Abstract
The role of the renin-angiotensin system in mediating the circulatory and metabolic responses to hypoxia was studied in three groups of conscious dogs that were infused continuously with normal saline, teprotide (10 μg/kg per min), and saralasin (1 μg/kg per min), respectively. Hypoxia was produced by switching from breathing room air to 5 or 8% oxygen-nitrogen mixture. Plasma renin activity increased from 2.3±0.4 to 4.9±0.8 ng/ml per h during 8% oxygen breathing, and from 2.8±0.4 to 8.4±1.8 ng/ml per h during 5% oxygen breathing. As expected, cardiac output, heart rate, mean aortic blood pressure, and left ventricular dP/dt and dP/dt/P increased during both 5 and 8% oxygen breathing in the saline-treated dogs; greater increases occurred during the more severe hypoxia. Teprotide and saralasin infusion diminished the hemodynamic responses to 5% oxygen breathing, but did not affect the responses to 8% oxygen breathing significantly. In addition, the increased blood flows to the myocardium, kidneys, adrenals, brain, intercostal muscle, and diaphragm that usually occur during 5% oxygen breathing were reduced by both agents. These agents also reduced the increases in plasma norepinephrine concentration during 5% oxygen breathing, but had no effects on tissue aerobic or anaerobic metabolism.
In dogs pretreated with propranolol and phentolamine, administration of teprotide (0.5 mg/kg) during 5% oxygen breathing reduced mean aortic blood pressure and total peripheral vascular resistance, and increased cardiac output and heart rate, but did not affect left ventricular dP/dt, dP/dt/P, and end-diastolic pressure. Simultaneously, renal and myocardial blood flows increased and myocardial oxygen extraction decreased, while myocardial oxygen consumption did not change significantly.
These results suggest that the renin-angiotensin system plays an important role in the hemodynamic responses to severe hypoxia. It appears that angiotensin not only exerts a direct vasoconstrictor action, especially upon the coronary and renal circulations, but also potentiates the cardiovascular effects of sympathetic stimulation that occur during severe hypoxia.
Full text
PDF![961](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034f/371854/4de3f2a0a5eb/jcinvest00671-0063.png)
![962](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034f/371854/fec83387290f/jcinvest00671-0064.png)
![963](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034f/371854/37531e8004ea/jcinvest00671-0065.png)
![964](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034f/371854/95f4254adfb9/jcinvest00671-0066.png)
![965](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034f/371854/6d0dc7ba0b3b/jcinvest00671-0067.png)
![966](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034f/371854/e68ca7a894e1/jcinvest00671-0068.png)
![967](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034f/371854/b18365405134/jcinvest00671-0069.png)
![968](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034f/371854/95897792bcea/jcinvest00671-0070.png)
![969](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034f/371854/1e861f6e9d9d/jcinvest00671-0071.png)
![970](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034f/371854/eb5843a5d05f/jcinvest00671-0072.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cain S. M. Relative rates of arterial lactate and oxygen-deficit accumulation in hypoxic dogs. Am J Physiol. 1973 May;224(5):1190–1194. doi: 10.1152/ajplegacy.1973.224.5.1190. [DOI] [PubMed] [Google Scholar]
- DEMOPOULOS H. B., HIGHMAN B., ALTLAND P. D., GERVING M. A., KALEY G. EFFECT OF HIGH ALTITUDE ON GRANULAR JUXTAGLOMERULAR CELLS AND THEIR POSSIBLE ROLE IN ERYTHROPOIETIN PRODUCTION. Am J Pathol. 1965 Mar;46:497–509. [PMC free article] [PubMed] [Google Scholar]
- Davidson D. M., Covell J. W., Malloch C. I., Ross J., Jr Factors influencing indices of left ventricle contractility in the conscious dog. Cardiovasc Res. 1974 May;8(3):299–312. doi: 10.1093/cvr/8.3.299. [DOI] [PubMed] [Google Scholar]
- Davis J. O., Freeman R. H. Mechanisms regulating renin release. Physiol Rev. 1976 Jan;56(1):1–56. doi: 10.1152/physrev.1976.56.1.1. [DOI] [PubMed] [Google Scholar]
- FRIEDLAND I. M., DIETRICH L. S. A rapid enzymic determination of L-lactic acid. Anal Biochem. 1961 Aug;2:390–392. doi: 10.1016/0003-2697(61)90014-8. [DOI] [PubMed] [Google Scholar]
- Fagard R., Amery A., Reybrouck T., Lijnen P., Moerman E., Bogaert M., De Schaepdryver A. Effects of angiotensin antagonism on hemodynamics, renin, and catecholamines during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1977 Sep;43(3):440–444. doi: 10.1152/jappl.1977.43.3.440. [DOI] [PubMed] [Google Scholar]
- Gould A. B., Goodman S. A. The effect of hypoxia on the renin-angiotensinogen system. Lab Invest. 1970 May;22(5):443–447. [PubMed] [Google Scholar]
- HUCKABEE W. E. Control of concentration gradients of pyruvate and lactate across cell membranes in blood. J Appl Physiol. 1956 Sep;9(2):163–170. doi: 10.1152/jappl.1956.9.2.163. [DOI] [PubMed] [Google Scholar]
- Henry D. P., Starman B. J., Johnson D. G., Williams R. H. A sensitive radioenzymatic assay for norepinephrine in tissues and plasma. Life Sci. 1975 Feb 1;16(3):375–384. doi: 10.1016/0024-3205(75)90258-1. [DOI] [PubMed] [Google Scholar]
- Liang C. S., Gavras H., Hood W. B., Jr Renin-angiotensin system inhibition in conscious sodium-depleted dogs. Effects on systemic and coronary hemodynamics. J Clin Invest. 1978 Apr;61(4):874–883. doi: 10.1172/JCI109013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang C. S. Metabolic control of circulation. Effects of iodoacetate and fluoroacetate. J Clin Invest. 1977 Jul;60(1):61–69. doi: 10.1172/JCI108769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molteni A., Zakheim R. M., Mullis K. B., Mattioli L. The effect of chronic alveolar hypoxia on lung and serum angiotensin I converting enzyme activity. Proc Soc Exp Biol Med. 1974 Oct;147(1):263–265. doi: 10.3181/00379727-147-38323. [DOI] [PubMed] [Google Scholar]
- OLIVER W. J., BRODY G. L. EFFECT OF PROLONGED HYPOXIA UPON GRANULARITY OF RENAL JUXTAGLOMERULAR CELLS. Circ Res. 1965 Jan;16:83–88. doi: 10.1161/01.res.16.1.83. [DOI] [PubMed] [Google Scholar]
- Ondetti M. A., Williams N. J., Sabo E. F., Pluscec J., Weaver E. R., Kocy O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry. 1971 Oct 26;10(22):4033–4039. doi: 10.1021/bi00798a004. [DOI] [PubMed] [Google Scholar]
- Pals D. T., Masucci F. D., Sipos F., Denning G. S., Jr A specific competitive antagonist of the vascular action of angiotensin. II. Circ Res. 1971 Dec;29(6):664–672. doi: 10.1161/01.res.29.6.664. [DOI] [PubMed] [Google Scholar]
- RAMSEY L. H. Analysis of gas in biological fluids by gas chromatography. Science. 1959 Apr 3;129(3353):900–901. doi: 10.1126/science.129.3353.900. [DOI] [PubMed] [Google Scholar]
- Robertson A. L., Jr, Smeby R. R., Bumpus F. M., Page I. H. Production of renin by human juxtaglomercular cells in vitro. Circ Res. 1966 Jun;18(1 Suppl 1):131–142. doi: 10.1161/01.res.18.s6.i-131. [DOI] [PubMed] [Google Scholar]
- Rudolph A. M., Heymann M. A. The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ Res. 1967 Aug;21(2):163–184. doi: 10.1161/01.res.21.2.163. [DOI] [PubMed] [Google Scholar]
- Sealey J. E., Gerten-Banes J., Laragh J. H. The renin system: Variations in man measured by radioimmunoassay or bioassay. Kidney Int. 1972 Apr;1(4):240–253. doi: 10.1038/ki.1972.34. [DOI] [PubMed] [Google Scholar]
- Tuffley R. E., Rubenstein D., Slater J. D., Williams E. S. Serum renin activity during exposure to hypoxia. J Endocrinol. 1970 Dec;48(4):497–510. doi: 10.1677/joe.0.0480497. [DOI] [PubMed] [Google Scholar]
- WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zakheim R. M., Molteni A., Mattioli L., Park M. Plasma angiotensin II levels in hypoxic and hypovolemic stress in unanesthetized rabbits. J Appl Physiol. 1976 Oct;41(4):462–465. doi: 10.1152/jappl.1976.41.4.462. [DOI] [PubMed] [Google Scholar]