U., Dubart A., Monplaisir N., Breton-Gorius J., Rosa J. Fetal to adult hemoglobin switch in cultures of early erythroid precursors from human fetuses and neonates. Am J Hematol. 1979;7(3):207–218. doi: 10.1002/ajh.2830070304. [DOI] [PubMed] [Google Scholar]
  8. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  9. Cividalli G., Nathan D. G., Kan Y. W., Santamarina B., Frigoletto F. Relation of beta to gamma synthesis during the first trimester: an approach to prenatal diagnosis of thalassemia. Pediatr Res. 1974 May;8(5):553–560. doi: 10.1203/00006450-197405000-00004. [DOI] [PubMed] [Google Scholar]
  10. Clarke B. J., Housman D. Characterization of an erythroid precursor cell of high proliferative capacity in normal human peripheral blood. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1105–1109. doi: 10.1073/pnas.74.3.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clarke B. J., Nathan D. G., Alter B. P., Forget B. G., Hillman D. G., Housman D. Hemoglobin synthesis in human BFU-E and CFU-E-derived erythroid colonies. Blood. 1979 Oct;54(4):805–817. [PubMed] [Google Scholar]
  12. Comi P., Giglioni B., Ottolenghi S., Gianni A. M., Polli E., Barba P., Covelli A., Migliaccio G., Condorelli M., Peschle C. Globin chain synthesis in single erythroid bursts from cord blood: studies on gamma leads to beta and G gamma leads to A gamma switches. Proc Natl Acad Sci U S A. 1980 Jan;77(1):362–365. doi: 10.1073/pnas.77.1.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Darbre P. D., Adamson J. W., Wood W. G., Weatherall D. J., Robinson J. S. Patterns of globin chain synthesis in erythroid colonies grown from sheep marrow of different developmental stages. Br J Haematol. 1979 Apr;41(4):459–475. doi: 10.1111/j.1365-2141.1979.tb05884.x. [DOI] [PubMed] [Google Scholar]
  14. DeSimone J., Biel S. I., Heller P. Stimulation of fetal hemoglobin synthesis in baboons by hemolysis and hypoxia. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2937–2940. doi: 10.1073/pnas.75.6.2937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DeSimone J., Heller P., Adams J. G. Hemopoietic stress and fetal hemoglobin synthesis: comparative studies in vivo and in vitro. Blood. 1979 Nov;54(5):1176–1181. [PubMed] [Google Scholar]
  16. Dover G. J., Boyer S. H. Quantitation of hemoglobins within individual red cells: asynchronous biosynthesis of fetal and adult hemoglobin during erythroid maturation in normal subjects. Blood. 1980 Dec;56(6):1082–1091. [PubMed] [Google Scholar]
  17. Dover G. J., Boyer S. H., Zinkham W. H. Production of erythrocytes that contain fetal hemoglobin in anemia. Transient in vivo changes. J Clin Invest. 1979 Feb;63(2):173–176. doi: 10.1172/JCI109286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hassan M. W., Ibrahim A., Rieder R. F., Cederqvist L. L. Synthesis of HbA and HbF in erythroid colonies cultured from human fetal liver and umbilical cord blood. Blood. 1979 Nov;54(5):1140–1151. [PubMed] [Google Scholar]
  19. Huisman T. H., Efremov G. D., Reese A. L., Howard J. S., Gravely M. E., Harris H. F., Wilson J. B. The synthesis of fetal hemoglobin types in red blood cells and in BFU-E derived colonies from peripheral blood of patients with sickle cell anemia, beta+ - and delta beta-thalassemia, various forms of hereditary persistence of fetal hemoglobin, normal adults and newborn. Hemoglobin. 1979;3(4):223–252. doi: 10.3109/03630267908996900. [DOI] [PubMed] [Google Scholar]
  20. Huisman T. H., Schroeder W. A., Keeling M. E., Gengozian N., Miller A., Brodie A. R., Shelton J. R., Shelton J. B., Apell G. Search for nonallelic structural genes for gamma-chains of fetal hemoglobin in some primates. Biochem Genet. 1973 Nov;10(3):309–318. doi: 10.1007/BF00485708. [DOI] [PubMed] [Google Scholar]
  21. KLEIHAUER E., BRAUN H., BETKE K. Demonstration von fetalem Hämoglobin in den Erythrocyten eines Blutausstrichs. Klin Wochenschr. 1957 Jun 15;35(12):637–638. doi: 10.1007/BF01481043. [DOI] [PubMed] [Google Scholar]
  22. Kidoguchi K., Ogawa M., Karam J. D., Martin A. G. Augmentation of fetal hemoglobin (HbF) synthesis in culture by human erythropoietic precursors in the marrow and peripheral blood: studies in sickle cell anemia and nonhemoglobinopathic adults. Blood. 1978 Dec;52(6):1115–1124. [PubMed] [Google Scholar]
  23. Kidoguchi K., Ogawa M., Karam J. D., Wilson J. M., Fitch M. S. Synthesis of fetal and adult hemoglobins in culture by human umbilical cord blood erythropoietic precursors. Hemoglobin. 1978;2(6):503–512. doi: 10.3109/03630267809005352. [DOI] [PubMed] [Google Scholar]
  24. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  25. McLeod D. L., Shreeve M. M., Axelrad A. A. Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU-E. Blood. 1974 Oct;44(4):517–534. [PubMed] [Google Scholar]
  26. Nathan D. G., Clarke B. J., Hillman D. G., Alter B. P., Housman D. E. Erythroid precursors in congenital hypoplastic (Diamond-Blackfan) anemia. J Clin Invest. 1978 Feb;61(2):489–498. doi: 10.1172/JCI108960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Papayannopoulou T., Brice M., Stamatoyannopoulos G. Hemoglobin F synthesis in vitro: evidence for control at the level of primitive erythroid stem cells. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2923–2927. doi: 10.1073/pnas.74.7.2923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Papayannopoulou T., Kalmantis T., Stamatoyannopoulos G. Cellular regulation of hemoglobin switching: evidence for inverse relationship between fetal hemoglobin synthesis and degree of maturity of human erythroid cells. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6420–6424. doi: 10.1073/pnas.76.12.6420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Papayannopoulou T., Nakamoto B., Buckley J., Kurachi S., Nute P. E., Stamatoyannopoulos G. Erythroid progenitors circulating in the blood of adult individuals produce fetal hemoglobin in culture. Science. 1978 Mar 24;199(4335):1349–1350. doi: 10.1126/science.628844. [DOI] [PubMed] [Google Scholar]
  30. Papayannopoulou T., Nute P. E., Kurachi S., Stamatoyannopoulos G. Consistent activation of fetal hemoglobin synthesis in cultured adult bone marrow cells. Blood. 1978 Apr;51(4):671–679. [PubMed] [Google Scholar]
  31. Papayannopoulou T., Vichinsky E., Stamatoyannopoulos G. Fetal Hb production during acute erythroid expansion. I. Observations in patients with transient erythroblastopenia and post-phlebotomy. Br J Haematol. 1980 Apr;44(4):535–546. doi: 10.1111/j.1365-2141.1980.tb08707.x. [DOI] [PubMed] [Google Scholar]
  32. Rovera G., Magarian C., Borun T. W. Resolution of hemoglobin subunits by electrophoresis in acid urea polyacrylamide gels containing Triton X-100. Anal Biochem. 1978 Apr;85(2):506–518. doi: 10.1016/0003-2697(78)90248-8. [DOI] [PubMed] [Google Scholar]
  33. Rowley P. T., Ohlsson-Wilhelm B., Farley B. A., Kosciolek B. Hemoglobin synthesis in cultures of hepatic erythroid cells from the human fetus. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1477–1481. doi: 10.1073/pnas.76.3.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. SINGER K., CHERNOFF A. I., SINGER L. Studies on abnormal hemoglobins. I. Their demonstration in sickle cell anemia and other hematologic disorders by means of alkali denaturation. Blood. 1951 May;6(5):413–428. [PubMed] [Google Scholar]
  35. Schroeder W. A., Huisman T. H., Shelton J. R., Shelton J. B., Kleihauer E. F., Dozy A. M., Robberson B. Evidence for multiple structural genes for the gamma chain of human fetal hemoglobin. Proc Natl Acad Sci U S A. 1968 Jun;60(2):537–544. doi: 10.1073/pnas.60.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schwartz A. L., Schwartz R., Schwartz H. C. Effect of hypoxia on erythroblasts from avian fetal liver: adenosine triphosphate levels and hemoglobin synthesis. Pediatr Res. 1976 Sep;10(9):796–801. doi: 10.1203/00006450-197609000-00007. [DOI] [PubMed] [Google Scholar]
  37. Stamatoyannopoulos G., Rosenblum B. B., Papayannopoulou T., Brice M., Nakamoto B., Shepard T. H. HbF and HbA production in erythroid cultures from human fetuses and neonates. Blood. 1979 Aug;54(2):440–450. [PubMed] [Google Scholar]
  38. THOMAS E. D., LOCHTE H. L., Jr, GREENOUGH W. B., 3rd, WALES M. In vitro synthesis of foetal and adult haemoglobin by foetal haematopoietic tissues. Nature. 1960 Feb 6;185:396–397. doi: 10.1038/185396a0. [DOI] [PubMed] [Google Scholar]
  39. Vainchenker W., Testa U., Hinard N., Beuzard Y., Dubart A., Tsapis A., Monplaisir N., Rouyer-Fessard P., Rosa J. Hemoglobin synthesis in 7-day and 14-day-old erythroid colonies from the bone marrow of normal individuals. Hemoglobin. 1980;4(1):53–67. doi: 10.3109/03630268009042373. [DOI] [PubMed] [Google Scholar]
  40. Wood W. G., Pearce K., Clegg J. B., Weatherall D. J., Robinson J. S., Thorburn G. D., Dawes G. S. Switch from foetal to adult haemoglobin synthesis in normal and hypophysectomised sheep. Nature. 1976 Dec 23;264(5588):799–801. doi: 10.1038/264799a0. [DOI] [PubMed] [Google Scholar]
  41. Wu N. C., Sikkema D. A., Altman N. H., Zucker R. M. Identification of hemoglobins within individual rhesus monkey (Macaca mulatta) erythrocytes. Lab Anim Sci. 1977 Dec;27(6):986–992. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES