Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 2013 Dec 17;170(8):1459–1581. doi: 10.1111/bph.12445

The Concise Guide to Pharmacology 2013/14: G Protein-Coupled Receptors

Stephen PH Alexander 1,*, Helen E Benson 2, Elena Faccenda 2, Adam J Pawson 2, Joanna L Sharman 2, Michael Spedding 3, John A Peters 4, Anthony J Harmar 2
PMCID: PMC3892287  PMID: 24517644

Abstract

The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.

G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets.

It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.

An introduction to G protein-coupled receptors

G protein-coupled receptors (GPCRs) are the largest class of membrane proteins in the human genome. The term “7TM receptor” is commonly used interchangeably with “GPCR”, although there are some receptors with seven transmembrane domains that do not signal through G proteins. GPCRs share a common architecture, each consisting of a single polypeptide with an extracellular N-terminus, an intracellular C-terminus and seven hydrophobic transmembrane domains (TM1-TM7) linked by three extracellular loops (ECL1-ECL3) and three intracellular loops (ICL1-ICL3). About 800 GPCRs have been identified in man, of which about half have sensory functions, mediating olfaction (∼400), taste (33), light perception (10) and pheromone signalling (5)(Mombaerts, 2004). The remaining ∼350 non-sensory GPCRs mediate intercellular signalling by ligands that range in size from small molecules to peptides to large proteins; they are the targets for the majority of drugs in clinical usage (Overington et al., 2006; Rask-Andersen et al., 2011), although only a minority of these receptors are exploited therapeutically. The first classification scheme to be proposed for GPCRs (Kolakowski, 1994) divided them, on the basis of sequence homology, into six classes. These classes and their prototype members were as follows: Class A (rhodopsin-like), Class B (secretin receptor family), Class C (metabotropic glutamate), Class D (fungal mating pheromone receptors), Class E (cyclic AMP receptors) and Class F (frizzled/smoothened). Of these, classes D and E are not found in vertebrates. An alternative classification scheme “GRAFS” (Schioth & Fredriksson, 2005) divides vertebrate GPCRs into five classes, overlapping with the A-F nomenclature, viz:

Glutamate family (class C), which includes metabotropic glutamate receptors, a calcium-sensing receptor and GABAB receptors, as well as three taste type 1 receptors (Page 1468) and a family of pheromone receptors (V2 receptors) that are abundant in rodents but absent in man (Mombaerts, 2004).

Rhodopsin family (class A), which includes receptors for a wide variety of small molecules, neurotransmitters, peptides and hormones, together with olfactory receptors, visual pigments, taste type 2 receptors (Page 1469) and five pheromone receptors (V1 receptors).

Adhesion family GPCRs are phylogenetically related to class B receptors, from which they differ by possessing large extracellular N-termini that are autoproteolytically cleaved from their 7TM domains at a conserved “GPCR proteolysis site” (GPS) which lies within a much larger (∼320 residue) “GPCR autoproteolysis-inducing” (GAIN) domain, an evolutionarily ancient motif also found in polycystic kidney disease 1 (PKD1)-like proteins, which has been suggested to be both required and sufficient for autoproteolysis (Promel et al., 2013).

Frizzled family consists of 10 Frizzled proteins (FZD(1-10)) and Smoothened (SMO). The FZDs are activated by secreted lipoglycoproteins of the WNT family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH).

Secretin family, encoded by 15 genes in humans. The ligands for receptors in this family are polypeptide hormones of 27-141 amino-acid residues; nine of the mammalian receptors respond to ligands that are structurally related to one another (glucagon, glucagon-like peptides (GLP-1, GLP-2), glucose-dependent insulinotropic polypeptide (GIP), secretin, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP) and growth-hormone-releasing hormone (GHRH)) (Harmar, 2001).

GPCR families

Family Class A (Rhodopsin) Class B (Secretin) Class C (Glutamate) Adhesion Frizzled
Receptors with known ligands 197a 15 12 0 11
Orphans 87 (54)a 8 (1)a 26 (6)a 0
Sensory (olfaction) 390b,c
Sensory (vision) 10d opsins
Sensory (taste) 30c taste 2 3c taste 1
Sensory (pheromone) 5c vomeronasal 1
Total 719 15 22 33 11
a

Numbers in brackets refer to orphan receptors for which an endogenous ligand has been proposed in at least one publication, see Davenport et al. (2013)

b

Olender et al. (2008);

c

Mombaerts (2004);

d

Terakita (2005).

Acknowledgments

We are extremely grateful to the long list of collaborators who assisted in the construction of the Concise Guide to PHARMACOLOGY 2013/14 and to the website www.guidetopharmacology.org, as well as to the Guides to Receptors and Channels. We are also extremely grateful for the financial contributions from the British Pharmacological Society, the International Union of Basic and Clinical Pharmacology and the Wellcome Trust (099156/Z/12/Z]), which support the website.

Conflict of interest

The authors state that there is no conflict of interest to disclose.

List of records presented

  1. 1462 Orphan GPCRs

  2. 1471 5-Hydroxytryptamine receptors

  3. 1474 Acetylcholine receptors (muscarinic)

  4. 1476 Adenosine receptors

  5. 1478 Adhesion Class GPCRs

  6. 1480 Adrenoceptors

  7. 1484 Angiotensin receptors

  8. 1485 Apelin receptor

  9. 1486 Bile acid receptor

  10. 1487 Bombesin receptors

  11. 1488 Bradykinin receptors

  12. 1489 Calcitonin receptors

  13. 1491 Calcium-sensing receptors

  14. 1492 Cannabinoid receptors

  15. 1494 Chemerin receptor

  16. 1495 Chemokine receptors

  17. 1500 Cholecystokinin receptors

  18. 1501 Complement peptide receptors

  19. 1502 Corticotropin-releasing factor receptors

  20. 1503 Dopamine receptors

  21. 1505 Endothelin receptors

  22. 1506 Estrogen (G protein-coupled) receptor

  23. 1507 Formylpeptide receptors

  24. 1508 Free fatty acid receptors

  25. 1510 Frizzled Class GPCRs

  26. 1511 GABAB receptors

  27. 1513 Galanin receptors

  28. 1514 Ghrelin receptor

  29. 1515 Glucagon receptor family

  30. 1517 Glycoprotein hormone receptors

  31. 1518 Gonadotrophin-releasing hormone receptors

  32. 1519 GPR18, GPR55 and GPR119

  33. 1520 Histamine receptors

  34. 1521 Hydroxycarboxylic acid receptors

  35. 1522 Kisspeptin receptors

  36. 1523 Leukotriene, lipoxin and oxoeicosanoid receptors

  37. 1525 Lysophospholipid (LPA) receptors

  38. 1526 Lysophospholipid (S1P) receptors

  39. 1527 Melanin-concentrating hormone receptors

  40. 1528 Melanocortin receptors

  41. 1529 Melatonin receptors

  42. 1530 Metabotropic glutamate receptors

  43. 1532 Motilin receptor

  44. 1533 Neuromedin U receptors

  45. 1534 Neuropeptide FF/neuropeptide AF receptors

  46. 1535 Neuropeptide S receptor

  47. 1536 Neuropeptide W/neuropeptide B receptors

  48. 1537 Neuropeptide Y receptors

  49. 1538 Neurotensin receptors

  50. 1539 Opioid receptors

  51. 1541 Orexin receptors

  52. 1542 Oxoglutarate receptor

  53. 1543 P2Y receptors

  54. 1545 Parathyroid hormone receptors

  55. 1546 Peptide P518 receptor

  56. 1547 Platelet-activating factor receptor

  57. 1548 Prokineticin receptors

  58. 1549 Prolactin-releasing peptide receptor

  59. 1550 Prostanoid receptors

  60. 1552 Proteinase-activated receptors

  61. 1553 Relaxin family peptide receptors

  62. 1555 Somatostatin receptors

  63. 1556 Succinate receptor

  64. 1557 Tachykinin receptors

  65. 1558 Thyrotropin-releasing hormone receptors

  66. 1559 Trace amine receptor

  67. 1560 Urotensin receptor

  68. 1561 Vasopressin and oxytocin receptors

  69. 1562 VIP and PACAP receptors

Orphan GPCRs

Class A Orphans

Overview

Table 1 lists a number of putative GPCRs identified by IUPHAR 24, for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.

Table 1.

Class A orphan GPCRs with putative endogenous ligands

Nomenclature HGNC, UniProt Principal transduction Endogenous agonists (pKi) Radioligands (Kd) Selective agonists (pKi) Comment
GPR1 GPR1, P46091 chemerin (RARRES2, Q99969) (pKd 8.28) 2 Reported to act as a co-receptor for HIV 86.
GPR3 GPR3, P46089 Gs sphingosine 1-phosphate was reported to be an endogenous agonist 97, but this finding was not replicated in subsequent studies 106. Reported to activate adenylyl cyclase constitutively through Gs 21. Gene disruption results in premature ovarian aging 55, reduced β-amyloid deposition 96 and hypersensitivity to thermal pain 81 in mice.
GPR4 GPR4, P46093 Gs An initial report suggesting activation by lysophosphatidylcholine and sphingosylphosphorylcholine 111 has been retracted 112. GPR4, GPR65, GPR68 and GPR132 are now thought to function as protein-sensing receptors detecting acidic pH [17],[85]. Gene disruption is associated with increased perinatal mortality and impaired vascular proliferation 113.
GPR6 GPR6, P46095 Gs An initial report that sphingosine 1-phosphate (S1P) was a high-affinity ligand (EC50 value of 39nM) [36],[97] was not repeated by β-arrestin PathHunter[TM] assays [90],[106]. Reported to activate adenylyl cyclase constitutively through Gs and to be located intracellularly 75. Gpr6-deficient mice showed reduced striatal cyclic AMP production in vitro and selected alterations in instrumental conditioning in vitro. 62.
GPR12 GPR12, P47775 Reports that sphingosine 1-phosphate was a ligand of GPR12 [35],[97] have not been replicated in β-arrestin-based assays [90],[106]. Gene disruption results in dyslipidemia and obesity 6.
GPR15 GPR15, P49685 Reported to act as a co-receptor for HIV 19. In an infection-induced colitis model, Gpr15 knockout mice were more prone to tissue damage and inflammatory cytokine expression 47.
GPR17 GPR17, Q13304 LTC4 (pEC50 7.83 – 9.48) 16, LTD4 (pEC50 8.14 – 8.36) 16, UDP-glucose (pEC50 5.92 – 9.52) [5],[16], UDP-galactose (pEC50 5.96 – 8.92) [5],[16], UDP (pEC50 5.97 – 8.8) [5],[16] Reported to be a dual leukotriene and UDP receptor 16. Another group instead proposed that GPR17 functions as a negative regulator of the CysLT1 receptor response to leukotriene D4 (LTD4). For further discussion, see 17. Reported to antagonize CysLT1 receptor signalling in vivo and in vitro 65.
GPR20 GPR20, Q99678 Reported to inhibit adenylyl cyclase constitutively through Gi/o 30. GPR20 deficient mice exhibit hyperactivity characterised by increased total distance travelled in an open field test 8.
GPR22 GPR22, Q99680 Gi/o Gene disruption results in increased severity of functional decompensation following aortic banding 1. Identified as a susceptibility locus for osteoarthritis [23],[46],[98].
GPR26 GPR26, Q8NDV2 Gs Has been reported to activate adenylyl cyclase constitutively through Gs 40. Gpr26 knockout mice show increased levels of anxiety and depression-like behaviours 108.
GPR31 GPR31, O00270 12S-HETE (Selective) (pEC50 9.55 - Mouse) 27
GPR32 GPR32, O75388 Not yet established resolvin D1 (Selective) (pEC50 11.06) 51, LXA4 (Selective) (pEC50 9.7) 51 [3H]resolvin D1 (Agonist) (2x10-10 M) 51 resolvin D1 (more potently than LxA4) has been demonstrated to activate GPR32 in two publications [15],[51]. The pairing was not replicated in a recent study based on β-arrestin recruitment 90. GPR32 is a pseudogene in mice and rats.
GPR34 GPR34, Q9UPC5 Gi/Go lysophosphatidylserine (Selective) (pEC50 6.57 – 6.89) [48],[91] Lysophosphatidylserine has been reported to be a ligand of GPR34 in several publications, but the pairing was not replicated in a recent study based on β-arrestin recruitment 90. Fails to respond to a variety of lipid-derived agents 106. Gene disruption results in an enhanced immune response 59.
GPR35 GPR35, Q9HC97 2-oleoyl-LPA (pEC50 7.3 – 7.52) 73, kynurenic acid (pEC50 3.9 – 4.41) [90],[99] Several studies have shown that kynurenic acid is an agonist of GPR35 but it remains controversial whether the proposed endogenous ligand reaches sufficient tissue concentrations to activate the receptor 53. 2-oleoyl-LPA has also been proposed as an endogenous ligand 73 but these results were not replicated in in a recent β-arrestin assay 90. The phosphodiesterase inhibitor zaprinast 95 has become widely used as a surrogate agonist to investigate GPR35 pharmacology and signaliing 95. GPR35 is also activated by the pharmaceutical adjunct pamoic acid 110.
GPR37 GPR37, O15354 Gi/Go neuropeptide head activator (pEC50 7.96 – 8.48) 78 Reported to associate and regulate the dopamine transporter 68 and to be a substrate for parkin 66. Gene disruption results in altered striatal signalling 67.
GPR39 GPR39, O43194 Gq/G11 Zn2+ 33 Zn2+ has been reported to be a potent and efficacious agonist of human, mouse and rat GPR39 105. obestatin (GHRL, Q9UBU3), a fragment from the ghrelin precursor, was reported initially as an endogenous ligand, but subsequent studies failed to reproduce these findings. Has been reported to be down-regulated in adipose tissue in obesity-related diabetes 10. Gene disruption results in obesity and altered adipocyte metabolism 77.
GPR50 GPR50, Q13585 GPR50 is structurally related to MT1 and MT2 melatonin receptors, with which it heterodimerises constitutively and specifically 57. GPR50 knockout mice display abnormal thermoregulation and are much more likely than wild-type mice to enter fasting-induced torpor 3.
GPR61 GPR61, Q9BZJ8 Gs GPR61 deficient mice exhibit obesity associated with hyperphagia 70. Although no endogenous ligands have been identified, 5-(nonyloxy)tryptamine has been reported to be a low affinity inverse agonist 94.
GPR63 GPR63, Q9BZJ6 sphingosine 1-phosphate and dioleoylphosphatidic acid have been reported to be low affinity agonists for GPR63 72 but this finding was not replicated in a β-arrestin-based assay 106.
GPR65 GPR65, Q8IYL9 Gs GPR4, GPR65, GPR68 and GPR132 are now thought to function as proton-sensing receptors detecting acidic pH [17],[85]. Reported to activate adenylyl cyclase; gene disruption leads to reduced eosinophlia in models of allergic airway disease 50.
GPR68 GPR68, Q15743 Gpr68 was previously identified as a receptor for sphingosylphosphorylcholine (SPC) 103, but the original publication has been retracted 104. GPR4, GPR65, GPR68 and GPR132 are now thought to function as protein-sensing receptors detecting acidic pH [17],[85]. A family of 3,5-disubstituted isoxazoles were identified as agonists of GPR68 82.
GPR75 GPR75, O95800 Gq/G11 CCL5 (CCL5, P13501) was reported to be an agonist of GPR75 37, but the pairing could not be repeated in a recent β-arrestin assay 90.
GPR84 GPR84, Q9NQS5 Gi/Go decanoic acid (pEC50 5.0 – 5.4) [90],[100], undecanoic acid (pEC50 5.1) 100, lauric acid (pEC50 5.05) 100 Medium chain free fatty acids with carbon chain lengths of 9-14 activate GPR84 [92],[100]. A surrogate ligand for GPR84, 6-n-octylaminouracil has also been proposed 92.
GPR87 GPR87, Q9BY21 LPA (pEC50 7.44) [69],[93]
GPR88 GPR88, Q9GZN0 Gene disruption results in altered striatal signalling 63.
GPR132 GPR132, Q9UNW8 Gs GPR4, GPR65, GPR68 and GPR132 are now thought to function as protein-sensing receptors detecting acidic pH [17],[85]. Reported to respond to lysophosphatidylcholine 41, but later retracted 102.
GPR149 GPR149, Q86SP6 Gpr149 knockout mice displayed increased fertility and enhanced ovulation, with increased levels of FSH receptor and cyclin D2 mRNA levels 20.
GPR183 GPR183, P32249 7α,25-dihydroxycholesterol (Selective) (pEC50 8.1 – 9.85) [28],[60], 7α,27-dihydroxycholesterol (Selective) (pEC50 8.89) 60, 7β, 25-dihydroxycholesterol (Selective) (pEC50 8.68) 60, 7β, 27-dihydroxycholesterol (Selective) (pEC50 7.29) 60 Two independent publications have shown that 7α,25-dihydroxycholesterol is an agonist of GPR183 and have demonstrated by mass spectrometry that this oxysterol is present endogenously in tissues [28],[60]. Gpr183-deficient mice show reduction in the early antibody response to a T-dependent antigen. GPR183-deficient B cells fail to migrate to the outer follicle and instead stay in the follicle centre [44],[76].
LGR4 LGR4, Q9BXB1 R-spondin-2 (RSPO2, Q6UXX9) (Selective) (pEC50 12.52) 9, R-spondin-1 (RSPO1, Q2MKA7) (Selective) (pEC50 10.7) 9, R-spondin-3 (RSPO3, Q9BXY4) (Selective) (pEC50 10.7) 9, R-spondin-4 (RSPO4, Q2I0M5) (Selective) (pEC50 10.05) 9 R-spondin-2 (RSPO2, Q6UXX9) (Selective) (pEC50 12.52) 9, R-spondin-1 (RSPO1, Q2MKA7) (Selective) (pEC50 10.7) 9, R-spondin-3 (RSPO3, Q9BXY4) (Selective) (pEC50 10.7) 9, R-spondin-4 (RSPO4, Q2I0M5) (Selective) (pEC50 10.05) 9 LGR4 does not couple to heterotrimeric G proteins or to β-arrestin when stimulated by the R-spondins, indicating a unique mechanism of action. R-spondins bind to LGR4, which specifically associates with Frizzled and LRPs—proteins that are activated by the extracellular Wnt molecules and then trigger canonical Wnt signalling to increase gene expression [9],[18],[80]. Gene disruption leads to multiple developmental disorders [39],[64],[89],[101].
LGR5 LGR5, O75473 R-spondin-2 (RSPO2, Q6UXX9) (Selective) (pEC50 12.0) 9, R-spondin-1 (RSPO1, Q2MKA7) (Selective) (pEC50 11.1) 9, R-spondin-3 (RSPO3, Q9BXY4) (Selective) (pEC50 11.0) 9, R-spondin-4 (RSPO4, Q2I0M5) (Selective) (pEC50 9.4) 9 R-spondin-2 (RSPO2, Q6UXX9) (Selective) (pEC50 12.0) 9, R-spondin-1 (RSPO1, Q2MKA7) (Selective) (pEC50 11.1) 9, R-spondin-3 (RSPO3, Q9BXY4) (Selective) (pEC50 11.0) 9, R-spondin-4 (RSPO4, Q2I0M5) (Selective) (pEC50 9.4) 9 The four R-spondins can bind to LGR4, LGR5, and LGR6, which specifically associate with Frizzled and LRPs—proteins that are activated by extracellular Wnt molecules- and then trigger canonical Wnt signalling to increase gene expression [9],[18].
LGR6 LGR6, Q9HBX8 R-spondin-1 (RSPO1, Q2MKA7) (Selective) [9],[18], R-spondin-2 (RSPO2, Q6UXX9) (Selective) [9],[18], R-spondin-3 (RSPO3, Q9BXY4) (Selective) [9],[18], R-spondin-4 (RSPO4, Q2I0M5) (Selective) [9],[18]
MAS1 MAS1, P04201 Gq/G11 angiotensin-(1-7) (AGT, P01019) (Selective) 84
MRGPRD MRGPRD, Q8TDS7 Gi/Go β-alanine (pEC50 4.8) [87],[90] An endogenous peptide with a high degree of sequence similarity to angiotensin-(1-7) (AGT, P01019), alamandine, was shown to promote NO release in MrgD-transfected cells. The binding of alamandine to MRGPRD to was shown to be blocked by D-Pro7-angiotensin-(1–7), β-alanine and PD123319 54. Genetic ablation of MRGPRD+ neurons of adult mice decreased behavioural sensitivity to mechanical stimuli but not to thermal stimuli 11.
MRGPRX1 MRGPRX1, Q96LB2 Gq/G11 BAM8-22 (PENK, P01210) (Selective) (pEC50 5.3 – 7.8) [13],[56],[90] Reported to mediate the sensation of itch [61],[88]. Reports that BAM8-22 (PENK, P01210) was the most potent of a series of proenkephalin A–derived peptides as an agonist of MRGPRX1 in assays of calcium mobilisation and radioligand binding 56 were replicated in an independent study using a β-arrestin recruitment assay 90.
MRGPRX2 MRGPRX2, Q96LB1 PAMP-20 (ADM, P35318) (Selective) 42 PAMP-12 (human) (pEC50 7.24 – 7.68) 42, CST-14 {Sp: Mouse, Rat} (pEC50 6.9 – 7.6) [42],[79],[90] A diverse range of substances has been reported to be agonists of MRGPRX2, with cortistatin 14 the highest potency agonist in assays of calcium mobilisation 79, also confirmed in an independent study using a β-arrestin recruitment assay 90.
P2RY10 P2RY10, O00398 sphingosine 1-phosphate (Selective) (pEC50 7.3) 69, LPA (Selective) (pEC50 6.9) 69
TAAR2 TAAR2, Q9P1P5 Gs β-phenylethylamine > tryptamine 7 probable pseudogene in 10–15% of Asians due to a polymorphism (rs8192646) producing a premature stop codon at amino acid 168 17 see Page 139.

In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (see page 1519).

Table 2.

Class A Orphan GPCR with limited pharmacological or phenotypic profiles

Nomenclature HGNC, UniProt Principal transduction Comment
GPR19 GPR19, Q15760
GPR21 GPR21, Q99679 Gq/11 Gpr21 knockout mice were resistant to diet-induced obesity, exhibiting an increase in glucose tolerance and insulin sensitivity and a modest lean phenotype 74.
GPR25 GPR25, O00155
GPR27 GPR27, Q9NS67 Gq/G11 Knockdown of Gpr27 reduces endogenous mouse insulin promotor activity and glucose stimulated insulin secretion 52.
GPR33 GPR33, Q49SQ1 Gi/Go GPR33 is a pseudogene in most individuals, containing a premature stop codon within the coding sequence of the second intracellular loop 83.
GPR37L1 GPR37L1, O60883 Gi/Go
GPR45 GPR45, Q9Y5Y3
GPR52 GPR52, Q9Y2T5
GPR62 GPR62, Q9BZJ7
GPR78 GPR78, Q96P69 Gs GPR78 has been reported to be constitutively active, coupled to elevated cAMP production 40.
GPR82 GPR82, Q96P67 Mice with Gpr82 knockout have a lower body weight and body fat content associated with reduced food intake, decreased serum triglyceride levels, higher insulin sensitivity and glucose tolerance 22.
GPR83 GPR83, Q9NYM4 One isoform has been implicated in the induction of CD4(+)CD25(+) regulatory T cells (Tregs) during inflammatory immune responses 29.
GPR85 GPR85, P60893 Proposed to regulate of hippocampal adult neurogenesis and neurogenesis-dependent learning and memory 14.
GPR135 GPR135, Q8IZ08
GPR139 GPR139, Q6DWJ6 Gq/G11
GPR141 GPR141, Q7Z602
GPR142 GPR142, Q7Z601
GPR146 GPR146, Q96CH1 Yosten et al. demonstrated inhibition of proinsulin C-peptide (INS, P01308)-induced stimulation of cFos expression folllowing knockdown of GPR146 in KATOIII cells, suggesting proinsulin C-peptide as an endogenous ligand of the receptor 107.
GPR148 GPR148, Q8TDV2
GPR150 GPR150, Q8NGU9
GPR151 GPR151, Q8TDV0 GPR151 responded to galanin with an EC50 value of 2 μM, suggesting that the endogenous ligand shares structural features with galanin (GAL, P22466) 34.
GPR152 GPR152, Q8TDT2
GPR153 GPR153, Q6NV75
GPR160 GPR160, Q9UJ42
GPR162 GPR162, Q16538
GPR171 GPR171, O14626 GPR171 has been shown to be activated by endogenous peptide BigLEN. This receptor-peptide interaction is believed to be involved in regulating feeding and metabolism responses 26.
GPR173 GPR173, Q9NS66
GPR174 GPR174, Q9BXC1 Gs Reported to respond to lysophosphatidylserine (pEC50 7.1) 38.
GPR176 GPR176, Q14439
GPR182 GPR182, O15218 Rat GPR182 was first proposed as adrenomedullin receptor 43. However, it was later reported that rat and human GPR182 did not respond to adrenomedullin 45 and GPR182 is not currently considered to be a genuine adrenomedullin receptor 31.
MAS1L MAS1L, P35410
MRGPRX3 MRGPRX3, Q96LB0 Gq/G11
MRGPRX4 MRGPRX4, Q96LA9 Gq/G11
MRGPRE MRGPRE, Q86SM8
MRGPRF MRGPRF, Q96AM1 MRGPRF has been reported to respond to stimulation by angiotensin metabolites 25.
MRGPRG MRGPRG, Q86SM5
OPN3 OPN3, Q9H1Y3
OPN5 OPN5, Q6U736 Gi/Go Evidence indicates OPN5 triggers a UV-sensitive Gi-mediated signalling pathway in mammalian tissues 49.
P2RY8 P2RY8, Q86VZ1
Table 3.

Class C Orphans

Nomenclature HGNC, UniProt
GPR156 GPR156, Q8NFN8
GPR158 GPR158, Q5T848
GPR179 GPR179, Q6PRD1
GPRC5A GPRC5A, Q8NFJ5
GPRC5B GPRC5B, Q9NZH0
GPRC5C GPRC5C, Q9NQ84
GPRC5D GPRC5D, Q9NZD1

Taste 1 receptors

Overview

Whilst the taste of acid and salty foods appear to be sensed by regulation of ion channel activity, bitter, sweet and umami tastes are sensed by specialised GPCR. Two classes of taste GPCR have been identified, T1R and T2R, which are similar in sequence and structure to Class C and Class A GPCR, respectively. Activation of taste receptors appears to involve gustducin- (Gαt3) and Gα14-mediated signalling, although the precise mechanisms remain obscure. Gene disruption studies suggest the involvement of PLCβ2 109, TRPM5 109 and IP3 32 receptors in post-receptor signalling of taste receptors. Although predominantly associated with the oral cavity, taste receptors are also located elsewhere, including further down the gastrointestinal system, in the lungs and in the brain.

Sweet/Umami

T1R3 acts as an obligate partner in T1R1/T1R3 and T1R2/T1R3 heterodimers, which sense umami or sweet, respectively. T1R1/T1R3 heterodimers respond to L-glutamic acid and may be positively allosterically modulated by 5′-nucleoside monophosphates, such as 5'-GMP 58. T1R2/T1R3 heterodimers respond to sugars, such as sucrose, and artificial sweeteners, such as saccharin 71.

Nomenclature TAS1R1 TAS1R2 TAS1R3
HGNC, UniProt TAS1R1, Q7RTX1 TAS1R2, Q8TE23 TAS1R3, Q7RTX0
Principal transduction

Taste 2 receptors

Overview

Whilst the taste of acid and salty foods appear to be sensed by regulation of ion channel activity, bitter, sweet and umami tastes are sensed by specialised GPCR. Two classes of taste GPCR have been identified, T1R and T2R, which are similar in sequence and structure to Class C and Class A GPCR, respectively. Activation of taste receptors appears to involve gustducin- (Gαt3) and Gα14-mediated signalling, although the precise mechanisms remain obscure. Gene disruption studies suggest the involvement of PLCβ2 109, TRPM5 109 and IP3 32 receptors in post-receptor signalling of taste receptors. Although predominantly associated with the oral cavity, taste receptors are also located elsewhere, including further down the gastrointestinal system, in the lungs and in the brain.

Bitter

The composition and stoichiometry of bitter taste receptors is not yet established. Bitter receptors appear to separate into two groups, with very restricted ligand specificity or much broader responsiveness. For example, T2R5 responded to cycloheximide, but not 10 other bitter compounds 12, while T2R14 responded to at least eight different bitter tastants, including (-)-α-thujone and picrotoxinin 4.

Nomenclature HGNC, UniProt
TAS2R1 TAS2R1, Q9NYW7
TAS2R3 TAS2R3, Q9NYW6
TAS2R4 TAS2R4, Q9NYW5
TAS2R5 TAS2R5, Q9NYW4
TAS2R7 TAS2R7, Q9NYW3
TAS2R8 TAS2R8, Q9NYW2
TAS2R8 TAS2R8, Q9NYW2
TAS2R9 TAS2R9, Q9NYW1
TAS2R10 TAS2R10, Q9NYW0
TAS2R13 TAS2R13, Q9NYV9
TAS2R14 TAS2R14, Q9NYV8
TAS2R16 TAS2R16, Q9NYV7
TAS2R19 TAS2R19, P59542
TAS2R20 TAS2R20, P59543
TAS2R42 TAS2R42, Q7RTR8
TAS2R30 TAS2R30, P59541
TAS2R31 TAS2R31, P59538
TAS2R39 TAS2R39, P59534
TAS2R40 TAS2R40, P59535
TAS2R50 TAS2R50, P59544
TAS2R43 TAS2R43, P59537
TAS2R46 TAS2R46, P59540
TAS2R41 TAS2R41, P59536
TAS2R60 TAS2R60, P59551
TAS2R38 TAS2R38, P59533

Other 7TM proteins

Nomenclature HGNC, UniProt Comment
GPR157 GPR157, Q5UAW9 GPR157 has ambiguous sequence similarities to several different GPCR families (class A, class B and the slime mould cyclic AMP receptor). Because of its distant relationship to other GPCRs, it cannot be readily classified.

5-Hydroxytryptamine receptors

Overview

5-HT receptors [nomenclature as agreed by NC-IUPHAR Subcommittee on 5-HT receptors 158 and subsequently revised 153 ] are, with the exception of the ionotropic 5-HT3 class, GPCR receptors where the endogenous agonist is 5-HT. The diversity of metabotropic 5-HT receptors is increased by alternative splicing that produces isoforms of the 5-HT2A (non-functional), 5-HT2C (non-functional), 5-HT4, 5-HT6 (non-functional) and 5-HT7 receptors. Unique amongst the GPCRs, RNA editing produces 5-HT2C receptor isoforms that differ in function, such as efficiency and specificity of coupling to Gq/11 and also pharmacology 124,216. Most 5-HT receptors (except 5-ht1e and 5-ht5a/5b) play specific roles mediating functional responses in different tissues (reviewed by 197,211.

Nomenclature 5-HT1A receptor 5-HT1B receptor 5-HT1D receptor 5-ht1e receptor 5-HT1F receptor
HGNC, UniProt HTR1A, P08908 HTR1B, P28222 HTR1D, P28221 HTR1E, P28566 HTR1F, P30939
Principal transduction Gi/o Gi/o Gi/o Gi/o Gi/o
Selective agonists (pKi) U92016A (9.7) 178, 8-OH-DPAT (8.4 – 9.4) 140,151,170,183,189,191,192, F15599 (8.6) 190 L-694,247 (9.2) 149, CP94253 (8.7) 167, eletriptan (8.0) 184, sumatriptan (Partial agonist) (6.5 – 8.1) 149,172,183,184,187,194,215 PNU109291 (9.1 - Gorilla) 143, L-694,247 (9.0) 217, eletriptan (8.9) 184, sumatriptan (8.0 – 8.7) 150,172,183,184,215 BRL-54443 (8.7) 136 BRL-54443 (8.9) 136, LY334370 (8.7) 213, LY573144 (8.7) 186, LY344864 (8.2) 195, eletriptan (8.0) 184, sumatriptan (7.2 – 7.9) 114,115,184,213
Selective antagonists (pKi) NAD 299 (9.2) 161, WAY-100635 (7.9 – 9.2) 189,191, (S)-UH 301 (7.9) 189 GR-55562 (pKB 7.4) 159, SB 224289 (Inverse agonist) (8.2 – 8.6) 146,187,203, SB236057 (Inverse agonist) (8.2) 182 SB 714786 (9.1) 214, BRL-15572 (7.9) 196
Radioligands (Kd) p-[18F]MPPF, [11C]WAY100635 (Antagonist), [3H]NAD 299 (Antagonist) (1.58x10-10 M) 160, [3H]WAY100635 (Antagonist) (3x10-10 M) 164, [3H]F13640 (Agonist, Full agonist) (1.4x10-9 M) 155, [3H]8-OH-DPAT (Agonist, Full agonist) (3.98x10-10 – 1x10-6 M) 122,162,188,191 [11C]AZ10419369, [3H]N-methyl-AZ10419369 (Antagonist) (3.7x10-10 M) 175, [125I]GTI (Agonist) (1.3x10-9 M - Rat) 130, [3H]GR 125,743 (Antagonist) (2.6x10-9 – 7.1x10-10 M) 149,218, [3H]alniditan (Agonist, Full agonist) (1x10-9 – 2.51x10-9 M) 171, [3H]eletriptan (Agonist, Partial agonist) (3x10-9 M) 184, [3H]sumatriptan (Agonist, Partial agonist) (1.1x10-8 M) 184 [3H]eletriptan (Agonist, Full agonist) (9x10-10 M) 184, [125I]GTI (Agonist) (1.3x10-9 M - Rat) 130, [3H]alniditan (Agonist, Full agonist) (1.2x10-9 – 1.4x10-9 M) 171, [3H]GR 125,743 (Antagonist) (2.8x10-9 M) 218, [3H]sumatriptan (Agonist, Full agonist) (7x10-9 M) 184 [3H]5-HT (Agonist, Full agonist) (6.31x10-9 – 7.94x10-9 M) 177,194 [3H]LY334370 (Agonist, Full agonist) (3.98x10-10 M) 213, [125I]LSD (Agonist) (9.8x10-10 M - Mouse) 116
Nomenclature 5-HT2A receptor 5-HT2B receptor 5-HT2C receptor
HGNC, UniProt HTR2A, P28223 HTR2B, P41595 HTR2C, P28335
Principal transduction Gq/11 Gq/11 Gq/11
Selective agonists (pKi) DOI (7.4 – 9.2) 131,185,205 Ro 60-0175 (8.3) 166, BW723C86 (7.3 – 8.6) 119,166,201, DOI (7.6 – 7.7) 169,185,201, Ro 60-0175 (7.7 – 8.2) 165,166, DOI (7.2 – 8.6) 142,185,201, lorcaserin (7.8) 209, WAY-163909 (6.7 – 8.0) 141
Selective antagonists (pKi) ketanserin (8.1 – 9.7) 137,166,198, MDL-100,907 (pIC50 6.5 – 9.3) 166,173,199 RS-127445 (9.0 – 9.5) 128,166, EGIS-7625 (9.0) 168 FR260010 (9.0) 152, SB 242084 (8.2 – 9.0) 163,166, RS-102221 (8.3 – 8.4) 129,166
Radioligands (Kd) [11C]MDL100907, [18F]altanserin (Antagonist), [3H]RP62203 (Antagonist) (1.3x10-10 M - Rat) 176, [3H]ketanserin (Antagonist) (2x10-10 – 2.9x10-9 M) 166,198 [3H]LSD (Agonist, Full agonist) (2.1x10-9 M) 198, [3H]mesulergine (5x10-9 – 1x10-8 M), [3H]5-HT (Agonist, Full agonist) (8x10-9 M - Rat) 212, [125I]DOI (2x10-8 – 2.5x10-8 M) [3H]LSD (Agonist), [3H]mesulergine (Antagonist, Inverse agonist) (5x10-10 – 2.2x10-9 M) 144,198, [125I]DOI (6x10-9 – 2.5x10-8 M)
Nomenclature 5-HT4 receptor 5-ht5a receptor 5-ht5b receptor 5-HT6 receptor 5-HT7 receptor
HGNC, UniProt HTR4, Q13639 HTR5A, P47898 HTR5BP, P31387 HTR6, P50406 HTR7, P34969
Principal transduction Gs Gi/Go None identified Gs Gs
Selective agonists (pKi) ML 10302 (Partial agonist) (7.9 – 9.0) 121,123,179181, BIMU 8 (7.3) 138, RS67506 (pEC50 8.8 - Rat) 154 E-6801 (Partial agonist) (8.7) 157, WAY-181187 (8.7) 202 E55888 (8.6) 132
Selective antagonists (pKi) RS 100235 (8.7 – 12.2) 138,200, SB 204070 (9.8 – 10.4) 120,179,180,210, GR 113808 (9.3 – 10.3) 117,120,123,138,180,200,210 SB 699551 (8.2) 139 SB399885 (9.0) 156, SB 271046 (8.9) 133, SB357134 (8.5) 134, Ro 63-0563 (7.9 – 8.4) 126,204 SB269970 (8.6 – 8.9) 207, SB656104 (8.7) 145, SB 258719 (Inverse agonist) (7.5) 208
Radioligands (Kd) [123I]SB 207710 (8.6x10-11 M - Pig) 135, [3H]GR 113808 (Antagonist) (5x10-11 – 2x10-10 M) 117,120,181,210, [3H]RS 57639 (Agonist) (2x10-10 M - Guinea pig) 127, [11C]SB207145 (Antagonist) (2.8x10-9 M) 174 [125I]LSD (Agonist, Full agonist) (2x10-10 M) 148, [3H]5-CT (Agonist, Full agonist) (2.5x10-9 M) 148 [125I]LSD, [3H]5-CT [3H]5-CT (Agonist), [125I]SB258585 (Antagonist) (1x10-9 M) 156, [3H]LSD (Agonist, Full agonist) (2x10-9 M) 125, [3H]Ro 63-0563 (Antagonist) (5x10-9 M) 126 [3H]5-CT (Agonist) (4x10-10 M) 207, [3H]SB269970 (Antagonist) (1.2x10-9 M) 207, [3H]5-HT (Agonist, Full agonist) (1x10-9 – 7.94x10-9 M) 118,206, [3H]LSD (Agonist, Full agonist) (2.51x10-9 – 3.16x10-9 M) 206

Comments

Tabulated pKi and KD values refer to binding to human 5-HT receptors unless indicated otherwise. Unreferenced values are extracted from the NC-IUPHAR database (www.iuphar-db.org). The nomenclature of 5-HT1B/5-HT1D receptors has been revised 153. Only the non-rodent form of the receptor was previously called 5-HT1D;: the human 5-HT1B receptor (tabulated) displays a different pharmacology to the rodent forms of the receptor due to Thr335 of the human sequence being replaced by Asn in rodent receptors. NAS181 is a selective antagonist of the rodent 5-HT1B receptor. fananserin and ketanserin bind with high affinity to dopamine D4 and histamine H1 receptors respectively, and ketanserin is a potent α1 adrenoceptor antagonist, in addition to blocking 5-HT2A receptors. The human 5-ht5A receptor has been claimed to couple to several signal transduction pathways when stably expressed in C6 glioma cells 193. The human orthologue of the mouse 5-ht5b receptor is non-functional due to interruption of the gene by stop codons. The 5-ht1e receptor appears not to have been cloned from mouse, or rat, impeding definition of its function. In addition to the receptors listed in the table, an 'orphan' receptor, unofficially termed 5-HT1P, has been described 147.

Acetylcholine receptors (muscarinic)

Overview

Muscarinic acetylcholine receptors (nomenclature as agreed by NC-IUPHAR sub-committee on Muscarinic Acetylcholine Receptors, 224) are GPCR of the Class A, rhodopsin-like family where the endogenous agonist is acetylcholine. In addition to the agents listed in the table, AC-42, its structural analogues AC-260584 and 77-LH-28-1, N-desmethylclozapine, TBPB and LuAE51090 have been described as functionally selective agonists of the M1 receptor subtype via binding in a mode distinct from that utilized by non-selective agonists 220,235,237,238,246,253,256,257,259. There are two pharmacologically characterised allosteric sites on muscarinic receptors, one defined by it binding gallamine, strychnine and brucine, and the other binds KT 5720, WIN 62,577, WIN 51,708 and staurosporine 240,241.

Nomenclature M1 receptor M2 receptor M3 receptor M4 receptor M5 receptor
HGNC, UniProt CHRM1, P11229 CHRM2, P08172 CHRM3, P20309 CHRM4, P08173 CHRM5, P08912
Principal transduction Gq/11 Gi/o Gq/11 Gi/o Gq/11
Selective antagonists (pKi) MT7 (11.0–11.1) 249, VU0255035 (7.8) 254 MT3 (8.7) 234,250
Selective allosteric regulators BQCA (Positive) 244, brucine (Positive) 221, KT 5720 (Positive) 221, ML169 (Positive) 252, VU0029767 (Positive) 245, VU0090157 (Positive) 245 N-chloromethyl-brucine (Positive) 221, WIN 62,577 (Positive) 221 LY2033298 (Positive) 226, thiochrome (Positive) 221, VU0152099 (Positive) 222, VU0152100 (Positive) 222 VU0238429 (Positive) 223
Radioligands (Kd) [11C]butylthio-TZTP, [11C]xanomeline, [18F](R,R)-quinuclidinyl-4-fluoromethyl-benzilate, [3H]QNB (Antagonist) (1.58×10−11–2.51×10−11 M) 229,251, [3H]N-methyl scopolamine (Antagonist) (5.01×10−11–1.58×10−9 M) 225,228230,232234,236,239, [3H]pirenzepine (Antagonist) (1.4×10−8 M) 263 [18F]FP-TZTP, [3H]QNB (Antagonist) (2.51×10−11–7.94×10−11 M) 251, [3H]N-methyl scopolamine (Antagonist) (1.25×10−10–5.01×10−7 M) 225,227,230,232234,236,239,262 [3H]QNB (Antagonist) (3.98×10−11 M) 251, [3H]darifenacin (Antagonist) (3.16×10−10 M) 255, [3H]N-methyl scopolamine (Antagonist) (3.98×10−11–2.51×10−9 M) 225,227,230232,234,236,239 [3H]QNB (Antagonist) (3.16×10−11–2×10−10 M) 229,251, [3H]N-methyl scopolamine (Antagonist) (6.3×10−11–1.58×10−8 M) 225,227,229,230,232,234,236,239,250,262 [3H]QNB (2×10−11–6×10−11 M), [3H]N-methyl scopolamine (Antagonist) (2×10−10–7.94×10−9 M) 225,227,230,234,236,262

Comments

LY2033298 and BQCA have also been shown to directly activate the M4 and M1 receptors, respectively, via an allosteric site 242,243,247,248. The allosteric site for gallamine and strychnine on M2 receptors can be labelled by [3H]dimethyl-W84 260. McN-A-343 is a functionally selective partial agonist that appears to interact in a bitopic mode with both the orthosteric and an allosteric site on the M2 muscarinic receptor 261. THRX-160209, hybrid 1 and hybrid 2, are multivalent (bitopic) ligands that also achieve selectivity for M2 receptors by binding both to the orthosteric and a nearby allosteric site 219,258.

Although numerous ligands for muscarinic acetylcholine receptors have been described, relatively few selective antagonists have been described, so it is common to assess the rank order of affinity of a number of antagonists of limited selectivity (e.g. 4-DAMP, darifenacin, pirenzepine) in order to identify the involvement of particular subtypes.

Adenosine receptors

Overview

Adenosine receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on Adenosine Receptors; 280) are activated by the endogenous ligand adenosine (potentially inosine also at A3 receptors). Crystal structures for the antagonist-bound and agonist-bound A2A adenosine receptors have been described 287,323.

Nomenclature A1 receptor A2A receptor A2B receptor A3 receptor
HGNC, UniProt ADORA1, P30542 ADORA2A, P29274 ADORA2B, P29275 ADORA3, P33765
Principal transduction Gi/o Gs Gs Gi/o
(Sub)family-selective agonists (pKi) NECA (5.3 – 8.2) 283,295,311,317,324 NECA (6.9 – 8.7) 270,276,283,299,303,324 NECA (5.7 – 6.9) 268,270,292,306,314,319,324 NECA (7.5 – 8.4) 270,283,289,312,320,324
Selective agonists (pKi) 5-Cl-5-deoxy-(±)-ENBA (9.29) 279, GR79236 (8.51 - Rat) 288, cyclopentyladenosine (6.5 – 9.4) 274,275,283,285,288,295,311, CCPA (7.7 – 8.1) 288,308 apadenoson (9.3) 310, CGS 21680 (6.7 – 8.1) 270,276,283,288,299,302,303,308 Bay60-6583 (8.0 – 8.52) 277 IB-MECA (8.7 – 9.2) 278,281,302,320, Cl-IB-MECA (8.0 – 8.9) 271,289,298
(Sub)family-selective antagonists (pKi) XAC (pKd 7.5) 279, CGS 15943 (8.46) 309 XAC (8.4 – 9.0) 276,302, CGS 15943 (7.7 – 9.4) 276,299,302,309 XAC (pA2 7.9) 265, CGS 15943 (pA2 7.8) 265, XAC (6.9 – 8.8) 268,292,293,302,306,314, CGS 15943 (6.0 – 8.1) 267,292,293,302,309,314 CGS 15943 (7.0 – 7.9) 301,302,309,320, XAC (7.0 – 7.4) 302,312,320
Selective antagonists (pKi) PSB36 (9.9 - Rat) 264, SLV320 (9.0) 297, DPCPX (7.4 – 9.2) 275,286,308,311,322 SCH442416 (8.4 – 10.3) 313,316, ZM-241385 (8.8 – 9.1) 309, SCH 58261 (8.3 – 9.2) 276,303,309 PSB-0788 (9.4) 269, PSB603 (9.26) 269, MRS1754 (8.8) 292,300, PSB1115 (7.27) 284 MRS1220 (8.2 – 9.2) 289,301,315,325, VUF5574 (8.39) 318, MRS1523 (7.7) 304, MRS1191 (7.5) 289,294,305
Radioligands (Kd) [3H]CCPA (Agonist, Full agonist) (6.31x10-10 M) 302,311, [3H]DPCPX (Antagonist) (6x10-10 – 1.2x10-9 M) 274,278,302,309,311,317 [3H]ZM 241385 (Antagonist) (8x10-10 – 1.8x10-9 M) 266,282, [3H]CGS 21680 (Agonist, Full agonist) (1.6x10-8 – 2.2x10-8 M) 291,321 [3H]MRS1754 (Antagonist) (1.58x10-10 M) 292 [125I]AB-MECA (Agonist, Full agonist) (6x10-10 – 1x10-9 M) 309,320

Comments

Adenosine inhibits many intracellular ATP-utilising enzymes, including adenylyl cyclase (P-site). A pseudogene exists for the A2B adenosine receptor (ADORA2BP1) with 79% identity to the A2B adenosine receptor cDNA coding sequence, but which is unable to encode a functional receptor 290. DPCPX also exhibits antagonism at A2B receptors (pKi ca. 7,265,302). Antagonists at A3 receptors exhibit marked species differences, such that only MRS1523 and MRS1191 are selective at the rat A3 receptor. In the absence of other adenosine receptors, [3H]DPCPX and [3H]ZM 241385 can also be used to label A2B receptors (KD ca. 30 and 60 nM respectively). [125I]AB-MECA also binds to A1 receptors 302. [3H]CGS 21680 is relatively selective for A2A receptors, but may also bind to other sites in cerebral cortex 273,296. [3H]NECA binds to other non-receptor elements, which also recognise adenosine 307. XAC-BY630 has been described as a fluorescent antagonist for labelling A1 adenosine receptors in living cells, although activity at other adenosine receptors was not examined 272.

Adhesion Class GPCRs

Overview

Adhesion GPCRs are structurally identified on the basis of a large extracellular region, similar to the Class B GPCR, but which is linked to the 7TM region by a "stalk" motif containing a GPCR proteolytic site. The N-terminus often shares structural homology with proteins such as lectins and immunoglobulins, leading to the term adhesion GPCR 326,331.

Nomenclature HGNC, UniProt Comment
BAI1 BAI1, O14514 BAI1 is reported to respond to phosphatidylserine 329.
BAI2 BAI2, O60241
BAI3 BAI3, O60242
CD97 CD97, P48960
CELSR1 CELSR1, Q9NYQ6
CELSR2 CELSR2, Q9HCU4
CELSR3 CELSR3, Q9NYQ7
ELTD1 ELTD1, Q9HBW9
EMR1 EMR1, Q14246
EMR2 EMR2, Q9UHX3
EMR3 EMR3, Q9BY15
EMR4P EMR4P, Q86SQ3
GPR56 GPR56, Q9Y653 Reported to bind tissue transglutaminase 2 330 and collagen, which activates the G12/13 pathway 328.
GPR64 GPR64, Q8IZP9
GPR97 GPR64, Q8IZP9
VLGR1 GPR98, Q8WXG9 Loss-of-function mutations are associated with Usher syndrome, a sensory deficit disorder 327.
GPR110 GPR110, Q5T601
GPR111 GPR111, Q8IZF7
GPR112 GPR112, Q8IZF6
GPR113 GPR113, Q8IZF5
GPR114 GPR114, Q8IZF4
GPR115 GPR115, Q8IZF3
GPR116 GPR116, Q8IZF2
GPR123 GPR123, Q86SQ6
GPR124 GPR124, Q96PE1
GPR125 GPR125, Q8IWK6
GPR126 GPR126, Q86SQ4
GPR128 GPR128, Q96K78
GPR133 GPR133, Q6QNK2
GPR144 GPR144, Q7Z7M1
LPHN1 LPHN1, O94910
LPHN2 LPHN2, O95490
LPHN3 LPHN3, Q9HAR2

Adrenoceptors

Overview

α1-Adrenoceptors (nomenclature as agreed by NC-IUPHAR Subcommittee on Adrenoceptors; 340) are activated by the endogenous agonists (-)-adrenaline and (-)-noradrenaline with equal potency. phenylephrine, methoxamine and cirazoline are agonists selective for α1-adrenoceptors relative to α2-adrenoceptors, while prazosin (8.5–10.5) and corynanthine (6.5–7.5) are antagonists considered selective for α1-adrenoceptors relative to α2-adrenoceptors. [3H]prazosin (0.25 nM) and [125I]HEAT (0.1 nM; also known as BE2254) are relatively selective radioligands. The α1A-adrenoceptor antagonist (+)-niguldipine also has high affinity for L-type Ca2+ channels. The conotoxin ρ-TIA acts as a negative allosteric modulator at the α1B-adrenoceptor 396, while the snake toxin ρ-Da1a acts as a selective competitive antagonist at the α1A-adrenoceptor 386. Fluorescent derivatives of prazosin (Bodipy PL-prazosin – QAPB) are increasingly used to examine cellular localisation of α1-adrenoceptors. The vasoconstrictor effects of selective α1-adrenoceptor agonists have led to their use as nasal decongestants; antagonists are used to treat hypertension (doxazosin, prazosin) and benign prostatic hyperplasia (alfuzosin, tamsulosin). The combined α1- and β2-adrenoceptor antagonist carvedilol is widely used to treat congestive heart failure, although the contribution of α1-adrenoceptor blockade to the therapeutic effect is unclear. Several anti-depressants and anti-psychotic drugs possess α1-adrenoceptor blocking properties that are believed to contribute to side effects such as orthostatic hypotension and extrapyramidal effects.

Nomenclature α1A-adrenoceptor α1B-adrenoceptor α1D-adrenoceptor
HGNC, UniProt ADRA1A, P35348 ADRA1B, P35368 ADRA1D, P25100
Principal transduction Gq/11 Gq/11 Gq/11
Selective agonists (pKi) dabuzalgron (7.4) 339, A61603 (pIC50 7.8–8.4) 355,369
Selective antagonists (pKi) silodosin (10.4) 397, tamsulosin (10.0–10.7) 343,346,355,397,410, (+)-niguldipine (9.1–10.0) 355,397, ρ-Da1a (9.22) 386, SNAP5089 (8.8–9.4) 360,371,409 BMY-7378 (8.7–9.1) 342,413

Comments

Adrenoceptors, α1

The clone originally called the α1C-adrenoceptor corresponds to the pharmacologically defined α1A-adrenoceptor 361. Some tissues possess α1A-adrenoceptors (termed αα1L-adrenoceptors 355,381) that display relatively low affinity in functional and binding assays for prazosin (pKi < 9) indicative of different receptor states or locations. α1A-adrenoceptor C-terminal splice variants form homo- and heterodimers, but fail to generate a functional α1L-adrenoceptor 387. A study suggests that the &alpha1L-adenoceptor phenotype may result from the interaction of α1A-adrenoceptors with cysteine-rich epidermal growth factor-like domain 1α (CRELD1α) 382,383,404. α1D-Adrenoceptors form heterodimers with α1B- or β2-adrenoceptors that show increased cell-surface expression 402. Heterodimers formed between α1D- and α1B-adrenoceptors have distinct functional properties 359. Recombinant α1D-adrenoceptors have been shown in some heterologous systems to be mainly located intracellularly but cell-surface localization is attained by truncation of the N-terminus, or by co-expression of α1B- or β2-adrenoceptors to form heterodimers 359,402. In smooth muscle of native blood vessels all three α1-adrenoceptor subtypes are located on the surface and intracellularly 377,378.

Signalling is predominantly via Gq/11 but α1-adrenoceptors also couple to Gi/o, Gs and G12/13. Several ligands activating α1A-adrenoceptors display ligand directed signalling bias. For example, oxymetazoline is a full agonist for extracellular acidification rate (ECAR) and a partial agonist for Ca2+ release but does not stimulate cAMP production. Phenylephrine is biased toward ECAR versus Ca2+ release or cAMP accumulation but not between Ca2+ release and cAMP accumulation 351. There are also differences between subtypes in coupling efficiency to different pathways – e.g. in some systems coupling efficiency to Ca2+ signalling is α1A > α1B > α1D, but for MAP kinase signalling is α1D > α1A > α1B. In vascular smooth muscle, potency of agonists is related to the predominant subtype, α1D- conveying greater sensitivity than α1A-adrenoceptors 354.

Adrenoceptors, α2

α2-Adrenoceptors (nomenclature as agreed by NC-IUPHAR Subcommittee on Adrenoceptors; 340) are activated by endogenous agonists with a relative potency of (-)-adrenaline > (-)-noradrenaline. UK14304 (brimonidine) and BHT920 are agonists selective for α2-adrenoceptors relative to α1-adrenoceptors, rauwolscine (9.0) and yohimbine (9.0) are antagonists selective for α2-adrenoceptors relative to α1-adrenoceptors. [3H]rauwolscine (1 nM), [3H]UK14304 (5 nM) and [3H]RX821002 (0.5 nM and 0.1 nM at α2C) are relatively selective radioligands. There is species variation in the pharmacology of the α2A-adrenoceptor; for example, yohimbine, rauwolscine and oxymetazoline have an ∼20-fold lower affinity for rat, mouse and bovine α2A-adrenoceptors compared to the human receptor. These α2A orthologues are sometimes referred to as α2D-adrenoceptors. Multiple mutations of α2-adrenoceptors have been described, some of which are associated with alterations in function. Presynaptic α2-adrenoceptors are widespread in the nervous system and regulate many functions, hence the multiplicity of actions. The effects of classical (not subtype selective) α2-adrenoceptor agonists such as clonidine, guanabenz and UK14304 (brimonidine) on central baroreflex control (hypotension and bradycardia), hypnotic, analgesic, seizure modulation and platelet aggregation are mediated by α2A-adrenoceptors. clonidine has been used as an anti-hypertensive and also to counteract opioid withdrawal. Actions on imidazoline receptors may contribute to the pharmacological effects of clonidine. α2-Adrenoceptor agonists such as dexmedetomidine have been widely used as sedatives and analgesics in veterinary medicine (also xylazine) and are now used frequently in humans. α2-Adrenoceptor antagonists are relatively little used therapeutically although yohimbine has been used to treat erectile dysfunction and several anti-depressants (cyanopindolol, mirtazepine) that block α2-adrenoceptors may work through this mechanism. The roles of α2B and α2C-adrenoceptors are less clear but the α2B subtype appears to be involved in neurotransmission in the spinal cord and α2C in regulating catecholamine release from adrenal chromaffin cells.

Nomenclature α2A-adrenoceptor α2B-adrenoceptor α2C-adrenoceptor
HGNC, UniProt ADRA2A, P08913 ADRA2B, P18089 ADRA2C, P18825
Principal transduction Gi/o Gi/o Gi/o
Selective agonists (pKi) oxymetazoline (Partial agonist) (8.0) 365,403, guanfacine (7.1) 374
Selective antagonists (pKi) BRL 44408 (8.2–8.77) 403,414 imiloxan (7.3 - Rat) 379 JP1302 (pKB 7.8) 392

Comments

ARC-239 (pKi 8.0) and prazosin (pKi 7.5) show selectivity for α2B- and α2C-adrenoceptors over α2A-adrenoceptors.oxymetazoline is a reduced efficacy agonist and is one of many α2-adrenoceptor agonists that are imidazolines or closely related compounds. Other binding sites for imidazolines, distinct from α2-adrenoceptors, and structurally distinct from the 7TM adrenoceptors, have been identified and classified as I1, I2 and I3 sites; catecholamines have a low affinity, while rilmenidine and moxonidine are selective ligands for these sites, evoking hypotensive effects in vivo. I1-imidazoline receptors are involved in central inhibition of sympathetic tone, I2-imidazoline receptors are an allosteric binding site on monoamine oxidase B, and I3-imidazoline receptors regulate insulin secretion from pancreatic β-cells. α2A-adrenoceptor stimulation reduces insulin secretion from β-islets 412, with a polymorphism in the 5′-UTR of the ADRA2A gene being associated with increased receptor expression in β-islets and heightened susceptibility to diabetes 391.

α2A- and α2c-adrenoceptors form homodimers 398. Heterodimers between α2A- and either the α2c-adrenoceptor or μ opioid peptide receptor exhibit altered signalling and trafficking properties compared to the individual receptors 398,401,405. Signalling by α2-adrenoceptors is primarily via Gi/o, however the α2A-adrenoceptor also couples to Gs 350. Imidazoline compounds display bias at the α2A-adrenoceptor when assayed by [35S] GTPγS binding compared to inhibition of cAMP accumulation 384. The noradrenaline reuptake inhibitor desipramine acts directly on the α2A-adrenoceptor, promoting internalisation via recruitment of β-arrestin without activating G proteins 345.

Adrenoceptors, β

β-Adrenoceptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Adrenoceptors, 340) are activated by the endogenous agonists (-)-adrenaline and (-)-noradrenaline. isoprenaline is a synthetic agonist selective for β-adrenoceptors relative to α1- and α2-adrenoceptors, while propranolol (pKi 8.2–9.2) and cyanopindolol (pKi 10.0–11.0) are relatively selective antagonists. (-)-noradrenaline, xamoterol and (-)-Ro 363 are agonists that show selectivity for β1- relative to β2-adrenoceptors. Pharmacological differences exist between human and mouse β3-adrenoceptors, and the ‘rodent selective’ agonists BRL 37344 and CL316243 have low efficacy at the human β3-adrenoceptor whereas CGP 12177 and L 755507 activate human β3-adrenoceptors 393. β3-Adrenoceptors are relatively resistant to blockade by propranolol (pKi 5.8–7.0), but can be blocked by high concentrations of bupranolol (pKi 8.65,394). SR59230A has reasonably high affinity at β3-adrenoceptors 375, but does not discriminate well between the three β-adrenoceptor subtypes 341 and has been reported to have lower affinity for the β3-adrenoceptor in some circumstances 368. [125I]-cyanopindolol, [125I]-hydroxybenzylpindolol and [3H]-alprenolol are high affinity radioligands widely used to label β1- and β2-adrenoceptors and β3-adrenoceptors can be labelled with higher concentrations (nM) of [125I]-cyanopindolol in the presence of appropriate concentrations of β1- and β2-adrenoceptor antagonists. Fluorescent ligands such as BODIPY-TMR-CGP12177 are also increasingly being used to track β-adrenoceptors at the cellular level 335. Somewhat selective β1-adrenoceptor selective agonists (denopamine, dobutamine) are used short-term to treat cardiogenic shock but, in the longer term, reduce survival. β1-Adrenoceptor-preferring antagonists are used to treat hypertension (atenolol, betaxolol, bisoprolol, metoprolol and nebivolol), cardiac arrhythmias (atenolol, bisoprolol, esmolol) and cardiac failure (metoprolol, nebivolol). Cardiac failure is also succesfully treated with carvedilol which blocks both β1- and β2-adrenoceptors, as well as α1-adrenoceptors. β2-Adrenoceptor-selective agonists are powerful bronchodilators widely used to treat respiratory disorders. There are both short (salbutamol, terbutaline) and long acting drugs (formoterol, salmeterol). Although many first generation β-adrenoceptor antagonists (propranolol) block both β1- and β2-adrenoceptors there are no β2-adrenoceptor-selective antagonists used therapeutically. Although potentially useful for the treatment of obesity, there are no β3-adrenoceptor-selective agonists used for this purpose currently. Several β3-adrenoceptor agonists (mirabegron, amibegron and solabegron) are used to control overactive bladder syndrome.

Nomenclature β1-adrenoceptor β2-adrenoceptor β3-adrenoceptor
HGNC, UniProt ADRB1, P08588 ADRB2, P07550 ADRB3, P13945
Principal transduction Gs Gs Gs
Rank order of potency (-)-noradrenaline > (-)-adrenaline (-)-adrenaline > (-)-noradrenaline (-)-noradrenaline = (-)-adrenaline
Endogenous agonists (pKi) noradrenaline (6.0) 356
Selective agonists (pKi) (-)-Ro 363 (8.0) 380, xamoterol (Partial agonist) (7.0) 364, denopamine (Partial agonist) (5.8) 364,400 formoterol (pEC50 10.08) 334, salmeterol (pEC50 9.9) 334, zinterol (pEC50 9.48) 334, procaterol (pEC50 8.43) 334 carazolol (8.7) 376, BRL 37344 (6.4–7.0) 338,348,362,376, CGP 12177 (Partial agonist) (6.1–7.3) 338,373,376,380, CL316243 (5.2) 411, L 755507 (pEC50 10.1) 334, L742791 (pEC50 8.8) 408, SB251023 (pEC50 7.14 - Mouse) 363
Selective antagonists (pKi) CGP 20712A (8.5–9.2) 332,341,373, betaxolol (8.8) 373, atenolol (6.7–7.6) 332,366,373 ICI 118551 (Inverse agonist) (9.2–9.5) 332,335,373 L-748337 (8.4) 341, SR59230A (6.9–8.4) 341,347,362
Radioligands (Kd) [125I]ICYP (Antagonist, it is necessary to use an excess of a β2-AR-selective ligand such as ICI 118551 to allow visualisation of β1-AR binding in native tissue) (4.99x10-12–3.28x10-11 M) 373,395 [125I]ICYP (Antagonist, it is necessary to use an excess of a β1-AR-selective ligand such as CGP20712A to allow visualisation of β2-AR binding in native tissues) (7.9x10-12 M) 373,395 [125I]ICYP (Agonist, Partial agonist) (1.58x10-10–6.31x10-10 M) 373,380,385,395,399
Comment The agonists indicated have less than two orders of magnitude selectivity 334. Agonist SB251023 has a pEC50 of 6.9 for the splice variant of the mouse β3 receptor, β3b 363.

Comments

Radioligand binding with [125I]ICYP can be used to define β1- or β2-adrenoceptors when conducted in the presence of a ‘saturating’ concentration of either a β1- or β2-adrenoceptor-selective antagonist. [3H]CGP12177 or [3H]dihydroalprenolol can be used in place of [125I]ICYP. Binding of a fluorescent analogue of CGP 12177 to β2-adrenoceptors in living cells has been described 336. [125I]ICYP at higher (nM) concentrations can be used to label β3-adrenoceptors in systems where there are few if any other β-adrenoceptor subtypes.Pharmacological differences exist between human and mouse β3-adrenoceptors, and the ‘rodent selective’ agonists BRL 37344 and CL316243 have low efficacy at the human β3-adrenoceptor whereas CGP 12177 and L 755507 activate human β3-adrenoceptors 394. The β3-adrenoceptor has an intron in the coding region, but splice variants have only been described for the mouse 352, where the isoforms display different signalling characteristics 363. There are 3 β-adrenoceptors in turkey (termed the tβ, tβ3c and tβ4c) that have a pharmacology that differs from the human β-adrenoceptors 333. The ‘putative β4-adrenoceptor’ is not a novel receptor but is likely to represent an alternative site of interaction of CGP 12177 and other nonconventional partial agonists at β1-adrenoceptors, since ‘putative β4-adrenoceptor'-mediated agonist effects of CGP 12177 are absent in mice lacking β1-adrenoceptors 367,370. Numerous polymorphisms have been described for the three β-adrenoceptors; some are associated with alterations in agonist-evoked signalling, trafficking, altered diseases susceptibility and/or altered responses to pharmacotherapy.

All β-adrenoceptors couple to Gs (activating adenylyl cyclase and elevating cAMP levels), but it is also clear that they activate other G proteins such as Gi and many other G protein-independent signalling pathways, including β-arrestins, which may in turn lead to activation of mitogen-activated protein kinases. Many antagonists at β1- and β2-adrenoceptors are agonists at β3-adrenoceptors (CL316243, CGP 12177 and carazolol). Many ‘antagonists’ that block agonist-stimulated cAMP accumulation, for example carvedilol and bucindolol, are able to activate mitogen-activated protein kinase pathways 337,353,357,358,393,394 and thus display ‘protean agonism’. bupranolol appears to act as a neutral antagonist in most systems so far examined. Agonists also display biased signalling at the β2-adrenoceptor via Gs or β-arrestins 349.

The X-ray crystal structures have been described of the agonist bound 406 and antagonist bound forms of the β1- 407, agonist-bound 344 and antagonist-bound forms of the β2-adrenoceptor 388,390, as well as a fully active agonist-bound, Gs protein-coupled β2-adrenoceptor 389. carvedilol and bucindolol bind to an extended site of the β1-adrenoceptor involving contacts in TM2, 3, and 7 and extracellular loop 2 that may facilitate coupling to β-arrestins 407. Compounds displaying β-arrestin-biased signalling at the β2-adrenoceptor also have a greater effect on the conformation of TM7, whereas full agonists for Gs coupling promote movement of TM5 and TM6 372.

Angiotensin receptors

Overview

The actions of angiotensin II (AGT, P01019) (Ang II) are mediated by AT1 and AT2 receptors (nomenclature agreed by the NC-IUPHAR Subcommittee on Angiotensin Receptors; 424), which have around 30% sequence similarity. Endogenous ligands are angiotensin II (AGT, P01019) and angiotensin III (AGT, P01019) (Ang III), while angiotensin I (AGT, P01019) is weakly active in some systems.

Nomenclature AT1 receptor AT2 receptor
HGNC, UniProt AGTR1, P30556 AGTR2, P50052
Principal transduction Gq/11 Gi/Go, Tyr & Ser/Thr phosphatases
Selective agonists (pKi) L-162313 (pIC50 7.85–7.92) 433 [p-aminoPhe6]ang II (pKd 9.1–9.4 - Rat) 426,434, CGP42112 (pIC50 9.63) 417
Selective antagonists (pKi) candesartan (pIC50 9.5–9.7) 436, irbesartan (pIC50 8.7–8.8) 436, valsartan (pIC50 8.61) 425, eprosartan (pIC50 8.4–8.8) 429, EXP3174 (pIC50 7.4–9.5) 435,436, losartan (pIC50 7.4–8.7) 426,435 PD123319 (pKd 8.7–9.2) 426,427,440, PD123177 (pIC50 8.5–9.5 - Rat) 419,422,428
Radioligands (Kd) [3H]eprosartan (Antagonist), [3H]A81988 (Antagonist) (5.7x10−10 M - Rat) 430, [3H]L158809 (Antagonist) (6.6x10−10 M - Rat) 421, [125I]EXP985 (Antagonist) (1.49x10−9 M - Rat) 423, [3H]losartan (Antagonist) (6.2x10−9 M - Rat) 420, [3H]valsartan (Antagonist) (IC50 1x10−9 – 1.58x10−9 M) 437 [125I]CGP42112 (Agonist, Full agonist) (2.51x10−11 M) 426,438,439

Comments

AT1 receptors are predominantly coupled to Gq/11, however they are also linked to arrestin recruitment and stimulate G protein-independent arrestin signalling 431. Most species express a single AGTR1 gene, but two related agtr1a and agtr1b receptor genes are expressed in rodents. The AT2 receptor counteracts several of the growth responses initiated by the AT1 receptors. The AT2 receptor is much less abundant than the AT1 receptor in adult tissues and is upregulated in pathological conditions.

There is also evidence for an AT4 receptor that specifically binds angiotensin IV (AGT) and is located in the brain and kidney. An additional putative endogenous ligand for the AT4 receptor has been described (LVV-hemorphin (HBB, P68871), a globin decapeptide) 432. The AT1 and bradykinin B2 receptors have been proposed to form a heterodimeric complex 416. The antagonist activity of CGP42112 has also been reported 415. AT1 receptor antagonists bearing substituted 4-phenylquinoline moieties have been synthesized, which bind to AT1 receptors with nanomolar affinity and are slightly more potent than losartan in functional studies 418.

Apelin receptor

Overview

The apelin receptor (APJ, nomenclature as agreed by NC-IUPHAR on apelin receptors, 449) responds to apelin, a 36 amino-acid peptide derived initially from bovine stomach. apelin-36 (APLN, Q9ULZ1), apelin-13 (APLN, Q9ULZ1) and [Pyr1]apelin-13 (APLN, Q9ULZ1) are the predominant endogenous ligands which are cleaved from a 77 amino-acid precursor peptide (APLN, Q9ULZ1) by a so far unidentified enzymatic pathway 450.

Nomenclature HGNC, UniProt Principal transduction Rank order of potency Endogenous agonists (pKi) Radioligands (Kd)
apelin receptor APLNR, P35414 Gi/o [Pyr1]apelin-13 ≥ apelin-13 > apelin-36 443,450 apelin-13 (Selective) (pIC50 8.8 – 9.5) 443,444,448, apelin-17 (Selective) (pIC50 7.9 – 9.02) 442,448, apelin-36 (Selective) (pIC50 8.2 – 8.6) 443,444,446,448, [Pyr1]apelin-13 (Selective) (pIC50 7.0 – 8.8) 446,448 [125I][Nle75,Tyr77]apelin-36 (human) (Agonist, Full agonist) (6.3x10-12 M) 446, [125I][Glp65Nle75,Tyr77]apelin-13 (Agonist, Full agonist) (2.23x10-11 M) 444, [125I](Pyr1)apelin-13 (Agonist, Full agonist) (3x10-10 M) 445, [125I]apelin-13 (Agonist, Full agonist) (7x10-10 M) 443, [3H](Pyr1)[Met(0)11]-apelin-13 (Agonist, Full agonist) (2.7x10-9 M) 448

Comments

Potency order determined for heterologously expressed human APJ receptor (pD2 values range from 9.5 to 8.6). APJ may also act as a co-receptor with CD4 for isolates of human immunodeficiency virus, with apelin blocking this function 441. A modified apelin-13 peptide, apelin-13(F13A) was reported to block the hypotensive response to apelin in rat in vivo 447, however, this peptide exhibits agonist activity in HEK293 cells stably expressing the recombinant APJ receptor 443.

Bile acid receptor

Overview

The bile acid receptor (GPBA) responds to bile acids produced during the liver metabolism of cholesterol. Selective agonists are promising drugs for the treatment of metabolic disorders, such as type II diabetes, obesity and atherosclerosis.

Nomenclature HGNC, UniProt Principal transduction Rank order of potency Selective agonists (pKi)
GPBA receptor GPBAR1, Q8TDU6 Gs 454 lithocholic acid > deoxycholic acid > chenodeoxycholic acid, cholic acid 452,454 betulinic acid (pEC50 5.98) 451, oleanolic acid (pEC50 5.65) 455

Comments

The triterpenoid natural product betulinic acid has also been reported to inhibit inflammatory signalling through the NFκB pathway 456. Disruption of GPBA expression is reported to protect from cholesterol gallstone formation 457. A new series of 5-phenoxy-1,3-dimethyl-1H-pyrazole-4-carboxamides have been reported as highly potent agonists 453.

Bombesin receptors

Overview

Bombesin receptors (nomenclature recommended by the NC-IUPHAR Subcommittee on bombesin receptors, 462) are activated by the endogenous ligands gastrin-releasing peptide (GRP, P07492) (GRP), NMB (NMB, P08949) (NMB) and GRP-(18–27) (GRP, P07492) (previously named neuromedin C). bombesin is a tetradecapeptide, originally derived from amphibians. These receptors couple primarily to the Gq/11 family of G proteins (but see also 463). Activation of BB1 and BB2 receptors causes a wide range of physiological actions, including the stimulation of tissue growth, smooth–muscle contraction, secretion and many central nervous system effects 469. A physiological role for the BB3 receptor has yet to be fully defined although receptor knockout experiments suggest a role in energy balance and the control of body weight 462.

Nomenclature BB1 receptor BB2 receptor BB3 receptor
HGNC, UniProt NMBR, P28336 GRPR, P30550 BRS3, P32247
Principal transduction Gq/11 Gq/11 Gq/11
Endogenous agonists (pKi) NMB (Selective) (8.1 – 10.3) 458,468 gastrin-releasing peptide (Selective) (6.34 – 8.21) 458,468
Selective antagonists (pKi) dNal-cyc(Cys-Tyr-dTrp-Orn-Val)-Nal-NH2, PD 165929 (pKd 8.2) 460, PD 168368 (pIC50 9.24 – 9.6) 459, D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Nal-NH2 (pIC50 6.22 – 6.56) 459,468 [D-Phe6,Cpa14,ψ13–14]bombesin-(6–14), JMV594 (pIC50 8.7 - Mouse) 464,470, Ac-GRP-(20–26)-methylester (pIC50 8.4 - Mouse) 461
Selective agonists (pKi) [D-Tyr6,Apa-4Cl11,Phe13,Nle14]bombesin-(6–14) (8.1) 466
Radioligands (Kd) [125I]BH-NMB, [125I][Tyr4]bombesin [125I]GRP (human), [125I][D-Tyr6]bombesin-(6–13)-methyl ester (Antagonist) (5.3x10-10 M - Mouse) 465, [125I][Tyr4]bombesin (Agonist, Full agonist) (6.31x10-9 M) 458 [125I][D-Tyr6,β-Ala11,Phe13,Nle14]bombesin-(6–14) (Agonist, Full agonist) (1x10-8 – 3.98x10-9 M) 467

Comments

All three subtypes may be activated by [D-Phe6,β-Ala11,Phe13,Nle14]bombesin-(6–14) 467. [D-Tyr6,Apa-4Cl11,Phe13,Nle14]bombesin-(6–14) has more than 200-fold selectivity for BB3 receptors over BB1 and BB2 466.

Bradykinin receptors

Overview

Bradykinin (or kinin) receptors (nomenclature recommended by the NC-IUPHAR subcommittee on bradykinin (kinin) receptors, 478) are activated by the endogenous peptides bradykinin (KNG1, P01042) (BK), [des-Arg9]bradykinin (KNG1, P01042), Lys-BK (kallidin (KNG1, P01042)), [des-Arg10]kallidin (KNG1, P01042), T-kinin (KNG1, P01042) (Ile-Ser-BK), [Hyp3]-BK (KNG1, P01042) and Lys-[Hyp3]-bradykinin (KNG1, P01042). The variation in affinity or inactivity of B2 receptor antagonists could reflect the existence of species homologues of B2 receptors.

Nomenclature B1 receptor B2 receptor
HGNC, UniProt BDKRB1, P46663 BDKRB2, P30411
Principal transduction Gq/11 Gq/11
Rank order of potency [des-Arg10]kallidin > [des-Arg9]bradykinin = kallidin > bradykinin kallidin > bradykinin >> [des-Arg9]bradykinin, [des-Arg10]kallidin
Endogenous agonists (pKi) [des-Arg10]kallidin (KNG1, P01042) (Selective) (9.6 – 10.0) 471,472,477
Selective agonists (pKi) [Sar,D-Phe8,des-Arg9]bradykinin (5.7) 477 [Hyp3,Tyr(Me)8]BK, [Phe8,ψ(CH2-NH)Arg9]BK
Selective antagonists (pKi) R 914 (pA2 8.6) 474, R-715 (pA2 8.5) 475, B-9958 (9.2 – 10.3) 473,480, [Leu9,des-Arg10]kallidin (9.1 – 9.3) 471,472 icatibant (pA2 8.4) 476, FR173657 (pA2 8.2) 481, anatibant (8.2) 479
Radioligands (Kd) [3H]Lys-[Leu8][des-Arg9]BK (Antagonist), [125I]Hpp-desArg10HOE140 (1x10-10 M), [3H]Lys-[des-Arg9]BK (Agonist, Full agonist) (4x10-10 M) [125I][Tyr8]bradykinin, [3H]BK (human, mouse, rat) (Agonist, Full agonist) (3.99x10-10 M - Mouse) 482, [3H]NPC17731 (Antagonist) (3.9x10-10 – 7.7x10-10 M) 483,484

Calcitonin receptors

Overview

Calcitonin (CT), amylin (AMY), calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on CGRP, AM, AMY, and CT receptors, 495,504) are generated by the genes CALCR (which codes for the CT receptor (CTR),) and CALCRL (which codes for the calcitonin receptor-like receptor, CLR, previously known as CRLR,). Their function and pharmacology are altered in the presence of RAMPs (receptor activity-modifying protein), which are single TM domain proteins of ca. 130 amino acids, identified as a family of three members; RAMP1, RAMP2 and RAMP3. There are splice variants of CTR; these in turn produce variants of the AMY receptor 504. The endogenous agonists are the peptides CT (CALCA, P01258), α-CGRP (CALCA, P06881) (formerly known as CGRP-I), β-CGRP (CALCB, P10092) (formerly known as CGRP-II), AMY (IAPP, P10997) (occasionally called islet-amyloid polypeptide, diabetes-associated polypeptide), AM (ADM, P35318) and AM2/IMD (ADM2, Q7Z4H4) (AM2/IMD). There are species differences in peptide sequences, particularly for the CTs. CTR-stimulating peptide (CRSP) is another member of the family with selectivity for the CTR but it is not expressed in humans 497. BIBN4096BS (also known as olcegepant, pKi∼10.5) and MK-0974 (also known as telcagepant, pKi∼9) are the most selective antagonists available, having a high selectivity for CGRP receptors, with a particular preference for those of primate origin.

CLR by itself binds no known endogenous ligand, but in the presence of RAMPs it gives receptors for CGRP, AM and AM2/IMD.

Nomenclature CGRP receptor AM1 receptor AM2 receptor
Subunits RAMP1 (Accessory protein), calcitonin receptor-like receptor RAMP2 (Accessory protein), calcitonin receptor-like receptor RAMP3 (Accessory protein), calcitonin receptor-like receptor
Principal transduction Gs Gs Gs
Rank order of potency α-CGRP > AM ≥ AM2/IMD > AMY ≥ CT (salmon) AM > AMY > α-CGRP, AM2/IMD > CT (salmon) AM ≥ AM2/IMD ≥ α-CGRP > AMY > CT (salmon)
Endogenous agonists (pKi) β-CGRP (9.9 – 11.0) 485,501, α-CGRP (9.7 – 10.0) 485,501 AM (8.3 – 9.2) 485,501 AM (8.3 – 9.0) 485,491
Selective antagonists (pKi) BIBN4096BS (10.2 – 10.7) 489,493,494,500, MK-0974 (9.1) 506 AM-(22-52) (human) (7.0 – 7.8) 485,494,501
Radioligands (Kd) [125I]αCGRP (mouse, rat) (Agonist, Full agonist), [125I]αCGRP (human) (Agonist, Full agonist) (1x10−10 M) [125I]AM (rat) (Agonist, Full agonist) (1x10−10 – 1x10−9 M) [125I]AM (rat) (Agonist, Full agonist) (1x10−10 – 1x10−9 M)
Nomenclature CT receptor AMY1 receptor AMY2 receptor AMY3 receptor
HGNC, UniProt CALCR, P30988
Subunits RAMP1 (Accessory protein), CT receptor RAMP2 (Accessory protein), CT receptor RAMP3 (Accessory protein), CT receptor
Principal transduction Gs Gs Gs Gs
Rank order of potency CT (salmon) ≥ CT ≥ AMY, α-CGRP > AM, AM2/IMD CT (salmon) ≥ AMY ≥ α-CGRP > AM2/IMD ≥ CT > AM Poorly defined CT (salmon) ≥ AMY > α-CGRP ≥ AM2/IMD ≥ CT > AM
Endogenous agonists (pKi) CT (Selective) (pEC50 9.0 – 11.2) 486,487,492,498,499,503 AMY AMY AMY
Radioligands (Kd) [125I]CT (salmon) (Agonist, Full agonist) (1x10−10 M), [125I]CT (human) (Agonist, Full agonist) (1x10−10 – 1x10−9 M) [125I]BH-AMY (rat, mouse) (Agonist, Full agonist) (1x10−10 – 1x10−9 M) [125I]BH-AMY (rat, mouse) (Agonist, Full agonist) (1x10−10 – 1x10−9 M) [125I]BH-AMY (rat, mouse) (Agonist, Full agonist) (1x10−10 – 1x10−9 M)

Comments

It is important to note that a complication with the interpretation of pharmacological studies with AMY receptors in transfected cells is that most of this work has likely used a mixed population of receptors, encompassing RAMP-coupled CTR as well as CTR alone. This means that although in binding assays human CT (CALCA, P01258) has low affinity for 125I-AMY binding sites, cells transfected with CTR and RAMPs can display potent CT functional responses. Transfection of human CTR with any RAMP can generate receptors with a high affinity for both salmon CT and AMY and varying affinity for different antagonists 488,492,493. The insert negative (and major) human CTR splice variant (hCT(a)) with RAMP1 (i.e. the AMY1(a) receptor) has a high affinity for CGRP, unlike hCT(a)–RAMP3 (i.e. AMY3(a) receptor) 488,492. However, the AMY receptor phenotype is RAMP-type, splice variant and cell-line-dependent 507. In particular, CGRP is a more potent agonist than AMY (IAPP, P10997) at increasing cAMP at the delta 47 hCT(a) receptor, when transfected with RAMP1 (to give the corresponding AMY1(a) receptor) in Cos 7 cells 505.

The ligands described represent the best available but their selectivity is limited, apart from BIBN4096BS and MK-0974. For example, AM has appreciable affinity for CGRP receptors. CGRP can show significant cross-reactivity at AMY receptors and AM2 receptors. AM2/IMD also has high affinity for the AM2 receptor 496. CGRP-(8-37) acts as an antagonist of CGRP (pKi ∼8) and inhibits some AM and AMY responses (pKi ∼6–7). It is weak at CT receptors. Salmon CT-(8-32) is an antagonist at both AMY and CT receptors. AC187, a salmon CT analogue, is also an antagonist at AMY and CT receptors. Human AM-(22-52) has some selectivity towards AM receptors, but with modest potency (pKi ∼7), limiting its use 494. AM-(22-52) is slightly more effective at AM1 than AM2 receptors but this difference is not sufficient for this peptide to be a useful discriminator of the AM receptor subtypes.

Ligand responsiveness at CT and AMY receptors can be affected by receptor splice variation and can depend on the pathway being measured. Particularly for AMY receptors, relative potency can vary with the type and level of RAMP present and can be influenced by other factors such as G proteins 502,507.

Gs is a prominent route for effector coupling for CLR and CTR but other pathways (e.g. Ca2+, ERK, Akt), and G proteins can be activated 508. There is evidence that CGRP-RCP (a 148 amino-acid hydrophilic protein, ASL (P04424) is important for the coupling of CLR to adenylyl cyclase 490.

[125I]-Salmon CT is the most common radioligand for CT receptors but it has high affinity for AMY receptors and is also poorly reversible. [125I]-Tyr0-CGRP is widely used as a radioligand for CGRP receptors.

Some early literature distinguished between CGRP1 and CGRP2 receptors. It is now clear that CLCRL/RAMP1 represents the CGRP1 subtype and is now known simply as the CGRP receptor 495. The CGRP2 receptor is now considered to have arisen from the actions of CGRP at AM2 and AMY receptors. This term should not be used 495.

Calcium-sensing receptors

Overview

The calcium-sensing receptor (CaS, provisional nomenclature) responds to extracellular calcium and magnesium in the millimolar range and to gadolinium and some polycations in the micromolar range 509. The sensitivity of CaS to primary agonists can be increased by aromatic L-amino acids 511 and also by elevated extracellular pH 520 or decreased extracellular ionic strength 521.

This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS.

Nomenclature CaS receptor GPRC6 receptor
HGNC, UniProt CASR, P41180 GPRC6A, Q5T6X5
Principal transduction Gq/11, Gi/o, G12/13 523
Amino-acid rank order of potency L-phenylalanine, L-tryptophan, L-histidine > L-alanine > L-serine, L-proline, L-glutamic acid > L-aspartic acid (not L-lysine, L-arginine, L-leucine and L-isoleucine) 511
Cation rank order of potency Gd3+ > Ca2+ > Mg2+ 509
Polyamine rank order of potency spermine > spermidine > putrescine 522
Selective allosteric regulators NPS 89636 (Negative) 515, NPS R-568 (Positive) (pKd 6.5) 517, calindol (Positive) (pKd 6.0 – 6.5) 513, AC265347 (Positive) (pEC50 7.6 – 8.1) 514, cinacalcet (Positive) (pEC50 7.3) 516, calindol (Positive) (pEC50 6.5) 518, NPS 2143 (Negative) (pIC50 7.1 – 7.4) 515,525, calhex 231 (Negative) (pIC50 6.4) 519
Comment 2-benzylpyrrolidine derivatives of NPS 2143 are also negative allosteric modulators of the calcium sensing receptor 525. GPRC6 is a related Gq-coupled receptor which responds to basic amino acids 524,525.

Comments

Positive allosteric modulators of CaS are termed Type II calcimimetics and can suppress parathyroid hormone (PTH (PTH, P01270)) secretion 517. Negative allosteric modulators are called calcilytics and can act to increase PTH (PTH, P01270) secretion 515.

The central role of CaS in the maintenance of extracellular calcium homeostasis is seen most clearly in patients with loss-of-function CaS mutations who develop familial hypocalciuric hypercalcaemia (heterozygous mutation) or neonatal severe hyperparathyroidism (homozygous mutation) and in CaS null mice 510,512, which exhibit similar increases in PTH secretion and blood Ca2+ levels. A gain-of-function mutation in the CaS gene is associated with autosomal dominant hypocalcaemia.

Cannabinoid receptors

Overview

Cannabinoid receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on Cannabinoid Receptors; 542) are activated by endogenous ligands that include N-arachidonoylethanolamine (anandamide), N-homo-γ-linolenoylethanolamine, N-docosatetra-7,10,13,16-enoylethanolamine and 2-arachidonoylglycerol. Potency determinations of endogenous agonists at these receptors are complicated by the possibility of differential susceptibility of endogenous ligands to enzymatic conversion 526.

Nomenclature CB1 receptor CB2 receptor
HGNC, UniProt CNR1, P21554 CNR2, P34972
Principal transduction Gi/o Gi/o
(Sub)family-selective agonists (pKi) CP55940 550, Δ9-tetrahydrocannabinol 550, HU-210 530, WIN55212-2 550 CP55940 550, Δ9-tetrahydrocannabinol 550, HU-210 530, WIN55212-2 550
Selective agonists (pKi) arachidonyl-2-chloroethylamide (8.9 - Rat) 533, arachidonylcyclopropylamide (8.7 - Rat) 533, O-1812 (8.5 - Rat) 528, R-(+)-methanandamide (7.7 - Rat) 537 JWH-133 (8.5) 535,541, AM1241 (8.1) 555, L-759,633 (7.7 – 8.2) 531,548, L-759,656 (7.7 – 7.9) 531,548, HU-308 (7.6) 532
Selective antagonists (pKi) rimonabant (7.9 – 8.7) 529,530,545,549,550, AM251 (8.1 - Rat) 539, AM281 (7.9 - Rat) 538, LY320135 (6.9) 529 SR144528 (8.3 – 9.2) 546,548, AM630 (7.5) 548
Radioligands (Kd) [3H]rimonabant (Antagonist) (1x10−10 – 1.2x10−9 M - Rat) 527,534,536,543,547,551,554

Comments

Both CB1 and CB2 receptors may be labelled with [3H]CP55940 (0.5 nM; 550) and [3H]WIN55212-2 (2–2.4 nM; 552,553). anandamide is also an agonist at vanilloid receptors (TRPV1) and PPARs 540,556. There is evidence for an allosteric site on the CB1 receptor 544. All of the compounds listed as antagonists behave as inverse agonists in some bioassay systems 542. For some cannabinoid receptor ligands, additional pharmacological targets that include GPR55 and GPR119 have been identified 542. Moreover, GPR18, GPR55 and GPR119, although showing little structural similarity to CB1 and CB2 receptors, respond to endogenous agents that are structurally similar to the endogenous cannabinoid ligands 542.

Chemerin receptor

Overview

The chemerin receptor is activated by the lipid-derived, anti-inflammatory ligand resolvin E1 (RvE1), which is the result of sequential metabolism of EPA by aspirin-modified cyclooxygenase and lipoxygenase 557,558. In addition, 2 GPCRs for resolvin D1 (RvD1) have been identified, FPR2/ALX, the lipoxin A4 receptor, and GPR32, an orphan receptor 559.

Nomenclature HGNC, UniProt Principal transduction Rank order of potency Selective agonists (pKi) Radioligands (Kd) Comment
chemerin receptor CMKLR1, Q99788 Not yet established resolvin E1 > chemerin C-terminal peptide > 18R-HEPE > EPA 557 resolvin E1 [3H]resolvin E1 (Agonist) (1.1x10−8 M) 557,558 NC-IUPHAR has issued a recommendation for a formal nomenclature change for this receptor from CMKLR1 to ‘chemerin receptor’ based on new pairings with chemerin 560562.

Chemokine receptors

Overview

Chemokine receptors (nomenclature agreed by NC-IUPHAR Subcommittee on Chemokine Receptors, 600,601) comprise a large subfamily of 7TM proteins that bind one or more chemokines, a large family of small cytokines typically possessing chemotactic activity for leukocytes. Chemokine receptors can be divided by function into two main groups: G protein-coupled chemokine receptors, which mediate leukocyte trafficking, and “Atypical chemokine receptors”, which may signal through non-G protein-coupled mechanisms and act as chemokine scavengers to downregulate inflammation or shape chemokine gradients.

Chemokines in turn can be divided by structure into four subclasses by the number and arrangement of conserved cysteines. CC (also known as β-chemokines; n = 28), CXC (also known as α-chemokines; n = 17) and CX3C (n = 1) chemokines all have four conserved cysteines, with zero, one and three amino acids separating the first two cysteines respectively. C chemokines (n = 2) have only the second and fourth cysteines found in other chemokines. Chemokines can also be classified by function into homeostatic and inflammatory subgroups. Most chemokine receptors are able to bind multiple high-affinity chemokine ligands, but the ligands for a given receptor are almost always restricted to the same structural subclass. Most chemokines bind to more than one receptor subtype. Receptors for inflammatory chemokines are typically highly promiscuous with regard to ligand specificity, and may lack a selective endogenous ligand. G protein-coupled chemokine receptors are named acccording to the class of chemokines bound, whereas ACKR is the root acronym for atypical chemokine receptors. Listed are those human agonists with EC50 values <50 nM in either Ca2+ flux or chemotaxis assays at human recombinant G protein-coupled chemokine receptors expressed in mammalian cell lines. There can be substantial cross-species differences in the sequences of both chemokines and chemokine receptors, and in the pharmacology and biology of chemokine receptors. Endogenous and microbial non-chemokine ligands have also been identified for chemokine receptors. Many chemokine receptors function as HIV co-receptors, but CCR5 is the only one demonstrated to play an essential role in HIV/AIDS pathogenesis. The tables include both standard chemokine receptor names 628 and the most commonly used aliases. Numerical data quoted are typically pKi or pIC50 values from radioligand binding to heterologously expressed receptors.

Nomenclature CCR1 CCR2 CCR3 CCR4 CCR5
HGNC, UniProt CCR1, P32246 CCR2, P41597 CCR3, P51677 CCR4, P51679 CCR5, P51681
Principal transduction Gi/o Gi/o Gi/o Gi/o Gi/o
Endogenous agonists (pKi) CCL13, CCL8, CCL3 (7.8 – 10.2) 571,572,588,630, CCL23 (Selective) (8.9) 571, CCL7 (8.1) 571,583, CCL5 (6.8 – 8.2) 572,588, CCL14 (7.4) 571, CCL15 (Selective) (pIC50 7.9) 573 CCL16, CCL2 (pIC50 9.3 – 10.2) 573,595,598,605,615, CCL13 (pIC50 8.6 – 8.7) 595,615, CCL7 (pIC50 8.4 – 8.7) 573,595,615, CCL11 (Partial agonist) (pIC50 7.1 – 7.7) 595,605 CCL28, CCL8, CCL7 (8.6 – 9.2) 575, CCL13 (pIC50 8.7 – 10.3) 599,615, CCL11 (Selective) (pIC50 8.7 – 9.0) 577,591,599,610,615, CCL24 (Selective) (pIC50 8.0 – 9.4) 599,605, CCL15 (pIC50 8.6) 573, CCL26 (Selective) (pIC50 7.9 – 8.9) 591,599,605 CCL22 (Selective) (pIC50 9.2) 589, CCL17 (Selective) (pIC50 8.7) 589 CCL16, CCL4 (Selective) (9.4 – 9.6) 602,609, CCL5 (9.2 – 9.7) 566,602,609, CCL8 (9.3) 609, CCL3 (8.0 – 8.9) 602,609,630, CCL2 (7.5) 602, CCL14 (7.2) 602, CCL11 (pIC50 7.7) 570
Selective agonists (pKi) CCL11 {Sp: Mouse} (9.5 – 10.0) 575 R5-HIV-1 gp120
Non-selective agonists (pKi) vMIP-III
Endogenous antagonists (pKi) CCL4 (Selective) (7.1 – 7.8) 571,572 CCL26 (Selective) (pIC50 8.5) 605 CXCL10 (Selective), CXCL11 (CXCL11, O14625) (Selective), CXCL9 (Selective) CCL7 (Selective) (7.5) 602
Selective antagonists (pKi) CP-481,715 (pKd 8.0) 579, BX 471 (8.2 – 9.0) 593, 2b-1 (pIC50 8.7) 603, UCB35625 (pIC50 8.0) 610 GSK Compound 34 (7.6) banyu (I) (Inverse agonist) (8.5) 617, SB328437 (8.4), BMS compound 87b (8.1) 616 MRK-1, vicriviroc (9.1) 613, aplaviroc (8.5) 596, ancriviroc (7.8 – 8.7) 596,604,613, TAK-779 (7.5) 596, E913 (pIC50 8.7) 597, maraviroc (pIC50 8.1) 602
Radioligands (Kd) [125I]CCL7 (human) (Agonist, Full agonist) (7x10-10 M) 568, [125I]CCL3 (human) (Agonist, Full agonist) (1.58x10-9 – 1x10-8 M) 568,580,611, [125I]CCL5 (human) (Agonist, Full agonist) (7x10-9 M) 611 [125I]CCL2 (Agonist, Full agonist), [125I]CCL7 (human) (Agonist) [125I]CCL5 (human) (Agonist), [125I]CCL7 (human) (Agonist), [125I]CCL11 (human) (Antagonist) (5.01x10-9 M) 617 [125I]CCL17 (Agonist, Full agonist), [125I]CCL27 (Agonist) [125I]CCL3 (human) (Agonist), [125I]CCL5 (human) (Agonist), [125I]CCL8 (human) (Agonist), [125I]CCL4 (human) (Agonist, Full agonist) (2.51x10-10 M) 602
Comment Monoclonal antibody mogamulizumab selectively blocks CCR4
Nomenclature CCR6 CCR7 CCR8 CCR9 CCR10
HGNC, UniProt CCR6, P51684 CCR7, P32248 CCR8, P51685 CCR9, P51686 CCR10, P46092
Principal transduction Gi/o Gi/o Gi/o Gi/o Gi/o
Endogenous agonists (pKi) beta-defensin 4A (DEFB4A, DEFB4B, O15263) (Selective) 625, CCL20 (pIC50 7.9 – 8.5) 564,565,606 CCL21 (Selective) (pIC50 9.3) 627, CCL19 (Selective) (pIC50 7.7 – 9.0) 626,627 CCL8 (Mouse), CCL1 (Selective) (pIC50 8.5 – 9.8) 574,585,590 CCL25 (Selective) CCL27 (Selective), CCL28 (Selective)
Selective agonists (pKi) vMIP-I (pIC50 8.9 – 9.9) 574,590
Selective antagonists (pKi) vMCC-I (pIC50 9.4) 574
Radioligands (Kd) [125I]CCL20 (Agonist, Full agonist) (∼1x10-10 M) 582 [125I]CCL19 (Agonist, Full agonist), [125I]CCL21 (Agonist, Full agonist) [125I]CCL1 (human) (Agonist, Full agonist) (2.13x10-10 – 1.2x10-9 M) 590,608 [125I]CCL25 (Agonist, Full agonist)
Nomenclature CXCR1 CXCR2 CXCR3 CXCR4 CXCR5 CXCR6
HGNC, UniProt CXCR1, P25024 CXCR2, P25025 CXCR3, P49682 CXCR4, P61073 CXCR5, P32302 CXCR6, O00574
Principal transduction Gi/o Gi/o Gi/o Gi/o Gi/o Gi/o
Endogenous agonists (pKi) CXCL8 (8.8 – 9.5) 569,584,592,622,623, CXCL6 (7.0) 624 CXCL6 (pKd 7.0) 624, CXCL8 (8.8 – 9.5) 569,584,592,622,623, CXCL1 (Selective) (8.4 – 9.7) 584,592,623, CXCL3 (Selective) (pIC50 7.8 – 9.2) 563, CXCL2 (Selective) (pIC50 7.0 – 9.1) 563, CXCL5 (Selective) (pIC50 6.9 – 9.0) 563, CXCL7 (Selective) (pIC50 6.3 – 9.3) 563 CXCL11 (Selective) (10.4 – 10.5) 586, CXCL10 (Selective) (7.8 – 9.8) 586,619, CXCL9 (Selective) (7.3 – 8.3) 586,619 SDF-1α (Selective) (pKd 7.7 – 8.2) 587,594, SDF-1β (Selective) (pKd 7.86) 587 CXCL13 (Selective) CXCL16 (Selective) (pKd 9.0) 621
Endogenous antagonists (pKi) CCL11 (Selective) (7.2) 619, CCL7 (Selective) (6.6) 619
Selective agonists (pKi) X4-HIV-1 gp120, ALX40-4C (Partial agonist) (pIC50 6.1) 629
Non-selective agonists (pKi) vCXCL-1
Selective antagonists (pKi) SB 225002 (pIC50 7.7) 620 HIV-Tat, plerixafor (7.0) 629, T134 (pIC50 8.4) 614
Radioligands (Kd) [125I]CXCL8 (human) (Agonist, Full agonist) (2.51x10-10 – 1.2x10-9 M) 584,607 [125I]CXCL1 (Agonist, Full agonist), [125I]CXCL5 (Agonist, Full agonist), [125I]CXCL7 (Agonist, Full agonist), [125I]CXCL8 (human) (Agonist, Full agonist) (3.98x10-10 – 1.02x10-9 M) 584,607 [125I]CXCL10 (Agonist, Full agonist), [125I]CXCL11 (Agonist, Full agonist) [125I]SDF-1α (human) (Agonist, Full agonist) (3.98x10-9 – 7.94x10-9 M) 576,587 [125I]CXCL16 (Agonist, Full agonist)
Nomenclature CX3CR1 XCR1 DARC
HGNC, UniProt CX3CR1, P49238 XCR1, P46094 DARC, Q16570
Principal transduction Gi/o Gi/o not defined
Endogenous agonists (pKi) CX3CL1 (Selective) (pIC50 8.9) 578 XCL1 (Selective), XCL2 (Selective)
Endogenous ligands CXCL5, CXCL6, CXCL8, CXCL11, CCL2, CCL5, CCL7, CCL11, CCL14, CCL17
Selective agonists (pKi) SEAP-XCL1
Radioligands (Kd) [125I]CX3CL1 (human) (Agonist, Full agonist)
Comment When fused with secreted alkaline phophatase (SEAP), XCL1 functions as a probe at XCR1
Nomenclature ACKR2 ACKR3 ACKR4 CCRL2
HGNC, UniProt ACKR2, O00590 ACKR3, P25106 ACKR4, Q9NPB9 CCRL2, O00421
Principal transduction arrestin arrestin not defined not defined
Endogenous agonists (pKi) CXCL11, SDF-1α (pEC50 7.52 – 7.9) 581,612 CCL19 (8.4) 618, CCL25 (7.6) 618, CCL21 (6.9) 618
Endogenous ligands CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL14, CCL17, CCL22 chemerin C-terminal peptide, CCL19 567

Comments

Mouse Cxcr binds iodinated mouse KC (CXCL1) and mouse MIP-2 (CXCL2) with high affinity (mouse KC and MIP-2 are homologues of human CXCL1 (CXCL1, P09341), CXCL2 (CXCL2, P19875) and CXCL3 (CXCL3, P19876)), but shows low affinity for human IL-8 (CXCL8 (IL8, P10145)).

Specific chemokine receptors facilitate cell entry by microbes, such as ACKR1 for Plasmodium vivax, and CCR5 for HIV-1. Virally encoded chemokine receptors are known (e.g. US28, a homologue of CCR1 from human cytomegalovirus and ORF74, which encodes a homolog of CXCR2 in Herpesvirus saimiri and Herpesvirus-68), but their role in viral life cycles is not established. Viruses can exploit or subvert the chemokine system by producing chemokine antagonists and scavengers.

The CC chemokine family (CCL1–28) includes I309 (CCL1 (CCL1, P22362)), MCP-1 (CCL2 (CCL2, P13500)), MIP-1α (CCL3 (CCL3, P10147)), MIP-1β (CCL4 (CCL4, P13236)), RANTES (CCL5 (CCL5, P13501)), MCP-3 (CCL7 (CCL7, P80098)), MCP-2 (CCL8 (CCL8, P80075)), eotaxin (CCL11 (CCL11, P51671)), MCP-4 (CCL13 (CCL13, Q99616)), HCC-1 (CCL14 (CCL14, Q16627)), Lkn-1/HCC-2 (CCL15 (CCL15, Q16663)), TARC (CCL17 (CCL17, Q92583)), ELC (CCL19 (CCL19, Q99731)), LARC (CCL20 (CCL20, P78556)), SLC (CCL21 (CCL21, O00585)), MDC (CCL22 (CCL22, O00626)), MPIF-1 (CCL23 (CCL23, P55773)), eotaxin-2 (CCL24 (CCL24, O00175)), TECK (CCL25 (CCL25, O15444)), eotaxin (CCL26 (CCL26, Q9Y258)), eskine/CTACK (CCL27 (CCL27, Q9Y4X3)) and MEC (CCL28 (CCL28, Q9NRJ3)). The CXC chemokine family (CXCL1–17) includes GROα (CXCL1 (CXCL1, P09341)), GROβ (CXCL2 (CXCL2, P19875)), GROγ (CXCL3 (CXCL3, P19876)), platelet factor 4 (CXCL4 (PF4, P02776)), ENA78 (CXCL5 (CXCL5, P42830)), GCP-2 (CXCL6 (CXCL6, P80162)), NAP-2 (CXCL7 (PPBP, P02775)), IL-8 (CXCL8 (IL8, P10145)), MIG (CXCL9 (CXCL9, Q07325)), IP10 (CXCL10 (CXCL10, P02778)), I-TAC (CXCL11 (CXCL11, O14625)), SDF-1 (CXCL12, i.e. SDF-1α (CXCL12, P48061) and SDF-1β (CXCL12, P48061)), BLC (CXCL13 (CXCL13, O43927)), BRAK (CXCL14 (CXCL14, O95715)), mouse lungkine (CXCL15) SR-PSOX (CXCL16 (CXCL16, Q9H2A7)) and CXCL17 (CXCL17, Q6UXB2). The CX3C chemokine (CX3CL1 (CX3CL1, P78423)) is also known as fractalkine (neurotactin in the mouse). Like CXCL16 (CXCL16, Q9H2A7), and unlike other chemokines, CX3CL1 (CX3CL1, P78423) is multimodular containing a chemokine domain, an elongated mucin-like stalk, a transmembrane domain and a cytoplasmic tail. Both plasma membrane-associated and shed forms have been identified. The C chemokine (XCL1 (XCL1, P47992)) is also known as lymphotactin. Two chemokine receptor antagonists have now been approved by the FDA: the CCR5 antagonist maraviroc (Pfizer) for treatment of HIV/AIDS in patients with CCR5-using strains; and the CXCR4 antagonist plerixafor (Plerixifor, from Sanofi) for hematopoietic stem cell mobilization with G-CSF (CSF3, P09919) in patients undergoing transplantation in the context of chemotherapy for lymphoma and multiple myeloma.

Cholecystokinin receptors

Overview

Cholecystokinin receptors (nomenclature recommended by the NC-IUPHAR Subcommittee on CCK receptors, 644) are activated by the endogenous peptides cholecystokinin-4 (CCK-4 (CCK, P06307)), CCK-8 (CCK, P06307), CCK-33 (CCK, P06307) and gastrin (gastrin-17 (GAST, P01350)). There are only two distinct subtypes of CCK receptors, CCK1 and CCK2 receptors, with some alternatively spliced forms most often identified in neoplastic cells. The CCK receptor subtypes are distinguished by their peptide selectivity, with the CCK1 receptor requiring the carboxyl-terminal heptapeptide-amide that includes a sulfated tyrosine for high affinity and potency, while the CCK2 receptor requires only the carboxyl-terminal tetrapeptide shared by both CCK and gastrin peptides. These receptors have characteristic and distinct distributions, with both present in both the central nervous system and peripheral tissues.

Nomenclature CCK1 receptor CCK2 receptor
HGNC, UniProt CCKAR, P32238 CCKBR, P32239
Principal transduction Gq/11/Gs Gs
Rank order of potency CCK-8 >> gastrin-17, CCK-8 (desulphated) > CCK-4 CCK-8 ≥ gastrin-17, CCK-8 (desulphated), CCK-4
Endogenous agonists (pKi) CCK-8 (desulphated) (pIC50 8.3 – 8.7) [14], CCK-4 (pIC50 7.5) 636
Selective agonists (pKi) A-71623 (pIC50 8.4 - Rat) [2], JMV180 (pIC50 8.3) 639, GW-5823 (pIC50 7.6) 633 RB-400 (9.1 - Rat) [3], PBC-264 (pIC50 9.1 – Rat) 638, gastrin-17 (pIC50 8.3 - Mouse) 634
Selective antagonists (pKi) devazepide (pIC50 9.7 - Rat) [8], T-0632 (pIC50 9.6 - Rat) 650, PD-140548 (pIC50 8.6 - Rat) 647, lintitript (pIC50 8.3) 632, lorglumide (pIC50 6.7 – 8.2 - Rat) 634,637 YF-476 (pIC50 9.7) [4,24], GV150013 (pIC50 9.4) 651, L-740093 (pIC50 9.2) 643, YM-022 (pIC50 9.2) 643, JNJ-26070109 (pIC50 8.5) 642, L-365260 (pIC50 8.4) 640, RP73870 (pIC50 8.0 - Rat) 641, LY262691 (pIC50 7.5 - Rat) 646
Radioligands(Kd) [3H]devazepide (Antagonist) (2x10-10 M) [5] [3H]L365260 (Antagonist) (2.9x10-9 – 5.7x10-9 M) [17], [3H]PD140376 (Antagonist) (Ki 1x10-10 – 2x10-10 M – Guinea pig) 635, [125I]PD142308 (Antagonist) (Ki 2.5x10-10 M), [125I]-BDZ2 (Antagonist) (Ki 3.98x10-9 M) 631, [125I]DTyr-Gly-[(Nle28,31)CCK-26-33 (Agonist, Full agonist) (IC50 1x10-9 M) 645, [125I]gastrin (Agonist, Full agonist) (IC50 1x10-9 M), [3H]gastrin (Agonist, Full agonist) (IC50 1x10-9 M)

Comments

While a cancer-specific CCK receptor has been postulated to exist, which also might be responsive to incompletely processed forms of CCK (Gly-extended forms), this has never been isolated. An alternatively spliced form of the CCK2 receptor in which intron 4 is retained, adding 69 amino acids to the intracellular loop 3 (ICL3) region, has been described to be present particularly in certain neoplasms where mRNA mis-splicing has been commonly observed 648, but it is not clear that this receptor splice form plays a special role in carcinogenesis. Another alternative splicing event for the CCK2 receptor was reported 649, with alternative donor sites in exon 4 resulting in long (452 amino acids) and short (447 amino acids) forms of the receptor differing by five residues in ICL3, however, no clear functional differences have been observed.

Complement peptide receptors

Formerly known as: Anaphylatoxin receptors

Overview

Complement peptide receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Complement peptide receptors, see 665) are activated by the endogenous ∼75 amino-acid anaphylatoxin polypeptides C3a (C3, P01024). C4a (C4A, P0C0L4) and C5a (C5, P01031), generated upon stimulation of the complement cascade.

Nomenclature C3a receptor C5a1 receptor C5a2 receptor
HGNC, UniProt C3AR1, Q16581 C5AR1, P21730 C5AR2, Q9P296
Principal transduction Gi/o, Gz Gi/o, Gz, G16 (Buhl et al., 1993)
Rank order of potency C3a > C5a 653 C5a, C5a des-Arg (C5) > C3a 653
Endogenous agonists (pKi) RP-S19 (RPS19, P39019) 675
Selective agonists (pKi) E7 (pEC50 8.7) 654 N-methyl-Phe-Lys-Pro-D-Cha-Cha-D-Arg-CO2H (pIC50 7.6) 664,666
Selective antagonists (pKi) SB290157 (pIC50 7.6) 652 CHIPS (pKd 9.0) 670, W54011 (8.7) 672, AcPhe-Orn-Pro-D-Cha-Trp-Arg (pIC50 7.9) 674, N-methyl-Phe-Lys-Pro-D-Cha-Trp-D-Arg-CO2H (pIC50 7.2) 666
Radioligands (Kd) [125I]C3a (human) (Agonist, Full agonist) (3.85x10-9 M) 657 [125I]C5a (human) (Agonist, Full agonist) (2x10-9 M) 661 [125I]C5a (human) (Agonist, Full agonist)
Comment Binds C5a complement factor, but appears to lack G protein signalling and has been termed a decoy receptor 671

Comments

SB290157 has also been reported to have agonist properties at the C3a receptor 668. The putative chemoattractant receptor termed C5a2 (also known as GPR77, C5L2) binds [125I]C5a with no clear signalling function, but has a putative role opposing inflammatory responses 656,658,659. Binding to this site may be displaced with the rank order C5a des-Arg (C5)> C5a (C5, P01031) 656,669 while there is controversy over the ability of C3a (C3, P01024) and C3a des Arg (C3, P01024) to compete 660,662,663,669. C5a2 appears to lack G protein signalling and has been termed a decoy receptor 671. However, C5a2 does recruit β-arrestin after ligand binding, which might provide a signaling pathway for this receptor 655,673. There are also reports of pro-inflammatory activity of C5a2, mediated by HMGB1, but the signaling pathway that underlies this is currently unclear (reviewed in 667).

Corticotropin-releasing factor receptors

Overview

Corticotropin-releasing factor (CRF, nomenclature as recommended by the NC-IUPHAR sub-committee on Corticotropin-releasing Factor Receptors, 682) receptors are activated by the endogenous peptides CRF (CRH, P06850), a 41 amino-acid peptide, urocortin 1 (UCN, P55089), 40 amino-acids), urocortin 2 (UCN2, Q96RP3), 38 amino-acids) and urocortin 3 (UCN3, Q969E3), 38 amino-acids). CRF1 and CRF2 receptors are activated non-selectively by CRF (CRH, P06850) and urocortin 1 (UCN, P55089). Binding to CRF receptors can be conducted using [125I]Tyr0-CRF or [125I]Tyr0-sauvagine with Kd values of 0.1–0.4 nM. CRF1 and CRF2 receptors are non-selectively antagonized by α-helical CRF, D-Phe-CRF-(12-41) and astressin.

Nomenclature CRF1 receptor CRF2 receptor
HGNC, UniProt CRHR1, P34998 CRHR2, Q13324
Principal transduction Gs Gs
Endogenous agonists urocortin 2 (Selective) (pKd 8.5 – 8.6) 679, urocortin 3 (Selective) (pKd 7.9 – 8.0) 679
Selective antagonists (pKi) SSR125543A (8.7) 681, antalarmin (8.3 – 9.0) 688, DMP696 (8.3 – 9.0) 683, NBI27914 (8.3 – 9.0) 677, R121919 (8.3 – 9.0) 689, CP 154,526 (pIC50 9.3 – 10.4 - Rat) 685, CP376395 (pIC50 8.3 - Rat) 678, CRA1000 (pIC50 6.4 – 7.1) 676 antisauvagine (pKd 8.8 – 9.6) 680, K41498 (9.2) 684, K31440 (8.7 – 8.8) 687

Comments

A CRF binding protein has been identified (CRHBP, P24387) to which both CRF and urocortin 1 bind with high affinities, which has been suggested to bind and inactivate circulating CRF 686.

Dopamine receptors

Overview

Dopamine receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on Dopamine Receptors, 723) are commonly divided into D1-like (D1 and D5) and D2-like (D2, D3 and D4) families, where the endogenous agonist is dopamine.

Nomenclature D1 receptor D5 receptor D2 receptor D3 receptor D4 receptor
HGNC, UniProt DRD1, P21728 DRD5, P21918 DRD2, P14416 DRD3, P35462 DRD4, P21917
Principal transduction Gs, Golf Gs Gi/o Gi/o Gi/o
(Sub)family-selective agonists (pKi) A68930 (pEC50 6.82) 712 A68930 (pEC50 6.6) 712 quinpirole (4.9–7.7) 693,706,713,724,725,729 quinpirole (6.4–8.0) 693,706,710,713,724,725,729 quinpirole (7.5) 709,713,729
Selective agonists (pKi) SKF-81297 (8.7 - Rat) 691, SKF-38393 (6.2–6.8) 726,727 sumanirole (8.1) 705 PD 128907 (7.6–7.7) 715,720 PD168,077 (Partial agonist) (8.8 - Rat) 700, A412997 (8.1 - Rat) 711
(Sub)family-selective antagonists (pKi) SKF-83556 (9.5) 726, SCH-23390 (7.4–9.5) 726,727, ecopipam (8.3) 728 SKF-83556 (9.4) 726, SCH-23390 (7.5–9.5) 726, ecopipam (8.3) 726 haloperidol (7.4–8.8) 695,704,706,724,728 haloperidol (7.5–8.0) 695,724,728 haloperidol (8.7) 703,728
Selective antagonists (pKi) L-741,626 (7.9–8.5) 696,701, domperidone (7.9–8.4) 695,724, raclopride (8.0) 710 S33084 (9.6) 708, nafadotride (9.52) 721, PG01037 (9.2) 697, NGB 2904 (8.8) 730, SB 277011-A (8.0) 716, (+)-S-14297 (7.9) 707 L745870 (9.4) 701, sonepiprazole (8.9) 722, L741742 (8.5) 719
(Sub)family-selective radioligands (Kd) [3H]SCH-23390 (Antagonist) (3x10−10 M) 732 [3H]SCH-23390 (Antagonist) (5.8x10−10 M) 717 [3H]spiperone (Antagonist) (5.7x10−11 M - Rat) 692,699,731 [3H]spiperone (Antagonist) (3x10−10 M) 698,729
Radioligands (Kd) [125I]SCH23982 (Antagonist) (3.5x10−10 M) 694 [125I]SCH23982 (Antagonist) (8x10−10 M) [3H]raclopride (Antagonist) (1.2x10−9 M - Rat) 702 [3H]spiperone (Antagonist) (1.25x10−10 M - Rat) 699,731, [3H]7-OH-DPAT (Agonist) (2.7x10−10 M) 718, [3H]PD128907 (Agonist) (9.9x10−10 M) 690 [125I]L750667 (Antagonist) (1.6x10−10 M) 713, [3H]NGD941 (Antagonist) (5x10−9 M) 714
Comment A68930 is an agonist with selectivity for D1-like receptors 712., SCH-23390 (pKi 9.5) 726, SKF-83556 (pKi 9.3) 726 and ecopipam (pKi 8.3) 728 are antagonists with selectivity for D1-like receptors A68930 is an agonist with selectivity for D1-like receptors 712., SCH-23390 (pKi 9.5) 726, SKF-83556 (pKi 9.3) 726 and ecopipam (pKi 8.3) 728 are antagonists with selectivity for D1-like receptors quinpirole is an agonist with selectivity for D2-like receptors 729 quinpirole is an agonist with selectivity for D2-like receptors 729 quinpirole is an agonist with selectivity for D2-like receptors 729

Comments

The selectivity of many of these agents is less than two orders of magnitude. [3H]raclopride exhibits similar high affinity for D2 and D3 receptors (low affinity for D4), but has been used to label D2 receptors in the presence of a D3-selective antagonist. [3H]7-OH-DPAT has similar affinity for D2 and D3 receptors, but labels only D3 receptors in the absence of divalent cations. The pharmacological profile of the D5 receptor is similar to, yet distinct from, that of the D1 receptor. The splice variants of the D2 receptor are commonly termed D2S and D2L (short and long). The DRD4 gene encoding the D4 receptor is highly polymorphic in humans, with allelic variations of the protein from amino acid 387 to 515.

Endothelin receptors

Overview

Endothelin receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on endothelin receptors, 736) are activated by the endogenous 21 amino-acid peptides endothelins 1–3 (ET-1 (EDN1, P05305), ET-2 (EDN2, P20800) and ET-3 (EDN3, P14138)).

Nomenclature ETA receptor ETB receptor
HGNC, UniProt EDNRA, P25101 EDNRB, P24530
Principal transduction Gq/11, Gs Gq/11, Gi/o
Family selective agonists ET-1 = ET-2 > ET-3 744 ET-1 = ET-2, ET-3
(Sub)family-selective antagonists (pKi) TAK 044 (pA2 8.4 - Rat) 755, bosentan (pA2 7.2 - Rat) 735, SB209670 (pKB 9.4 - Rat) 739
Selective agonists (pKi) sarafotoxin S6c (pKd 8.8–9.8) 743,752, [Ala1,3,11,15]ET-1 (pKd 8.7–9.2) 747, BQ 3020 (9.7) 751, IRL 1620 (8.7) 754
(Sub)family-selective antagonists (pKi) TAK 044 (pA2 8.4 - Rat) 755, bosentan (pA2 6.0 - Rat) 735, SB209670 (pKB 9.4 - Rat) 739
Selective antagonists (pKi) A127722 (pA2 9.2–10.5) 749, BQ123 (pA2 6.9–7.4) 744, ambrisentan (pA2 7.1) 733, PD-156707 (pKd 9.0–9.8) 745, FR139317 (Inverse agonist) (pIC50 7.3–7.9) 744 A192621 (pKd 8.1) 753, BQ788 (pKd 7.9–8.0) 752, IRL 2500 (pKd 7.2) 752, RO4868443 (pIC50 7.2) 734
Radioligands (Kd) [125I]PD164333 (Antagonist) (1.58x10−10–2.5x10−10 M) 737, [3H]S0139 (Antagonist) (6x10−10 M), [125I]PD151242 (Antagonist) (7.9x10−10–1x10−9 M) 738, [3H]BQ123 (Antagonist) (3.2x10−9 M) 742 [125I]IRL1620 (Agonist, Full agonist) (7.9x10−11–1.26x10−10 M) 748, [125I][Ala1,3,11,15]ET-1 (Agonist, Full agonist) (2x10−10 M) 747, [125I]BQ3020 (Agonist, Full agonist) (1x10−10–5x10−9 M) 740,747,750

Comments

Splice variants of the ETA receptor have been identified in rat pituitary cells; one of these, ETAR-C13, appeared to show loss of function with comparable plasma membrane expression 741. Subtypes of the ETB receptor have been proposed, although gene disruption studies in mice suggest that the heterogeneity results from a single gene product 746.

Estrogen (G protein-coupled) receptor

Overview

The G protein-coupled estrogen receptor (GPER, provisional nomenclature) was identified following observations of estrogen-evoked cAMP signalling in breast cancer cells 756, which mirrored the differential expression of an orphan 7-transmembrane receptor GPR30 758. There are observations of both cell-surface and intracellular expression of the GPER receptor 763,764.

Nomenclature HGNC, UniProt Principal transduction Selective agonists (pKi) Selective antagonists (pKi) Radioligands (Kd)
GPER GPER1, Q99527 Gs 761, Gi/o 763 G-1 (8.0) 757 G36 (pIC50 6.78–6.95) 760, G15 (pIC50 6.7) 759 [3H]17β-estradiol (Agonist, Full agonist) (2.7x10−9–3.3x10−9 M) 764

Comments

Antagonists at the nuclear estrogen receptor, such as fulvestrant and tamoxifen 761, as well as the flavonoid ‘phytoestrogens’ genistein and quercetin 762, are agonists at GPER receptors.

Formylpeptide receptors

Overview

The formylpeptide receptors, nomenclature agreed by NC-IUPHAR Subcommittee on the formyl peptide receptor family, 787) respond to exogenous ligands such as the bacterial product fMet-Leu-Phe (fMLP) and endogenous ligands such as annexin I (ANXA1, P04083), cathepsin G (CTSG, P08311), amyloid β42, serum amyloid A and spinorphin, derived from β-haemoglobin (HBB, P68871).

Nomenclature FPR1 FPR2/ALX FPR3
HGNC, UniProt FPR1, P21462 FPR2, P25090 FPR3, P25089
Principal transduction Gi/o, Gz Gi 778
Rank order of potency fMet-Leu-Phe > cathepsin G (CTSG, P08311) > annexin I 776,783 LXA4=aspirin triggered lipoxin A4=ATLa2>LTC4=LTD4>>15-deoxy-LXA4>>fMet-Leu-Phe 765,766,768,770,784
Selective agonists (pKi) fMet-Leu-Phe (pEC50 10.1–10.2) 769,782
Endogenous antagonists (pKi) spinorphin (Selective) (pIC50 4.3) 777,780 aspirin triggered lipoxin A4 (Selective), LXA4 (Selective) (pEC50 ∼12.0) 775, resolvin D1 (Selective) (pEC50 ∼11.9) 775
Endogenous agonists(pKi) F2L (HEBP1, Q9NRV9) (Selective) (pEC50 8.0–8.2) 779
Selective antagonists (pKi) cyclosporin H (6.1–7.1) 785,786, t-Boc-FLFLF (6.0–6.5) 785 ATLa2 771
Radioligands (Kd) [3H]fMet-Leu-Phe (Agonist, Full agonist) (5×10−10–2.51×10−8 M) 774 [3H]LXA4 (Agonist, Full agonist) (5×10−10–7×10−10 M) 766,767
Comment A FITC-conjugated fMLP analogue has been used for binding to the mouse recombinant receptor 773 The agonist activity of the lipid mediators described has been questioned 772,781, which may derive from batch-to-batch differences, partial agonism or biased agonism

Comments

Note that the data for FPR2ALX are also reproduced on the leukotriene receptor page.

Free fatty acid receptors

Overview

Free fatty acid receptors (FFA, nomenclature as agreed by NC-IUPHAR Subcommittee on free fatty acid receptors, 792,814) are activated by free fatty acids. Long-chain saturated and unsaturated fatty acids (C14.0 (myristic acid), C16:0 (palmitic acid), C18:1 (oleic acid), C18:2 (linoleic acid), C18:3, (α-linolenic acid), C20:4 (arachidonic acid), C20:5,n-3 (EPA), C22:6,n-3 (docosahexaenoic acid)) activate FFA1 789,797,799 and FFA4 receptors 793,796,807, while short chain fatty acids (C2 (acetic acid), C3 (propanoic acid), C4 (butyric acid) and C5 (pentanoic acid)) activate FFA2 790,801,806 and FFA3 790,801 receptors. In addition, thiazolidinedione PPARγ agonists such as rosiglitazone activate FFA1 (pEC50 5.2; 800,811,813) and small molecule allosteric modulators, such as 4-CMTB, have recently been characterised for FFA2 795,802,812.

Nomenclature FFA1 receptor FFA2 receptor FFA3 receptor FFA4 receptor
HGNC, UniProt FFAR1, O14842 FFAR2, O15552 FFAR3, O14843 FFAR4, Q5NUL3
Principal transduction Gq/11 789,797,809,813 Gq/11, Gi/o 790,801,806,808 Gi/o 790,801,808,813 Gq/11 793,807,810,819
Endogenous agonists (pKi) docosahexaenoic acid (pEC50 5.4–6.0) 789,797 α-linolenic acid (pEC50 5.5) 810
(Sub)family-selective agonists (pKi) α-linolenic acid (pEC50 4.6–5.7) 789,797,799, myristic acid (pEC50 4.5–5.1) 789,797,799, oleic acid (pEC50 3.9–5.7) 789,797,799 propanoic acid (pEC50 3.0–4.9) 790,801,806,808, acetic acid (pEC50 3.1–4.6) 790,801,806,808, trans-2-methylcrotonic acid (pEC50 3.8) 808, butyric acid (pEC50 2.9–4.6) 790,801,806,808, 1-methylcyclopropanecarboxylic acid (pEC50 2.6) 808 propanoic acid (pEC50 3.9–5.7) 790,801,808,820, butyric acid (pEC50 3.8–4.9) 790,801,808,820, 1-methylcyclopropanecarboxylic acid (pEC50 3.9) 808, acetic acid (pEC50 2.8–3.9) 790,801,808,820 myristic acid (pEC50 5.2) 819, oleic acid (pEC50 4.7) 819
Selective agonists (pKi) AMG-837 (pEC50 8.5) 804, TUG-770 (pEC50 8.2) 791, GW9508 (pEC50 7.3) 788, TAK-875 (pEC50 7.1) 817, linoleic acid (pEC50 4.4–5.7) 789,797,799 3-benzyl-4-(cyclopropyl-(4-(2,5-dichlorophenyl)thiazol-2-yl)amino)-4-oxobutanoic acid (pEC50 7.1 - Rat) 794, (S)-4-CMTB (pEC50 6.4) 795,802 TUG-891 (pEC50 7.0) 810, NCG21 (pEC50 5.92) 816
Selective antagonists (pKi) GW1100 (pIC50 6.0) 788 CATPB (pIC50 6.5) 795
Comment Antagonist GW1100 has been shown to reduce [35S]GTPγS binding in FFAR1-expressing cells 813. GW1100 is also an oxytocin receptor antagonist 788. TUG770 and GW9508 are both approximately 100 fold selective for FFA1 over FFA4 788,791. AMG837 and the related analogue AM6331 have been suggested to have an allosteric mechanism of action at FFA1, with respect to the orthosteric fatty acid binding site 804,821 Beta-hydroxybutyrate has been reported to antagonise FFA3 responses to short chain fatty acids 798. trans-2-methylcrotonic acid is a weak agonist for FFA3, with a pEC of below 1 808 TUG891 exhibits 50–1000 fold selectivity for FFA4 over FFA1, dependent on the assay 810. NGC21 exhibits approximately 15 fold selectivity for FFA4 over FFA1 815

Comments

Short (361 amino acids) and long (377 amino acids) splice variants of human FFA4 have been reported 805, which differ by a 16 amino acid insertion in intracellular loop 3, and exhibit differences in intracellular signalling properties in recombinant systems 819. The long FFA4 splice variant has not been identified in other primates or rodents to date 793,805.

GPR42 was originally described as a pseudogene within the family (ENSFM00250000002583), but the recent discovery of several polymorphisms suggests that some versions of GPR42 may be functional 803. GPR84 is a structurally-unrelated G protein-coupled receptor which has been found to respond to medium chain fatty acids 818.

Frizzled Class GPCRs

Overview

Receptors of the Class Frizzled (FZD, nomenclature as agreed by the NC-IUPHAR subcommittee 832), are GPCRs originally identified in Drosophila 825, which are highly conserved across species. FZDs are activated by WNTs, which are cysteine-rich lipoglycoproteins with fundamental functions in ontogeny and tissue homeostatis. FZD signalling was initially divided into two pathways, being either dependent on the accumulation of the transcription regulator β-catenin (CTNNB1, P35222) or being β-catenin-independent (often referred to as canonical vs non-canonical WNT/FZD signalling, respectively). WNT stimulation of FZDs can, in cooperation with the low density lipoprotein receptors LRP5 (O75197) and LRP6 (O75581), lead to the inhibition of a constitutively active destruction complex, which results in the accumulation of β-catenin and subsequently its translocation to the nucleus. β-Catenin, in turn, modifies gene transcription by interacting with TCF/LEF transcription factors. β-Catenin-independent FZD signalling is far more complex with regard to the diversity of the activated pathways. WNT/FZD signalling can lead to the activation of pertussis toxin-sensitive heterotrimeric G proteins 830, the elevation of intracellular calcium 833, activation of cGMP-specific PDE6 822 and elevation of cAMP as well as RAC-1, JNK, Rho and Rho kinase signalling 828. Furthermore, the phosphoprotein Disheveled constitutes a key player in WNT/FZD signalling. As with other GPCRs, members of the Frizzled family are functionally dependent on the β-arrestin scaffolding protein for internalization 826, β-catenin-dependent 823 and -independent 824,831 signalling. The pattern of cell signalling is complicated by the presence of additional ligands, which can enhance or inhibit FZD signalling (secreted Frizzled-related proteins (sFRP), Wnt-inhibitory factor (WIF1, Q9Y5W5) (WIF), Sclerostin (SOST (SOST, Q9BQB4)) or Dickkopf (DKK)), as well as modulatory (co)-receptors with positive Ryk, ROR1, ROR2 and Kremen, which may also function as independent signalling proteins.

Nomenclature FZD1 FZD2 FZD3 FZD4 FZD5 FZD6 FZD7 FZD8 FZD9 FZD10 SMO
HGNC, UniProt FZD1, Q9UP38 FZD2, Q14332 FZD3, Q9NPG1 FZD4, Q9ULV1 FZD5, Q13467 FZD6, O60353 FZD7, O75084 FZD8, Q9H461 FZD9, O00144 FZD10, Q9ULW2 SMO, Q99835

Comments

There is limited knowledge about WNT/FZD specificity and which molecular entities determine the signalling outcome of a specific WNT/FZD pair. Understanding of the coupling to G proteins is incomplete (see 827). There is also a scarcity of information on basic pharmacological characteristics of FZDs, such as binding constants, ligand specificity or concentration–response relationships 829.

Ligands associated with FZD signalling

WNTs: Wnt-1 (WNT1, P04628), Wnt-2 (WNT2, P09544) (also known as Int-1-related protein), Wnt-2b (WNT2B, Q93097) (also known as WNT-13), Wnt-3 (WNT3, P56703), Wnt-3a (WNT3A, P56704), Wnt-4 (WNT4, P56705), Wnt-5a (WNT5A, P41221), Wnt-5b (WNT5B, Q9H1J7), Wnt-6 (WNT6, Q9Y6F9), Wnt-7a (WNT7A, O00755), Wnt-7b (WNT7B, P56706), Wnt-8a (WNT8A, Q9H1J5), Wnt-8b (WNT8B, Q93098), Wnt-9a (WNT9A, O14904) (also known as WNT-14), Wnt-9b (WNT9B, O14905) (also known as WNT-15 or WNT-14b), Wnt-10a (WNT10A, Q9GZT5), Wnt-10b (WNT10B, O00744) (also known as WNT-12), Wnt-11 (WNT11, O96014) and Wnt-16 (WNT16, Q9UBV4).

Extracellular proteins that interact with FZDs: norrin (NDP, Q00604), R-spondin-1 (RSPO1, Q2MKA7), R-spondin-2 (RSPO2, Q6UXX9), R-spondin-3 (RSPO3, Q9BXY4), R-spondin-4 (RSPO4, Q2I0M5), sFRP-1 (SFRP1, Q8N474), sFRP-2 (SFRP2, Q96HF1), sFRP-3 (FRZB, Q92765), sFRP-4 (SFRP4, Q6FHJ7), sFRP-5 (SFRP5, Q6FHJ7).

Extracellular proteins that interact with WNTs or LRPs: Dickkopf 1 (DKK1, O94907), WIF1 (Q9Y5W5), SOST (SOST, Q9BQB4), kremen 1 (KREMEN1, Q96MU8) and kremen 2 (KREMEN2, Q8NCW0)

Small exogenous ligands: Foxy-5, Box-5, UM206, and XWnt8 also known as mini-Wnt8.

GABAB receptors

Overview

Functional GABAB receptors (nomenclature agreed by NC-IUPHAR Subcommittee on GABAB receptors, 839,860) are formed from the heterodimerization of two similar 7TM subunits termed GABAB1 (GABBR1, Q9UBS5) and GABAB2 (GABBR2, O75899) 839,843,859,860,866. GABAB receptors are widespread in the CNS and regulate both pre- and post-synaptic activity. The GABAB1 subunit, when expressed alone, binds both antagonists and agonists, but the affinity of the latter is generally 10–100-fold less than for the native receptor. The GABAB1 subunit when expressed alone is not transported to the cell membrane and is non-functional. Co-expression of GABAB1 and GABAB2 subunits allows transport of GABAB1 to the cell surface and generates a functional receptor that can couple to signal transduction pathways such as high-voltage-activated Ca2+ channels (Cav2.1, Cav2.2), or inwardly rectifying potassium channels (Kir3) 837,839,840. The GABAB2 subunit also determines the rate of internalisation of the dimeric GABAB receptor 850. The GABAB1 subunit harbours the GABA (orthosteric)-binding site within an extracellular domain (ECD) venus flytrap module (VTM), whereas the GABAB2 subunit mediates G-protein-coupled signalling 839,849,859. The two subunits interact by direct allosteric coupling 857, such that GABAB2 increases the affinity of GABAB1 for agonists and reciprocally GABAB1 facilitates the coupling of GABAB2 to G proteins 855,859. GABAB1 and GABAB2 subunits assemble in a 1:1 stoichiometry by means of a coiled-coil interaction between α-helices within their carboxy-termini that masks an endoplasmic reticulum retention motif (RXRR) within the GABAB1 subunit but other domains of the proteins also contribute to their heteromerization 837,859. Recent evidence indicates that higher order assemblies of GABAB receptor comprising dimers of heterodimers occur in recombinant expression systems and in vivo and that such complexes exhibit negative functional cooperativity between heterodimers 841,858. Adding further complexity, KCTD (potassium channel tetramerization proteins) 8, 12, 12b and 16 associate as tetramers with the carboxy terminus of the GABAB2 subunit to impart altered signalling kinetics and agonist potency to the receptor complex 835,864 and reviewed by 861. Four isoforms of the human GABAB1 subunit have been cloned. The predominant GABAB1(a) and GABAB1(b) isoforms, which are most prevalent in neonatal and adult brain tissue respectively, differ in their ECD sequences as a result of the use of alternative transcription initiation sites. GABAB1(a)-containing heterodimers localise to distal axons and mediate inhibition of glutamate release in the CA3–CA1 terminals, and GABA release onto the layer 5 pyramidal neurons, whereas GABAB1(b)-containing receptors occur within dendritic spines and mediate slow postsynaptic inhibition 862,868. Isoforms generated by alternative splicing are GABAB1(c) that differs in the ECD, and GABAB1(e), which is a truncated protein that can heterodimerize with the GABAB2 subunit but does not constitute a functional receptor. Only the 1a and 1b variants are identified as components of native receptors 839. Additional GABAB1 subunit isoforms have been described in rodents and humans 856 and reviewed by 837.

Nomenclature Principal transduction Selective agonists (pKi) Selective antagonists (pKi) Radioligands (Kd)
GABAB receptor Gi/o 3-APPA (5.2–7.2) 851, 3-APMPA (5.1) 869, CGP 44532 (pIC50 8.6 - Rat) 846, (-)-baclofen (pIC50 8.5 - Rat) 846 CGP 62349 (8.5–8.9) 851,869, CGP 55845 (7.8) 869, SCH 50911 (5.5–6.0) 851,869, CGP 35348 (4.4) 869, 2-hydroxy-saclofen (pIC50 4.1 - Rat) 853 [3H](R)-(-)-baclofen (Agonist), [3H]CGP 62349 (Antagonist) (9x10-10 M - Rat) 854, [125I]CGP 64213 (Antagonist) (1x10-9 M - Rat) 847, [125I]CGP 71872 (Antagonist) (1x10-9 M - Rat) 853, [3H]CGP 54626 (Antagonist) (Ki 7.9x10-10 M - Rat) 852

Comments

Potencies of agonists and antagonists listed in the table, quantified as IC50 values for the inhibition of [3H]CGP27492 binding to rat cerebral cortex membranes, are from 839,845,846. Radioligand KD values relate to binding to rat brain membranes. CGP 71872 is a photoaffinity ligand for the GABAB1 subunit 836. CGP27492 (3-APPA), CGP35024 (3-APMPA) and CGP 44532 act as antagonists at human GABAA ρ1 receptors, with potencies in the low micromolar range 845. In addition to the ligands listed in the table, Ca2+ binds to the VTM of the GABAB1 subunit to act as a positive allosteric modulator of GABA 847. In cerebellar Purkinje neurones, the interaction of Ca2+ with the GABAB receptor enhances the activity of mGlu1, through functional cross-talk involving G-protein Gβγ subunits 863,865. Synthetic positive allosteric modulators with low, or no, intrinsic activity include CGP7930, GS39783, BHF-177 and (+)-BHFF 834,837,838,845. The site of action of CGP7930 and GS39783 appears to be on the heptahelical domain of the GABAB2 subunit 842,859. In the presence of CGP7930, or GS39783, CGP 35348 and 2-hydroxy-saclofen behave as partial agonists 845. Knock-out of the GABAB1 subunit in C57B mice causes the development of severe tonic-clonic convulsions that prove fatal within a month of birth, whereas GABAB1−/− BALB/c mice, although also displaying spontaneous epileptiform activity, are viable. The phenotype of the latter animals additionally includes hyperalgesia, hyperlocomotion (in a novel, but not familiar, environment), hyperdopaminergia, memory impairment and behaviours indicative of anxiety 844,867. A similar phenotype has been found for GABAB2−/− BALB/c mice 848.

Galanin receptors

Overview

Galanin receptors (provisional nomenclature, 876) are activated by the endogenous peptides galanin (GAL, P22466) and galanin-like peptide (GALP, Q9UBC7). Human galanin (GAL, P22466) is a 30 amino-acid non-amidated peptide 874; in other species, it is 29 amino acids long and C-terminally amidated. Amino acids 1–14 of galanin are highly conserved in mammals, birds, reptiles, amphibia and fish. Shorter peptide species (e.g. human galanin-1–19 872 and porcine galanin-5–29 885 and N-terminally extended forms (e.g. N-terminally seven and nine residue elongated forms of porcine galanin 873,885) have been reported.

Nomenclature GAL1 receptor GAL2 receptor GAL3 receptor
HGNC, UniProt GALR1, P47211 GALR2, O43603 GALR3, O60755
Principal transduction Gi/o Gi/o, Gq/11 Gi/o
Rank order of potency galanin > galanin-like peptide 881 galanin-like peptide ≥ galanin 881 galanin-like peptide > galanin 878
Selective agonists (pKi) [D-Trp2]galanin-(1–29) (8.15 - Rat) 887, galanin(2–29) (rat/mouse) (7.25–8.72 - Rat) 882,891893
Selective antagonists (pKi) 2,3-dihydro-1,4-dithiin-1,1,4,4-tetroxide (pIC50 5.57) 884 M871 (7.88) 889

Comments

galanin-(1-11) is a high-affinity agonist at GAL1/GAL2 (pKi 9), and galanin(2–11) is selective for GAL2 and GAL3 compared with GAL1 880. [125I]-[Tyr26]galanin binds to all three subtypes with Kd values ranging from 0.05 to 1 nM 875,886888,892. Porcine galanin-(3–29) does not bind to cloned GAL1, GAL2 or GAL3 receptors, but a receptor that is functionally activated by porcine galanin-(3–29) has been reported in pituitary and gastric smooth muscle cells 877,895. Additional galanin receptor subtypes are also suggested from studies with chimeric peptides (e.g. M15, M35 and M40), which act as antagonists in functional assays in the cardiovascular system 890, spinal cord 894, locus coeruleus, hippocampus 870 and hypothalamus 871,879, but exhibit agonist activity at some peripheral sites 871,877. The chimeric peptides M15, M32, M35, M40 and C7 are agonists at GAL1 receptors expressed endogenously in Bowes human melanoma cells 881, and at heterologously expressed recombinant GAL1, GAL2 and GAL3 receptors 875,887,888. Recent studies have described the synthesis of a series of novel, systemically-active, galanin analogues, with modest preferential binding at the GAL2 receptor. Specific chemical modifications to the galanin backbone increased brain levels of these peptides after i.v. injection and several of these peptides exerted a potent antidepressant-like effect in mouse models of depression 883.

Ghrelin receptor

Overview

Ghrelin receptors (nomenclature approved by NC-IUPHAR, 898) are activated by a 28 amino-acid peptide originally isolated from rat stomach, where it is cleaved from a 117 amino-acid precursor (GHRL, Q9UBU3). The human gene encoding the precursor peptide has 83% sequence homology to rat prepro-ghrelin, although the mature peptides from rat and human differ by only two amino acids 907. Alternative splicing results in the formation of a second peptide, [des-Gln14]ghrelin (GHRL, Q9UBU3) with equipotent biological activity 904. A unique post-translational modification (octanoylation of Ser3, catalysed by ghrelin Ο-acyltransferase (MBOAT4, Q96T53) 913 occurs in both peptides, essential for full activity in binding to the ghrelin receptors in the hypothalamus and pituitary; and the release of growth hormone release from the pituitary 906. Structure activity studies showed the first five N-terminal amino acids to be the minimum required for binding 897, and receptor mutagenesis has indicated overlap of the ghrelin binding site with those for small molecule agonists and allosteric modulators of ghrelin (GHRL, Q9UBU3) function 902. In cell systems, the ghrelin receptor is constitutively active 903, but this is abolished by a naturally occurring mutation (A204E) that results in decreased cell surface receptor expression and is associated with familial short stature 910.

Nomenclature HGNC, UniProt Principal transduction Rank order of potency Selective antagonists (pKi) Radioligands (Kd)
ghrelin receptor GHSR, Q92847 Gq/11 ghrelin = [des-Gln14]ghrelin 896,907 GSK1614343 (pKB 8.0 - Rat) 911, YIL781 (pKB 8.0) 899, GSK1614343 (pIC50 8.4) 912 [125I][His9]ghrelin (human) (Agonist, Full agonist) (4x10-10 M) 905, [125I][Tyr4]ghrelin (human) (Agonist, Full agonist) (4x10-10 M) 909

Comments

[des-octanoyl]ghrelin has been shown to bind (as [125I]Tyr4-des-octanoyl-ghrelin) and have effects in the cardiovascular system 896, which raises the possible existence of different receptor subtypes in peripheral tissues and the central nervous system. A potent inverse agonist has been identified ([D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P, pD2 8.3; 901). TZP101, described as a ghrelin receptor agonist (pKi 7.8 and pD2 7.5 at human recombinant ghrelin receptors), has been shown to stimulate ghrelin receptor mediated food intake and gastric emptying but not elicit release of growth hormone, or modify ghrelin stimulated growth hormone release, thus pharmacologically discriminating the orexigenic and gastrointestinal actions of ghrelin from the release of growth hormone 900. A number of selective antagonists have been reported, including peptidomimetic 908 and non-peptide small molecules including GSK1614343 911,912.

Glucagon receptor family

Overview

The glucagon family of receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on the Glucagon receptor family, 926) are activated by the endogenous peptide (27–44 aa) hormones glucagon, glucagon-like peptide 1 (GLP-1), glucagon-like peptide 2 (GLP-2), glucose-dependent insulinotropic polypeptide, also known as gastric inhibitory polypeptide or GIP (GIP, P09681), GHRH (GHRH, P01286) and secretin (SCT, P09683). One common precursor (GCG, P01275) generates glucagon, GLP-1 and GLP-2 peptides 922.

Nomenclature glucagon receptor GLP-1 receptor GLP-2 receptor GIP receptor GHRH receptor secretin receptor
HGNC, UniProt GCGR, P47871 GLP1R, P43220 GLP2R, O95838 GIPR, P48546 GHRHR, Q02643 SCTR, P47872
Principal transduction Gs Gs Gs Gs Gs Gs
Endogenous agonists (pKi) glucagon (Selective) (pEC50 9.0) 929 glucagon-like peptide-1-(7-37) (Selective) 919, glucagon-like peptide 1-(7-36) amide (Selective) (9.2) 923 GLP-2 (Selective) (pIC50 8.5) 932 GIP (Selective) (pKd 8.7) 938 secretin (Selective) (pEC50 9.7) 916
Selective agonists (pKi) exendin-3 (P20394) 930, exendin-4 (8.7 – 9.0) 923 BIM28011 918, JI-38 (Rat) 924
Selective antagonists (pKi) BAY27-9955 928, des-His1-[Glu9]glucagon-NH2 (pA2 7.2 - Rat) 934,935, NNC 92-1687 (5.0) 925, L-168,049 (pIC50 8.4) 915 exendin-(9-39) (8.1) 923, GLP-1-(9-36) (pIC50 6.91 - Rat) 927, T-0632 (pIC50 4.7) 933 [Pro3]GIP JV-1-36 (10.1 – 10.4 - Rat) 931,936,937, JV-1-38 (10.1 - Rat) 931,936,937 [(CH2NH)4,5]secretin (5.3) 921
Radioligands (Kd) [125I]glucagon (human, mouse, rat) (Agonist, Full agonist) [125I]exendin, [125I]GLP-1-(7-37) (Agonist, Full agonist), [125I]GLP-1-(7-36)-amide (Agonist, Full agonist) (5x10-10 M) 923, [125I]exendin-(9-39) (Antagonist) (5x10-9 M) 923 [125I]GIP (Agonist, Full agonist) (2.51x10-9 M - Rat) 920 [125I]GHRH (human) (Agonist, Full agonist) (2.8x10-8 M - Rat) 914 [125I](Tyr10)secretin

Comments

The glucagon receptor has been reported to interact with receptor activity modifying proteins (RAMPs), specifically RAMP2, in heterologous expression systems 917, although the physiological significance of this has yet to be established.

Glycoprotein hormone receptors

Overview

Glycoprotein hormone receptors (provisional nomenclature) are activated by a non-covalent heterodimeric glycoprotein made up of a common α chain (glycoprotein hormone common alpha subunit (CGA, P01215) CGA, P01215), with a unique β chain that confers the biological specificity to FSH (CGA, FSHB, P01215, P01225), LH (LHB, CGA, P01229, P01215), hCG (CGA, CGB, P01233, P01215), CGB2/CGB or TSH (TSHB, CGA, P01222, P01215). There is binding cross-reactivity across the endogenous agonists for each of the glycoprotein hormone receptors. The deglycosylated hormones appear to exhibit reduced efficacy at these receptors 950.

Nomenclature FSH receptor LH receptor TSH receptor
HGNC, UniProt FSHR, P23945 LHCGR, P22888 TSHR, P16473
Principal transduction Gs Gs, Gq/11 and Gi All four families of G proteins can be activated by this receptor
Endogenous agonists (pKi) FSH (Selective) hCG (Selective) (pKd 9.9 – 11.8) 942,946, LH (Selective) (pIC50 9.9 – 10.9) 942,946 TSH (Selective)
Radioligands (Kd) [125I]FSH (human) (Agonist, Full agonist) [125I]CG (human) (Agonist, Full agonist), [125I]LH (Agonist, Full agonist) [125I]TSH (Agonist, Full agonist)
Comment Animal follitropins are less potent than the human hormone as agonists at the human FSH receptor. Gain- and loss-of-function mutations of the FSH receptor are associated with human reproductive disorders 939941,953. The rat FSH receptor also stimulates phosphoinositide turnover through an unidentified G protein 948. Loss-of-function mutations of the LH receptor are associated with Leydig cell hypoplasia and gain-of-function mutations are associated with male-limited gonadotropin-independent precocious puberty (e.g. 944,951) and Leydig cell tumours 945. Autoimmune antibodies that act as agonists of the TSH receptor are found in patients with Grave's disease (e.g. 949). Mutations of the TSH receptor exhibiting constitutive activity underlie hyperfunctioning thyroid adenomas 947 and congenital hyperthyroidism 943. TSH receptor loss-of-function mutations are associated with TSH resistance 952.

Gonadotrophin-releasing hormone receptors

Overview

GnRH1 and GnRH2 receptors (provisonal nomenclature, also called Type I and Type II, respectively) have been cloned from numerous species (most of which express two or three types of GnRH receptor) and grouped phylogenetically 975. Designated GnRH I (GNRH1, P01148) (to distinguish it from related peptides, such as GnRH II (GNRH2, O43555) (pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2, also known as chicken GnRH-II) is a hypothalamic decapeptide (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pr-Gly-NH2), also known as luteinising hormone-releasing hormone, gonadoliberin, luliberin, gonadorelin. Receptors for all three ligands exist in amphibians but only GnRH I (GNRH1, P01148) and GnRH II (GNRH2, O43555) (and their cognate receptors) have been found in mammals 969,974. GnRH1 receptors are expressed primarily by pituitary gonadotrophs in mammals and mediate central control of reproduction. They are selectively activated by GnRH I (GNRH1, P01148) and all lack the C-terminal tails found in other GPCR. GnRH2 receptors all possess C-terminal tails and (where tested) are selective for GnRH II (GNRH2, O43555) (over GnRH I (GNRH1, P01148)). An alternative phylogenetic classification 970 divided these receptors into three classes and includes both GnRH I-selective mammalian and GnRH II-selective non-mammalian receptors as GnRH1 receptors. Although thousands of peptide analogues of GnRH I (GNRH1, P01148) have been synthesised and several (agonists and antagonists) are used therapeutically 961, the potency of most of these peptides at GnRH2 receptors is unknown.

Nomenclature GnRH receptor GnRH2 receptor
HGNC, UniProt GNRHR, P30968 GNRHR2, Q96P88
Principal transduction Gq/11 Gq/11
Rank order of potency GnRH I > GnRH II GnRH II > GnRH I
Selective agonists (pKi) buserelin, goserelin, histrelin, nafarelin, triptorelin (9.3 – 9.5) 954, leuprolide (8.5 – 9.1) 976
Selective antagonists (pKi) ganirelix, abarelix (9.1 – 9.5) 976, antide (9.0) 972, cetrorelix (8.8) 972 trptorelix-1 967
Radioligands (Kd) [125I]GnRH I (human, mouse, rat) (Agonist, Full agonist), [125I]buserelin (Agonist, Full agonist) (4x10-8 M - Rat) 964 [125I]GnRH II (human) (Agonist, Full agonist)

Comments

GnRH1 and GnRH2 receptors couple primarily to Gq/11 958 but coupling to Gs and Gi is evident in some systems 963. GnRH2 receptors may also mediate (heterotrimeric) G protein-independent signalling to protein kinases 955. There is increasing evidence for expression of GnRH receptors on hormone-dependent cancer cells where they can exert antiproliferative and/or proapoptotic effects and mediate effects of cytotoxins conjugated to GnRH analogues 956,960,966,973. In some human cancer cell models GnRH II (GNRH2, O43555) is more potent than GnRH I (GNRH1, P01148), implying mediation by GnRH2 receptors 959. However, GnRH2 receptors that are expressed by some primates are probably not expressed in humans because the human GNRHR2 gene contains a frame shift and internal stop codon 971. The possibility remains that this gene generates GnRH2 receptor-related proteins (other than the full-length receptor) that mediate responses to GnRH II (GNRH2, O43555) (see 972). Alternatively, there is evidence for multiple active GnRH receptor conformations 955,968,970 raising the possibility that GnRH1 receptor-mediated proliferation inhibition in hormone-dependent cancer cells is dependent upon different conformations (with different ligand specificity) than effects on Gq/11 in pituitary cells 968. Loss-of-function mutations in the GnRH1 receptor and deficiency of GnRH I (GNRH1, P01148) are associated with hypogonadotropic hypogonadism although some ‘loss of function’ mutations may actually prevent trafficking of ‘functional’ GnRH1 receptors to the cell surface, as evidenced by recovery of function by nonpeptide antagonists 965. GnRH receptor signalling may be dependent upon receptor oligomerisation 957,962.

GPR18, GPR55 and GPR119

Overview

GPR18, GPR55 and GPR119 (provisional nomenclature), although showing little structural similarity to CB1 and CB2 cannabinoid receptors, respond to endogenous agents analogous to the endogenous cannabinoid ligands, as well as some natural/synthetic cannabinoid receptor ligands 988.

Nomenclature GPR18 GPR55 GPR119
HGNC, UniProt GPR18, Q14330 GPR55, Q9Y2T6 GPR119, Q8TDV5
Principal transduction Gi/o 982 G12/13 989 Gs 984,987
Rank order of potency N-oleoylethanolamide, N-palmitoylethanolamine > SEA (anandamide is ineffective) 987
Endogenous agonists (pKi) N-arachidonoylglycine 982 2-arachidonoylglycerolphosphoinositol (Selective) 986, lysophosphatidylinositol (pEC50 5.5 – 7.3) 978,985,990 N-palmitoylethanolamine (Selective), SEA (Selective), N-oleoylethanolamide (Selective) (pEC50 5.4 – 6.3) 977,987,990
Selective agonists (pKi) AM251 (pEC50 6.2 – 6.3) 978,980 AS1269574 (pEC50 5.6) 993, PSN632408 (pEC50 5.3) 987, PSN375963 (pEC50 5.1) 987
Comment The pairing of N-arachidonoylglycine with GPR18 was not replicated in two studies based on β-arrestin assays 990,992

Comments

All listed endogenous agonists are remain currently as putative endogenous agonists.

GPR18 failed to respond to a variety of lipid-derived agents in an in vitro screen 992, but has been reported to be activated by Δ9-tetrahydrocannabinol 983. GPR55 responds to AM251 and rimonabant at micromolar concentrations, compared to their nanomolar affinity as CB1 receptor antagonists/inverse agonists 988. It has been reported lysophosphatidylinositol acts at other sites 991. CID-16020046 has been described as a selective antagonist at GPR55 979,981, although it has not yet been fully characterized. It has also been suggested oleoyl-lysophosphatidylcholine acts, at least in part, through GPR119 984. Although PSN375963 and PSN632408 produce GPR119-dependent responses in heterologous expression systems, comparison with N-oleoylethanolamide-mediated responses suggests additional mechanisms of action 984.

Histamine receptors

Overview

Histamine receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on Histamine Receptors, 1003) are activated by the endogenous ligand histamine. Marked species differences exist between histamine receptor orthologues (see 1003).

Nomenclature H1 receptor H2 receptor H3 receptor H4 receptor
HGNC, UniProt HRH1, P35367 HRH2, P25021 HRH3, Q9Y5N1 HRH4, Q9H3N8
Principal transduction Gq/11 Gs Gi/o Gi/o
Selective agonists (pKi) methylhistaprodifen (6.4) 1025, histaprodifen (5.7) 1013 amthamine (pEC50 6.4) 1008 immethridine (9.1) 1007, methimepip (9.0) 1006 clobenpropit (Partial agonist) (7.4 – 8.3) 1000,10131015,1019, 4-methylhistamine (7.3 – 8.2) 1001,1013, VUF 8430 (7.5) 1012
Selective antagonists (pKi) pyrilamine (Inverse agonist) (8.7 – 9.0) 995,1023, triprolidine (8.5 – 9.0) 995,1017 tiotidine (7.5 - Rat) 994, ranitidine (7.1) 1010 clobenpropit (8.4 – 9.4) 997,1000,1011,1014,1016,1028,1029, A331440 (8.5) 1002, iodophenpropit (8.2 – 8.7) 1028,1029, thioperamide (7.1 – 7.7) 997,999,1000,1011,1016,1028,1029 JNJ 7777120 (7.8 – 8.3) 1013,1026,1027
Radioligands (Kd) [11C]pyrilamine, [11C]doxepin (Antagonist) (1x10-9 M) 1004, [3H]pyrilamine (Antagonist, Inverse agonist) (7.9x10-10 – 4x10-9 M) 998,1017,1024,1025 [125I]aminopotentidine (Antagonist) (2x10-9 M - Rat) 1009, [3H]tiotidine (Antagonist) (2.2x10-9 – 2x10-8 M) 1018 [123I]iodoproxyfan (Antagonist) (6.3x10-11 M) 1011, [125I]iodophenpropit (Antagonist) (6x10-10 M - Rat) 1005, [3H](R)-α-methylhistamine (Agonist, Full agonist) (6x10-10 M) 1014, N-[3H]α-methylhistamine (Agonist, Full agonist) (1x10-9 M - Mouse) 996 [3H]JNJ 7777120 (Antagonist) (3.6x10-9 M) 1027

Comments

histaprodifen and methylhistaprodifen are reduced efficacy agonists. The H4 receptor appears to exhibit broadly similar pharmacology to the H3 receptor for imidazole-containing ligands, although (R)-α-methylhistamine and N-α-methylhistamine are less potent, while clobenpropit acts as a reduced efficacy agonist 1014,10201022,1030. Moreover, 4-methylhistamine is identified as a high affinity, full agonist for the human H4 receptor 1013. [3H]histamine has been used to label the H4 receptor in heterologous expression systems.

Hydroxycarboxylic acid receptors

Formerly known as: Nicotinic acid receptor family

Overview

The hydroxycarboxylic acid family of receptors (ENSFM00500000271913, nomenclature as agreed by NC-IUPHAR Subcommittee on Hydroxycarboxylic acid receptors, 1037) respond to organic acids, including the endogenous hydroxy carboxylic acids 3-hydroxy butyric acid and L-lactic acid, as well as the lipid lowering agents nicotinic acid (niacin), acipimox and acifran 1040,1044,1045. These receptors were provisionally described as nicotinic acid receptors, although nicotinic acid shows submicromolar potency at HCA2 receptors only and is unlikely to be the natural ligand 1044,1045.

Nomenclature HCA1 receptor HCA2 receptor HCA3 receptor
HGNC, UniProt HCAR1, Q9BXC0 HCAR2, Q8TDS4 HCAR3, P49019
Principal transduction Gi/o 1031,1034,1036. Gi/o 1040,1044,1045 Gi/o 1040,1045
Endogenous agonists (pKi) L-lactic acid (Selective) (pEC50 1.3 – 2.89) 1032,1034,1036,1041 β-D-hydroxybutyric acid (pEC50 3.1) 1042 3-hydroxyoctanoic acid (pEC50 5.1) 1031
Selective agonists (pKi) 3,5-dihydroxybenzoic acid (pEC50 3.72) 1035 MK 6892 (pEC50 7.8) 1039, MK 1903 (pEC50 7.56) 1033, nicotinic acid (pEC50 6.0 – 7.2) 1040,1044,1045, acipimox (pEC50 5.2 – 5.6) 1040,1045, monomethylfumarate (pEC50 5.03) 1043 1-isopropylbenzotriazole-5-carboxylic acid (pEC50 6.4) 1038
Radioligands (Kd) [3H]nicotinic acid (Agonist, Full agonist) (5.01x10-8 – 1x10-7 M) 1040,1044,1045

Comments

Further closely-related GPCR include the 5-oxoeicosanoid receptor (OXER1, Q8TDS5) and GPR31 (O00270).

Kisspeptin receptors

Overview

The kisspeptin receptor (nomenclature agreed by NC-IUPHAR committee on kisspeptin receptors, Kirby et al., 2010 1047), like neuropeptide FF (NPFF), prolactin-releasing peptide (PrP) and QRFP receptors (provisional nomenclature) responds to endogenous peptides with an arginine-phenylalanine-amide (RFamide) motif. kisspeptin-54 (KISS1, Q15726) (KP54, originally named metastin), kisspeptin-13 (KISS1, Q15726) (KP13) and kisspeptin-10 (KISS1) (KP10) are biologically-active peptides cleaved from the KISS1 (Q15726) gene product.

Nomenclature HGNC, UniProt Principal transduction Endogenous agonists (pKi) Selective agonists (pKi) Selective antagonists (pKi) Radioligands (Kd)
kisspeptin receptor KISS1R, Q969F8 Gq/11 1048,1050 kisspeptin-10 (Selective) (8.6–10.4) 1048,1051, kisspeptin-54 (Selective) (8.8–9.5) 1048,1051, kisspeptin-13 (Selective) (8.4) 1048 4-fluorobenzoyl-FGLRW-NH2 (pEC50 9.2) 1053, [dY]1KP-10 (pIC50 8.4 - Mouse) 1046 peptide 234 1052 [125I]kisspeptin-14 (human) 1049, [125I]Tyr45-kisspeptin-15 (Agonist, Full agonist) (1 × 10−10 M) 1051, [125I]kisspeptin-13 (human) (Agonist, Full agonist) (2 × 10−10 M) 1049, [125I]kisspeptin-10 (human) (Agonist, Full agonist) (1.9 × 10−9 M) 1048

Leukotriene, lipoxin and oxoeicosanoid receptors

Overview

Leukotriene receptors (nomenclature agreed by NC-IUPHAR subcommittee on Leukotriene Receptors, 1057) are activated by the endogenous ligands leukotriene B4 (LTB4), LTC4, LTD4, LTE4, 12R-HETE and 12S-HETE. CysLT1 and CysLT2 are co-expressed by most myeloid cells. However, the function of CysLT2 remains unclear. CysLT2 has been demonstrated to exert a suppressive influence on CysLT1 expression, suggesting an autoregulatory function which is indicated by a reported up-regulation of CysLT-mediated responses in mice lacking CysLT2 receptors 1073.

Leukotrienes bind extensively to enzymes in their metabolic pathways (glutathione-S-transferase/LTC4 synthase, γ-glutamyltranspeptidase and several aminopeptidases) and can also bind to peroxisome proliferator-activated receptor α (PPARα, 1076) and the FPR2/ALX lipoxin receptor 1061, complicating the interpretation of radioligand binding and functional studies (e.g. LTC4 is rapidly converted in many systems to LTD4). Metabolic inhibitors (e.g. serine–borate complex) reduce this problem but can also have nonspecific effects.

Nomenclature BLT1 receptor BLT2 receptor CysLT1 receptor CysLT2 receptor
HGNC, UniProt LTB4R, Q15722 LTB4R2, Q9NPC1 CYSLTR1, Q9Y271 CYSLTR2, Q9NS75
Principal transduction Gq/11, Gi/o Gq/11, Gi/o Gq/11 Gq/11
Rank order of potency LTB4 >20-hydroxy-LTB4 >>12R-HETE 1103 12-HHT > LTB4 > 12S-HETE = 12S-HPETE > 15S-HETE > 12R-HETE > 20-hydroxy-LTB4 1085,1103 LTD4 > LTC4 > LTE4 1077,1093 LTC4 ≥ LTD4 >> LTE4 1068,1082,1099
Endogenous agonists (pKi) 12S-HETE (Partial agonist) (pEC50<7.52) 1103
Selective antagonists (pKi) U75302 (6.4) 1055, CP105696 (pIC50 8.1) 1095 LY255283 (pIC50 6.0–7.1) 1069,1103 ICI198615 (8.4–8.6), SR2640 (8.7), sulukast (8.3), zafirlukast (pIC50 8.59–8.74) 1077,1093, montelukast (pIC50 8.31–8.64) 1077,1093, pobilukast (pIC50 7.52) 1093 BAYu9773 (pA2 6.8–7.7 - Rat) 1100
Radioligands (Kd) [3H]LTB4 (Agonist, Full agonist) (1.5×10−10 M) 1102, [3H]CGS23131 (Antagonist) (1.3×10−8 M) 1072 [3H]LTB4 (2×10−10 – 2.3×10−8 M) [3H]ICI-198615 (Antagonist, in human lung parenchyma) (2.5×10−11 M) 1092, [3H]LTD4 (Agonist) (2×10−11 – 9.3×10−9 M) [3H]LTD4 (Agonist, Full agonist, Kd1 and Kd-2 in COS-7 cells) (3.98×10−10 – 5.01×10−8 M) 1068
Nomenclature FPR2/ALX OXE receptor
HGNC, UniProt FPR2, P25090 OXER1, Q8TDS5
Principal transduction Gi 1078 Gi/o 1070,1071,1074,1083
Rank order of potency LXA4=aspirin triggered lipoxin A4=ATLa2>LTC4=LTD4>>15-deoxy-LXA4>>fMet-Leu-Phe 1060,1061,1063,1065,1098 5-oxo-ETE, 5-oxo-C20:3, 5-oxo-ODE > 5-oxo-15-HETE > 5S-HPETE > 5S-HETE 1070,1074,1086
Endogenous agonists (pKi) aspirin triggered lipoxin A4 (Selective), LXA4 (Selective) (pEC50 ∼12.0) 1075, resolvin D1 (Selective) (pEC50 ∼11.9) 1075 5-oxo-ETE (Selective) (pEC50 8.3–8.5) 1064,1084,1086,1089,1094
Selective antagonists (pKi) ATLa2 1066
Radioligands (Kd) [3H]LXA4 (Agonist, Full agonist) (5×10−10 – 7×10−10 M) 1061,1062 [3H]5-oxo-ETE (Agonist) (3.8×10−9 M) 1084
Comment The agonist activity of the lipid mediators described has been questioned 1067,1088, which may derive from batch-to-batch differences, partial agonism or biased agonism.

Comments

BAYu9773 is an antagonist at CysLT1 (6.8–7.7) and a reduced efficacy agonist at CysLT2 receptors. The CysLT1 and CyLT2 receptors also respond to uracil nucleotides 1080,1081. GPR17 has been described as a ‘dualistic’ receptor responding to both uracil nucleotides and cysteinyl leukotrienes, responses which may be inhibited by antagonists of either P2 or CysLT receptors 1059.

Lipoxin A4 receptors (FPR2/ALX, nomenclature agreed by NC-IUPHAR on Leukotriene and Lipoxin Receptors; 1101) are activated by the endogenous lipid-derived, anti-inflammatory ligands lipoxin A4 (LXA4) and 15-epi-LXA4 (aspirin triggered lipoxin A4, ATL). The FPR2/ALX receptor also interacts with endogenous peptide and protein ligands, such as MHC binding peptide 1058 as well as annexin I (ANXA1, P04083) (ANXA1) and its N-terminal peptides 1087. In addition, a soluble hydrolytic product of protease action on the urokinase-type plasminogen activator receptor has been reported to activate the FPR2/ALX receptor 1090. Furthermore, FPR2/ALX has been suggested to act as a receptor mediating proinflammatory actions of the acute-phase reactant, serum amyloid A 1096,1097.

Oxoeicosanoid receptors (OXE, nomenclature agreed by NC-IUPHAR on Oxoeicosanoid Receptors; 1056) are activated by endogenous chemotactic eicosanoid ligands oxidised at the C-5 position, with 5-oxo-ETE the most potent agonist identified for this receptor.

Note that the data for FPR2/ALX are also reproduced on the Formylpeptide receptor pages. A receptor selective for LXB4 has been suggested from functional studies 1054,1079,1091. Initial characterization of the heterologously expressed OXE receptor suggested that polyunsaturated fatty acids, such as docosahexaenoic acid (DHA) and EPA, acted as receptor antagonists 1070.

Lysophospholipid (LPA) receptors

Overview

Lysophosphatidic acid (LPA) receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on Lysophospholipid Receptors; 1104) are activated by the endogenous lipid derivative LPA. Originally identified as members of the endothelial differentiation gene (edg) family along with sphingosine 1-phosphate receptors, the gene names have recently been updated to LPAR1, etc. to reflect the receptor function of these proteins. The identified receptors can account for most, although not all, LPA-induced phenomena in the literature, indicating that a majority of LPA-dependent phenomena are receptor-mediated. Radioligand binding has been conducted in heterologous expression systems using [3H]LPA (e.g. 1107). In native systems, analysis of binding data is complicated by metabolism and high levels of nonspecific binding, and therefore the relationship between recombinant and endogenously expressed receptors is unclear. Targeted deletion of LPA receptors has clarified signalling pathways and identified physiological and pathophysiological roles. Independent validation by multiple groups has been reported in the peer-reviewed literature for all six LPA receptors described in the tables, including further validation using a distinct read-out via a novel TGFα “shedding” assay 1111. LPA has also been described to be an agonist at other orphan GPCRs (PSP24, GPR87 and GPR35), as well as at the nuclear hormone PPARγ receptors 1117,1119, although the physiological significance of these observations remain unclear.

Nomenclature LPA1 receptor LPA2 receptor LPA3 receptor LPA4 receptor LPA5 receptor LPA6 receptor
HGNC, UniProt LPAR1, Q92633 LPAR2, Q9HBW0 LPAR3, Q9UBY5 LPAR4, Q99677 LPAR5, Q9H1C0 LPAR6, P43657
Principal transduction Gi/o, Gq/11, G12/13 Gi/o, Gq/11, G12/13 Gi/o, Gq/11, Gs Gi/o, Gq/11, Gs, G12/13 1115 Gq, G12/13 1114,1116 G12/13 1112,1122
Selective agonists (pKi) dodecylphosphate (pEC50 6.2) 1121, decyl dihydrogen phosphate (pEC50 5.4) 1121, GRI977143 (pEC50 4.48) 1113 OMPT (pEC50 7.17) 1108
Selective antagonists (pKi) AM966 (pIC50 7.8) 1120 H2L5186303 (7.68) 1105 dioctanoylglycerol pyrophosphate (5.5–7.0) 1106,1118

Comments

Ki16425 1118, dodecylphosphate 1121, VPC12249 1110 and VPC32179 1109 have antagonist activity at LPA1 and LPA3 receptors. The selectivity of these antagonists is less than two orders of magnitude. None of the currently available chemical tools have validated specificity in vivo.

Lysophospholipid (S1P) receptors

Overview

Sphingosine 1-phosphate (S1P) receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on Lysophospholipid receptors; 1128) are activated by the endogenous lipid derivatives sphingosine 1-phosphate (S1P) and with lower apparent affinity, sphingosylphosphorylcholine (SPC). Originally identified as members of the endothelial differentiation gene (edg) family along with lysophosphatidic acid receptors, the gene names have been updated to S1PR1, etc. to reflect the receptor function of these proteins. Most cellular phenomena ascribed to S1P can be explained by receptor-mediated mechanisms; S1P has also been described to act at intracellular sites 1142, still awaiting precise definition. Previously-proposed SPC (or lysophophosphatidylcholine) receptors – G2A, TDAG8, OGR1 and GPR4 – are lacking confirmation of these roles 1130. The relationship between recombinant and endogenously expressed receptors is unclear. Radioligand binding has been conducted in heterologous expression systems using [32P]S1P (e.g 1137). In native systems, analysis of binding data is complicated by metabolism and high levels of nonspecific binding. Targeted deletion of several S1P receptors and key enzymes involved in S1P biosynthesis or degradation has clarified signalling pathways and physiological roles. A crystal structure of an S1P1-T4 fusion protein has recently been described 1132.

Nomenclature S1P1 receptor S1P2 receptor S1P3 receptor S1P4 receptor S1P5 receptor
HGNC, UniProt S1PR1, P21453 S1PR2, O95136 S1PR3, Q99500 S1PR4, O95977 S1PR5, Q9H228
Principal transduction Gi/o Gq, G12/13, Gs Gq, Gi/o, Gs Gi/o, G12/13, Gs Gi/o, G12/13
Rank order of potency sphingosine 1-phosphate > dihydrosphingosine 1-phosphate > sphingosylphosphorylcholine 1124,1137 sphingosine 1-phosphate > dihydrosphingosine 1-phosphate > sphingosylphosphorylcholine 1124,1137 sphingosine 1-phosphate > dihydrosphingosine 1-phosphate > sphingosylphosphorylcholine 1137 sphingosine 1-phosphate > dihydrosphingosine 1-phosphate > sphingosylphosphorylcholine 1143 sphingosine 1-phosphate > dihydrosphingosine 1-phosphate > sphingosylphosphorylcholine 1133
Selective agonists (pKi) SEW2871 (5.5 – 7.7) 1140, AUY954 (pEC50 8.92) 1139
Selective antagonists (pKi) W146 (7.7) 1141 JTE-013 (pIC50 7.77) 1138

Comments

The immunomodulator fingolimod (FTY720) can be phosphorylated in vivo 1123 to generate a relatively potent agonist with activity at S1P1, S1P3, S1P4 and S1P5 receptors 1125,1134, although its biological activity appears to involve functional antagonism 1127,1129,1136. This compound has received world-wide approval as the first oral therapy for relapsing forms of Multiple Sclerosis, with a novel mechanism of action involving modulation of S1P receptors in both the immune and nervous systems 1126,1129,1131. VPC23019 and VPC44116 have antagonist activity at S1P1 and S1P3 receptors 1135.

Melanin-concentrating hormone receptors

Overview

Melanin-concentrating hormone (MCH) receptors (provisional nomenclature, 1148) are activated by an endogenous nonadecameric cyclic peptide identical in humans and rats (DFDMLRCMLGRVYRPCWQV) generated from a precursor (PMCH, P20382), which also produces neuropeptide EI and neuropeptide GE.

Nomenclature MCH1 receptor MCH2 receptor
HGNC, UniProt MCHR1, Q99705 MCHR2, Q969V1
Principal transduction Gq/11, Gi/o Gq/11 11501152
Rank order of potency melanin-concentrating hormone (human) > MCH (salmon) melanin-concentrating hormone (human) = MCH (salmon) 1150
Selective antagonists (pKi) SNAP-7941 (pA2 9.2) 1145, GW803430 (pIC50 9.3) 1149, T-226296 (pIC50 8.3) 1153, ATC0175 (pIC50 7.9–8.1) 1147
Radioligands (Kd) [3H]MCH (human, mouse, rat) (Agonist, Full agonist) 1146, [125I]S36057 (Antagonist) (3.2x10−10–6.3x10−10 M) 1144, [125I][Phe13,Tyr19]MCH (Agonist, Full agonist) (7x10−10 M) 1146

Comments

The MCH2 receptor appears to be a non-functional pseudogene in rodents 1154.

Melanocortin receptors

Overview

Melanocortin receptors (provisional nomenclature, 1158) are activated by members of the melanocortin family (α-MSH, β-MSH and γ-MSH derived from a common precursor, pro-opiomelanocortin (POMC, P01189) forms; – δ form is not found in mammals) and adrenocorticotrophin (ACTH (POMC, P01189)). Endogenous antagonists include agouti (ASIP, P42127) and agouti-related protein (AGRP (AGRP, O00253)).

Nomenclature MC1 receptor MC2 receptor MC3 receptor MC4 receptor MC5 receptor
HGNC, UniProt MC1R, Q01726 MC2R, Q01718 MC3R, P41968 MC4R, P32245 MC5R, P33032
Principal transduction Gs Gs Gs Gs Gs
Rank order of potency α-MSH > β-MSH > ACTH, γ-MSH ACTH γ-MSH, β-MSH > ACTH, α-MSH β-MSH > α-MSH, ACTH > γ-MSH α-MSH > β-MSH > ACTH > γ-MSH
Selective agonists (pKi) [D-Trp8]γ-MSH (pIC50 8.2) 1159 MK-0493 1162, THIQ (pIC50 8.9) 1166
Selective antagonists (pKi) PG-106 (pIC50 6.7) 1160 HS014 (8.5) 1165, MBP10 (pIC50 10.0) 1155
Radioligands (Kd) [125I]NDP-MSH (Agonist, Full agonist) (3.3x10-10 M) 1161 [125I]ACTH-(1–24) [125I]SHU9119 (Antagonist) 1163, [125I]NDP-MSH (Agonist, Full agonist) (2x10-10 M) 1161 [125I]SHU9119 (Antagonist) (7x10-10 M) 1163, [125I]NDP-MSH (Agonist, Full agonist) (1.2x10-9–4x10-9 M) 1161,1164 [125I]NDP-MSH (Agonist, Full agonist) (2.8x10-9 M) 1161

Comments

Polymorphisms of the MC1 receptor have been linked to variations in skin pigmentation. Defects of the MC2 receptor underlie familial glucocorticoid deficiency. Polymorphisms of the MC4 receptor have been linked to obesity 1156,1157.

Melatonin receptors

Overview

Melatonin receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on melatonin receptors, 1170) are activated by the endogenous ligands melatonin and N-acetylserotonin.

Nomenclature MT1 receptor MT2 receptor
HGNC, UniProt MTNR1A, P48039 MTNR1B, P49286
Principal transduction Gi/o Gi/o
Selective agonists (pKi) 5-methoxy-luzindole (Partial agonist) (9.6) 1171, IIK7 (pIC50 10.3) 1183
Selective antagonists (pKi) K185 (9.3) 1175,1183, 4P-PDOT (8.8–9.3) 1167,1171, DH97 (8.0) 1184
Radioligands (Kd) 2-[125I]MLT (Agonist, Full agonist) (2.13×10−11 – 1.19×10−10 M) 1167,1171, [3H]melatonin (Agonist, Full agonist) (1.3×10−10 – 4×10−10 M) 1169 2-[125I]MLT (Agonist, Full agonist) (1.07×10−10 – 1.86×10−10 M) 1167,1171, [3H]melatonin (Agonist, Full agonist) (2.8×10−10 – 9.12×10−10 M) 1169

Comments

melatonin, 2-iodo-melatonin, S20098 (agomelatine), GR 196429, LY 156735 and ramelteon 1176 are nonselective agonists for MT1 and MT2 receptors. (-)-AMMTC displays an ∼400-fold greater agonist potency than (+)-AMMTC at rat MT1 receptors (see AMMTC for structure) 1185. luzindole is an MT1/MT2 melatonin receptor-selective competitive antagonist with some selectivity for the MT2 receptor 1172. MT1/MT2 heterodimers present different pharmacological profiles from MT1 and MT2 receptors 1168.

The MT3 binding site of hamster brain and peripheral tissues such as kidney and testis, also termed the ML2 receptor, binds selectively 2-iodo-[125I]5MCA-NAT 1178. Pharmacological investigations of MT3 binding sites have primarily been conducted in hamster tissues. At this site, N-acetylserotonin 1174,1177,1178,1182 and 5MCA-NAT 1182 appear to function as agonists, while prazosin 1177 functions as an antagonist. A suggested physiological function of the MT3 receptor is in the control of intraocular pressure in rabbits 1181. The MT3 binding site of hamster kidney was also identified as the hamster homologue of human quinone reductase 2 (NQO2, P16083 1179,1180). Xenopus melanophores and chick brain express a distinct receptor (x420, P49219; c346, P49288, initially termed Mel1C) coupled to the Gi/o family of G proteins, for which GPR50 has recently been suggested to be a mammalian counterpart 1173 although melatonin does not bind to GPR50 receptors.

Metabotropic glutamate receptors

Overview

Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors, 1243) are activated by the endogenous ligands L-glutamic acid, L-serine-O-phosphate (L-SOP), N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Examples of agonists selective for mGlu receptors compared with ionotropic glutamate receptors are (1S,3R)-ACPD and L-CCG-I, which show limited selectivity for Group II receptors. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu3, mGlu4, mGlu5 and mGlu7 in the micromolar range 1210. Three groups of native receptors are distinguishable on the bases of similarities of agonist pharmacology, primary sequence and G-protein effector coupling: Group I (mGlu1 and mGlu5), Group II (mGlu2 and mGlu3) and Group III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading). Group I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG 1190 and antagonized by (S)-hexylhomoibotenic acid 1221. Group II mGlu receptors may be activated by LY389795 1229, LY379268 1229, LY354740 1244,1254, DCG-IV and (2R,3R)-APDC 1245, and antagonised by eGlu (4.3, 1207 and LY307452 1200,1253. Group III mGlu receptors may be activated by (R,S)-4-PPG 1203.

In addition to orthosteric ligands that directly interact with the glutamate recognition site directly, allosteric modulators have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as ‘potentiators’ of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist.

Nomenclature mGlu1 receptor mGlu5 receptor
HGNC, UniProt GRM1, Q13255 GRM5, P41594
Principal transduction Gq/11 Gq/11
Selective agonists (pKi) (S)-(+)-CBPG (Partial agonist) (pEC50 4.3 - Rat) 1225, CHPG (pIC50 3.4) 1232
Selective antagonists (pKi) AIDA (pA2 4.2) 1231, 3-MATIDA (pIC50 5.2-Rat) 1230, LY367385 (pIC50 5.1) 1196, (S)-(+)-CBPG (pIC50 4.2-Rat) 1225, (S)-TBPG (pIC50 4.2-Rat) 1197 ACDPP (pIC50 6.9) 1188
Selective allosteric regulators PHCCC (Positive), Ro67-7476 (Positive) (pKi 7.5–7.9 - Rat) 1213, Ro01-6128 (Positive) (pKi 7.5–7.7 - Rat) 1213, Ro67-4853 (Positive) (pKi 5.1 - Rat) 1213, JNJ16259685 (Negative) (pIC50 8.9) 1217, A-841720 (Negative) (pIC50 8.0) 1255, 3,5-dimethyl PPP (Negative) (pIC50 7.8-Rat) 1227, YM298198 (Negative) (pIC50 7.8-Rat) 1214, BAY 367620 (Negative) (pIC50 6.8–8.0-Rat) 1193,1216, EM-TBPC (Negative) (pIC50 6.9-Rat) 1223, LY456236 (Negative) (pIC50 6.9) 1218, CPCCOEt (Negative) (pIC50 5.2–5.8) 1220 MTEP (Negative) (pKi 7.8) 1191, VU-1545 (Positive) (pEC50 8.0) 1198, CDPPB (Positive) (pEC50 7.6–8.0) 1211,1219, MPEP (Negative) (pIC50 7.4–7.7) 1202,1204, fenobam (Negative) (pIC50 7.2) 1241, DFB (Positive) (pIC50 5.6–8.5) 1236,1237, CPPHA (Positive) (pIC50 6.3) 1237, SIB-1757 (Negative) (pIC50 6.0–6.4) 1202,1252, SIB-1893 (Negative) (pIC50 5.9–6.5) 1202,1252
Nomenclature mGlu2 receptor mGlu3 receptor
HGNC, UniProt GRM2, Q14416 GRM3, Q14832
Principal transduction Gi/o Gi/o
Selective antagonists (pKi) PCCG-4 (pIC50 5.1 - Rat) 1239
Selective allosteric regulators biphenylindanone A (Positive) (pEC50 7.0) 1189, CBiPES (Positive) (pEC50 7.0) 1209, Ro64-5229 (Negative) (pIC50 7.0 - Rat) 1215, 4-MPPTS (Positive) (pIC50 5.8) 1187,1208,1209,1242
Endogenous agonists (pKi) NAAG (Selective) (4.7) 1246
Nomenclature mGlu4 receptor mGlu6 receptor mGlu7 receptor mGlu8 receptor
HGNC, UniProt GRM4, Q14833 GRM6, O15303 GRM7, Q14831 GRM8, O00222
Principal transduction Gi/o Gi/o Gi/o Gi/o
Endogenous agonists (pKi) L-SOP (pIC50 6.2–7.2) 1224,1254
Non-selective agonists (pKi) L-AP4 (pEC50 6.5) 1254, L-SOP (pEC50 5.9) 1254 L-SOP (pEC50 4.5) 1254, L-AP4 (pEC50 3.8) 1254 L-AP4 (pIC50 7.0–7.2) 1224
Selective agonists (pKi) LSP4-2022 1205 1-benzyl-APDC (pEC50 4.7 - Rat) 1250, homo-AMPA (pEC50 4.1) 1192 LSP4-2022 (pEC50 4.96) 1205 (S)-3,4-DCPG (pEC50 7.5) 1248
Non-selective antagonists (pKi) MAP4 (4.6 - Rat) 1206 MAP4 (pIC50 3.5 - Rat) 1240 MPPG (pIC50 4.33) 1254
Selective antagonists (pKi) THPG 1249
Non-selective allosteric regulators SIB-1893 (Positive) (pEC50 6.3–6.8) 1226, MPEP (Positive) (pEC50 6.3–6.6) 1226, PHCCC (Positive) (pEC50 4.5) 1222 AMN082 (Positive) (pEC50 6.5–6.8) 1228
Selective allosteric regulators VU0361737 (Positive) (pEC50 6.6) 1199, VU0155041 (Positive) (pEC50 6.1) 1235 MMPIP (Negative) (pIC50 6.1–7.6 - Rat) 1234,1247
Comment pEC50 values for MPEP and SIB-1893 were obtained in the presence of L-AP4 1226

Comments

The activity of NAAG as an agonist at mGlu3 receptors was questioned on the basis of contamination with glutamate 1194,1201, but this has been refuted 1233.

Radioligand binding using a variety of radioligands has been conducted on recombinant receptors (for example, [3H]R214127 1216 and [3H]YM298198 1214 at mGlu1 receptors and [3H]M-MPEP 1202 and [3H]methoxymethyl-MTEP 1186 at mGlu5 receptors. Although a number of radioligands have been used to examine binding using native tissues, correlation with individual subtypes is limited. Many pharmacological agents have not been fully tested across all known subtypes of mGlu receptors. Potential differences linked to the species (e.g. human versus rat or mouse) of the receptors and the receptor splice variants are generally not known. The influence of receptor expression level on pharmacology and selectivity has not been controlled for in most studies, particularly those involving functional assays of receptor coupling.

(S)-(+)-CBPG is an antagonist at mGlu1, but is an agonist (albeit of reduced efficacy) at mGlu5 receptors. DCG-IV also exhibits agonist activity at NMDA glutamate receptors 1251, and is an antagonist at all group-III mGluRs with an IC50 of 30μM. A potential novel metabotrophic glutamate receptor coupled to phosphoinositide turnover has been observed in rat brain; it is activated by 4-methylhomoibotenic acid (ineffective as an agonist at recombinant Group I metabotrophic glutamate receptors), but resistant to LY341495 1195. There are also reports of a distinct metabotrophic glutamate receptor coupled to phospholipase D in rat brain, which does not readily fit into the current classification 1212,1238.

A related class C receptor composed of two distinct subunits, T1R1 +T1R3 is also activated by glutamate and is responsible for umùami taste detection.

All selective antagonists at metabotropic glutamate receptors are competitive.

Motilin receptor

Overview

Motilin receptors (provisional nomenclature, 1261) are activated by a 22 amino-acid peptide derived from a precursor (MLN, P12872), which may also generate a motilin-associated peptide (MLN, P12872). These receptors are also suggested to be responsible for the gastrointestinal prokinetic effects of certain macrolide antibiotics (often called motilides; e.g. erythromycin), although for many of these molecules the evidence is sparse.

Nomenclature HGNC, UniProt Principal transduction Endogenous agonists (pKi) Selective agonists (pKi) Selective antagonists (pKi) Radioligands (Kd) Comment
motilin receptor MLNR, O43193 Gq/111259,1260 motilin (8.4 – 8.7) 1258,12651267 GSK962040 (pEC50 7.9) 1275, mitemcinal (pEC50 7.5 – 7.8 - Rabbit) 1263,1273, azithromycin (pEC50 5.5) 1256, mitemcinal (pIC50 8.1 – 8.2 - Rabbit) 1257, ABT-229 (pIC50 7.2) 1274, erythromycin-A (pIC50 5.5 – 6.5) 1260,1274 MA-2029 (pA2 9.2) 1271, GM-109 (pA2 7.2 – 7.5 - Rabbit) 1257,1272, GM-109 (pIC50 8.0 - Pig) 1262 [125I]motilin (human) (Agonist, Full agonist) (1x10-10 M) 1260 Note that for the complex macrolide structures, selectivity of action has often not been rigorously examined and other actions are possible (e.g. P2X inhibition by erythromycin; 1277). Small molecule motilin receptor agonists are now described 1264,1270,1276.

Comments

In laboratory rodents, the gene encoding the motilin percursor appears to be absent, while the receptor appears to be a pseudogene. Functions of motilin (MLN, P12872) are not usually detected in rodents, although brain and other responses to motilin (MLN, P12872) and the macrolide ABT-229 have been reported and the mechanism of these actions are obscure 1268,1269.

Neuromedin U receptors

Overview

Neuromedin U receptors (provisional nomenclature, 1279) are activated by the endogenous 25 amino acid peptide neuromedin U (NMU-25 (NMU, P48645), NMU), a peptide originally isolated from pig spinal cord 1285. In humans, NMU-25 appears to be the sole product of a precursor gene (NMU, P48645) showing a broad tissue distribution, but which is expressed at highest levels in the upper gastrointestinal tract, CNS, bone marrow and fetal liver. Much shorter versions of NMU are found in some species, but not in human, and are derived at least in some instances from the proteolytic cleavage of the longer NMU. Despite species differences in NMU structure, the C-terminal region (particularly the C-terminal pentapeptide) is highly conserved and contains biological activity. Neuromedin S (NMS-33 (NMS, Q5H8A3)) has also been identified as an endogenous agonist 1286. NMS-33 is, as its name suggests, a 33 amino-acid product of a precursor protein derived from a single gene and contains an amidated C-terminal heptapeptide identical to NMU. NMS-33 appears to activate NMU receptors with equivalent potency to NMU-25.

Nomenclature NMU1 receptor NMU2 receptor
HGNC, UniProt NMUR1, Q9HB89 NMUR2, Q9GZQ4
Principal transduction Gq/11 1278,1280 Gq/11 1278,1281
Selective antagonists (pKi) R-PSOP (pKB 7.04) 1283

Comments

NMU1 and NMU2 couple predominantly to Gq/11 although there is evidence of good coupling to Gi/o 1278,1281,1282. NMU1 and NMU2 can be labelled with [125I]-NMU and [125I]-NMS (of various species, e.g. 1284), BODIPY® TMR-NMU or Cy3B-NMU-8 1278. A range of radiolabelled (125I-), fluorescently labelled (e.g. Cy3, Cy5, rhodamine and FAM) and biotin labelled versions of NMU-25 (NMU, P48645) and NMS-33 (NMS, Q5H8A3) are now commercially available.

Neuropeptide FF/neuropeptide AF receptors

Overview

A single propeptide precursor (NPFF, O15130) generates the octapeptides NPFF (FLFQPQRF-NH2, neuropeptide FF or F-8-F-amide) and NPSF (SLAAPQRF-NH2, neuropeptide SF) and the octadecapeptide NPAF (AGEGLSSPFWSLAAPQRF-NH2, neuropeptide AF or A-18-F-amide). NPFF and NPAF were originally isolated from bovine brain 1298.

Nomenclature NPFF1 receptor NPFF2 receptor
HGNC, UniProt NPFFR1, Q9GZQ6 NPFFR2, Q9Y5X5
Principal transduction Gq/11 Gi/o 1293
Rank order of potency FMRF, NPFF > NPAF > NPSF, QRFP, PrRP-31 (PRLH) 1287 NPAF, NPFF > PrRP-31 (PRLH) > FMRF, QRFP (QRFP, P83859) > NPSF 1287
Endogenous agonists (pKi) RFRP-3 (NPVF, Q9HCQ7) (Selective) (9.2 – 9.3) 1288,1289,1292, NPFF (NPFF, O15130) (Selective) (8.5 – 9.9) 1287,1288,1292 NPFF (Selective) (9.7) 1288,1291
Selective agonists (pKi) dNPA (10.6) 1294,1295, AC263093 (pEC50 5.2 – 5.9) 1290
Selective antagonists (pKi) AC262620 (7.7 – 8.1) 1290, AC262970 (7.4 – 8.1) 1290, RF9 (7.2) 1296
Radioligands (Kd) [125I]NPFF (Agonist, Full agonist) 1287, [125I]Y-RFRP-3 (Agonist, Full agonist) (8x10-9 M) 1288, [3H]NPVF (Agonist, Full agonist) (2.65x10-9 M) 1297 [125I]NPFF (Agonist, Full agonist) 1287, [125I]EYF (Agonist, Full agonist) (6.3x10-11 M) 1292, [3H]EYF (Agonist, Full agonist) (5.4x10-10 M) 1297

Comments

An orphan receptor GPR83 (Q9NYM4) shows sequence similarities with NPFF1, NPFF2, PrRP and QRFP receptors. The antagonist RF9 is selective for NPFF receptors, but does not distinguish between the NPFF1 and NPFF2 subtypes (pKi 7.1 and 7.2, respectively, 1296).

Neuropeptide S receptor

Overview

The neuropeptide S receptor (NPS, provisional nomenclature, 1300) responds to the 20 amino-acid peptide neuropeptide S derived from the precursor (NPS, P0C0P6).

Nomenclature HGNC, UniProt Principal transduction Endogenous agonists (pKi) Radioligands (Kd)
NPS receptor NPSR1, Q6W5P4 Gs, Gq/11 1301,1302 NPS (pEC50 8.0) 1303 [125I]Tyr10NPS (human) (Agonist, Full agonist) (3.3x10−10 M) 1303

Comments

Polymorphisms in the NPS receptor have been suggested to be associated with asthma 1302 and irritable bowel syndrome 1299.

Neuropeptide W/neuropeptide B receptors

Overview

The neuropeptide BW receptor 1 (NPBW1) is activated by two 23-amino-acid peptides, neuropeptide W (NPW-23 (NPW, Q8N729)) and neuropeptide B (NPB-23 (NPB, Q8NG41)) 1305,1309. C-terminally extended forms of the peptides (NPW-30 (NPW, Q8N729) and NPB-29 (NPB, Q8NG41)) also activate NPBW1 1304. Unique to both forms of NPB is the N-terminal bromination of the first tryptophan residue. des-Br-NPB-23 (NPB, Q8NG41) and des-Br-NPB-29 (NPB, Q8NG41) were not found to be major components of bovine hypothalamic tissue extracts. The NPBW2 receptor is activated by the short and C-terminal extended forms of NPB and NPW 1304.

Nomenclature NPBW1 receptor NPBW2 receptor
HGNC, UniProt NPBWR1, P48145 NPBWR2, P48146
Principal transduction Gi/0 1307 Gi/0 1307
Rank order of potency NPB-29 > NPB-23 > NPW-23 > NPW-30 1304 NPW-23 > NPW-30 > NPB-29 > NPB-23 1304
Selective agonists (pKi) Ava3 (9.37–9.43) 1306, Ava5 (8.8–9.0) 1306
Radioligands (Kd) [125I]NPW-23 (human) (Agonist) (4.4x10−10 M) 1310 [125I]NPW-23 (human) (Agonist) (1.99x10−8 M) 1309

Comments

Potency measurements were conducted with heterologously-expressed receptors with a range of 0.14–0.57 nM (NPBW1) and 0.98–21 nM (NPBW2).

NPBW1-/- mice show changes in social behavior, suggesting that the NPBW1 pathway may have an important role in the emotional responses of social interaction 1308.

Neuropeptide Y receptors

Overview

Neuropeptide Y (NPY) receptors (nomenclature agreed by NC-IUPHAR on Neuropeptide Y Receptors, 1325) are activated by the endogenous peptides NPY (NPY, P01303), NPY 3–36 (NPY, P01303), peptide YY (PYY (PYY, P10082)), PYY-(3–36) (PYY, P10082) and pancreatic polypeptide (PP (PPY, P01298)). The receptor originally identified as the Y3 receptor has been identified as the CXCR4 chemokine recepter (originally named LESTR, 1323). The y6 receptor is a functional gene product in mouse, absent in rat, but contains a frame-shift mutation in primates producing a truncated non-functional gene 1321. Many of the agonists exhibit differing degrees of selectivity dependent on the species examined. For example, the relative potency of PP (PPY, P01298) is greater at the rat Y4 receptor than at the human receptor 1317. In addition, many agonists lack selectivity for individual subtypes, but can exhibit comparable potency against pairs of NPY receptor subtypes, or have not been examined for activity at all subtypes. [125I]-PYY or [125I]-NPY can be used to label Y1, Y2, Y5 and Y6 subtypes non-selectively, while [125I][cPP(1–7), NPY(19–23), Ala31, Aib32, Gln34]hPP may be used to label Y5 receptors preferentially.

Nomenclature Y1 receptor Y2 receptor Y4 receptor Y5 receptor y6 receptor
HGNC, UniProt NPY1R, P25929 NPY2R, P49146 NPY4R, P50391 NPY5R, Q15761 NPY6R, Q99463
Principal transduction Gi/o Gi/o Gi/o Gi/o Gi/o
Rank order of potency NPY > PYY >> PP NPY > PYY >> PP PP > NPY = PYY NPY > PYY > PP NPY = PYY > PP
Endogenous agonists (pKi) NPY 3–36 (Selective), PYY-(3–36) (9.2–9.7) 1318,1320 PP (8.7–10.9) 1311,1324,1327,1329
Selective agonists (pKi) [Leu31,Pro34]PYY (human), [Pro34]NPY, [Pro34]PYY (human), [Leu31,Pro34]NPY (pEC50 7.1) 1314 [Ala31,Aib32]NPY (pig) (pIC50 8.2) 1313
Selective antagonists (pKi) BIBP3226 (8.1–8.2) 1319,1326, BIBO3304 (pIC50 9.5) 1328 BIIE0246 (pIC50 8.5) 1315, JNJ-5207787 (pIC50 6.9–7.1) 1312 L-152,804 (7.6) 1322
Radioligands (Kd) [125I][Leu31,Pro34]NPY (Agonist, Full agonist), [3H]BIBP3226 (Antagonist) (2.1x10−9 M) [125I]PYY-(3–36) (human) (Agonist, Full agonist) [125I]PP (human) (Agonist, Full agonist) [125I][cPP(1–7), NPY(19–23), Ala31, Aib32, Gln34]hPP (Agonist) (5x10−10–7x10−10 M – Rat) 1316

Comments

The Y1 agonists indicated are selective relative to Y2 receptors. BIBP3226 is selective relative to Y2, Y4 and Y5 receptors 1319. NPY-(13–36) is Y2 selective relative to Y1 and Y5 receptors. PYY-(3–36) (PYY, P10082) is Y2 selective relative to Y1 receptors.

Neurotensin receptors

Overview

Neurotensin receptors (provisional nomenclature, 1330) are activated by the endogenous tridecapeptide neurotensin (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) derived from a precursor (NTS, P30990), which also generates neuromedin N, an agonist at the NTS2 receptor. A nonpeptide antagonist, SR142948A, shows high affinity (pKi∼9) at both NTS1 and NTS2 receptors 1331. [3H]neurotensin (human, mouse, rat) and [125I]neurotensin (human, mouse, rat) may be used to label NTS1 and NTS2 receptors at 0.1–0.3 and 3–5 nM concentrations respectively.

Nomenclature NTS1 receptor NTS2 receptor
HGNC, UniProt NTSR1, P30989 NTSR2, O95665
Principal transduction Gq/11 Gq/11
Rank order of potency neurotensin > neuromedin N 1332 neurotensin = neuromedin N 1335
Selective agonists (pKi) JMV449 1338 levocabastine (6.8) 1335,1337
Selective antagonists (pKi) SR48692 (pIC50 7.5–8.2) 1331
Radioligands (Kd) [3H]SR48692 (Antagonist) (3.2x10−9 M – Rat) 1333

Comments

neurotensin (NTS, P30990) appears to be a low-efficacy agonist at the NTS2 receptor 1339, while the NTS1 receptor antagonist SR48692 is an agonist at NTS2 receptors 1339. An additional protein, provisionally termed NTS3 (also known as NTR3, gp95 and sortilin; ENSG00000134243), has been suggested to bind lipoprotein lipase and mediate its degradation 1336. It has been reported to interact with the NTS1 receptor 1334 and has been implicated in hormone trafficking and/or neurotensin uptake.

Opioid receptors

Overview

Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (PENK, P01210) (met), [Leu]enkephalin (PENK, P01210) (leu), β-endorphin (POMC, P01189) (β-end), α-neodynorphin (PDYN, P01213), dynorphin A (PDYN, P01213) (dynA), dynorphin B (PDYN, P01213) (dynB), big dynorphin (PDYN, P01213) (Big dyn), nociceptin/orphanin FQ (N/OFQ (PNOC, Q13519)); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter names for the opioid receptors, μ, δ and κ, are well established, and IUPHAR considers these names most appropriate 1352. The human N/OFQ receptor is considered ‘opioid-related’ rather than opioid because while it exhibits a high degree of structural homology with the conventional opioid receptors 1368, it displays a distinct pharmacology.

Nomenclature δ receptor κ receptor μ receptor NOP receptor
HGNC, UniProt OPRD1, P41143 OPRK1, P41145 OPRM1, P35372 OPRL1, P41146
Principal transduction Gi/o Gi/o Gi/o Gi/o
Rank order of potency N/OFQ >> dynorphin A
Principal endogenous agonists β-endorphin, [Leu]enkephalin, [Met]enkephalin big dynorphin, dynorphin A β-endorphin, [Met]enkephalin, [Leu]enkephalin, endomorphin-1, endomorphin-2
Endogenous agonists (pKi) endomorphin-2 (Selective) (8.5 – Rat) 1388, endomorphin-1 (8.3) 1353,1388 N/OFQ (Selective) (9.7–10.4) 1341,13651367,1372
Selective agonists (pKi) [D-Ala2]deltorphin I (pKd 9.35) 1350,1382, [D-Ala2]deltorphin II (8.8) 1351, DPDPE (8.8) 1369,1384, SNC80 (7.2) 1345,1376 enadoline (9.6) 1357,1370, U69593 (9.5) 1363,1384, U50488 (7.8–9.7) 1348,1373,1379,1384,1386,1392,1393, salvinorin A (7.8–8.7) 1343,1377 sufentanil (9.9) 1385, DAMGO (9.3) 1355,1384, PL017 (8.2) 1347,1384 N/OFQ-(1–13)-NH2 (10.1–10.4) 1341,1354,1365,1372, Ro64-6198 (9.6) 1358
Selective antagonists (pKi) naltriben (10.0) 1381,1384, naltrindole (9.7) 1375,1384, TIPPψ (Inverse agonist) (9.0) 1378,1384 nor-binaltorphimine (8.9–11.0) 1373,1374,1379,1384,1392,1393, GNTI (9.74–9.9) 1359,1373,1383 CTAP (8.6) 1347,1384 UFP-101 (10.2) 1346, SB 612111 (9.5) 1391, J-113397 (pIC50 8.3) 1361
Radioligands (Kd) [3H]deltorphin II 1344, [3H]DPDPE 1340, [3H]naltriben (Antagonist) 1364, [3H]naltrindole (Antagonist) 1387 [3H]CI977 1380, [3H]U69593 (Agonist, Full agonist) (2x10−9–1.6x10−9 M) 1363,1373,1379 [3H]DAMGO (Agonist, Full agonist) 1390, [3H]PL017 (Agonist) 1356 [3H]N/OFQ (Agonist, Full agonist) (6.3x10-11 M) 1349,1367

Comments

Subtypes of μ (μ1, μ2), δ (δ1, δ2) and κ (κ1, κ2, κ3) receptor have been proposed based primarily on binding studies with poorly selective ligands or results from in vivo studies. Only three naloxone-sensitive opioid receptors have been cloned, and while the μ-receptor in particular may be subject to extensive alternative splicing, these putative isoforms have not been definitively correlated with any of the proposed subtypes. Opioid receptor subtypes may reflect heterodimerization of opioid receptors with each other or with other GPCR 1360, but evidence for heterodimers in native cells is equivocal. A distinct met-enkephalin receptor lacking structural resemblance to the opioid receptors listed has been identified (OGFR, 9NZT2) and termed an opioid growth factor receptor 1389. Opioid receptor subtypes may reflect heterodimerization of opioid receptors with each other or with other GPCR, and while there is increasing evidence for heterodimers in native cells, the consequences this heterodimerization has for signalling remains largely unknown. For μ-opioid receptors at least, dimerization does not seem to be required for signalling 1362.

endomorphin-1 and endomorphin-2 have been identified as highly selective, putative endogenous agonists for the μ-opioid receptor. At present, however, the mechanisms for endomorphin synthesis in vivo have not been established, and there is no gene identified that encodes for either. Thus, the status of these peptides as endogenous ligands remains unproven.

Two areas of increasing importance in defining opioid receptor function are the presence of functionally relevant single nucleotide polymorphisms in human μ-receptors 1371 and the identification of biased signalling by opioid receptor ligands, in particular, compounds previously characterized as antagonists 1342. Pathway bias for agonists makes general rank orders of potency and efficacy somewhat obsolete, and they have, therefore, been removed from the table. As ever, the mechanisms underlying the acute and long term regulation of opiod receptor function are the subject of intense investigation and debate.

Orexin receptors

Overview

Orexin receptors (nomenclature as agreed by NC-IUPHAR, see 1395) are activated by the endogenous polypeptides orexin-A (HCRT, O43612) and orexin-B (HCRT, O43612) (also known as hypocretin-1 and -2; 33 and 28 aa) derived from a common precursor, preproorexin or orexin precursor, by proteolytic cleavage 1407. Binding to both receptors may be accomplished with [125I]orexin A (human, mouse, rat) 1397.

Nomenclature OX1 receptor OX2 receptor
HGNC, UniProt HCRTR1, O43613 HCRTR2, O43614
Principal transduction Gq/11 Gq/11
Rank order of potency orexin-A > orexin-B orexin-A = orexin-B
Selective agonists (pKi) [Ala11, D-Leu15]orexin-B (pEC50 9.9) 1394
Selective antagonists (pKi) SB-334867 (7.4 – 7.5) 1402,1404, SB-408124 (7.2 – 7.6) 1399,1402 N-ethyl-2-[(6-methoxy-pyridin-3-yl)-(toluene-2-sulphonyl)-amino]-N-pyridin-3-ylmethyl-acetamide (9.0) 1401, 1-(2,4-dibromo-phenyl)-3-((4S,5S)-2,2-dimethyl-4-phenyl-[1394,1396]dioxan-5-yl)-urea (7.9 – 8.6) 1403, TCS-OX2-29 (7.4) 1396

Comments

The primary coupling of orexin receptors to Gq/11 proteins is rather speculative and based on the strong activation of phospholipase C. Coupling of both receptors to Gi/o and Gs has also been reported 1398,1406; for most cellular responses observed, the G protein pathway is unknown. The rank order of endogenous agonist potency may depend on the cellular signal transduction machinery. The synthetic [Ala11, D-Leu15]orexin-B may show poor OX2 receptor selectivity 1405.

Loss-of-function mutations in the gene encoding the OX2 receptor underlie canine hereditary narcolepsy 1400.

Oxoglutarate receptor

Overview

the oxoglutarate receptor (NC-IUPHAR recommended nomenclature, see Davenport et al., 2004) has been suggested to respond to one of the intermediates of the citric acid cycle 1408.

Nomenclature HGNC gene symbol UniProtKB AC Principal transduction Endogenous agonists (pKi)
oxoglutarate receptor OXGR1 Q96P68 Gq 1408 α-ketoglutaric acid (pEC50 3.3 – 4.49) 1408,1409

P2Y receptors

Overview

P2Y receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on P2Y Receptors, 1410,1411) are activated by the endogenous ligands ATP, ADP, UTP, UDP and UDP-glucose. The relationship of many of the cloned receptors to endogenously expressed receptors is not yet established and so it might be appropriate to use wording such as ‘UTP-preferring (or ATP-, etc.) P2Y receptor’ or ‘P2Y1-like’, etc., until further, as yet undefined, corroborative criteria can be applied.

Nomenclature P2Y1 receptor P2Y2 receptor P2Y4 receptor P2Y6 receptor
HGNC, UniProt P2RY1, P47900 P2RY2, P41231 P2RY4, P51582 P2RY6, Q15077
Principal transduction Gq/11 Gq/11 Gq/11 Gq/11
Rank order of potency ADP>ATP UTP=ATP UTP>ATP (at rat recombinant receptors, UTP = ATP) UDP>>UTP>ATP
Endogenous agonists (pKi) UDP (pEC50 6.5) 1423
Selective agonists (pKi) MRS2365 (pEC50 9.4) 1421, ADPβS (pEC50 7.3) 1459, 2MeSADP (pIC50 5.4 – 7.0) 1458,1461 2-thioUTP (pEC50 7.3) 1426, PSB1114 (pEC50 6.9) 1427, Ap4A (pEC50 6.1) 1419,1457, UTPγS (pEC50 5.8) 1443, MRS2768 (pEC50 5.7) 1441 UTPγS 1444, MRS4062 (pEC50 7.6) 1448 MRS2957 (pEC50 7.9) 1447, 5-iodoUDP (pEC50 7.82) 1416, 3-phenacyl-UDP (pEC50 7.2) 1426
Selective antagonists (pKi) MRS2500 (8.8 – 9.1) 1420,1438, MRS2279 (7.9) 1461, MRS2179 (7.0 – 7.1) 1418,1461, 2,2'-pyridylisatogen tosylate (6.8) 1429 AR-C118925XX (pIC50 ∼6.0) 1436 ATP (pKd 6.2) 1437 MRS2578 (pIC50 7.4) 1445
Radioligands (Kd) [35S]ADPβS (Agonist), [3H]2MeSADP (Agonist), [3H]MRS2279 (Antagonist) (8x10-9 M) 1461
Nomenclature P2Y11 receptor P2Y12 receptor P2Y13 receptor P2Y14 receptor
HGNC, UniProt P2RY11, Q96G91 P2RY12, Q9H244 P2RY13, Q9BPV8 P2RY14, Q15391
Principal transduction Gs, Gq/11 Gi/o Gi/o Gq/11
Rank order of potency ATP>UTP ADP>>ATP ADP>>ATP UDP-glucose
Endogenous agonists (pKi) ADP (5.9) 1432, ATP (5.2) 1432
Selective agonists (pKi) NAADP 1452, NAD 1453, AR-C67085 (pEC50 8.52) 1413,1424, NF546 (pEC50 6.27) 1449 2MeSADP (9.2) 1432 MRS2690 (pEC50 6.64 – 7.31) 1430,1442
Selective antagonists (pKi) NF157 (7.35) 1460, NF340 (pIC50 6.4 – 7.1) 1449 PSB-0739 (7.6) 1414, ARL66096 (pIC50 7.95) 1433,1434 MRS2211 (pIC50 5.97) 1439
Radioligands (Kd) [3H]PSB-0413 (Antagonist) (3.16x10-9 – 4.57x10-9 M) 1425,1455, [3H]2MeSADP (Agonist, Full agonist) (IC50 2.5x10-10 – 3.16x10-8 M) 1459

Comments

AR-C69931MX (cangrelor) shows selectivity for P2Y12 and P2Y13 receptors compared with other P2Y receptors 1446,1459. NF157 also has antagonist activity at P2X1 receptors 1460. UDP has been reported to be an antagonist at the P2Y14 receptor 1428.

An orphan GPCR suggested to be a ‘P2Y15’ receptor 1435 appears not to be a genuine nucleotide receptor 1411, but rather responds to dicarboxylic acids 1431. Further P2Y-like receptors have been cloned from non-mammalian sources; a clone from chick brain, termed a p2y3 receptor (ENSGALG00000017327), couples to the Gq/11 family of G proteins and shows the rank order of potency ADP > UTP > ATP = UDP 1462. In addition, human sources have yielded a clone with a preliminary identification of p2y5 (LPAR6, P43657) and contradictory evidence of responses to ATP 1440,1463. This protein is now classified as LPA4, a receptor for lysophosphatidic acid (LPA) 1456,1464. The clone clone termed p2y9 (LPAR4, 99677, 1454). The clone p2y7 (NOP9, Q86U38), originally suggested to be a P2Y receptor 1412, has been shown to encode a leukotriene receptor 1465. A P2Y receptor that was initially termed a p2y8 receptor (P79928) has been cloned from Xenopus laevis; it shows the rank order of potency ADPβS > ATP = UTP = GTP = CTP = TTP = ITP > ATPγS and elicits a Ca2+-dependent Cl- current in Xenopus oocytes 1417. The p2y10 clone (P2RY10, O00398) lacks functional data. Diadenosine polyphosphates also have effects on as yet uncloned P2Y-like receptors with the rank order of potency of Ap4A > Ap5a > Ap3a, coupling via Gq/11 1419. P2Y-like receptors have recently been described on mitochondria 1415. CysLT1 and CysLT2 leukotriene receptors respond to nanomolar concentrations of UDP, although they are activated principally by leukotrienes LTC4 and LTD4 1450,1451; Human GPR17 (13304) and rat GPR17, which are structurally related to CysLT and P2Y receptors, are also activated by leukotrienes as well as UDP and UDP-glucose 1422. Activity at the rat GPR17 is inhibited by submicromolar concentrations of MRS2179 and cangrelor 1422.

Parathyroid hormone receptors

Overview

The parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor (PTH1 receptor) is activated by precursor-derived peptides: PTH (PTH, P01270) (84 amino acids), and PTHrP (PTHLH, P12272) (141 amino-acids) and related peptides (PTH-(1-34), PTHrP-(1-36)). The parathyroid hormone 2 receptor (PTH2 receptor) is activated by the precursor-derived peptide TIP39 (39 amino acids, PTH2, Q96A98). [125I]PTH may be used to label both PTH1 and PTH2 receptors.

Nomenclature PTH1 receptor PTH2 receptor
HGNC, UniProt PTH1R, Q03431 PTH2R, P49190
Principal transduction Gs, Gq/11 Gs, Gq/11
Rank order of potency PTH = PTHrP TIP39, PTH >> PTHrP
Endogenous agonists (pKi) TIP39 (pIC50 7.6 – 9.2) 1468,1469
Selective agonists (pKi) PTHrP-(1-34) (pIC50 7.8 – 8.1 - Rat) 1467, PTH-(1-34) (human) (pIC50 7.4) 1466

Comments

Although PTH (PTH, P01270) is an agonist at human PTH2 receptors, it fails to activate the rodent orthologues. TIP39 (PTH2, Q96A98) is a weak antagonist at PTH1 receptors 1470.

Peptide P518 receptor

Overview

The peptide P518 receptor is also known as the QRFP receptor and responds to the endogenous peptide agonist QRFP.

Nomenclature HGNC, UniProt Principal transduction Endogenous agonists (pKi) Radioligands (Kd)
QRFP receptor QRFPR, Q96P65 Gq/11, Gi/o 1471 QRFP26 (QRFP) (pEC50 8.15) 1472, QRFP (QRFP, P83859) (pIC50 7.8 – 9.28 − Rat) 1471,1474 [125I]QRFP (human) (Agonist, Full agonist) (5.01x10-11 – 1.58x10-8 M) 1471,1473,1474

Comments

The orphan receptor GPR83 (9NYM4) shows sequence similarities with NPFF1, NPFF2, PrRP and QRFP receptors.

Platelet-activating factor receptor

Overview

Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is an ether phospholipid mediator associated with platelet coagulation, but also subserves inflammatory roles. The PAF receptor (provisional nomenclature, see 1475) is activated by PAF and other suggested endogenous ligands are oxidized phosphatidylcholine 1479 and lysophosphatidylcholine 1482. It may also be activated by bacterial lipopolysaccharide 1481.

Nomenclature HGNC, UniProt Principal transduction Selective agonists (pKi) Selective antagonists (pKi) Radioligands (Kd)
PAF receptor PTAFR, P25105 Gq/11, Gi, Go mc-PAF SR 27417 (10.3) 1478, L659989 (8.1), ginkgolide B (6.4), apafant (5.2 – 7.5) 1483,1484, CV-6209 (pIC50 8.1 – 8.3) 1477,1480 [3H]PAF (Agonist, Full agonist) (1.6x10-9 – 1.3x10-9 M) 1476,1480

Comments

Note that a previously recommended radioligand ([3H]apafant; Kd 44.6 nM) is currently unavailable.

Prokineticin receptors

Overview

Prokineticin receptors (provisional nomenclature, 1486) respond to the cysteine-rich 81–86 amino-acid peptides prokineticin-1 (PROK1, Q9HC23) (also known as endocrine-gland-derived vascular endothelial growth factor, mambakine) and prokineticin-2 (PROK2, Q9HC23) (protein Bv8 homologue). An orthologue of PROK1 from black mamba (Dendroaspis polylepis) venom, mamba intestinal toxin 1 (MIT1, 1491) is a potent, non-selective agonist at prokineticin receptors 1488, while Bv8, an orthologue of PROK2 from amphibians (Bombina sp., 1489), is equipotent at recombinant PK1 and PK2 receptors 1490, and has high potency in macrophage chemotaxis assays, which are lost in PK1-null mice 1485.

Nomenclature PKR1 PKR2
HGNC, UniProt PROKR1, Q8TCW9 PROKR2, Q8NFJ6
Principal transduction Gq/11 1487,1488 Gq/11 1487,1488
Rank order of potency prokineticin-2 > prokineticin-1 1487,1488,1492 prokineticin-2 > prokineticin-1 1487,1488,1492

Prolactin-releasing peptide receptor

Overview

The precursor (PRLH, P81277) for PrRP generates 31 and 20-amino-acid versions. QRFP (QRFP, P83859) (named after a pyroglutamylated arginine-phenylalanine-amide peptide) is a 43 amino acid peptide derived from QRFP (P83859) and is also known as P518 or 26RFa. RFRP is an RF amide-related peptide 1495 derived from a FMRFamide-related peptide precursor (NPVF, Q9HCQ7), which is cleaved to generate neuropeptide NPSF (NPFF, O15130), neuropeptide RFRP-1 (NPVF, Q9HCQ7), neuropeptide RFRP-2 (NPVF, Q9HCQ7) and neuropeptide RFRP-3 (NPVF, Q9HCQ7) (neuropeptide NPVF).

Nomenclature HGNC, UniProt Principal transduction Rank order of potency Endogenous agonists (pKi) Endogenous antagonists (pKi) Radioligands (Kd)
PRRP receptor PRLHR, P49683 Gq/11 1497 PrRP-20, PrRP-31 1497 PrRP-20 (Selective) (9.0–9.6) 1494,1497, PrRP-31 (Selective) (9.0–9.2) 1494,1497 NPY (NPY, P01303) (Selective) (5.4) 1496 [125I]PrRP31 1493, [125I]PrRP-20 (human) (Agonist, Full agonist) (2.6×10−11–5.7×10−10 M) 1497

Comments

The orphan receptor GPR83 (Q9NYM4) shows sequence similarities with NPFF1, NPFF2, PrRP and QRFP receptors.

Prostanoid receptors

Overview

Prostanoid receptors (nomenclature agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors, 1512) are activated by the endogenous ligands prostaglandins PGD2, PGE2, PGF2α, PGH2, prostacyclin [PGI2] and thromboxane A2. Measurement of the potency of PGI2 and thromboxane A2 is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies.

Nomenclature DP1 receptor DP2 receptor FP receptor IP1 receptor TP receptor
HGNC, UniProt PTGDR, Q13258 PTGDR2, Q9Y5Y4 PTGFR, P43088 PTGIR, P43119 TBXA2R, P21731
Principal transduction Gs Gi/o Gq/11 Gq/11
Rank order of potency PGD2 >> PGE2 > PGF2α > PGI2, thromboxane A2 PGD2 >> PGF2α, PGE2 > PGI2, thromboxane A2 PGF2α > PGD2 > PGE2 > PGI2, thromboxane A2 PGI2 >> PGD2, PGE2, PGF2α > thromboxane A2 thromboxane A2 = PGH2 >> GD2, PGE2, PGF2α, PGI2
Selective agonists (pKi) L-644,698 (9.0–9.3) 1563,1564, BW 245C (8.4–9.4) 1506,1563,1564, SQ-27986 (8.0) 1545, RS 93520 (Partial agonist) (7.5) 1545, ZK118182 (7.3) 1545 15(R)-15-methyl-PGD2 (8.9) 1518,1533,1552, 13,14-dihydro-15-keto-PGD2 (7.4–8.5) 1518,1544,1552 fluprostenol (8.6) 1498, latanoprost (free acid form) (8.6) 1498, AL12180 (pEC50 7.7–7.9) 1547 cicaprost (7.8) 1498, AFP-07 (pIC50 8.5) 1508, BMY 45778 (pIC50 8.0) 1520 I-BOP (pKd 8.94–9.32) 1532, U46619 (7.5) 1498, STA2 (pIC50 6.38–7.06) 1502
Selective antagonists (pKi) laropiprant (10.1) 1550, BWA868C (8.6–9.3) 1506,1517,1563, S-5751 (8.8) 1501 ramatroban (7.4) 1552, CAY 10471 (pIC50 8.92) 1543,1556 AS604872 (7.5) 1510 RO3244794 (pA2 8.5) 1503, RO1138452 (8.7) 1503 ifetroban (8.4–10.0) 1538, GR 32191 (8.3–9.4) 1502,1528, SQ-29548 (8.1–9.1) 1498,1554,1559, ONO 3708 (7.4–8.9) 1522
Radioligands (Kd) [3H]PGD2 (Agonist, Full agonist) (1.3×10−8 – 3×10–10 M) 1559,1563 [3H]PGD2 (Agonist, Full agonist) (1.6×10–8 – 6×10–9 M) 1530,1548 [3H]PGF2α (Agonist, Full agonist) (7.9×10–9 – 1×10–9 M) 1498,1499,1559, [3H](+)-fluprostenol (Agonist) (3.4×10–8 M) [3H]iloprost (Agonist, Full agonist) (2×10–8 – 1×10–9 M) 1498,1505,1559 [125I]BOP (Agonist, Full agonist) (2×10–9 M) 1534, [125I]SAP (Antagonist) (2×10–8 – 5×10–10 M) 1536, [3H]SQ-29548 (Antagonist) (4×10–8 – 6.3×10–9 M) 1498,1559
Nomenclature EP1 receptor EP2 receptor EP3 receptor EP4 receptor
HGNC, UniProt PTGER1, P34995 PTGER2, P43116 PTGER3, P43115 PTGER4, P35408
Principal transduction Gq/11 Gs Gi/o Gs
Rank order of potency PGE2 > PGF2α, PGI2 > PGD2, thromboxane A2 PGE2 > PGF2α, PGI2 > PGD2, thromboxane A2 PGE2 > PGF2α, PGI2 > PGD2, thromboxane A2 PGE2 > PGF2α, PGI2 > PGD2, thromboxane A2
Selective agonists (pKi) 17-phenyl-ω-trinor-PGE2 (8.1) 1546, ONO-DI-004 (6.8 - Mouse) 1553 ONO-AE1-259 (8.5 - Mouse) 1553, butaprost (free acid form) (5.9–7.0) 1498,1549, CP-533536 (pIC50 7.3 - Rat) 1507 SC46275 (pEC50 8.74 - Rat) 1519, ONO-AE-248 (pEC50 5.64–6.7) 1514,1527 L902688 (pEC50 8.05–10.3) 1515,1525, ONO-AE1-329 (pEC50 7.66–7.8) 1514,1515, CP734432 (pIC50 8.7) 1540
Selective antagonists (pKi) ONO-8711 (9.2) 1557, SC-51322 (7.9) 1498, GW848687X (pIC50 8.6) 1516 L-798,106 (9.52–9.62) 1521,1551, ONO-AE3-240 (pIC50 8.8 - Mouse) 1500 MK-2894 (9.25) 1498,1504,1511, CP-533536 (8.6) 1535, ONO-AE3-208 (8.5), EP4A (7.6–8.5) 1529,1565, BGC201531 (7.9) 1531, GW 627368 (7.0–7.1) 1559,1560, ER819762 (pIC50 7.15) 1509
Radioligands (Kd) [3H]PGE2 (Agonist, Full agonist) (1×10–9 – 2.5×10–8 M) 1498,1546,1559 [3H]PGE2 (Agonist, Full agonist) (1.25×10–8 – 1.99×10–8 M) 1498,1559 [3H]PGE2 (Agonist, Full agonist) (3×10–10 – 7×10–9 M) 1498,1559 [3H]PGE2 (Agonist, Full agonist) (2.4×10–8 – 3×10–10 M) 1498,1513,1558,1559

Comments

ramatroban is also a TP receptor antagonist. cicaprost exhibits moderate EP4 receptor agonist potency 1498. iloprost also binds to EP1 receptors. The TP receptor exists in α and β isoforms due to alternative splicing of the cytoplasmic tail 1542.

17-phenyl-ω-trinor-PGE2 also shows agonist activity at EP3 receptors. sulprostone also has affinity for EP1 receptors. butaprost and SC46275 may require de-esterification within tissues to attain full agonist potency. There is evidence for subtypes of FP 1526, IP 1555,1561 and TP 1524 receptors. mRNA for the EP1 and EP3 receptors undergo alternative splicing to produce two 1539 and at least six variants, respectively, which can interfere with signalling 1539 or generate complex patterns of G-protein (Gi/o, Gq/11, Gs and G12,13) coupling (e.g. 1523,1537). The possibility of additional receptors for the isoprostanes has been suggested 1541. Receptors (prostamide F, which as yet lack a molecular correlate) that preferentially recognize PGF2-1-ethanolamide and its analogues (e.g. bimatoprost) have been identified, together with moderate-potency antagonists (e.g. AGN 211334) 1562.

The free acid form of AL-12182, AL-12180, used in in vitro studies, has a EC50 value of 15nM which is the concentration of the compound giving half-maximal stimulation of IP turnover in HEK-293 cells expressing the human FP receptor 1547.

References given alongside the TP receptor agonists I-BOP 1532 and STA2 1502 use human platelets as the source of TP receptors for competition radio-ligand binding assays to determine the indicated activity values.

Proteinase-activated receptors

Overview

Proteinase-activated receptors (PARs, nomenclature as agreed by NC-IUPHAR Subcommittee on Protease-activated Receptors, 1574) are unique members of the GPCR superfamily activated by proteolytic cleavage of their amino terminal exodomains. Agonist proteinase-induced hydrolysis unmasks a tethered ligand (TL) at the exposed amino terminus, which acts intramolecularly at the binding site in the body of the receptor to effect transmembrane signalling. TL sequences at human PAR1–4 are SFLLRN-NH2, SLIGKV-NH2, TFRGAP-NH2 and GYPGQV-NH2, respectively. With the exception of PAR3, these synthetic peptide sequences (as carboxyl terminal amides) are able to act as agonists at their respective receptors. Several proteinases, including neutrophil elastase, cathepsin G and chymotrypsin can have inhibitory effects at PAR1 and PAR2 such that they cleave the exodomain of the receptor without inducing activation of Gαq-coupled calcium signaling, thereby preventing activation by activating proteinases but not by agonist peptides. Neutrophil elastase cleavage of PAR2 can however activate MAP kinase signaling by exposing a TL that is different from the one revealed by trypsin 1581. The role of such an action in vivo is unclear.

Nomenclature PAR1 PAR2 PAR3 PAR4
HGNC, UniProt F2R, P25116 F2RL1, P55085 F2RL2, O00254 F2RL3, Q96RI0
Principal transduction Gq/11/Gi/o/G12/13 Gq/11/Gi/o Not known Gq/11/Gi/o
Agonist proteases thrombin (F2, P00734), activated protein C (PROC, P04070), matrix metalloproteinase 1 (MMP1, P45452), matrix metalloproteinase 13 (MMP13, P45452) 1569 Trypsin, tryptase, TF/VIIa, Xa thrombin (F2, P00734) thrombin (F2, P00734), trypsin, cathepsin G (CTSG, P08311)
Selective agonists (pKi) TFLLR-NH2 (pEC50 5.41) 1573 SLIGKV-NH2 1579, SLIGRL-NH2 1579, 2-furoyl-LIGRLO-amide (5.4) 1580, GB 110 (pEC50 6.55) 1570, AYPGKF-NH2, GYPGKF-NH2, GYPGQV-NH2
Selective antagonists (pKi) SCH530348 (8.09) 1572, atopaxar (pIC50 7.72) 1578, RWJ-56110 (pIC50 6.36) 1568 P2pal18s 1582, GB88 (pIC50 5.7) 1583
Radioligands (Kd) [3H]haTRAP (Agonist) (1.5x10-8 M) 1566 2-furoyl-LIGRL[N[3H]propionyl]-O-NH2 1575, [3H]2-furoyl-LIGRL-NH2 (Agonist) 1576, trans-cinnamoyl-LIGRLO [N-[3H]propionyl]-NH2 1567

Comments

TFLLR-NH2 is selective relative to the PAR2 receptor 1571,1577. thrombin (F2, P00734) is inactive at the PAR2 receptor.

Endogenous serine proteases (EC 3.4.21.) active at the proteinase-activated receptors include: thrombin (F2, P00734), generated by the action of Factor X (F10, P00742) on liver-derived prothrombin (F2, P00734); trypsin, generated by the action of enterokinase (TMPRSS15, P98073) on pancreatic-derived trypsinogen (PRSS1, P07477); tryptase, a family of enzymes (α/β1 TPSAB1, Q15661; γ1 TPSG1, Q9NRR2; δ1 TPSD1, Q9BZJ3) secreted from mast cells; cathepsin G (CTSG, P08311) generated from leukocytes; liver- derived protein C (PROC, P04070) generated in plasma by thrombin (F2, P00734) and matrix metalloproteinase 1 (MMP1, P45452).

2-Furoyl-LIGRLO-NH2 activity was measured via calcium mobilisation in HEK 293 cells which constitutively coexpress human PAR1 and PAR2.

Relaxin family peptide receptors

Overview

Relaxin family peptide receptors (RXFP, nomenclature as recommended by the NC-IUPHAR committee on relaxin family peptide receptors, 1584) may be divided into two pairs, RXFP1/2 and RXFP3/4. Endogenous agonists at these receptors are a number of heterodimeric peptide hormones analogous to insulin: H1 relaxin (RLN1, P04808), H2 relaxin (RLN2, P04090), H3 relaxin (RLN3, Q8WXF3) (also known as INSL7), insulin-like peptide 3 (INSL3 (INSL3, P51460)) and INSL5 (INSL5, Q9Y5Q6).

Species homologues of relaxin have distinct pharmacology – H2 relaxin (RLN2, P04090) interacts with RXFP1, RXFP2 and RXFP3, whereas mouse and rat relaxin selectively bind to and activate RXFP1 1611 and porcine relaxin may have a higher efficacy than H2 relaxin (RLN2, P04090) 1591. H3 relaxin (RLN3, Q8WXF3) has differential affinity for RXFP2 receptors between species; mouse and rat RXFP2 have a higher affinity for H3 relaxin (RLN3, Q8WXF3) 1610. At least two binding sites have been identified on the RXFP1 and RXFP2 receptors: a high-affinity site in the leucine-rich repeat region of the ectodomain and a somewhat lower-affinity site located in the surface loops of the transmembrane domain 1591,1618. The unique N-terminal LDLa module of RXFP1 and RXFP2 is essential for receptor signalling 1612.

Nomenclature RXFP1 receptor RXFP2 receptor RXFP3 receptor RXFP4 receptor
HGNC, UniProt RXFP1, Q9HBX9 RXFP2, Q8WXD0 RXFP3, Q9NSD7 RXFP4, Q8TDU9
Principal transduction Gs, GαoB, Gαι3 1590,1595,1599 Gs, GαoB 1590,1601 Gi/o 1606,1620 Gi/o 1604
Rank order of potency H2 relaxin > H3 relaxin >> INSL3 1618 INSL3 > H2 relaxin >> H3 relaxin 1601,1618 H3 relaxin > H3 relaxin (B chain) 1604 INSL5 = H3 relaxin > H3 relaxin (B chain) 1602,1603
Endogenous antagonists (pKi) INSL5 (pIC50 6.3) 1605
Selective antagonists (pKi) LGR7-truncate 1612, B-R13/17K H2 relaxin (pEC50 6.7) 1597, (des 1-8) A-chain INSL3 analogue 1586, INSL3 B-chain analogue 1587, INSL3 B chain dimer 1616, H3 relaxin analogue 3 1613, R3(BΔ23-27)R/I5 chimeric peptide (pIC50 9.2) 1600, R3-B1-22R (pIC50 7.4) 1596 R3(BΔ23-27)R/I5 chimeric peptide (pIC50 8.64) 1600
Radioligands (Kd) [125I]H2 relaxin (Agonist, Full agonist), [33P]H2 relaxin (Agonist, Full agonist) (5x10-10–2x10-10 M) 1591,1618, [125I]INSL3 (human) (Agonist, Full agonist) (1x10-10 M) 1608, [33P]H2 relaxin (Agonist, Full agonist) (1.06x10-9–6.3x10-10 M) 1591,1618, [125I]H3 relaxin (Agonist, Full agonist) (3x10-10 M) 1604, [125I]H3-B/INSL5 A chimera (Agonist) (5x10-10 M) 1602, [125I]H3 relaxin (Agonist, Full agonist) (2x10-9–2x10-10 M) 1603, [125I]H3-B/INSL5 A chimera (Agonist) (1.2x10-9 M) 1602,
Comment europium-labelled H2 relaxin is a fluorescent ligand for this receptor (Kd=0.5 nM) 1614. europium-labelled INSL3 is a fluorescent ligand for this receptor (Kd=1 nM) 1615. europium-labelled H3-B/INSL5 A chimera is a fluorescent ligand for this receptor (Kd=5 nM) 1596. europium-labelled H3-B/INSL5 A chimera is a fluorescent probe at this receptor (Kd=5 nM) 1596, europium-labelled mouse INSL5 is a fluorescent ligand at this receptor (Kd=5 nM) 1585.

Comments

H2 relaxin has recently successfully completed a Phase III clinical trial for the treatment of acute heart failure. 48 hr infusion of H2 relaxin reduced dyspnoea and 180 day mortality 1607. Small molecule agonists active at RXFP1 receptors have been developed 1617,1622. Mutations in INSL3 and LGR8 (RXFP2) have been reported in populations of patients with cryptorchidism 1588. Numerous splice variants of the human RXFP1 and RXFP2 receptors have been identified, most of which do not bind relaxin family peptides 1608. Splice variants of RXFP1 encoding the N-terminal LDLa module act as antagonists of RXFP1 signalling 1610,1612. cAMP elevation appears to be a major signalling pathway for RXFP1 and RXFP2 1598,1599, but RXFP1 also activates MAP kinases, nitric oxide signalling and interacts with tyrosine kinases and glucocorticoid receptors 1594. RXFP1 signalling involves lipid rafts, residues in the C-terminus of the receptor and activation of phosphatidylinositol-3-kinase 1595. More recent studies provide evidence that RXFP1 is pre-assembled in signalosomes with other signalling proteins including Gαs, Gβγ and adenyl cyclase 2 that display constitutive activity and are exquisitely sensitive to sub-picomolar concentrations of relaxin 1592. The cAMP signalling pattern is highly dependent on the cell type in which RXFP1 is expressed 1593.

The receptor expression profiles suggest that RXFP3 is a neuropeptide receptor and RXFP4 a gut hormone receptor. The relaxin 3 RXFP3 system has roles in feeding and anxiety 1589,1609. H3 relaxin (RLN3, Q8WXF3) acts as an agonist at both RXFP3 and RXFP4 whereas INSL5 (INSL5, Q9Y5Q6) is an agonist at RXFP4 and a weak antagonist at RXFP3. Unlike RXFP1 and RXFP2 both RXFP3 and RXFP4 are encoded by a single exon and therefore no splice variants exist. The rat RXFP3 sequence has two potential start codons that encode RXFP3L and RXFP3S with the longer variant having an additional 7 amino-acids at the N-terminus. It is not known which variant is expressed. Rat and dog RXFP4 sequences are pseudogenes 1621. RXFP3 couples to Gi/o and inhibits adenylyl cyclase 1604,1619, and also causes Erk1/2 phosphorylation 1619. Relatively little is known about RXFP4 signalling but like RXFP3 it couples to inhibitory G-proteins 1605. Recent studies suggest that H2 relaxin (RLN2, P04090) also interacts with RXFP3 to cause a pattern of activation of signalling pathways that are a subset of those activated by H3 relaxin (RLN3, Q8WXF3). The two patterns of signaling observed in several cell types expressing RXFP3 are strong inhibition of forskolin-stimulated cAMP accumulation, ERK1/2 activation and nuclear factor NFκ-B reporter gene activation with H3 relaxin (RLN3, Q8WXF3), and weaker activity with H2 relaxin (RLN2, P04090), porcine relaxin, or insulin-like peptide 3 (INSL3 (INSL3, P51460)) and a strong stimulation of activator protein (AP)-1 reporter genes with H2 relaxin (RLN2, P04090), and weaker activation with H3 relaxin (RLN3, Q8WXF3) or porcine relaxin 1619. Two pharmacologically distinct ligand binding sites were also identified on RXFP3-expressing cells using [125I]H3-B/INSL5 A chimera which binds with high affinity with competition by H3 relaxin (RLN3, Q8WXF3) or a H3 relaxin (B chain) (RLN3, Q8WXF3) peptide, and [125I]H2 relaxin which displays competition by H2 relaxin (RLN2, P04090), H3 relaxin (RLN3, Q8WXF3), or INSL3 (INSL3, P51460) and weakly by porcine relaxin. Thus at RXFP3, H2 relaxin (RLN2, P04090) is a biased ligand compared to the cognate ligand H3 relaxin (RLN3, Q8WXF3).

Somatostatin receptors

Overview

Somatostatin (somatotropin release inhibiting factor) is an abundant neuropeptide, which acts on five subtypes of somatostatin receptor (sst1–sst5; nomenclature approved by the NC-IUPHAR Subcommittee on Somatostatin Receptors, 1628). Activation of these receptors produces a wide range of physiological effects throughout the body including inhibiting the secretion of many hormones. The relationship of the cloned receptors to endogenously expressed receptors is not yet well established in some cases. Endogenous ligands for these receptors are somatostatin-14 (SRIF-14 (SST, P61278)) and somatostatin-28 (SRIF-28 (SST, P61278)). Cortistatin (CST-14) has also been suggested to be an endogenous ligand for somatostatin receptors 1625.

Nomenclature sst1 receptor sst2 receptor sst3 receptor sst4 receptor sst5 receptor
HGNC, UniProt SSTR1, P30872 SSTR2, P30874 SSTR3, P32745 SSTR4, P31391 SSTR5, P35346
Principal transduction Gi Gi Gi Gi Gi
Selective agonists (pKi) L-797,591 (8.8) 1635, Des-Ala1,2,5-[D-Trp8,IAmp9]SRIF (pIC50 7.5) 1626 L-054,522 (11.0) 1640, MK-678 (8.8 – 10.3) 1623,1634,16361638,1640, octreotide (8.7 – 9.9) 1623,1634,16361638,1640, BIM 23027 (pIC50 10.85) 1624 L-796,778 (7.6) 1635 L-803,087 (9.2) 1635, NNC269100 (8.2) 1631 L-817,818 (9.4) 1635, BIM 23268 (8.7) 1632, BIM 23052 (7.4 – 9.6) 1632,16361638
Selective antagonists (pKi) SRA880 (pKd 8.0 – 8.1) 1629 [D-Tyr8]CYN 154806 (pKd 8.1 – 8.9) 1633 NVP ACQ090 (7.9) 1630 BIM 23627 (pIC50 7.1) 1639
Radioligands (Kd) [125I]Tyr3 SMS 201-995 (Agonist, Full agonist) (1.3x10-10 M) 1637,1638, [125I]BIM23027 (Agonist, Full agonist) (IC50 2.2x10-10 M - Rat) 1627 [125I]Tyr3 SMS 201-995 (Agonist, Full agonist) (2.3x10-10 M) 1637,1638

Comments

[125I]Tyr11-SRIF-14, [125I]LTT-SRIF-28, [125I]CGP 23996 and [125I]Tyr10-CST14 may be used to label somatostatin receptors nonselectively; BIM 23052 is said to be selective in rat but not human receptor 1634. A number of nonpeptide subtype-selective agonists have been synthesised 1635.

Succinate receptor

Overview

the succinate receptor (NC-IUPHAR recommended nomenclature, see Davenport et al., 2004) has been reported to respond to an intermediate of the citric acid cycle 1641.

Nomenclature HGNC, UniProt Principal transduction Endogenous agonists (pKi)
succinate receptor SUCNR1, Q9BXA5 succinic acid (pEC50 3.1–4.7) 1641,1642

Tachykinin receptors

Overview

Tachykinin receptors (provisional nomenclature, 1658) are activated by the endogenous peptides substance P (TAC1, P20366) (SP), neurokinin A (TAC1, P20366) (NKA; previously known as substance K, neurokinin α, neuromedin L), neurokinin B (TAC3, Q9UHF0) (NKB; previously known as neurokinin β, neuromedin K), neuropeptide K (TAC1, P20366) and neuropeptide γ (TAC1, P20366) (N-terminally extended forms of neurokinin A). The neurokinins (A and B) are mammalian members of the tachykinin family, which includes peptides of mammalian and nonmammalian origin containing the consensus sequence: Phe-x-Gly-Leu-Met. Marked species differences in in vitro pharmacology exist for all three receptors, in the context of nonpeptide ligands.

Nomenclature NK1 receptor NK2 receptor NK3 receptor
HGNC, UniProt TACR1, P25103 TACR2, P21452 TACR3, P29371
Principal transduction Gq/11 Gq/11 Gq/11
Rank order of potency substance P > neurokinin A > neurokinin B neurokinin A > neurokinin B >> substance P neurokinin B > neurokinin A > substance P
Selective agonists (pKi) [Pro9]SP, septide (7.0–9.3) 1645,1663, [Sar9,Met(O2)11]SP (pIC50 9.7–9.9) 1673, substance P-OMe (pIC50 7.4–7.5) 1673 [βAla8]neurokinin A-(4–10) (pKd 6.0) 1656, GR64349 (pEC50 8.4 – Rat) 1653, [Lys5,Me-Leu9,Nle10]NKA-(4–10) (pIC50 8.8–9.4 – Rat) 1667 [Phe(Me)7]neurokinin B (8.7–9.6) 1670,1671, senktide (7.1–8.6) 1670,1671,1673
Selective antagonists (pKi) aprepitant (10.7) 1662, LY303870 (9.8–10.0) 1660, CP 99994 (9.3–9.7) 1643,1671, LY303870 (pIC50 9.82) 1664, SR 140,333 (pIC50 8.9–9.0) 1673, RP67580 (pIC50 7.7) 1657 GR159897 (pKd 7.8–9.5) 1647,1656,1672, GR94800 (9.8) 1649, saredutant (9.4–9.7) 1643,1656,1671, MEN10627 (9.2), nepadutant (8.5–8.7) 1650,1652 osanetant (8.4–9.7) 1643,1644,1651,1655,1665,1668,1670,1671,1673, SB 223412 (7.4–9.0) 1646,1659,1670,1671, PD157672 (pIC50 7.8) 1648
Radioligands (Kd) [125I]SP (human, mouse, rat) (Agonist, Full agonist), [18F]SPA-RQ (Antagonist), [3H]BH-[Sar9,Met(O2)11]SP, [3H]SP (human, mouse, rat) (Agonist, Full agonist), [125I]L703,606 (Antagonist) (3x10−10 M), [125I]BH-[Sar9,Met(O2)11]SP (Agonist, Full agonist) (1x10−9 M – Rat) 1674 [125I]NKA (human, mouse, rat), [3H]GR100679, [3H]SR48,968 (Antagonist) (2x10−10 M – Rat) 1661 [125I][MePhe7]NKB, [3H]senktide, [3H]SR142,801 (Antagonist) (1.3x10−10 M)

Comments

The NK1 receptor has also been described to couple to other G proteins 1669. The hexapeptide agonist septide appears to bind to an overlapping but non-identical site to substance P (TAC1, P20366) on the NK1 receptor. There are suggestions for additional subtypes of tachykinin receptor; an orphan receptor (SwissProt P30098) with structural similarities to the NK3 receptor was found to respond to NKB when expressed in Xenopus oocytes or Chinese hamster ovary cells 1654,1666.

Thyrotropin-releasing hormone receptors

Overview

Thyrotropin-releasing hormone (TRH) receptors (provisional nomenclature) are activated by the endogenous tripeptide TRH (TRH, P20396) (pGlu-His-ProNH2). TRH (TRH, P20396) and TRH analogues fail to distinguish TRH1 and TRH2 receptors 1677. [3H]TRH (human, mouse, rat) is able to label both TRH1 and TRH2 receptors with Kd values of 13 and 9 nM respectively.

Nomenclature TRH1 receptor TRH2 receptor
HGNC, UniProt TRHR, P34981 Trhr2, Q9ERT2
Principal transduction Gq Gq
Selective antagonists (pKi) midazolam (5.49 - Rat) 1675, diazepam (5.15 - Rat) 1675, chlordiazepoxide (4.82 - Rat) 1675, chlordiazepoxide (4.7 - Mouse) 1676
Comment A class A G protein-coupled receptor: not present in man

Comments

The human orthologue of the rodent TRH2 receptor has yet to be identified.

Trace amine receptor

Overview

Trace amine-associated receptors (nomenclature as agreed by NC-IUPHAR for trace amine receptors, 1680) were initially discovered as a result of a search for novel 5-HT receptors 1678, where 15 mammalian orthologues were identified and divided into two families. The TA1 receptor has been shown to have affinity for the endogenous trace amines tyramine, β-phenylethylamine and octopamine in addition to the classical amine dopamine 1678. Emerging evidence suggests that TA1 is a modulator of monoaminergic activity in the brain 1683 with TA1 and dopamine D2 receptors shown to form constitutive heterodimers when co-expressed 1679.

Nomenclature HGNC, UniProt Principal transduction Rank order of potency Radioligands (Kd)
TA1 receptor TAAR1 (Hs), Taar1 (Mm), Taar1 (Rn), Q96RJ0 Gs tyramine > β-phenylethylamine > octopamine = dopamine 1678 [3H]tyramine (Agonist, Full agonist) (2x10−8 M) 1678

Comments

The product of the gene TAAR2 (also known as GPR58) appears to respond to β-phenylethylamine > tyramine and to couple through Gs 1678 See Orphan GPCR (Page 1462).

TAAR3, in some individuals, and TAAR4 are pseudogenes in man, although functional in rodents. The signalling characteristics and pharmacology of TAA5 (PNR, Putative Neurotransmitter Receptor: TAAR5, O14804), TAA6 (Trace amine receptor 4, TaR-4: TAAR6, 96RI8), TAA8 (Trace amine receptor 5, GPR102: TAAR8, Q969N4) and TAA9 (trace amine associated receptor 9: TAAR9, 96RI9) are lacking. The thyronamines, endogenous derivatives of thyroid hormone, have been shown to have affinity for rodent cloned trace amine receptors, including TA1 1681. An antagonist EPPTB has recently been described that has a pKi of 9.1 at the mouse TA1 but less than 5.3 for human TA1 1682.

Urotensin receptor

Overview

The urotensin-II (U-II) receptor (UT, nomenclature as agreed by NC-IUPHAR, 1691,1694) is activated by the endogenous dodecapeptide U-II (UTS2, O95399), originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish 1685. Several structural forms of U-II exist in fish and amphibians. The Goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 1689,1700,1702,1703. Human U-II (UTS2, O95399), an 11-amino-acid peptide 1689, retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding 1686,1696. This sequence is also conserved in the deduced amino-acid sequence of rat U-II (14 amino-acids) and mouse U-II (14 amino-acids), although the N-terminal is more divergent from the human sequence 1688. A second endogenous ligand for UT has been discovered in rat 1707. The urotensin II-related peptide (URP (UTS2B, Q765I0)), an octapeptide, is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat URP (UTS2B, Q765I0) are predicted for the mature mouse and human peptides.

Nomenclature HGNC, UniProt Principal transduction Endogenous agonists (pKi) Selective agonists (pKi) Selective antagonists (pKi) Radioligands (Kd)
UT receptor UTS2R, Q9UKP6 Gq/11 U-II (8.6) 1692,1693,1695 [Pen5]-U (4–11) (human) (9.7) 1695, U-II-(4–11) (human) (9.6) 1695, AC-7954 (6.6) 1690,1698, FL104 (pEC50 5.8 – 7.5) 1697,1699 urantide (8.3) 1704, SB-706375 (8.0) 1692, SB-611812 (6.6) 1705, palosuran (pIC50 7.1) 1687 [125I]U-II (human) (Agonist, Full agonist) (4x10-10 – 2.4x10-10 M) 1684,1701

Comments

In human vasculature, human U-II (UTS2, O95399) elicits both vasoconstrictor (pD2 9.3–10.1, 1701) and vasodilator (pIC50 10.3–10.4, 1706) responses.

Vasopressin and oxytocin receptors

Overview

Vasopressin (AVP) and oxytocin (OT) receptors (nomenclature as agreed by NC-IUPHAR Subcommittee on vasopressin and oxytoxcin receptors) are activated by the endogenous cyclic nonapeptides AVP (AVP, P01178) and oxytocin (OXT, P01178) (OT). These peptides are derived from precursors which also produce neurophysins (neurophysin I for OT; neurophysin II for AVP).

Nomenclature V1A receptor V1B receptor V2 receptor OT receptor
HGNC, UniProt AVPR1A, P37288 AVPR1B, P47901 AVPR2, P30518 OXTR, P30559
Principal transduction Gq/11 Gq/11 Gs Gq/11, Gi/o
Rank order of potency AVP > oxytocin AVP > oxytocin AVP > oxytocin oxytocin > AVP
Selective agonists (pKi) F180 (pKd 7.9 – 8.3) 1711,1719 d[Leu4]LVP (9.8) 1731, d[Cha4]AVP (9.0 – 9.7) 1721,1726, d[D-Pal2]AVP (7.9) 1715,1721 d[Val4,DArg8]VP, OPC-51803 (7.0) 1730, VNA932 (pIC50 7.1) 1723 [Thr4,Gly7]OT (8.2 – 8.4) 1718,1722,1727
Selective antagonists (pKi) d(CH2)5[Tyr(Me)2,Arg8]VP (9.0), SR 49059 (8.1 – 9.3) 1708,1719,1726,1732,1735,1738,17401742, conivaptan (8.2 – 8.4) 1738,1739 SSR149415 (8.4 – 9.3) 1725,1726,1737 tolvaptan (9.37) 1743, lixivaptan (Inverse agonist) (8.9 – 9.2) 1710,1735, SR 121463A (8.4 – 9.3) 1708,1719,1720,1734,1735,1738,1742, d(CH2)5[D-Ile2,Ile4]AVP (6.9 – 8.4) 1735, OPC-31260 (Inverse antagonist) (7.6) 1744 SSR126768A (8.82 – 9.05) 1736, L-371,257 (8.8) 1726, desGlyNH2-d(CH2)5[Tyr(Me)2,Thr4,Orn8]OT (8.5), L-372662 (8.4) 1712
Radioligands (Kd) [3H]SR49059 (Antagonist), [125I]OH-LVA (Antagonist) (3.99x10-11 – 5x10-11 M) 1717,1719,1732, [3H]AVP (Agonist, Full agonist) (2.51x10-9 – 6.3x10-11 M) 1714,1717,1719,1720,1730,1732,1733,17381743, [3H]d(CH2)5[Tyr(Me)2]AVP (Antagonist) (1.1x10-9 M) [3H]SSR149415 (Antagonist), [3H]AVP (Agonist, Full agonist) (2.51x10-9 – 2.5x10-10 M) 1714,1717,1719,1720,1730,1732,1733,17381743 [3H]AVP (Agonist, Full agonist) (3.98x10-9 – 3.99x10-10 M) 1717,1719,1720,1730,1733,1738,1739,17411743, [3H]SR 121463A (Antagonist, Inverse agonist) (4.1x10-9 – 5x10-10 M) 1720,1734, [3H]desGly-NH2[D-Ile2,Ile4]VP (2.8x10-9 M), [3H]dDAVP (Agonist, Full agonist) (6.3x10-8 – 8x10-10 M) 1717,1720,1741 [35S]non-peptide OT antagonist (Antagonist) (4.2x10-11 M) 1729, [125I]d(CH2)5[Tyr(Me)2,Thr4,Orn8,Tyr-NH29]OVT (Antagonist) (9x10-11 M), [3H]OT (human, mouse, rat) (Agonist, Full agonist) 1717,1724,1727,1728, [111In]DOTA-dLVT (4.5x10-9 M) 1716

Comments

The V2 receptor exhibits marked species differences, such that many ligands (d(CH2)5[D-Ile2,Ile4]AVP and [3H]desGly-NH2[D-Ile2,Ile4]VP) exhibit low affinity at human V2 receptors 1709. Similarly, [3H]d[D-Arg8]VP is V2 selective in the rat, not in the human 1733. The gene encoding the V2 receptor is polymorphic in man, underlying nephrogenic diabetes insipidus 1713. d[Cha4]AVP is selective only for the human and bovine V1b receptors 1721, while d[Leu4]LVP has high affinity for the rat V1b receptor 1731.

VIP and PACAP receptors

Overview

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) receptors (nomenclature recommended by the NC-IUPHAR Subcommittee on Vasoactive Intestinal Peptide Receptors, 1749) are activated by the endogenous peptides VIP (VIP, P01282), PACAP-38 (ADCYAP1, P18509), PACAP-27 (ADCYAP1, P18509), peptide histidine isoleucineamide (PHI), peptide histidine methionineamide (PHM (VIP, P01282)) and peptide histidine valine (PHV (VIP, P01282)). “PACAP type II receptors” (VPAC1 and VPAC2 receptors) display comparable affinity for PACAP and VIP (VIP, P01282), whereas PACAP-27 (ADCYAP1, P18509) and PACAP-38 (ADCYAP1, P18509) are >100 fold more potent than VIP (VIP, P01282) as agonists of most isoforms of the PAC1 receptor. However, one splice variant of the human PAC1 receptor has been reported to respond to PACAP-38 (ADCYAP1, P18509), PACAP-27 (ADCYAP1, P18509) and VIP (VIP, P01282) with comparable affinity 1745. PG 99-465 1752 has been used as a selective VPAC2 receptor antagonist in a number of physiological studies, but has been reported to have significant activity at VPAC1 and PAC1 receptors 1746. The selective PAC1 receptor agonist maxadilan, was extracted from the salivary glands of sand flies (Lutzomyia longipalpis) and has no sequence homology to VIP (VIP, P01282) or PACAP 1753. Two deletion variants of maxadilan, M65 1758 and Max.d.4 1754 have been reported to be PAC1 receptor antagonists, but these peptides have not been extensively characterised.

Nomenclature VPAC1 receptor VPAC2 receptor PAC1 receptor
HGNC, UniProt VIPR1, P32241 VIPR2, P41587 ADCYAP1R1, P41586
Principal transduction Gs Gs Gs
Rank order of potency VIP, PACAP-27, PACAP-38 >> GHRH (GHRH, P01286), PHI, secretin (SCT, P09683) VIP, PACAP-38, PACAP-27 > PHI >> GHRH (GHRH, P01286), secretin (SCT, P09683) PACAP-27, PACAP-38 >> VIP
Selective agonists (pKi) [Ala11,22,28]VIP (8.1) 1755, [Lys15,Arg16,Leu27]VIP-(1–7)/GRF-(8–27)-NH2 (pEC50 8.3) 1751 Ro 25-1392 (8.0) 1760, Ro 25-1553 (pEC50 8.7) 1751, Ro 25-1553 (pEC50 8.3) 1750, Ro 25-1553 (pIC50 9.5) 1748, Ro 25-1553 (pIC50 8.8) 1750, Ro 25-1553 (pIC50 7.8) 1751 maxadilan (pEC50 10.3) 1746, maxadilan (pEC50 6.2) 1746
Selective antagonists (pKi) PG 97-269 (pIC50 8.7) 1747, PG 97-269 (pIC50 8.7) 1750, PG 97-269 (pIC50 8.7) 1750, PG 97-269 (pIC50 8.0) 1746, PG 97-269 (pIC50 7.1) 1746
Radioligands (Kd) [125I]PACAP-27 (Agonist), [125I]VIP (Agonist) (4x10-10 M) 1755 [125I]PACAP-27 (Agonist), [125I]VIP (Agonist) (7x10-10 M) 1755 [125I]PACAP-27 (Agonist) (8.7x10-10 M) 1756

Comments

Subtypes of PAC1 receptors have been proposed based on tissue differences in the potencies of PACAP-27 (ADCYAP1, P18509) and PACAP-38 (ADCYAP1, P18509); these might result from differences in G protein coupling and second messenger mechanisms 1759, or from alternative splicing of PAC1 receptor mRNA 1757.

Further reading

  1. Davenport AP. Alexander SP. Sharman JL. Pawson AJ. Benson HE. Monaghan AE, et al. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev. 2013;65:967–986. doi: 10.1124/pr.112.007179. [PMID:23686350] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Harmar AJ. Family-B G-protein-coupled receptors. Genome biology. 2001;2 doi: 10.1186/gb-2001-2-12-reviews3013. REVIEWS3013. [PMID:11790261] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kolakowski LF., Jr. GCRDb: a G-protein-coupled receptor database. Receptors & channels. 1994;2:1–7. [PubMed] [Google Scholar]
  4. Mombaerts P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci. 2004;5:263–278. doi: 10.1038/nrn1365. [DOI] [PubMed] [Google Scholar]
  5. Olender T. Lancet D. Nebert DW. Update on the olfactory receptor (OR) gene superfamily. Human genomics. 2008;3:87–97. doi: 10.1186/1479-7364-3-1-87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Overington JP. Al-Lazikani B. Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5:993–996. doi: 10.1038/nrd2199. [PMID:17139284] [DOI] [PubMed] [Google Scholar]
  7. Promel S. Langenhan T. Arac D. Matching structure with function: the GAIN domain of Adhesion-GPCR and PKD1-like proteins. Trends Pharmacol Sci. 2013;34:470–478. doi: 10.1016/j.tips.2013.06.002. [PMID:23850273] [DOI] [PubMed] [Google Scholar]
  8. Rask-Andersen M. Almen MS. Schioth HB. Trends in the exploitation of novel drug targets. Nat Rev Drug Discov. 2011;10:579–590. doi: 10.1038/nrd3478. [PMID:21804595] [DOI] [PubMed] [Google Scholar]
  9. Schioth HB. Fredriksson R. The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol. 2005;142:94–101. doi: 10.1016/j.ygcen.2004.12.018. [PMID:15862553] [DOI] [PubMed] [Google Scholar]
  10. Terakita A. The opsins. Genome Biol. 2005;6:213. doi: 10.1186/gb-2005-6-3-213. [PMID:15774036] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Davenport AP. Alexander SP. Sharman JL. Pawson AJ. Benson HE. Monaghan AE. Liew WC. Mpamhanga CP. Bonner TI. Neubig RR, et al. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev. 2013;65:967–986. doi: 10.1124/pr.112.007179. [PMID:23686350] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID:15914470] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Bockaert J. Claeysen S. Compan V. Dumuis A. 5-HT(4) receptors, a place in the sun: act two. Curr Opin Pharmacol. 2011;11:87–93. doi: 10.1016/j.coph.2011.01.012. [PMID:21342787] [DOI] [PubMed] [Google Scholar]
  2. Codony X. Vela JM. Ramírez MJ. 5-HT(6) receptor and cognition. Curr Opin Pharmacol. 2011;11:94–100. doi: 10.1016/j.coph.2011.01.004. [PMID:21330210] [DOI] [PubMed] [Google Scholar]
  3. Hartig PR. Hoyer D. Humphrey PP. Martin GR. Alignment of receptor nomenclature with the human genome: classification of 5-HT1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci. 1996;17:103–105. doi: 10.1016/0165-6147(96)30002-3. [PMID:8936345] [DOI] [PubMed] [Google Scholar]
  4. Hayes DJ. Greenshaw AJ. 5-HT receptors and reward-related behaviour: a review. Neurosci Biobehav Rev. 2011;35:1419–1449. doi: 10.1016/j.neubiorev.2011.03.005. [PMID:21402098] [DOI] [PubMed] [Google Scholar]
  5. Hoyer D. Clarke DE. Fozard JR. Hartig PR. Martin GR. Mylecharane EJ. Saxena PR. Humphrey PP. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin) Pharmacol Rev. 1994;46:157–203. [PMID:7938165] [PubMed] [Google Scholar]
  6. Leopoldo M. Lacivita E. Berardi F. Perrone R. Hedlund PB. Serotonin 5-HT7 receptor agents: Structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther. 2011;129:120–148. doi: 10.1016/j.pharmthera.2010.08.013. [PMID:20923682] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Meltzer HY. Massey BW. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol. 2011;11:59–67. doi: 10.1016/j.coph.2011.02.007. [PMID:21420906] [DOI] [PubMed] [Google Scholar]
  8. Roberts AJ. Hedlund PB. The 5-HT(7) receptor in learning and memory. Hippocampus. 2012;22:762–771. doi: 10.1002/hipo.20938. [PMID:21484935] [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sargent BJ. Henderson AJ. Targeting 5-HT receptors for the treatment of obesity. Curr Opin Pharmacol. 2011;11:52–58. doi: 10.1016/j.coph.2011.01.005. [PMID:21330209] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Caulfield MP. Birdsall NJM. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev. 1998;50:279–290. [PMID:9647869] [PubMed] [Google Scholar]
  2. Eglen RM. Overview of muscarinic receptor subtypes. Handb Exp Pharmacol. 2012;208:3–28. doi: 10.1007/978-3-642-23274-9_1. [PMID:22222692] [DOI] [PubMed] [Google Scholar]
  3. Gregory KJ. Sexton PM. Christopoulos A. Allosteric modulation of muscarinic acetylcholine receptors. Curr Neuropharmacol. 2007;5:157–167. doi: 10.2174/157015907781695946. [PMID:19305798] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Leach K. Simms J. Sexton PM. Christopoulos A. Structure-function studies of muscarinic acetylcholine receptors. Handb Exp Pharmacol. 2012;208:29–48. doi: 10.1007/978-3-642-23274-9_2. [PMID:22222693] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Fredholm BB. IJzerman AP. Jacobson KA. Linden J. Müller CE. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors–an update. Pharmacol Rev. 2011;63:1–34. doi: 10.1124/pr.110.003285. [PMID:21303899] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Göblyös A. Ijzerman AP. Allosteric modulation of adenosine receptors. Biochim Biophys Acta. 2011;1808:1309–1318. doi: 10.1016/j.bbamem.2010.06.013. [PMID:20599682] [DOI] [PubMed] [Google Scholar]
  3. Headrick JP. Peart JN. Reichelt ME. Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. Biochim Biophys Acta. 2011;1808:1413–1428. doi: 10.1016/j.bbamem.2010.11.016. [PMID:21094127] [DOI] [PubMed] [Google Scholar]
  4. Lasley RD. Adenosine receptors and membrane microdomains. Biochim Biophys Acta. 2011;1808:1284–1289. doi: 10.1016/j.bbamem.2010.09.019. [PMID:20888790] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mundell S. Kelly E. Adenosine receptor desensitization and trafficking. Biochim Biophys Acta. 2011;1808:1319–1328. doi: 10.1016/j.bbamem.2010.06.007. [PMID:20550943] [DOI] [PubMed] [Google Scholar]
  6. Ponnoth DS. Jamal Mustafa S. Adenosine receptors and vascular inflammation. Biochim Biophys Acta. 2011;1808:1429–1434. doi: 10.1016/j.bbamem.2010.08.024. [PMID:20832387] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Wei CJ. Li W. Chen JF. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim Biophys Acta. 2011;1808:1358–1379. doi: 10.1016/j.bbamem.2010.12.018. [PMID:21185258] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Baker JG. Hill SJ. Summers RJ. Evolution of β-blockers: from anti-anginal drugs to ligand-directed signalling. Trends Pharmacol Sci. 2011;32:227–234. doi: 10.1016/j.tips.2011.02.010. [PMID:21429598] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bylund DB. Eikenberg DC. Hieble JP. Langer SZ. Lefkowitz RJ. Minneman KP. Molinoff PB. Ruffolo RR., Jr Trendelenburg AU. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev. 1994;46:121–136. [PMID:7938162] [PubMed] [Google Scholar]
  3. Cazzola M. Calzetta L. Matera MG. β(2) -adrenoceptor agonists: current and future direction. Br J Pharmacol. 2011;163:4–17. doi: 10.1111/j.1476-5381.2011.01216.x. [PMID:21232045] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daly CJ. McGrath JC. Previously unsuspected widespread cellular and tissue distribution of β-adrenoceptors and its relevance to drug action. Trends Pharmacol Sci. 2011;32:219–226. doi: 10.1016/j.tips.2011.02.008. [PMID:21429599] [DOI] [PubMed] [Google Scholar]
  5. Evans BA. Sato M. Sarwar M. Hutchinson DS. Summers RJ. Ligand-directed signalling at beta-adrenoceptors. Br J Pharmacol. 2010;159:1022–1038. doi: 10.1111/j.1476-5381.2009.00602.x. [PMID:20132209] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gilsbach R. Hein L. Are the pharmacology and physiology of α2 adrenoceptors determined by α2-heteroreceptors and autoreceptors respectively? Br J Pharmacol. 2012;165:90–102. doi: 10.1111/j.1476-5381.2011.01533.x. [PMID:21658028] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jensen BC. O'Connell TD. Simpson PC. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol. 2011;51:518–528. doi: 10.1016/j.yjmcc.2010.11.014. [PMID:21118696] [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kobilka BK. Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol Sci. 2011;32:213–218. doi: 10.1016/j.tips.2011.02.005. [PMID:21414670] [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Michel MC. Harding SE. Bond RA. Are there functional β3-adrenoceptors in the human heart? Br J Pharmacol. 2011;162:817–822. doi: 10.1111/j.1476-5381.2010.01005.x. [PMID:20735409] [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Michel MC. Ochodnicky P. Homma Y. Igawa Y. β-adrenoceptor agonist effects in experimental models of bladder dysfunction. Pharmacol Ther. 2011;131:40–49. doi: 10.1016/j.pharmthera.2011.03.014. [PMID:21510978] [DOI] [PubMed] [Google Scholar]
  11. Nishimune A. Yoshiki H. Uwada J. Anisuzzaman AS. Umada H. Muramatsu I. Phenotype pharmacology of lower urinary tract α(1)-adrenoceptors. Br J Pharmacol. 2012;165:1226–1234. doi: 10.1111/j.1476-5381.2011.01591.x. [PMID:21745191] [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vasudevan NT. Mohan ML. Goswami SK. Naga Prasad SV. Regulation of β-adrenergic receptor function: an emphasis on receptor resensitization. Cell Cycle. 2011;10:3684–3691. doi: 10.4161/cc.10.21.18042. [PMID:22041711] [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Walker JK. Penn RB. Hanania NA. Dickey BF. Bond RA. New perspectives regarding β(2)-adrenoceptor ligands in the treatment of asthma. Br J Pharmacol. 2011;163:18–28. doi: 10.1111/j.1476-5381.2010.01178.x. [PMID:21175591] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Gasparo M. Catt KJ. Inagami T. Wright JW. Unger T. International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52:415–472. [PMID:10977869] [PubMed] [Google Scholar]
  2. Ellis B. Li XC. Miguel-Qin E. Gu V. Zhuo JL. Evidence for a functional intracellular angiotensin system in the proximal tubule of the kidney. Am J Physiol Regul Integr Comp Physiol. 2012;302:R494–R509. doi: 10.1152/ajpregu.00487.2011. [PMID:22170616] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. MacKenzie A. Endothelium-derived vasoactive agents, AT1 receptors and inflammation. Pharmacol Ther. 2011;131:187–203. doi: 10.1016/j.pharmthera.2010.11.001. [PMID:21115037] [DOI] [PubMed] [Google Scholar]
  4. Patel BM. Mehta AA. Aldosterone and angiotensin: Role in diabetes and cardiovascular diseases. Eur J Pharmacol. 2012;697:1–12. doi: 10.1016/j.ejphar.2012.09.034. [PMID:23041273] [DOI] [PubMed] [Google Scholar]
  5. Putnam K. Shoemaker R. Yiannikouris F. Cassis LA. The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am J Physiol Heart Circ Physiol. 2012;302:H1219–H1230. doi: 10.1152/ajpheart.00796.2011. [PMID:22227126] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sevá Pessôa B. Lubbe N. Verdonk K. Roks AJ. Hoorn EJ. Danser AH. Key developments in renin-angiotensin-aldosterone system inhibition. Nat Rev Nephrol. 2013;9:26–36. doi: 10.1038/nrneph.2012.249. [PMID:23165302] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Chandrasekaran B. Dar O. McDonagh T. The role of apelin in cardiovascular function and heart failure. Eur J Heart Fail. 2008;10:725–732. doi: 10.1016/j.ejheart.2008.06.002. [PMID:18583184] [DOI] [PubMed] [Google Scholar]
  2. Cheng B. Chen J. Bai B. Xin Q. Neuroprotection of apelin and its signaling pathway. Peptides. 2012;37:171–173. doi: 10.1016/j.peptides.2012.07.012. [PMID:22820556] [DOI] [PubMed] [Google Scholar]
  3. Davenport AP. Pitkin SL. Maguire JJ. Apelins in Encyclopedic Reference of Molecular Pharmacology. In: Offermanns S, editor; Rosenthal W, editor. Edited by. Springer; 2007. pp. 201–206. [Google Scholar]
  4. Japp AG. Newby DE. Biochem Pharmacol. Vol. 75. 2008. The apelin-APJ system in heart failure: pathophysiologic relevance and therapeutic potential; pp. 1882–1892. [PMID:18272138] [DOI] [PubMed] [Google Scholar]
  5. Langelaan DN. Bebbington EM. Reddy T. Rainey JK. Biochemistry. Vol. 48. 2009. Structural insight into G-protein coupled receptor binding by apelin; pp. 537–548. [PMID:19123778] [DOI] [PubMed] [Google Scholar]
  6. Pitkin SL. Maguire JJ. Bonner TI. Davenport AP. Pharmacol Rev. Vol. 62. 2010. International Union of Basic and Clinical Pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function; pp. 331–342. [PMID:20605969] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Fiorucci S. Cipriani S. Baldelli F. Mencarelli A. Prog Lipid Res. Vol. 49. 2010. Bile acid-activated receptors in the treatment of dyslipidemia and related disorders; pp. 171–185. [PMID:19932133] [DOI] [PubMed] [Google Scholar]
  2. Fiorucci S. Mencarelli A. Palladino G. Cipriani S. Trends Pharmacol Sci. Vol. 30. 2009. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders; pp. 570–580. [PMID:19758712] [DOI] [PubMed] [Google Scholar]
  3. Keitel V. Häussinger D. Clin Res Hepatol Gastroenterol. Vol. 36. 2012. Perspective: TGR5 (Gpbar-1) in liver physiology and disease; pp. 412–419. [PMID:22521118] [DOI] [PubMed] [Google Scholar]
  4. Lefebvre P. Cariou B. Lien F. Kuipers F. Staels B. Physiol Rev. Vol. 89. 2009. Role of bile acids and bile acid receptors in metabolic regulation; pp. 147–191. [PMID:19126757] [DOI] [PubMed] [Google Scholar]
  5. Pols TW. Noriega LG. Nomura M. Auwerx J. Schoonjans K. J Hepatol. Vol. 54. 2011. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation; pp. 1263–1272. [PMID:21145931] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Tiwari A. Maiti P. Drug Discov Today. Vol. 14. 2009. TGR5: an emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders; pp. 523–530. [PMID:19429513] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Jensen RT. Battey JF. Spindel ER. Benya RV. Pharmacol Rev. Vol. 60. 2008. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states; pp. 1–42. [PMID:18055507] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Majumdar ID. Weber HC. Curr Opin Endocrinol Diabetes Obes. Vol. 18. 2011. Biology of mammalian bombesin-like peptides and their receptors; pp. 68–74. [PMID:21042212] [DOI] [PubMed] [Google Scholar]
  3. Ohki-Hamazaki H. Iwabuchi M. Maekawa F. Int J Dev Biol. Vol. 49. 2005. Development and function of bombesin-like peptides and their receptors; pp. 293–300. [PMID:15906244] [DOI] [PubMed] [Google Scholar]
  4. Roesler R. Henriques JA. Schwartsmann G. CNS Neurol Disord Drug Targets. Vol. 5. 2006. Gastrin-releasing peptide receptor as a molecular target for psychiatric and neurological disorders; pp. 197–204. [PMID:16611092] [DOI] [PubMed] [Google Scholar]
  5. Weber HC. Regulation and signaling of human bombesin receptors and their biological effects. Curr Opin Endocrinol Diabetes Obes. 2009;16:66–71. doi: 10.1097/med.0b013e32831cf5aa. [PMID:19115523] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Campos MM. Leal PC. Yunes RA. Calixto JB. Trends Pharmacol Sci. Vol. 27. 2006. Non-peptide antagonists for kinin B1 receptors: new insights into their therapeutic potential for the management of inflammation and pain; pp. 646–651. [PMID:17056130] [DOI] [PubMed] [Google Scholar]
  2. Duchene J. Ahluwalia A. Curr Opin Pharmacol. Vol. 9. 2009. The kinin B(1) receptor and inflammation: new therapeutic target for cardiovascular disease; pp. 125–131. [PMID:19124274] [DOI] [PubMed] [Google Scholar]
  3. Marceau F. Regoli D. Nat Rev Drug Discov. Vol. 3. 2004. Bradykinin receptor ligands: therapeutic perspectives; pp. 845–852. [PMID:15459675] [DOI] [PubMed] [Google Scholar]
  4. Paquet JL. Luccarini JM. Fouchet C. Defrêne E. Loillier B. Robert C. Bélichard P. Cremers B. Pruneau D. Br J Pharmacol. Vol. 126. 1999. Pharmacological characterization of the bradykinin B2 receptor: inter-species variability and dissociation between binding and functional responses; pp. 1083–1090. [PMID:10204994] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Thornton E. Ziebell JM. Leonard AV. Vink R. Molecules. Vol. 15. 2010. Kinin receptor antagonists as potential neuroprotective agents in central nervous system injury; pp. 6598–6618. [PMID:20877247] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Archbold JK. Flanagan JU. Watkins HA. Gingell JJ. Hay DL. Trends Pharmacol Sci. Vol. 32. 2011. Structural insights into RAMP modification of secretin family G protein-coupled receptors: implications for drug development; pp. 591–600. [PMID:21722971] [DOI] [PubMed] [Google Scholar]
  2. Barwell J. Gingell JJ. Watkins HA. Archbold JK. Poyner DR. Hay DL. Br J Pharmacol. Vol. 166. 2012. Calcitonin and calcitonin receptor-like receptors: common themes with family B GPCRs? pp. 51–65. [PMID:21649645] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hay DL. Poyner DR. Quirion R. Pharmacol Rev. Vol. 60. 2008. International Union of Pharmacology. International Union of Pharmacology. LXIX. Status of the calcitonin gene-related peptide subtype 2 receptor; pp. 143–145. [PMID:18552275] [DOI] [PubMed] [Google Scholar]
  4. Hong Y. Hay DL. Quirion R. Poyner DR. Br J Pharmacol. 2011. The pharmacology of Adrenomedullin 2/Intermedin. [Epub ahead of print]. [PMID:21658025] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Moore EL. Salvatore CA. Br J Pharmacol. 2011. Targeting a Family B GPCR/RAMP Receptor Complex: CGRP Receptor Antagonists and Migraine. [Epub ahead of print]. [PMID:21871019] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Poyner DR. Sexton PM. Marshall I. Smith DM. Quirion R. Born W. Muff R. Fischer JA. Foord SM. Pharmacol Rev. Vol. 54. 2002. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors; pp. 233–246. [PMID:12037140] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Breitwieser GE. Minireview: the intimate link between calcium sensing receptor trafficking and signaling: implications for disorders of calcium homeostasis. Mol Endocrinol. 2012;26:1482–1495. doi: 10.1210/me.2011-1370. [PMID:22745192] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown EM. Clinical utility of calcimimetics targeting the extracellular calcium-sensing receptor (CaSR) Biochem Pharmacol. 2010;80:297–307. doi: 10.1016/j.bcp.2010.04.002. [PMID:20382129] [DOI] [PubMed] [Google Scholar]
  3. Khan MA. Conigrave AD. Br J Pharmacol. Vol. 159. 2010. Mechanisms of multimodal sensing by extracellular Ca(2+)-sensing receptors: a domain-based survey of requirements for binding and signalling; pp. 1039–1050. [PMID:20136834] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Magno AL. Ward BK. Ratajczak T. Endocr Rev. Vol. 32. 2011. The calcium-sensing receptor: a molecular perspective; pp. 3–30. [PMID:20729338] [DOI] [PubMed] [Google Scholar]
  5. Ward DT. Riccardi D. Br J Pharmacol. Vol. 165. 2012. New concepts in calcium-sensing receptor pharmacology and signalling; pp. 35–48. [PMID:21627634] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Wellendorph P. Brauner-Osborne H. Gene. Vol. 335. 2004. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor; pp. 37–46. [PMID:15194188] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Alexander SP. Kendall DA. Br J Pharmacol. Vol. 152. 2007. The complications of promiscuity: endocannabinoid action and metabolism; pp. 602–623. [PMID:17876303] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bosier B. Muccioli GG. Hermans E. Lambert DM. Biochem Pharmacol. Vol. 80. 2010. Functionally selective cannabinoid receptor signalling: therapeutic implications and opportunities; pp. 1–12. [PMID:20206137] [DOI] [PubMed] [Google Scholar]
  3. Bradshaw HB. Lee SH. McHugh D. Prostaglandins Other Lipid Mediat. Vol. 89. 2009. Orphan endogenous lipids and orphan GPCRs: a good match; pp. 131–134. [PMID:19379823] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Centonze D. Finazzi-Agrò A. Bernardi G. Maccarrone M. Trends Pharmacol Sci. Vol. 28. 2007. The endocannabinoid system in targeting inflammatory neurodegenerative diseases; pp. 180–187. [PMID:17350694] [DOI] [PubMed] [Google Scholar]
  5. Di Marzo V. Bisogno T. De Petrocellis L. Chem Biol. Vol. 14. 2007. Endocannabinoids and related compounds: walking back and forth between plant natural products and animal physiology; pp. 741–756. [PMID:17656311] [DOI] [PubMed] [Google Scholar]
  6. Di Marzo V. Petrocellis LD. Annu Rev Med. Vol. 57. 2006. Plant, synthetic, and endogenous cannabinoids in medicine; pp. 553–574. [PMID:16409166] [DOI] [PubMed] [Google Scholar]
  7. Di Marzo V. Petrosino S. Curr Opin Lipidol. Vol. 18. 2007. Endocannabinoids and the regulation of their levels in health and disease; pp. 129–140. [PMID:17353660] [DOI] [PubMed] [Google Scholar]
  8. Fernández-Ruiz J. Romero J. Velasco G. Tolón RM. Ramos JA. Guzmán M. Trends Pharmacol Sci. Vol. 28. 2007. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? pp. 39–45. [PMID:17141334] [DOI] [PubMed] [Google Scholar]
  9. Godlewski G. Offertáler L. Wagner JA. Kunos G. Prostaglandins Other Lipid Mediat. Vol. 89. 2009. Receptors for acylethanolamides-GPR55 and GPR119; pp. 105–111. [PMID:19615459] [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hansen HS. Diep TA. Biochem Pharmacol. Vol. 78. 2009. N-acylethanolamines, anandamide and food intake; pp. 553–560. [PMID:19413995] [DOI] [PubMed] [Google Scholar]
  11. Howlett AC. Reggio PH. Childers SR. Hampson RE. Ulloa NM. Deutsch DG. Br J Pharmacol. Vol. 163. 2011. Endocannabinoid tone versus constitutive activity of cannabinoid receptors; pp. 1329–1343. [PMID:21545414] [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Izzo AA. Sharkey KA. Pharmacol Ther. Vol. 126. 2010. Cannabinoids and the gut: new developments and emerging concepts; pp. 21–38. [PMID:20117132] [DOI] [PubMed] [Google Scholar]
  13. Maccarrone M. Gasperi V. Catani MV. Diep TA. Dainese E. Hansen HS. Avigliano L. Annu Rev Nutr. Vol. 30. 2010. The endocannabinoid system and its relevance for nutrition; pp. 423–440. [PMID:20645854] [DOI] [PubMed] [Google Scholar]
  14. McPartland JM. Glass M. Pertwee RG. Br J Pharmacol. Vol. 152. 2007. Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences; pp. 583–593. [PMID:17641667] [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mechoulam R. Parker LA. Annu Rev Psychol. Vol. 64. 2013. The endocannabinoid system and the brain; pp. 21–47. [PMID:22804774] [DOI] [PubMed] [Google Scholar]
  16. Miller LK. Devi LA. Pharmacol Rev. Vol. 63. 2011. The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications; pp. 461–470. [PMID:21752875] [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Sullivan SE. Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors. Br J Pharmacol. 2007;152:576–582. doi: 10.1038/sj.bjp.0707423. [PMID:17704824] [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pertwee RG. Howlett AC. Abood ME. Alexander SP. Di Marzo V. Elphick MR. Greasley PJ. Hansen HS. Kunos G. Mackie K, et al. Pharmacol Rev. Vol. 62. 2010. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2; pp. 588–631. [PMID:21079038] [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ross RA. L-α-lysophosphatidylinositol meets GPR55: a deadly relationship. Trends Pharmacol Sci. 2011;32:265–269. doi: 10.1016/j.tips.2011.01.005. [PMID:21367464] [DOI] [PubMed] [Google Scholar]
  20. Sharir H. Abood ME. Pharmacol Ther. Vol. 126. 2010. Pharmacological characterization of GPR55, a putative cannabinoid receptor; pp. 301–313. [PMID:20298715] [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ueda N. Tsuboi K. Uyama T. Biochim Biophys Acta. Vol. 1801. 2010. Enzymological studies on the biosynthesis of N-acylethanolamines; pp. 1274–1285. [PMID:20736084] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Davenport AP. Alexander SP. Sharman JL. Pawson AJ. Benson HE. Monaghan AE, et al. Pharmacological reviews. Vol. 65. 2013. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands; pp. 967–986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Koelink PJ. Overbeek SA. Braber S. Kruijf P. Folkerts G. Smit MJ. Kraneveld AD. Pharmacol Ther. Vol. 133. 2012. Targeting chemokine receptors in chronic inflammatory diseases: an extensive review; pp. 1–18. [PMID:21839114] [DOI] [PubMed] [Google Scholar]
  2. Murphy PM. International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev. 2002;54:227–229. doi: 10.1124/pr.54.2.227. [PMID:12037138] [DOI] [PubMed] [Google Scholar]
  3. Murphy PM. Baggiolini M. Charo IF. Hebert CA. Horuk R. Matsushima K. Miller LH. Oppenheim JJ. Power CA. Pharmacol Rev. Vol. 52. 2000. International Union of Pharmacology. XXII. Nomenclature for chemokine receptors; pp. 145–176. [PMID:10699158] [PubMed] [Google Scholar]
  4. Muñoz LM. Lucas P. Holgado BL. Barroso R. Vega B. Rodríguez-Frade JM. Mellado M. Pharmacol Ther. Vol. 131. 2011. Receptor oligomerization: a pivotal mechanism for regulating chemokine function; pp. 351–358. [PMID:21600920] [DOI] [PubMed] [Google Scholar]
  5. Scholten DJ. Canals M. Maussang D. Roumen L. Smit MJ. Wijtmans M. Graaf C. Vischer HF. Leurs R. Br J Pharmacol. Vol. 165. 2012. Pharmacological modulation of chemokine receptor function; pp. 1617–1643. [PMID:21699506] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Szpakowska M. Fievez V. Arumugan K. Nuland N. Schmit JC. Chevigné A. Biochem Pharmacol. Vol. 84. 2012. Function, diversity and therapeutic potential of the N-terminal domain of human chemokine receptors; pp. 1366–1380. [PMID:22935450] [DOI] [PubMed] [Google Scholar]
  7. White GE. Iqbal AJ. Greaves DR. Pharmacol Rev. Vol. 65. 2013. CC chemokine receptors and chronic inflammation–therapeutic opportunities and pharmacological challenges; pp. 47–89. [PMID:23300131] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Cawston EE. Miller LJ. Br J Pharmacol. Vol. 159. 2010. Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor; pp. 1009–1021. [PMID:19922535] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dockray GJ. Cholecystokinin and gut-brain signalling. Regul Pept. 2009;155:6–10. doi: 10.1016/j.regpep.2009.03.015. [PMID:19345244] [DOI] [PubMed] [Google Scholar]
  3. Dufresne M. Seva C. Fourmy D. Physiol Rev. Vol. 86. 2006. Cholecystokinin and gastrin receptors; pp. 805–847. [PMID:16816139] [DOI] [PubMed] [Google Scholar]
  4. Herranz R. Cholecystokinin antagonists: pharmacological and therapeutic potential. Med Res Rev. 2003;23:559–605. doi: 10.1002/med.10042. [PMID:12789687] [DOI] [PubMed] [Google Scholar]
  5. Miller LJ. Gao F. Pharmacol Ther. Vol. 119. 2008. Structural basis of cholecystokinin receptor binding and regulation; pp. 83–95. [PMID:18558433] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Noble F. Wank SA. Crawley JN. Bradwejn J. Seroogy KB. Hamon M. Roques BP. Pharmacol Rev. Vol. 51. 1999. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors; pp. 745–781. [PMID:10581329] [PubMed] [Google Scholar]

Further reading

  1. Ali H. Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a. Immunol Lett. 2010;128:36–45. doi: 10.1016/j.imlet.2009.10.007. [PMID:19895849] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hajishengallis G. Complement and periodontitis. Biochem Pharmacol. 2010;80:1992–2001. doi: 10.1016/j.bcp.2010.06.017. [PMID:20599785] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Klos A. Wende E. Wareham KJ. Monk PN. Pharmacol Rev. Vol. 65. 2013. International Union of Pharmacology. LXXXVII. Complement peptide C5a, C4a, and C3a receptors; pp. 500–543. [PMID:23383423] [DOI] [PubMed] [Google Scholar]
  4. Manthey HD. Woodruff TM. Taylor SM. Monk PN. Int J Biochem Cell Biol. Vol. 41. 2009. Complement component 5a (C5a) pp. 2114–2117. [PMID:19464229] [DOI] [PubMed] [Google Scholar]
  5. Monk PN. Scola AM. Madala P. Fairlie DP. Br J Pharmacol. Vol. 152. 2007. Function, structure and therapeutic potential of complement C5a receptors; pp. 429–448. [PMID:17603557] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sacks SH. Complement fragments C3a and C5a: the salt and pepper of the immune response. Eur J Immunol. 2010;40:668–670. doi: 10.1002/eji.201040355. [PMID:20186746] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Grammatopoulos DK. Insights into mechanisms of corticotropin-releasing hormone receptor signal transduction. Br J Pharmacol. 2012;166:85–97. doi: 10.1111/j.1476-5381.2011.01631.x. [PMID:21883143] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gysling K. Relevance of both type-1 and type-2 corticotropin releasing factor receptors in stress-induced relapse to cocaine seeking behaviour. Biochem Pharmacol. 2012;83:1–5. doi: 10.1016/j.bcp.2011.07.101. [PMID:21843515] [DOI] [PubMed] [Google Scholar]
  3. Hauger RL. Grigoriadis DE. Dallman MF. Plotsky PM. Vale WW. Dautzenberg FM. Pharmacol Rev. Vol. 55. 2003. International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands; pp. 21–26. [PMID:12615952] [DOI] [PubMed] [Google Scholar]
  4. Valentino RJ. Bangasser D. Van Bockstaele EJ. Mol Pharmacol. Vol. 83. 2013. Sex-biased stress signaling: the corticotropin-releasing factor receptor as a model; pp. 737–745. [PMID:23239826] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Zhu H. Wang J. Li J. Li S. Inflamm Res. Vol. 60. 2011. Corticotropin-releasing factor family and its receptors: pro-inflammatory or anti-inflammatory targets in the periphery? pp. 715–721. [PMID:21476084] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Beaulieu JM. Gainetdinov RR. Pharmacol Rev. Vol. 63. 2011. The physiology, signaling, and pharmacology of dopamine receptors; pp. 182–217. [PMID:21303898] [DOI] [PubMed] [Google Scholar]
  2. Cumming P. Absolute abundances and affinity states of dopamine receptors in mammalian brain: A review. Synapse. 2011;65:892–909. doi: 10.1002/syn.20916. [PMID:21308799] [DOI] [PubMed] [Google Scholar]
  3. Maggio R. Millan MJ. Curr Opin Pharmacol. Vol. 10. 2010. Dopamine D2-D3 receptor heteromers: pharmacological properties and therapeutic significance; pp. 100–107. [PMID:19896900] [DOI] [PubMed] [Google Scholar]
  4. Ptácek R. Kuzelová H. Stefano GB. Med Sci Monit. Vol. 17. 2011. Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders; pp. RA215–RA220. [PMID:21873960] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Schwartz J-C, et al. Dopamine Receptors in The IUPHAR Compendium of Receptor Characterization and Classification. In: Girdlestone D IUPHAR, editor. Edited by Media. 2010. pp. 141–151. [Google Scholar]
  6. Undieh AS. Pharmacology of signaling induced by dopamine D(1)-like receptor activation. Pharmacol Ther. 1998;128:37–60. doi: 10.1016/j.pharmthera.2010.05.003. [PMID:20547182] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Bagnato A. Rosanò L. Int J Biochem Cell Biol. Vol. 40. 2008. The endothelin axis in cancer; pp. 1443–1451. [PMID:18325824] [DOI] [PubMed] [Google Scholar]
  2. Barr TP. Kam S. Khodorova A. Montmayeur JP. Strichartz GR. Pharmacol Res. Vol. 63. 2011. New perspectives on the endothelin axis in pain; pp. 532–540. [PMID:21352917] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davenport AP. International Union of Pharmacology. XXIX. Update on endothelin receptor nomenclature. Pharmacol Rev. 2002;54:219–226. doi: 10.1124/pr.54.2.219. [PMID:12037137] [DOI] [PubMed] [Google Scholar]
  4. Dhaun N. Webb DJ. Kluth DC. Br J Pharmacol. Vol. 167. 2012. Endothelin-1 and the kidney–beyond BP; pp. 720–731. [PMID:22670597] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kohan DE. Rossi NF. Inscho EW. Pollock DM. Physiol Rev. Vol. 91. 2011. Regulation of blood pressure and salt homeostasis by endothelin; pp. 1–77. [PMID:21248162] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ling L. Maguire JJ. Davenport AP. Br J Pharmacol. Vol. 168. 2013. Endothelin-2, the forgotten isoform: emerging role in the cardiovascular system, ovarian development, immunology and cancer; pp. 283–295. [PMID:22118774] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nguyen A. Thorin-Trescases N. Thorin E. Am J Physiol Regul Integr Comp Physiol. Vol. 298. 2010. Working under pressure: coronary arteries and the endothelin system; pp. R1188–R1194. [PMID:20237301] [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rubin LJ. Endothelin receptor antagonists for the treatment of pulmonary artery hypertension. Life Sci. 2012;91:517–521. doi: 10.1016/j.lfs.2012.07.033. [PMID:22884806] [DOI] [PubMed] [Google Scholar]
  9. Said N. Theodorescu D. Life Sci. Vol. 91. 2012. Permissive role of endothelin receptors in tumor metastasis; pp. 522–527. [PMID:22846215] [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schneider MP. Boesen EI. Pollock DM. Annu Rev Pharmacol Toxicol. Vol. 47. 2007. Contrasting Actions of Endothelin ET(A) and ET(B) Receptors in Cardiovascular Disease; pp. 731–759. [PMID:17002597] [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schorlemmer A. Matter ML. Shohet RV. Trends Cardiovasc Med. Vol. 18. 2008. Cardioprotective signaling by endothelin; pp. 233–239. [PMID:19232951] [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Speed JS. Pollock DM. Hypertension. Vol. 61. 2013. Endothelin, kidney disease, and hypertension; pp. 1142–1145. [PMID:23608655] [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Thorin E. Webb DJ. Pflugers Arch. Vol. 459. 2010. Endothelium-derived endothelin-1; pp. 951–958. [PMID:19967386] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Barton M. Position paper: The membrane estrogen receptor GPER–Clues and questions. Steroids. 2012;77:935–942. doi: 10.1016/j.steroids.2012.04.001. [PMID:22521564] [DOI] [PubMed] [Google Scholar]
  2. Filardo EJ. Thomas P. Endocrinology. Vol. 153. 2012. Minireview: G protein-coupled estrogen receptor-1, GPER-1: its mechanism of action and role in female reproductive cancer, renal and vascular physiology; pp. 2953–2962. [PMID:22495674] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hammond R. Gibbs RB. Brain Res. Vol. 1379. 2011. GPR30 is positioned to mediate estrogen effects on basal forebrain cholinergic neurons and cognitive performance; pp. 53–60. [PMID:21138734] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Meyer MR. Prossnitz ER. Barton M. Vascul Pharmacol. Vol. 55. 2011. The G protein-coupled estrogen receptor GPER/GPR30 as a regulator of cardiovascular function; pp. 17–25. [PMID:21742056] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Nilsson BO. Olde B. Leeb-Lundberg LM. Br J Pharmacol. Vol. 163. 2011. G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling; pp. 1131–1139. [PMID:21250980] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Prossnitz ER. Barton M. Nat Rev Endocrinol. Vol. 7. 2011. The G-protein-coupled estrogen receptor GPER in health and disease; pp. 715–726. [PMID:21844907] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Dufton N. Perretti M. Pharmacol Ther. Vol. 127. 2010. Therapeutic anti-inflammatory potential of formyl-peptide receptor agonists; pp. 175–188. [PMID:20546777] [DOI] [PubMed] [Google Scholar]
  2. Liu M. Zhao J. Chen K. Bian X. Wang C. Shi Y. Wang JM. Int Immunopharmacol. Vol. 14. 2012. G protein-coupled receptor FPR1 as a pharmacologic target in inflammation and human glioblastoma; pp. 283–288. [PMID:22863814] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Rabiet MJ. Macari L. Dahlgren C. Boulay F. J Biol Chem. Vol. 286. 2011. N-formyl peptide receptor 3 (FPR3) departs from the homologous FPR2/ALX receptor with regard to the major processes governing chemoattractant receptor regulation, expression at the cell surface, and phosphorylation; pp. 26718–26731. [PMID:21543323] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Yazid S. Norling LV. Flower RJ. Prostaglandins Other Lipid Mediat. Vol. 98. 2012. Anti-inflammatory drugs, eicosanoids and the annexin A1/FPR2 anti-inflammatory system; pp. 94–100. [PMID:22123264] [DOI] [PubMed] [Google Scholar]
  5. Ye RD. Boulay F. Wang JM. Dahlgren C. Gerard C. Parmentier M. Serhan CN. Murphy PM. Pharmacol Rev. Vol. 61. 2009. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family; pp. 119–161. [PMID:19498085] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Hara T. Hirasawa A. Ichimura A. Kimura I. Tsujimoto G. J Pharm Sci. Vol. 100. 2011. Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders; pp. 3594–3601. [PMID:21618241] [DOI] [PubMed] [Google Scholar]
  2. Maslowski KM. Mackay CR. Nat Immunol. Vol. 12. 2011. Diet, gut microbiota and immune responses; pp. 5–9. [PMID:21169997] [DOI] [PubMed] [Google Scholar]
  3. Milligan G. Stoddart LA. Smith NJ. Br J Pharmacol. Vol. 158. 2009. Agonism and allosterism: the pharmacology of the free fatty acid receptors FFA2 and FFA3; pp. 146–153. [PMID:19719777] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Reimann F. Tolhurst G. Gribble FM. Cell Metab. Vol. 15. 2012. G-protein-coupled receptors in intestinal chemosensation; pp. 421–431. [PMID:22482725] [DOI] [PubMed] [Google Scholar]
  5. Stoddart LA. Smith NJ. Milligan G. Pharmacol Rev. Vol. 60. 2008. International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, −2, and −3: pharmacology and pathophysiological functions; pp. 405–417. [PMID:19047536] [DOI] [PubMed] [Google Scholar]
  6. Talukdar S. Olefsky JM. Osborn O. Trends Pharmacol Sci. Vol. 32. 2011. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases; pp. 543–550. [PMID:21663979] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Dijksterhuis JP. Petersen J. Schulte G. Br J Pharmacol. 2013. WNT/Frizzled signaling: receptor-ligand selectivity with focus on FZD-G protein signaling and its physiological relevance. [PMID:24032637] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. King TD. Suto MJ. Li Y. J Cell Biochem. Vol. 113. 2012. The Wnt/β-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer; pp. 13–18. [PMID:21898546] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. King TD. Zhang W. Suto MJ. Li Y. Cell Signal. Vol. 24. 2012. Frizzled7 as an emerging target for cancer therapy; pp. 846–851. [PMID:22182510] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Koval A. Purvanov V. Egger-Adam D. Katanaev VL. Biochem Pharmacol. Vol. 82. 2011. Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets; pp. 1311–1319. [PMID:21689640] [DOI] [PubMed] [Google Scholar]
  5. Schuijers J. Clevers H. EMBO J. Vol. 31. 2012. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins; pp. 2685–2696. [PMID:22617424] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev. 2010;62:632–667. doi: 10.1124/pr.110.002931. [PMID:21079039] [DOI] [PubMed] [Google Scholar]
  7. Schulte G. Schambony A. Bryja V. Br J Pharmacol. Vol. 159. 2010. beta-Arrestins - scaffolds and signalling elements essential for WNT/Frizzled signalling pathways? pp. 1051–1058. [PMID:19888962] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Benarroch EE. GABAB receptors: structure, functions, and clinical implications. Neurology. 2012;78:578–584. doi: 10.1212/WNL.0b013e318247cd03. [PMID:22351795] [DOI] [PubMed] [Google Scholar]
  2. Bowery NG. Bettler B. Froestl W. Gallagher JP. Marshall F. Raiteri M. Bonner TI. Enna SJ. Pharmacol Rev. Vol. 54. 2002. International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function; pp. 247–264. [PMID:12037141] [DOI] [PubMed] [Google Scholar]
  3. Gaiarsa JL. Kuczewski N. Porcher C. Pharmacol Ther. Vol. 132. 2011. Contribution of metabotropic GABA(B) receptors to neuronal network construction; pp. 170–179. [PMID:21718720] [DOI] [PubMed] [Google Scholar]
  4. Gassmann M. Bettler B. Nat Rev Neurosci. Vol. 13. 2012. Regulation of neuronal GABA(B) receptor functions by subunit composition; pp. 380–394. [PMID:22595784] [DOI] [PubMed] [Google Scholar]
  5. Ghose S. Winter MK. McCarson KE. Tamminga CA. Enna SJ. Br J Pharmacol. Vol. 162. 2011. The GABAβ receptor as a target for antidepressant drug action; pp. 1–17. [PMID:20735410] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Pin JP. Neubig R. Bouvier M. Devi L. Filizola M. Javitch JA. Lohse MJ. Milligan G. Palczewski K. Parmentier M, et al. Pharmacol Rev. Vol. 59. 2007. International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers; pp. 5–13. [PMID:17329545] [DOI] [PubMed] [Google Scholar]
  7. Urwyler S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev. 2011;63:59–126. doi: 10.1124/pr.109.002501. [PMID:21228259] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Fang P. Sun J. Wang X. Zhang Z. Bo P. Shi M. Life Sci. Vol. 92. 2013. Galanin participates in the functional regulation of the diabetic heart; pp. 628–632. [PMID:23376774] [DOI] [PubMed] [Google Scholar]
  2. Fang P. Yu M. Guo L. Bo P. Zhang Z. Shi M. Peptides. Vol. 36. 2012. Galanin and its receptors: a novel strategy for appetite control and obesity therapy; pp. 331–339. [PMID:22664322] [DOI] [PubMed] [Google Scholar]
  3. Fang P. Yu M. Shi M. Zhang Z. Sui Y. Guo L. Bo P. Gen Comp Endocrinol. Vol. 179. 2012. Galanin peptide family as a modulating target for contribution to metabolic syndrome; pp. 115–120. [PMID:22909974] [DOI] [PubMed] [Google Scholar]
  4. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  5. Lang R. Kofler B. Neuropeptides. Vol. 45. 2011. The galanin peptide family in inflammation; pp. 1–8. [PMID:21087790] [DOI] [PubMed] [Google Scholar]
  6. Lawrence C. Fraley GS. Front Neuroendocrinol. Vol. 32. 2011. Galanin-like peptide (GALP) is a hypothalamic regulator of energy homeostasis and reproduction; pp. 1–9. [PMID:20558195] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Webling KE. Runesson J. Bartfai T. Langel U. Front Endocrinol (Lausanne) Vol. 3. 2012. Galanin receptors and ligands; p. 146. [PMID:23233848] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Andrews ZB. The extra-hypothalamic actions of ghrelin on neuronal function. Trends Neurosci. 2011;34:31–40. doi: 10.1016/j.tins.2010.10.001. [PMID:21035199] [DOI] [PubMed] [Google Scholar]
  2. Angelidis G. Valotassiou V. Georgoulias P. J Endocrinol Invest. Vol. 33. 2010. Current and potential roles of ghrelin in clinical practice; pp. 823–838. [PMID:21293171] [DOI] [PubMed] [Google Scholar]
  3. Briggs DI. Andrews ZB. Neuroendocrinology. Vol. 93. 2011. Metabolic status regulates ghrelin function on energy homeostasis; pp. 48–57. [PMID:21124019] [DOI] [PubMed] [Google Scholar]
  4. Davenport AP. Bonner TI. Foord SM. Harmar AJ. Neubig RR. Pin JP. Spedding M. Kojima M. Kangawa K. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function; pp. 541–546. [PMID:16382107] [DOI] [PubMed] [Google Scholar]
  5. De Smet B. Mitselos A. Depoortere I. Pharmacol Ther. Vol. 123. 2009. Motilin and ghrelin as prokinetic drug targets; pp. 207–223. [PMID:19427331] [DOI] [PubMed] [Google Scholar]
  6. De Vriese C. Delporte C. Curr Opin Clin Nutr Metab Care. Vol. 10. 2007. Influence of ghrelin on food intake and energy homeostasis; pp. 615–619. [PMID:17693746] [DOI] [PubMed] [Google Scholar]
  7. Dezaki K. Sone H. Yada T. Pharmacol Ther. Vol. 118. 2008. Ghrelin is a physiological regulator of insulin release in pancreatic islets and glucose homeostasis; pp. 239–249. [PMID:18433874] [DOI] [PubMed] [Google Scholar]
  8. Granata R. Baragli A. Settanni F. Scarlatti F. Ghigo E. J Mol Endocrinol. Vol. 45. 2010. Unraveling the role of the ghrelin gene peptides in the endocrine pancreas; pp. 107–118. [PMID:20595321] [DOI] [PubMed] [Google Scholar]
  9. Nikolopoulos D. Theocharis S. Kouraklis G. Regul Pept. Vol. 163. 2010. Ghrelin: a potential therapeutic target for cancer; pp. 7–17. [PMID:20382189] [DOI] [PubMed] [Google Scholar]
  10. Romero A. Kirchner H. Heppner K. Pfluger PT. Tschöp MH. Nogueiras R. Eur J Endocrinol. Vol. 163. 2010. GOAT: the master switch for the ghrelin system? pp. 1–8. [PMID:20421334] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Cho YM. Merchant CE. Kieffer TJ. Pharmacol Ther. Vol. 135. 2012. Targeting the glucagon receptor family for diabetes and obesity therapy; pp. 247–278. [PMID:22659620] [DOI] [PubMed] [Google Scholar]
  2. Donnelly D. The structure and function of the glucagon-like peptide-1 receptor and its ligands. Br J Pharmacol. 2012;166:27–41. doi: 10.1111/j.1476-5381.2011.01687.x. [PMID:21950636] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jones BJ. Tan T. Bloom SR. Endocrinology. Vol. 153. 2012. Minireview: Glucagon in stress and energy homeostasis; pp. 1049–1054. [PMID:22294753] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Mayo KE. Miller LJ. Bataille D. Dalle S. Göke B. Thorens B. Drucker DJ. Pharmacol Rev. Vol. 55. 2003. International Union of Pharmacology. XXXV. The glucagon receptor family; pp. 167–194. [PMID:12615957] [DOI] [PubMed] [Google Scholar]
  5. Miller LJ. Dong M. Harikumar KG. Br J Pharmacol. 2011. Ligand Binding and Activation of the Secretin Receptor, a Prototypic Family B G Protein-Coupled Receptor. [Epub ahead of print]. [PMID:21542831] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rowland KJ. Brubaker PL. Am J Physiol Gastrointest Liver Physiol. Vol. 301. 2011. The "cryptic" mechanism of action of glucagon-like peptide-2; pp. G1–G8. [PMID:21527727] [DOI] [PubMed] [Google Scholar]
  7. Willard FS. Bueno AB. Sloop KW. Exp Diabetes Res. Vol. 2012. 2012. Small molecule drug discovery at the glucagon-like peptide-1 receptor; p. 709893. [PMID:22611375] [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Williams DL. Minireview: finding the sweet spot: peripheral versus central glucagon-like peptide 1 action in feeding and glucose homeostasis. Endocrinology. 2009;150:2997–3001. doi: 10.1210/en.2009-0220. [PMID:19389830] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Chiamolera MI. Wondisford FE. Endocrinology. Vol. 150. 2009. Minireview: Thyrotropin-releasing hormone and the thyroid hormone feedback mechanism; pp. 1091–1096. [PMID:19179434] [DOI] [PubMed] [Google Scholar]
  2. George JW. Dille EA. Heckert LL. Biol Reprod. Vol. 84. 2011. Current concepts of follicle-stimulating hormone receptor gene regulation; pp. 7–17. [PMID:20739665] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gershengorn MC. Neumann S. J Clin Endocrinol Metab. Vol. 97. 2012. Update in TSH receptor agonists and antagonists; pp. 4287–4292. [PMID:23019348] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Melamed P. Savulescu D. Lim S. Wijeweera A. Luo Z. Luo M. Pnueli L. J Neuroendocrinol. Vol. 24. 2012. Gonadotrophin-releasing hormone signalling downstream of calmodulin; pp. 1463–1475. [PMID:22775470] [DOI] [PubMed] [Google Scholar]
  5. Menon KM. Menon B. Mol Cell Endocrinol. Vol. 356. 2012. Structure, function and regulation of gonadotropin receptors - a perspective; pp. 88–97. [PMID:22342845] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Puett D. Angelova K. Costa MR. Warrenfeltz SW. Fanelli F. Mol Cell Endocrinol. Vol. 329. 2010. The luteinizing hormone receptor: insights into structure-function relationships and hormone-receptor-mediated changes in gene expression in ovarian cancer cells; pp. 47–55. [PMID:20444430] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Bliss SP. Navratil AM. Xie J. Roberson MS. Front Neuroendocrinol. Vol. 31. 2010. GnRH signaling, the gonadotrope and endocrine control of fertility; pp. 322–340. [PMID:20451543] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bouligand J. Ghervan C. Trabado S. Brailly-Tabard S. Guiochon-Mantel A. Young J. Brain Res. Vol. 1364. 2010. Genetics defects in GNRH1: a paradigm of hypothalamic congenital gonadotropin deficiency; pp. 3–9. [PMID:20887715] [DOI] [PubMed] [Google Scholar]
  3. Ciechanowska M. Lapot M. Mateusiak K. Przekop F. Reprod Biol. Vol. 10. 2010. Neuroendocrine regulation of GnRH release and expression of GnRH and GnRH receptor genes in the hypothalamus-pituitary unit in different physiological states; pp. 85–124. [PMID:20668503] [DOI] [PubMed] [Google Scholar]
  4. Finch AR. Sedgley KR. Armstrong SP. Caunt CJ. McArdle CA. Br J Pharmacol. Vol. 159. 2010. Trafficking and signalling of gonadotrophin-releasing hormone receptors: an automated imaging approach; pp. 751–760. [PMID:19888967] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Limonta P. Montagnani Marelli M. Mai S. Motta M. Martini L. Moretti RM. Endocr Rev. Vol. 33. 2012. GnRH receptors in cancer: from cell biology to novel targeted therapeutic strategies; pp. 784–811. [PMID:22778172] [DOI] [PubMed] [Google Scholar]
  6. McArdle CA. Gonadotropin-releasing hormone receptor signaling: biased and unbiased. Mini Rev Med Chem. 2012;12:841–850. doi: 10.2174/138955712800959080. [PMID:22681250] [DOI] [PubMed] [Google Scholar]
  7. Navratil AM. Bliss SP. Roberson MS. Brain Res. Vol. 1364. 2010. Membrane rafts and GnRH receptor signaling; pp. 53–61. [PMID:20836995] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Alexander SP. So what do we call GPR18 now? Br J Pharmacol. 2012;165:2411–2413. doi: 10.1111/j.1476-5381.2011.01731.x. [PMID:22014123] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davenport AP. Alexander SP. Sharman JL. Pawson AJ. Benson HE. Monaghan AE. Liew WC. Mpamhanga CP. Bonner TI. Neubig RR, et al. Pharmacol Rev. Vol. 65. 2013. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands; pp. 967–986. [PMID:23686350] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hansen HS. Rosenkilde MM. Holst JJ. Schwartz TW. Trends Pharmacol Sci. Vol. 33. 2012. GPR119 as a fat sensor; pp. 374–381. [PMID:22560300] [DOI] [PubMed] [Google Scholar]
  4. McHugh D. Br J Pharmacol. 2012. GPR18 in Microglia: implications for the CNS and endocannabinoid system signalling. [Epub ahead of print]. [PMID:22563843] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Pertwee RG. Howlett AC. Abood ME. Alexander SP. Di Marzo V. Elphick MR. Greasley PJ. Hansen HS. Kunos G. Mackie K, et al. Pharmacol Rev. Vol. 62. 2010. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2; pp. 588–631. [PMID:21079038] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ross RA. L-α-lysophosphatidylinositol meets GPR55: a deadly relationship. Trends Pharmacol Sci. 2011;32:265–269. doi: 10.1016/j.tips.2011.01.005. [PMID:21367464] [DOI] [PubMed] [Google Scholar]
  7. Yamashita A. Oka S. Tanikawa T. Hayashi Y. Nemoto-Sasaki Y. Sugiura T. Prostaglandins Other Lipid Mediat. 2013. The actions and metabolism of lysophosphatidylinositol, an endogenous agonist for GPR55. [Epub ahead of print]. [PMID:23714700] [DOI] [PubMed] [Google Scholar]
  8. Zhao P. Abood ME. Life Sci. Vol. 92. 2013. GPR55 and GPR35 and their relationship to cannabinoid and lysophospholipid receptors; pp. 453–457. [PMID:22820167] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Berlin M. Boyce CW. Ruiz Mde L. J Med Chem. Vol. 54. 2011. Histamine H3 receptor as a drug discovery target; pp. 26–53. [PMID:21062081] [DOI] [PubMed] [Google Scholar]
  2. Hill SJ. Ganellin CR. Timmerman H. Schwartz JC. Shankley NP. Young JM. Schunack W. Levi R. Haas HL. Pharmacol Rev. Vol. 49. 1997. International Union of Pharmacology. XIII. Classification of histamine receptors; pp. 253–278. [PMID:9311023] [PubMed] [Google Scholar]
  3. Leurs R. Vischer HF. Wijtmans M. Esch IJ. Trends Pharmacol Sci. Vol. 32. 2011. En route to new blockbuster anti-histamines: surveying the offspring of the expanding histamine receptor family; pp. 250–257. [PMID:21414671] [DOI] [PubMed] [Google Scholar]
  4. Marson CM. Targeting the histamine H4 receptor. Chem Rev. 2011;111:7121–7156. doi: 10.1021/cr900166w. [PMID:21842846] [DOI] [PubMed] [Google Scholar]
  5. Passani MB. Blandina P. Trends Pharmacol Sci. Vol. 32. 2011. Histamine receptors in the CNS as targets for therapeutic intervention; pp. 242–249. [PMID:21324537] [DOI] [PubMed] [Google Scholar]
  6. Schwartz JC. The histamine H3 receptor: from discovery to clinical trials with pitolisant. Br J Pharmacol. 2011;163:713–721. doi: 10.1111/j.1476-5381.2011.01286.x. [PMID:21615387] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Blad CC. Ahmed K. IJzerman AP. Offermanns S. Adv Pharmacol. Vol. 62. 2011. Biological and pharmacological roles of HCA receptors; pp. 219–250. [PMID:21907911] [DOI] [PubMed] [Google Scholar]
  2. Chapman MJ. Redfern JS. McGovern ME. Giral P. Pharmacol Ther. Vol. 126. 2010. Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk; pp. 314–345. [PMID:20153365] [DOI] [PubMed] [Google Scholar]
  3. Gille A. Bodor ET. Ahmed K. Offermanns S. Annu Rev Pharmacol Toxicol. Vol. 48. 2008. Nicotinic acid: pharmacological effects and mechanisms of action; pp. 79–106. [PMID:17705685] [DOI] [PubMed] [Google Scholar]
  4. Hanson J. Gille A. Offermanns S. Pharmacol Ther. Vol. 136. 2012. Role of HCA2 (GPR109A) in nicotinic acid and fumaric acid ester-induced effects on the skin; pp. 1–7. [PMID:22743741] [DOI] [PubMed] [Google Scholar]
  5. Offermanns S. Colletti SL. Lovenberg TW. Semple G. Wise A. IJzerman AP. Pharmacol Rev. Vol. 63. 2011. International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B) pp. 269–290. [PMID:21454438] [DOI] [PubMed] [Google Scholar]
  6. Vosper H. Niacin: a re-emerging pharmaceutical for the treatment of dyslipidaemia. Br J Pharmacol. 2009;158:429–441. doi: 10.1111/j.1476-5381.2009.00349.x. [PMID:19627285] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Colledge WH. Kisspeptins and GnRH neuronal signalling. Trends Endocrinol Metab. 2009;20:115–121. doi: 10.1016/j.tem.2008.10.005. [PMID:19097915] [DOI] [PubMed] [Google Scholar]
  2. Hameed S. Jayasena CN. Dhillo WS. J Endocrinol. Vol. 208. 2011. Kisspeptin and fertility; pp. 97–105. [PMID:21084385] [DOI] [PubMed] [Google Scholar]
  3. Jayasena CN. Dhillo WS. Bloom SR. Peptides. Vol. 30. 2009. Kisspeptins and the control of gonadotropin secretion in humans; pp. 76–82. [PMID:18656511] [DOI] [PubMed] [Google Scholar]
  4. Kirby HR. Maguire JJ. Colledge WH. Davenport AP. Pharmacol Rev. Vol. 62. 2010. International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution, and function; pp. 565–578. [PMID:21079036] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mead EJ. Maguire JJ. Kuc RE. Davenport AP. Br J Pharmacol. Vol. 151. 2007. Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system; pp. 1143–1153. [PMID:17519946] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Millar RP. Roseweir AK. Tello JA. Anderson RA. George JT. Morgan K. Pawson AJ. Brain Res. Vol. 1364. 2010. Kisspeptin antagonists: unraveling the role of kisspeptin in reproductive physiology; pp. 81–89. [PMID:20858467] [DOI] [PubMed] [Google Scholar]
  7. Moulédous L. Mollereau C. Zajac JM. Biofactors. Vol. 36. 2010. Opioid-modulating properties of the neuropeptide FF system; pp. 423–429. [PMID:20803521] [DOI] [PubMed] [Google Scholar]
  8. Oakley AE. Clifton DK. Steiner RA. Endocr Rev. Vol. 30. 2009. Kisspeptin signaling in the brain; pp. 713–743. [PMID:19770291] [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Takayanagi Y. Onaka T. FEBS J. Vol. 277. 2010. Roles of prolactin-releasing peptide and RFamide related peptides in the control of stress and food intake; pp. 4998–5005. [PMID:21126313] [DOI] [PubMed] [Google Scholar]
  10. Tena-Sempere M. Kisspeptin signaling in the brain: recent developments and future challenges. Mol Cell Endocrinol. 2010;314:164–169. doi: 10.1016/j.mce.2009.05.004. [PMID:19464345] [DOI] [PubMed] [Google Scholar]
  11. Yang HY. Tao T. Iadarola MJ. Neuropeptides. Vol. 42. 2008. Modulatory role of neuropeptide FF system in nociception and opiate analgesia; pp. 1–18. [PMID:17854890] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Ariel A. Serhan CN. Trends Immunol. Vol. 28. 2007. Resolvins and protectins in the termination program of acute inflammation; pp. 176–183. [PMID:17337246] [DOI] [PubMed] [Google Scholar]
  2. Baker N. O'Meara SJ. Scannell M. Maderna P. Godson C. J Immunol. Vol. 182. 2009. Lipoxin A4: anti-inflammatory and anti-angiogenic impact on endothelial cells; pp. 3819–3826. [PMID:19265161] [DOI] [PubMed] [Google Scholar]
  3. Brink C. Dahlén SE. Drazen J. Evans JF. Hay DW. Rovati GE. Serhan CN. Shimizu T. Yokomizo T. Pharmacol Rev. Vol. 56. 2004. International Union of Pharmacology XLIV. Nomenclature for the Oxoeicosanoid Receptor; pp. 149–157. [PMID:15001665] [DOI] [PubMed] [Google Scholar]
  4. Brink C. Dahlen SE. Drazen J. Evans JF. Hay DW. Nicosia S. Serhan CN. Pharmacol Rev. Vol. 55. 2003. International Union of Pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors; pp. 195–227. [PMID:12615958] [DOI] [PubMed] [Google Scholar]
  5. Grant GE. Rokach J. Powell WS. Prostaglandins Other Lipid Mediat. Vol. 89. 2009. 5-Oxo-ETE and the OXE receptor; pp. 98–104. [PMID:19450703] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kohli P. Levy BD. Br J Pharmacol. Vol. 158. 2009. Resolvins and protectins: mediating solutions to inflammation; pp. 960–971. [PMID:19594757] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ryan A. Godson C. Curr Opin Pharmacol. Vol. 10. 2010. Lipoxins: regulators of resolution; pp. 166–172. [PMID:20226737] [DOI] [PubMed] [Google Scholar]
  8. Serhan CN. Chiang N. Br J Pharmacol. Vol. 153. 2008. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus; pp. S200–S215. [PMID:17965751] [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Serhan CN. Chiang N. Van Dyke TE. Nat Rev Immunol. Vol. 8. 2008. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators; pp. 349–361. [PMID:18437155] [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Serhan CN. Yacoubian S. Yang R. Annu Rev Pathol. Vol. 3. 2008. Anti-inflammatory and proresolving lipid mediators; pp. 279–312. [PMID:18233953] [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Uddin M. Levy BD. Prog Lipid Res. 2010. Resolvins: Natural agonists for resolution of pulmonary inflammation. [Epub ahead of print]. [PMID:20887750] [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Xu ZZ. Ji RR. Br J Pharmacol. Vol. 164. 2011. Resolvins are potent analgesics for arthritic pain; pp. 274–277. [PMID:21418190] [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ye RD. Boulay F. Wang JM. Dahlgren C. Gerard C. Parmentier M. Serhan CN. Murphy PM. Pharmacol Rev. Vol. 61. 2009. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family; pp. 119–161. [PMID:19498085] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Blaho VA. Hla T. Chem Rev. Vol. 111. 2011. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors; pp. 6299–6320. [PMID:21939239] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Choi JW. Herr DR. Noguchi K. Yung YC. Lee CW. Mutoh T. Lin ME. Teo ST. Park KE. Mosley AN. Chun J. Annu Rev Pharmacol Toxicol. Vol. 50. 2010. LPA receptors: subtypes and biological actions; pp. 157–186. [PMID:20055701] [DOI] [PubMed] [Google Scholar]
  3. Chun J. Hla T. Lynch KR. Spiegel S. Moolenaar WH. Pharmacol Rev. Vol. 62. 2010. International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature; pp. 579–587. [PMID:21079037] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Mutoh T. Rivera R. Chun J. Br J Pharmacol. Vol. 165. 2012. Insights into the pharmacological relevance of lysophospholipid receptors; pp. 829–844. [PMID:21838759] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Schober A. Siess W. Br J Pharmacol. Vol. 167. 2012. Lysophosphatidic acid in atherosclerotic diseases; pp. 465–482. [PMID:22568609] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Yanagida K. Ishii S. J Biochem. Vol. 150. 2011. Non-Edg family LPA receptors: the cutting edge of LPA research; pp. 223–232. [PMID:21746769] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Blaho VA. Hla T. Chem Rev. Vol. 111. 2011. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors; pp. 6299–6320. [PMID:21939239] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chi H. Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol Sci. 2011;32:16–24. doi: 10.1016/j.tips.2010.11.002. [PMID:21159389] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Choi JW. Gardell SE. Herr DR. Rivera R. Lee CW. Noguchi K. Teo ST. Yung YC. Lu M. Kennedy G, et al. Proc Natl Acad Sci USA. Vol. 108. 2011. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation; pp. 751–756. [PMID:21177428] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choi JW. Lee CW. Chun J. Biochim Biophys Acta. Vol. 1781. 2008. Biological roles of lysophospholipid receptors revealed by genetic null mice: an update; pp. 531–539. [PMID:18407842] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chun J. Hla T. Lynch KR. Spiegel S. Moolenaar WH. Pharmacol Rev. Vol. 62. 2010. International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature; pp. 579–587. [PMID:21079037] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Maceyka M. Harikumar KB. Milstien S. Spiegel S. Trends Cell Biol. Vol. 22. 2012. Sphingosine-1-phosphate signaling and its role in disease; pp. 50–60. [PMID:22001186] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mutoh T. Rivera R. Chun J. Br J Pharmacol. Vol. 165. 2012. Insights into the pharmacological relevance of lysophospholipid receptors; pp. 829–844. [PMID:21838759] [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. O'Sullivan C. Dev KK. Trends in Pharmacological Sciences. Vol. 34. 2013. The structure and function of the S1P1 receptor; pp. 401–412. [PMID:23763867] [DOI] [PubMed] [Google Scholar]
  9. Pyne S. Pyne NJ. Trends Mol Med. Vol. 17. 2011. Translational aspects of sphingosine 1-phosphate biology; pp. 463–472. [PMID:21514226] [DOI] [PubMed] [Google Scholar]
  10. Spiegel S. Milstien S. Nat Rev Immunol. Vol. 11. 2011. The outs and the ins of sphingosine-1-phosphate in immunity; pp. 403–415. [PMID:21546914] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Boughton CK. Murphy KG. Br J Pharmacol. 2012. Can Neuropeptides Treat Obesity? A review of neuropeptides and their potential role in the treatment of obesity. [Epub ahead of print]. [PMID:23121386] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chung S. Parks GS. Lee C. Civelli O. J Mol Neurosci. Vol. 43. 2011. Recent updates on the melanin-concentrating hormone (MCH) and its receptor system: lessons from MCH1R antagonists; pp. 115–121. [PMID:20582487] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eberle AN. Mild G. Zumsteg U. J Recept Signal Transduct Res. Vol. 30. 2010. Cellular models for the study of the pharmacology and signaling of melanin-concentrating hormone receptors; pp. 385–402. [PMID:21083507] [DOI] [PubMed] [Google Scholar]
  4. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  5. Parker JA. Bloom SR. Neuropharmacology. Vol. 63. 2012. Hypothalamic neuropeptides and the regulation of appetite; pp. 18–30. [PMID:22369786] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Beaumont KA. Wong SS. Ainger SA. Liu YY. Patel MP. Millhauser GL. Smith JJ. Alewood PF. Leonard JH. Sturm RA. Eur J Pharmacol. Vol. 660. 2011. Melanocortin MC1 receptor in human genetics and model systems; pp. 103–110. [PMID:21199646] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooray SN. Clark AJ. Mol Cell Endocrinol. Vol. 331. 2011. Melanocortin receptors and their accessory proteins; pp. 215–221. [PMID:20654690] [DOI] [PubMed] [Google Scholar]
  3. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  4. Holloway PM. Smith HK. Renshaw D. Flower RJ. Getting SJ. Gavins FN. Trends Pharmacol Sci. Vol. 32. 2011. Targeting the melanocortin receptor system for anti-stroke therapy; pp. 90–98. [PMID:21185610] [DOI] [PubMed] [Google Scholar]
  5. Hruby VJ. Cai M. Cain J. Nyberg J. Trivedi D. Eur J Pharmacol. Vol. 660. 2011. Design of novel melanocortin receptor ligands: multiple receptors, complex pharmacology, the challenge; pp. 88–93. [PMID:21208601] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Loos RJ. The genetic epidemiology of melanocortin 4 receptor variants. Eur J Pharmacol. 2011;660:156–164. doi: 10.1016/j.ejphar.2011.01.033. [PMID:21295023] [DOI] [PubMed] [Google Scholar]
  7. Meimaridou E. Hughes CR. Kowalczyk J. Chan LF. Clark AJ. Metherell LA. Endocr Dev. Vol. 24. 2013. ACTH resistance: genes and mechanisms; pp. 57–66. [PMID:23392095] [DOI] [PubMed] [Google Scholar]
  8. Renquist BJ. Lippert RN. Sebag JA. Ellacott KL. Cone RD. Eur J Pharmacol. Vol. 660. 2011. Physiological roles of the melanocortin MC3 receptor; pp. 13–20. [PMID:21211527] [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Yang Y. Structure, function and regulation of the melanocortin receptors. Eur J Pharmacol. 2011;660:125–130. doi: 10.1016/j.ejphar.2010.12.020. [PMID:21208602] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Cardinali DP. Srinivasan V. Brzezinski A. Brown GM. J Pineal Res. Vol. 52. 2012. Melatonin and its analogs in insomnia and depression; pp. 365–375. [PMID:21951153] [DOI] [PubMed] [Google Scholar]
  2. Dardente H. Melatonin-dependent timing of seasonal reproduction by the pars tuberalis: pivotal roles for long daylengths and thyroid hormones. J Neuroendocrinol. 2012;24:249–266. doi: 10.1111/j.1365-2826.2011.02250.x. [PMID:22070540] [DOI] [PubMed] [Google Scholar]
  3. Dubocovich ML. Delagrange P. Krause DN. Sugden D. Cardinali DP. Olcese J. Pharmacol Rev. Vol. 62. 2010. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors; pp. 343–380. [PMID:20605968] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hickie IB. Rogers NL. Lancet. Vol. 378. 2011. Novel melatonin-based therapies: potential advances in the treatment of major depression; pp. 621–631. [PMID:21596429] [DOI] [PubMed] [Google Scholar]
  5. Korkmaz A. Rosales-Corral S. Reiter RJ. Gene. Vol. 503. 2012. Gene regulation by melatonin linked to epigenetic phenomena; pp. 1–11. [PMID:22569208] [DOI] [PubMed] [Google Scholar]
  6. Slominski A. Tobin DJ. Zmijewski MA. Wortsman J. Paus R. Trends Endocrinol Metab. Vol. 19. 2008. Melatonin in the skin: synthesis, metabolism and functions; pp. 17–24. [PMID:18155917] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Bradley SJ. Challiss RA. Biochem Pharmacol. Vol. 84. 2012. G protein-coupled receptor signalling in astrocytes in health and disease: a focus on metabotropic glutamate receptors; pp. 249–259. [PMID:22531220] [DOI] [PubMed] [Google Scholar]
  2. Flor PJ. Acher FC. Biochem Pharmacol. Vol. 84. 2012. Orthosteric versus allosteric GPCR activation: the great challenge of group-III mGluRs; pp. 414–424. [PMID:22554564] [DOI] [PubMed] [Google Scholar]
  3. Julio-Pieper M. Flor PJ. Dinan TG. Cryan JF. Pharmacol Rev. Vol. 63. 2011. Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues; pp. 35–58. [PMID:21228260] [DOI] [PubMed] [Google Scholar]
  4. Nicoletti F. Bockaert J. Collingridge GL. Conn PJ. Ferraguti F. Schoepp DD. Wroblewski JT. Pin JP. Neuropharmacology. Vol. 60. 2011. Metabotropic glutamate receptors: from the workbench to the bedside; pp. 1017–1041. [PMID:21036182] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Schoepp DD. Alexander SP. Beart P. Conn PJ. Lodge D. Nakanishi S, et al. Metabotropic glutamate receptors in IUPHAR Compendium of Receptor Characterization and Classification. In: Watson SP, editor; Girdlestone D IUPHAR, editor. Edited by. 2011. pp. 195–208. [Google Scholar]
  6. Wood MR. Hopkins CR. Brogan JT. Conn PJ. Lindsley CW. Biochemistry. Vol. 50. 2000. “Molecular switches” on mGluR allosteric ligands that modulate modes of pharmacology; pp. 2403–2410. [PMID:21341760] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. De Smet B. Mitselos A. Depoortere I. Pharmacol Ther. Vol. 123. 2009. Motilin and ghrelin as prokinetic drug targets; pp. 207–223. [PMID:19427331] [DOI] [PubMed] [Google Scholar]
  2. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  3. Sanger GJ. Wang Y. Hobson A. Broad J. Br J Pharmacol. 2012. Motilin: Toward a new understanding of the gastrointestinal neuropharmacology and therapeutic use of motilin receptor agonists. [Epub ahead of print]. [PMID:23189978] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Takeshita E. Matsuura B. Dong M. Miller LJ. Matsui H. Onji M. J Gastroenterol. Vol. 41. 2006. Molecular characterization and distribution of motilin family receptors in the human gastrointestinal tract; pp. 223–230. [PMID:16699856] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Brighton PJ. Szekeres PG. Willars GB. Pharmacol Rev. Vol. 56. 2004. Neuromedin U and its receptors: structure, function, and physiological roles; pp. 231–248. [PMID:15169928] [DOI] [PubMed] [Google Scholar]
  2. Budhiraja S. Chugh A. Fundam Clin Pharmacol. Vol. 23. 2009. Neuromedin U: physiology, pharmacology and therapeutic potential; pp. 149–157. [PMID:19645813] [DOI] [PubMed] [Google Scholar]
  3. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  4. Mitchell JD. Maguire JJ. Davenport AP. Br J Pharmacol. Vol. 158. 2009. Emerging pharmacology and physiology of neuromedin U and the structurally related peptide neuromedin S; pp. 87–103. [PMID:19519756] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Novak CM. Neuromedin S and U. Endocrinology. 2009;150:2985–2987. doi: 10.1210/en.2009-0448. [PMID:19549882] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Moulédous L. Mollereau C. Zajac JM. Biofactors. Vol. 36. 2010. Opioid-modulating properties of the neuropeptide FF system; pp. 423–429. [PMID:20803521] [DOI] [PubMed] [Google Scholar]
  2. Vyas N. Mollereau C. Chevé G. McCurdy CR. Peptides. Vol. 27. 2006. Structure-activity relationships of neuropeptide FF and related peptidic and non-peptidic derivatives; pp. 990–996. [PMID:16490282] [DOI] [PubMed] [Google Scholar]
  3. Yang HY. Tao T. Iadarola MJ. Neuropeptides. Vol. 42. 2008. Modulatory role of neuropeptide FF system in nociception and opiate analgesia; pp. 1–18. [PMID:17854890] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Cannella N. Kallupi M. Ruggeri B. Ciccocioppo R. Ubaldi M. Prog Neurobiol. Vol. 100. 2013. The role of the neuropeptide S system in addiction: focus on its interaction with the CRF and hypocretin/orexin neurotransmission; pp. 48–59. [PMID:23041581] [DOI] [PubMed] [Google Scholar]
  2. Dal Ben D. Antonini I. Buccioni M. Lambertucci C. Marucci G. Thomas A. Volpini R. Cristalli G. ChemMedChem. Vol. 6. 2011. Neuropeptide S receptor: recent updates on nonpeptide antagonist discovery; pp. 1163–1171. [PMID:21452188] [DOI] [PubMed] [Google Scholar]
  3. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  4. Guerrini R. Salvadori S. Rizzi A. Regoli D. Calo' G. Med Res Rev. Vol. 30. 2010. Neurobiology, pharmacology, and medicinal chemistry of neuropeptide S and its receptor; pp. 751–777. [PMID:19824051] [DOI] [PubMed] [Google Scholar]
  5. Pape HC. Jüngling K. Seidenbecher T. Lesting J. Reinscheid RK. Neuropharmacology. Vol. 58. 2010. Neuropeptide S: a transmitter system in the brain regulating fear and anxiety; pp. 29–34. [PMID:19523478] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Reinscheid RK. Neuropeptide S: anatomy, pharmacology, genetics and physiological functions. Results Probl Cell Differ. 2008;46:145–158. doi: 10.1007/400_2007_051. [PMID:18204825] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Date Y. Mondal MS. Kageyama H. Ghamari-Langroudi M. Takenoya F. Yamaguchi H. Shimomura Y. Mori M. Murakami N. Shioda S, et al. Endocrinology. Vol. 151. 2010. Neuropeptide W: an anorectic peptide regulated by leptin and metabolic state; pp. 2200–2210. [PMID:20189998] [DOI] [PubMed] [Google Scholar]
  2. Hondo M. Ishii M. Sakurai T. Results Probl Cell Differ. Vol. 46. 2008. The NPB/NPW neuropeptide system and its role in regulating energy homeostasis, pain, and emotion; pp. 239–256. [PMID:18204824] [DOI] [PubMed] [Google Scholar]
  3. Sakurai T. NPBWR1 and NPBWR2: Implications in Energy Homeostasis, Pain, and Emotion. Front Endocrinol (Lausanne) 2013;4:23. doi: 10.3389/fendo.2013.00023. [PMID:23515889] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Singh G. Davenport AP. Br J Pharmacol. Vol. 148. 2006. Neuropeptide B and W: neurotransmitters in an emerging G-protein-coupled receptor system; pp. 1033–1041. [PMID:16847439] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Bowers ME. Choi DC. Ressler KJ. Physiol Behav. Vol. 107. 2012. Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide Y; pp. 699–710. [PMID:22429904] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Decressac M. Barker RA. Exp Neurol. Vol. 238. 2012. Neuropeptide Y and its role in CNS disease and repair; pp. 265–272. [PMID:23022456] [DOI] [PubMed] [Google Scholar]
  3. Michel MC. Beck-Sickinger AG. Cox H. Doods HN. Herzog H. Larhammar D. Quirion R. Schwartz TW. Westfall TC. Pharmacol Rev. Vol. 50. 1998. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY and pancreatic polypeptide receptors; pp. 143–150. [PMID:9549761] [PubMed] [Google Scholar]
  4. Morales-Medina JC. Dumont Y. Quirion R. Brain Res. Vol. 1314. 2010. A possible role of neuropeptide Y in depression and stress; pp. 194–205. [PMID:19782662] [DOI] [PubMed] [Google Scholar]
  5. Zengin A. Zhang L. Herzog H. Baldock PA. Sainsbury A. Trends Endocrinol Metab. Vol. 21. 2010. Neuropeptide Y and sex hormone interactions in humoral and neuronal regulation of bone and fat; pp. 411–418. [PMID:20202858] [DOI] [PubMed] [Google Scholar]
  6. Zhang L. Bijker MS. Herzog H. Pharmacol Ther. Vol. 131. 2011. The neuropeptide Y system: pathophysiological and therapeutic implications in obesity and cancer; pp. 91–113. [PMID:21439311] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Dupouy S. Mourra N. Doan VK. Gompel A. Alifano M. Forgez P. Biochimie. Vol. 93. 2011. The potential use of the neurotensin high affinity receptor 1 as a biomarker for cancer progression and as a component of personalized medicine in selective cancers; pp. 1369–1378. [PMID:21605619] [DOI] [PubMed] [Google Scholar]
  2. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  3. Kalafatakis K. Triantafyllou K. Regul Pept. Vol. 170. 2011. Contribution of neurotensin in the immune and neuroendocrine modulation of normal and abnormal enteric function; pp. 7–17. [PMID:21549161] [DOI] [PubMed] [Google Scholar]
  4. Stolakis V. Kalafatakis K. Botis J. Zarros A. Liapi C. Neuropeptides. Vol. 44. 2010. The regulatory role of neurotensin on the hypothalamic-anterior pituitary axons: emphasis on the control of thyroid-related functions; pp. 1–7. [PMID:19878995] [DOI] [PubMed] [Google Scholar]
  5. Tanganelli S. Antonelli T. Tomasini MC. Beggiato S. Fuxe K. Ferraro L. Curr Med Chem. Vol. 19. 2012. Relevance of dopamine D(2)/neurotensin NTS1 and NMDA/neurotensin NTS1 receptor interaction in psychiatric and neurodegenerative disorders; pp. 304–316. [PMID:22335510] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Butelman ER. Yuferov V. Kreek MJ. Trends Neurosci. Vol. 35. 2012. κ-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction; pp. 587–596. [PMID:22709632] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dang VC. Christie MJ. Br J Pharmacol. Vol. 165. 2012. Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons; pp. 1704–1716. [PMID:21564086] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kelly E. The subtleties of μ-opioid receptor phosphorylation. Br J Pharmacol. 2011;164:294–297. doi: 10.1111/j.1476-5381.2011.01387.x. [PMID:21449916] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Pradhan AA. Befort K. Nozaki C. Gavériaux-Ruff C. Kieffer BL. Trends Pharmacol Sci. Vol. 32. 2011. The delta opioid receptor: an evolving target for the treatment of brain disorders; pp. 581–590. [PMID:21925742] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Pradhan AA. Smith ML. Kieffer BL. Evans CJ. Br J Pharmacol. Vol. 167. 2012. Ligand-directed signalling within the opioid receptor family; pp. 960–969. [PMID:22708627] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Williams JT. Ingram SL. Henderson G. Chavkin C. Zastrow M. Schulz S. Koch T. Evans CJ. Christie MJ. Pharmacol Rev. Vol. 65. 2013. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance; pp. 223–254. [PMID:23321159] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Cason AM. Smith RJ. Tahsili-Fahadan P. Moorman DE. Sartor GC. Aston-Jones G. Physiol Behav. Vol. 100. 2010. Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity; pp. 419–428. [PMID:20338186] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gotter AL. Roecker AJ. Hargreaves R. Coleman PJ. Winrow CJ. Renger JJ. Prog Brain Res. Vol. 198. 2012. Orexin receptors as therapeutic drug targets; pp. 163–188. [PMID:22813974] [DOI] [PubMed] [Google Scholar]
  3. Gotter AL. Webber AL. Coleman PJ. Renger JJ. Winrow CJ. Pharmacol Rev. Vol. 64. 2012. International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin receptor function, nomenclature and pharmacology; pp. 389–420. [PMID:22759794] [DOI] [PubMed] [Google Scholar]
  4. Laburthe M. Voisin T. Br J Pharmacol. Vol. 165. 2012. The orexin receptor OX(1)R in colon cancer: a promising therapeutic target and a new paradigm in G protein-coupled receptor signalling through ITIMs; pp. 1678–1687. [PMID:21627633] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sakurai T. Mieda M. Trends Pharmacol Sci. Vol. 32. 2011. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal; pp. 451–462. [PMID:21565412] [DOI] [PubMed] [Google Scholar]
  6. Scammell TE. Winrow CJ. Annu Rev Pharmacol Toxicol. Vol. 51. 2011. Orexin receptors: pharmacology and therapeutic opportunities; pp. 243–266. [PMID:21034217] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sharf R. Sarhan M. Dileone RJ. Brain Res. Vol. 1314. 2010. Role of orexin/hypocretin in dependence and addiction; pp. 130–138. [PMID:19699189] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Davenport AP. Alexander SP. Sharman JL. Pawson AJ. Benson HE. Monaghan AE, et al. Pharmacological reviews. Vol. 65. 2013. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands; pp. 967–986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Abbracchio MP. Boeynaems JM. Barnard EA. Boyer JL. Kennedy C. Miras-Portugal MT. King BF. Gachet C. Jacobson KA. Weisman GA. Burnstock G. Trends Pharmacol Sci. Vol. 24. 2003. Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family; pp. 52–55. [PMID:12559763] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abbracchio MP. Burnstock G. Boeynaems JM. Barnard EA. Boyer JL. Kennedy C. Knight GE. Fumagalli M. Gachet C. Jacobson KA, et al. Pharmacol Rev. Vol. 58. 2006. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy; pp. 281–341. [PMID:16968944] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci. 2007;64:1471–1483. doi: 10.1007/s00018-007-6497-0. [PMID:17375261] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov. 2008;7:575–590. doi: 10.1038/nrd2605. [PMID:18591979] [DOI] [PubMed] [Google Scholar]
  5. Erlinge D. Burnstock G. Purinergic Signal. Vol. 4. 2008. P2 receptors in cardiovascular regulation and disease; pp. 1–20. [PMID:18368530] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jacobson KA. Ivanov AA. Castro S. Harden TK. Ko H. Purinergic Signalling. Vol. 5. 2009. Development of selective agonists and antagonists of P2Y receptors; pp. 75–89. [PMID:18600475] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Datta NS. Abou-Samra AB. Cell Signal. Vol. 21. 2009. PTH and PTHrP signaling in osteoblasts; pp. 1245–1254. [PMID:19249350] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dobolyi A. Palkovits M. Usdin TB. Prog Neurobiol. Vol. 90. 2010. The TIP39-PTH2 receptor system: unique peptidergic cell groups in the brainstem and their interactions with central regulatory mechanisms; pp. 29–59. [PMID:19857544] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gesty-Palmer D. Chen M. Reiter E. Ahn S. Nelson CD. Wang S. Eckhardt AE. Cowan CL. Spurney RF. Luttrell LM. Lefkowitz RJ. J Biol Chem. Vol. 281. 2006. Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation; pp. 10856–10864. [PMID:16492667] [DOI] [PubMed] [Google Scholar]
  4. Guerreiro PM. Renfro JL. Power DM. Canario AV. Am J Physiol Regul Integr Comp Physiol. Vol. 292. 2007. The parathyroid hormone family of peptides: structure, tissue distribution, regulation, and potential functional roles in calcium and phosphate balance in fish; pp. R679–R696. [PMID:17023665] [DOI] [PubMed] [Google Scholar]
  5. Kraenzlin ME. Meier C. Nat Rev Endocrinol. 2011. Parathyroid hormone analogues in the treatment of osteoporosis. [Epub ahead of print]. [PMID:21750510] [DOI] [PubMed] [Google Scholar]
  6. Mierke DF. Mao L. Pellegrini M. Piserchio A. Plati J. Tsomaia N. Biochem Soc Trans. Vol. 35. 2007. Structural characterization of the parathyroid hormone receptor domains determinant for ligand binding; pp. 721–723. [PMID:17635133] [DOI] [PubMed] [Google Scholar]
  7. Naveh-Many T. Minireview: the play of proteins on the parathyroid hormone messenger ribonucleic Acid regulates its expression. Endocrinology. 2010;151:1398–1402. doi: 10.1210/en.2009-1160. [PMID:20032048] [DOI] [PubMed] [Google Scholar]
  8. Silva BC. Bilezikian JP. Annu Rev Med. Vol. 62. 2011. New approaches to the treatment of osteoporosis; pp. 307–322. [PMID:21054170] [DOI] [PubMed] [Google Scholar]
  9. Silver J. Naveh-Many T. Kidney Int. Vol. 75. 2009. Phosphate and the parathyroid; pp. 898–905. [PMID:19129794] [DOI] [PubMed] [Google Scholar]
  10. Vilardaga JP. Romero G. Friedman PA. Gardella TJ. Cell Mol Life Sci. Vol. 68. 2011. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm; pp. 1–13. [PMID:20703892] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Fukusumi S. Fujii R. Hinuma S. Peptides. Vol. 27. 2006. Recent advances in mammalian RFamide peptides: the discovery and functional analyses of PrRP, RFRPs and QRFP; pp. 1073–1086. [PMID:16500002] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  2. Grigg J. The platelet activating factor receptor: a new anti-infective target in respiratory disease? Thorax. 2012;67:840–841. doi: 10.1136/thoraxjnl-2012-202206. [PMID:22802333] [DOI] [PubMed] [Google Scholar]
  3. Petho G. Reeh PW. Physiol Rev. Vol. 92. 2012. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors; pp. 1699–1775. [PMID:23073630] [DOI] [PubMed] [Google Scholar]
  4. Sirangelo I. Irace G. Balestrieri ML. J Cell Physiol. Vol. 228. 2013. Amyloid toxicity and platelet-activating factor signaling; pp. 1143–1148. [PMID:23169529] [DOI] [PubMed] [Google Scholar]
  5. Yost CC. Weyrich AS. Zimmerman GA. Biochimie. Vol. 92. 2010. The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses; pp. 692–697. [PMID:20167241] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Balasubramanian R. Plummer L. Sidis Y. Pitteloud N. Martin C. Zhou QY. Crowley WF. Mol Cell Endocrinol. Vol. 346. 2011. The puzzles of the prokineticin 2 pathway in human reproduction; pp. 44–50. [PMID:21664414] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boulberdaa M. Urayama K. Nebigil CG. Cardiovasc Res. Vol. 92. 2011. Prokineticin receptor 1 (PKR1) signalling in cardiovascular and kidney functions; pp. 191–198. [PMID:21856786] [DOI] [PubMed] [Google Scholar]
  3. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  4. Martin C. Balasubramanian R. Dwyer AA. Au MG. Sidis Y. Kaiser UB. Seminara SB. Pitteloud N. Zhou QY. Crowley WF., Jr . Endocr Rev. Vol. 32. 2011. The role of the prokineticin 2 pathway in human reproduction: evidence from the study of human and murine gene mutations; pp. 225–246. [PMID:21037178] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Negri L. Lattanzi R. Giannini E. Melchiorri P. Life Sci. Vol. 81. 2007. Bv8/Prokineticin proteins and their receptors; pp. 1103–1116. [PMID:17881008] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Samson WK. Taylor MM. Peptides. Vol. 27. 2006. Prolactin releasing peptide (PrRP): an endogenous regulator of cell growth; pp. 1099–1103. [PMID:16500730] [DOI] [PubMed] [Google Scholar]
  2. Takayanagi Y. Onaka T. FEBS J. Vol. 277. 2010. Roles of prolactin-releasing peptide and RFamide related peptides in the control of stress and food intake; pp. 4998–5005. [PMID:21126313] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Forselles KJ. Root J. Clarke T. Davey D. Aughton K. Dack K. Pullen N. Br J Pharmacol. Vol. 164. 2011. In vitro and in vivo characterization of PF-04418948, a novel, potent and selective prostaglandin EP2 receptor antagonist; pp. 1847–1856. [PMID:21595651] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Billot X. Chateauneuf A. Chauret N. Denis D. Greig G. Mathieu MC. Metters KM. Slipetz DM. Young RN. Bioorg Med Chem Lett. Vol. 13. 2003. Discovery of a potent and selective agonist of the prostaglandin EP4 receptor; pp. 1129–1132. [PMID:12643927] [DOI] [PubMed] [Google Scholar]
  3. Félétou M. Huang Y. Vanhoutte PM. Pflugers Arch. Vol. 459. 2010. Vasoconstrictor prostanoids; pp. 941–950. [PMID:20333529] [DOI] [PubMed] [Google Scholar]
  4. Félétou M. Vanhoutte PM. Verbeuren TJ. J Cardiovasc Pharmacol. Vol. 55. 2010. The thromboxane/endoperoxide receptor (TP): the common villain; pp. 317–332. [PMID:20422736] [DOI] [PubMed] [Google Scholar]
  5. Schuligoi R. Sturm E. Luschnig P. Konya V. Philipose S. Sedej M. Waldhoer M. Peskar BA. Heinemann A. Pharmacology. Vol. 85. 2010. CRTH2 and D-type prostanoid receptor antagonists as novel therapeutic agents for inflammatory diseases; pp. 372–382. [PMID:20559016] [DOI] [PubMed] [Google Scholar]
  6. Woodward DF. Jones RL. Narumiya S. Pharmacol Rev. Vol. 63. 2011. International union of basic and clinical pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress; pp. 471–538. [PMID:21752876] [DOI] [PubMed] [Google Scholar]
  7. Yang C. Liu X. Cao Q. Liang Q. Qiu X. Life Sci. Vol. 88. 2011. Prostaglandin E receptors as inflammatory therapeutic targets for atherosclerosis; pp. 201–205. [PMID:21112342] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Adams MN. Ramachandran R. Yau MK. Suen JY. Fairlie DP. Hollenberg MD. Hooper JD. Pharmacol Ther. Vol. 130. 2011. Structure, function and pathophysiology of protease activated receptors; pp. 248–282. [PMID:21277892] [DOI] [PubMed] [Google Scholar]
  2. Canto I. Soh UJ. Trejo J. Mini Rev Med Chem. Vol. 12. 2012. Allosteric modulation of protease-activated receptor signaling; pp. 804–811. [PMID:22681248] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. García PS. Gulati A. Levy JH. Thromb Haemost. Vol. 103. 2010. The role of thrombin and protease-activated receptors in pain mechanisms; pp. 1145–1151. [PMID:20431855] [DOI] [PubMed] [Google Scholar]
  4. Hollenberg MD. Compton SJ. Pharmacol Rev. Vol. 54. 2002. International Union of Pharmacology. XXVIII. Proteinase-activated receptors; pp. 203–217. [PMID:12037136] [DOI] [PubMed] [Google Scholar]
  5. Ramachandran R. Noorbakhsh F. Defea K. Hollenberg MD. Nat Rev Drug Discov. Vol. 11. 2012. Targeting proteinase-activated receptors: therapeutic potential and challenges; pp. 69–86. [PMID:22212680] [DOI] [PubMed] [Google Scholar]
  6. Soh UJ. Dores MR. Chen B. Trejo J. Br J Pharmacol. Vol. 160. 2010. Signal transduction by protease-activated receptors; pp. 191–203. [PMID:20423334] [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Vergnolle N. Protease-activated receptors as drug targets in inflammation and pain. Pharmacol Ther. 2009;123:292–309. doi: 10.1016/j.pharmthera.2009.05.004. [PMID:19481569] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Bathgate RA. Halls ML. Westhuizen ET. Callander GE. Kocan M. Summers RJ. Physiol Rev. Vol. 93. 2013. Relaxin family peptides and their receptors; pp. 405–480. [PMID:23303914] [DOI] [PubMed] [Google Scholar]
  2. Bathgate RA. Ivell R. Sanborn BM. Sherwood OD. Summers RJ. Pharmacol Rev. Vol. 58. 2006. International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides; pp. 7–31. [PMID:16507880] [DOI] [PubMed] [Google Scholar]
  3. Callander GE. Bathgate RA. Cell Mol Life Sci. Vol. 67. 2010. Relaxin family peptide systems and the central nervous system; pp. 2327–2341. [PMID:20213277] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Du XJ. Bathgate RA. Samuel CS. Dart AM. Summers RJ. Nat Rev Cardiol. Vol. 7. 2010. Cardiovascular effects of relaxin: from basic science to clinical therapy; pp. 48–58. [PMID:19935741] [DOI] [PubMed] [Google Scholar]
  5. Ivell R. Kotula-Balak M. Glynn D. Heng K. Anand-Ivell R. Mol Hum Reprod. Vol. 17. 2011. Relaxin family peptides in the male reproductive system–a critical appraisal; pp. 71–84. [PMID:20952422] [DOI] [PubMed] [Google Scholar]
  6. Kong RC. Shilling PJ. Lobb DK. Gooley PR. Bathgate RA. Mol Cell Endocrinol. Vol. 320. 2010. Membrane receptors: structure and function of the relaxin family peptide receptors; pp. 1–15. [PMID:20138959] [DOI] [PubMed] [Google Scholar]
  7. Westhuizen ET. Halls ML. Samuel CS. Bathgate RA. Unemori EN. Sutton SW. Summers RJ. Drug Discov Today. Vol. 13. 2008. Relaxin family peptide receptors–from orphans to therapeutic targets; pp. 640–651. [PMID:18675759] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Ben-Shlomo A. Melmed S. Trends Endocrinol Metab. Vol. 21. 2010. Pituitary somatostatin receptor signaling; pp. 123–133. [PMID:20149677] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Colao A. Auriemma RS. Lombardi G. Pivonello R. Endocr Rev. Vol. 32. 2011. Resistance to somatostatin analogs in acromegaly; pp. 247–271. [PMID:21123741] [DOI] [PubMed] [Google Scholar]
  3. Csaba Z. Peineau S. Dournaud P. J Mol Endocrinol. Vol. 48. 2012. Molecular mechanisms of somatostatin receptor trafficking; pp. R1–R12. [PMID:22159161] [DOI] [PubMed] [Google Scholar]
  4. Hoyer D. Epelbaum J. Feniuk W. Humphrey PPA. Meyerhof W. O'Carroll AM, et al. Somatostatin receptors in The IUPHAR Compendium of Receptor Characterization and Classification. In: Watson SP, editor; Girdlestone D IUPHAR, editor. Edited by. 2nd edn. 2000. pp. 354–364. [Google Scholar]
  5. Van Op Bosch J. Adriaensen D. Van Nassauw L. Timmermans JP. Regul Pept. Vol. 156. 2009. The role(s) of somatostatin, structurally related peptides and somatostatin receptors in the gastrointestinal tract: a review; pp. 1–8. [PMID:19362110] [DOI] [PubMed] [Google Scholar]
  6. Zatelli MC. degli Uberti E. Curr Opin Investig Drugs. Vol. 10. 2009. The significance of new somatostatin analogs as therapeutic agents; pp. 1025–1031. [PMID:19777390] [PubMed] [Google Scholar]

Further reading

  1. Davenport AP. Alexander SP. Sharman JL. Pawson AJ. Benson HE. Monaghan AE, et al. Pharmacological reviews. Vol. 65. 2013. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands; pp. 967–986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Commons KG. Neuronal pathways linking substance P to drug addiction and stress. Brain Res. 2010;1314:175–182. doi: 10.1016/j.brainres.2009.11.014. [PMID:19913520] [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  3. Pantaleo N. Chadwick W. Park SS. Wang L. Zhou Y. Martin B. Maudsley S. CNS Neurol Disord Drug Targets. Vol. 9. 2010. The mammalian tachykinin ligand-receptor system: an emerging target for central neurological disorders; pp. 627–635. [PMID:20632965] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Rance NE. Krajewski SJ. Smith MA. Cholanian M. Dacks PA. Brain Res. Vol. 1364. 2010. Neurokinin B and the hypothalamic regulation of reproduction; pp. 116–128. [PMID:20800582] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rojas C. Slusher BS. Eur J Pharmacol. Vol. 684. 2012. Pharmacological mechanisms of 5-HT3 and tachykinin NK1 receptor antagonism to prevent chemotherapy-induced nausea and vomiting; pp. 1–7. [PMID:22425650] [DOI] [PubMed] [Google Scholar]
  6. Tuluc F. Lai JP. Kilpatrick LE. Evans DL. Douglas SD. Trends Immunol. Vol. 30. 2009. Neurokinin 1 receptor isoforms and the control of innate immunity; pp. 271–276. [PMID:19427266] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Bílek R. Bičíková M. Šafařík L. Physiol Res. Vol. 60. 2011. TRH-like peptides; pp. 207–215. [PMID:21114375] [DOI] [PubMed] [Google Scholar]
  2. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2005. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  3. Nillni EA. Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front Neuroendocrinol. 2010;31:134–156. doi: 10.1016/j.yfrne.2010.01.001. [PMID:20074584] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Burchett SA. Hicks TP. Prog Neurobiol. Vol. 79. 2006. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain; pp. 223–246. [PMID:16962229] [DOI] [PubMed] [Google Scholar]
  2. Grandy DK. Trace amine-associated receptor 1-Family archetype or iconoclast? Pharmacol Ther. 2007;116:355–390. doi: 10.1016/j.pharmthera.2007.06.007. [PMID:17888514] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Maguire JJ. Parker WA. Foord SM. Bonner TI. Neubig RR. Davenport AP. Pharmacol Rev. Vol. 61. 2009. International Union of Pharmacology. LXXII. Recommendations for trace amine receptor nomenclature; pp. 1–8. [PMID:19325074] [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Miller GM. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem. 2011;116:164–176. doi: 10.1111/j.1471-4159.2010.07109.x. [PMID:21073468] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sotnikova TD. Caron MG. Gainetdinov RR. Mol Pharmacol. Vol. 76. 2009. Trace amine-associated receptors as emerging therapeutic targets; pp. 229–235. [PMID:19389919] [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Zucchi R. Chiellini G. Scanlan TS. Grandy DK. Br J Pharmacol. Vol. 149. 2006. Trace amine-associated receptors and their ligands; pp. 967–978. [PMID:17088868] [DOI] [PMC free article] [PubMed] [Google Scholar]

Further reading

  1. Douglas SA. Ohlstein EH. Urotensin receptors The IUPHAR Receptor Compendium of Receptor Characterization and Classification. In: Girdlestone D, editor. Edited by. IUPHAR Media Ltd; 2005. pp. 365–372. [Google Scholar]
  2. Foord SM. Bonner TI. Neubig RR. Rosser EM. Pin JP. Davenport AP. Spedding M. Harmar AJ. Pharmacol Rev. Vol. 57. 2000. International Union of Pharmacology. XLVI. G protein-coupled receptor list; pp. 279–288. [PMID:15914470] [DOI] [PubMed] [Google Scholar]
  3. Guidolin D. Albertin G. Ribatti D. Peptides. Vol. 31. 2010. Urotensin-II as an angiogenic factor; pp. 1219–1224. [PMID:20346384] [DOI] [PubMed] [Google Scholar]
  4. Hunt BD. Ng LL. Lambert DG. Naunyn Schmiedebergs Arch Pharmacol. Vol. 382. 2010. A rat brain atlas of urotensin-II receptor expression and a review of central urotensin-II effects; pp. 1–31. [PMID:20422157] [DOI] [PubMed] [Google Scholar]
  5. Maryanoff BE. Kinney WA. J Med Chem. Vol. 53. 2010. Urotensin-II receptor modulators as potential drugs; pp. 2695–2708. [PMID:20043680] [DOI] [PubMed] [Google Scholar]
  6. Ross B. McKendy K. Giaid A. Am J Physiol Regul Integr Comp Physiol. Vol. 298. 2010. Role of urotensin II in health and disease; pp. R1156–R1172. [PMID:20421634] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Bartz JA. Zaki J. Bolger N. Ochsner KN. Trends Cogn Sci (Regul Ed) Vol. 15. 2011. Social effects of oxytocin in humans: context and person matter; pp. 301–309. [PMID:21696997] [DOI] [PubMed] [Google Scholar]
  2. Knepper MA. Systems biology in physiology: the vasopressin signaling network in kidney. Am J Physiol, Cell Physiol. 2012;303:C1115–C1124. doi: 10.1152/ajpcell.00270.2012. [PMID:22932685] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Koshimizu TA. Nakamura K. Egashira N. Hiroyama M. Nonoguchi H. Tanoue A. Physiol Rev. Vol. 92. 2012. Vasopressin V1a and V1b receptors: from molecules to physiological systems; pp. 1813–1864. [PMID:23073632] [DOI] [PubMed] [Google Scholar]
  4. Manning M. Misicka A. Olma A. Bankowski K. Stoev S. Chini B. Durroux T. Mouillac B. Corbani M. Guillon G. J Neuroendocrinol. Vol. 24. 2012. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics; pp. 609–628. [PMID:22375852] [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Meyer-Lindenberg A. Domes G. Kirsch P. Heinrichs M. Nat Rev Neurosci. Vol. 12. 2011. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine; pp. 524–538. [PMID:21852800] [DOI] [PubMed] [Google Scholar]
  6. Neumann ID. Landgraf R. Trends Neurosci. Vol. 35. 2012. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors; pp. 649–659. [PMID:22974560] [DOI] [PubMed] [Google Scholar]

Further reading

  1. Harmar AJ. Arimura A. Gozes I. Journot L. Laburthe M. Pisegna JR. Rawlings SR. Robberecht P. Said SI. Sreedharan SP. Wank SA. Waschek JA. Pharmacol Rev. Vol. 50. 1998. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide; pp. 265–270. [PMID:9647867] [PMC free article] [PubMed] [Google Scholar]
  2. Harmar AJ. Fahrenkrug J. Gozes I. Laburthe M. May V. Pisegna JR. Vaudry D. Vaudry H. Waschek JA. Said SI. Br J Pharmacol. Vol. 166. 2012. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1; pp. 4–17. [PMID:22289055] [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Reglodi D. Kiss P. Horvath G. Lubics A. Laszlo E. Tamas A. Racz B. Szakaly P. Neuropeptides. Vol. 46. 2012. Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney; pp. 61–70. [PMID:21621841] [DOI] [PubMed] [Google Scholar]
  4. Smith CB. Eiden LE. J Mol Neurosci. Vol. 48. 2012. Is PACAP the major neurotransmitter for stress transduction at the adrenomedullary synapse? pp. 403–412. [PMID:22610912] [DOI] [PMC free article] [PubMed] [Google Scholar]

References

  • 1.Adams JW, et al. Am J Physiol Heart Circ Physiol. 2008;295:H509–H521. doi: 10.1152/ajpheart.00368.2008. [PMID: 18539757 ] [DOI] [PubMed] [Google Scholar]
  • 2.Barnea G, et al. Proc Natl Acad Sci USA. 2008;105:64–69. doi: 10.1073/pnas.0710487105. [PMID: 18165312 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Bechtold DA, et al. Curr Biol. 2012;22:70–77. doi: 10.1016/j.cub.2011.11.043. [PMID: 22197240 ] [DOI] [PubMed] [Google Scholar]
  • 4.Behrens M, et al. Biochem Biophys Res Commun. 2004;319:479–485. doi: 10.1016/j.bbrc.2004.05.019. [PMID: 15178431 ] [DOI] [PubMed] [Google Scholar]
  • 5.Benned-Jensen T, Rosenkilde MM. Br J Pharmacol. 2010;159:1092–1105. doi: 10.1111/j.1476-5381.2009.00633.x. [PMID: 20148890 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Bjursell M, et al. Biochem Biophys Res Commun. 2006;348:359–366. doi: 10.1016/j.bbrc.2006.07.090. [PMID: 16887097 ] [DOI] [PubMed] [Google Scholar]
  • 7.Borowsky B, et al. Proc Natl Acad Sci U S A. 2001;98:8966–8971. doi: 10.1073/pnas.151105198. [PMID: 11459929 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Brennan TJ, et al. 2007. Transgenic mice containing GPCR5-1 gene disruptions. Patent number: US 2007/0074299 A1. Submitted on 08/08/2006. Issued on 29/03/2007.
  • 9.Carmon KS, et al. Proc Natl Acad Sci USA. 2011;108:11452–11457. doi: 10.1073/pnas.1106083108. [PMID: 21693646 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Catalán V, et al. Clin Endocrinol (Oxf) 2007;66:598–601. doi: 10.1111/j.1365-2265.2007.02777.x. [PMID: 17371481 ] [DOI] [PubMed] [Google Scholar]
  • 11.Cavanaugh DJ, et al. Proc Natl Acad Sci USA. 2009;106:9075–9080. doi: 10.1073/pnas.0901507106. [PMID: 19451647 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Chandrashekar J, et al. Cell. 2000;100:703–711. doi: 10.1016/s0092-8674(00)80706-0. [PMID: 10761935 ] [DOI] [PubMed] [Google Scholar]
  • 13.Chen H, Ikeda SR. J Neurosci. 2004;24:5044–5053. doi: 10.1523/JNEUROSCI.0990-04.2004. [PMID: 15163697 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Chen Q, et al. Eur J Neurosci. 2012. [Epub ahead of print]. [PMID: 22697179 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Chiang N, et al. Nature. 2012;484:524–528. doi: 10.1038/nature11042. [PMID: 22538616 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Ciana P, et al. EMBO J. 2006;25:4615–4627. doi: 10.1038/sj.emboj.7601341. [PMID: 16990797 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Davenport AP, et al. Pharmacol Rev. 2013;65:967–986. doi: 10.1124/pr.112.007179. [PMID: 23686350 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.de Lau W, et al. Nature. 2011;476:293–297. doi: 10.1038/nature10337. [PMID: 21727895 ] [DOI] [PubMed] [Google Scholar]
  • 19.Edinger AL, et al. Proc Natl Acad Sci USA. 1997;94:14742–14747. doi: 10.1073/pnas.94.26.14742. [PMID: 9405683 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Edson MA, et al. Endocrinology. 2010;151:358–368. doi: 10.1210/en.2009-0760. [PMID: 19887567 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Eggerickx D, et al. Biochem J. 1995;309:837–843. doi: 10.1042/bj3090837. (Pt 3):. [PMID: 7639700 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Engel KM, et al. PLoS ONE. 2011;6:e29400. doi: 10.1371/journal.pone.0029400. [PMID: 22216272 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Evangelou E, et al. Ann Rheum Dis. 2011;70:349–355. doi: 10.1136/ard.2010.132787. [PMID: 21068099 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 25.Gembardt F, et al. Mol Cell Biochem. 2008;319:115–123. doi: 10.1007/s11010-008-9884-4. [PMID: 18636314 ] [DOI] [PubMed] [Google Scholar]
  • 26.Gomes I, et al. Proc Natl Acad Sci USA. 2013. [Epub ahead of print]. [PMID: 24043826 ] [Google Scholar]
  • 27.Guo Y, et al. J Biol Chem. 2011;286:33832–33840. doi: 10.1074/jbc.M110.216564. [PMID: 21712392 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Hannedouche S, et al. Nature. 2011;475:524–527. doi: 10.1038/nature10280. [PMID: 21796212 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Hansen W, et al. Genes Immun. 2010;11:357–361. doi: 10.1038/gene.2010.5. [PMID: 20200545 ] [DOI] [PubMed] [Google Scholar]
  • 30.Hase M, et al. J Biol Chem. 2008;283:12747–12755. doi: 10.1074/jbc.M709487200. [PMID: 18347022 ] [DOI] [PubMed] [Google Scholar]
  • 31.Hay DL, et al. Endocr Relat Cancer. 2011;18:C1–C14. doi: 10.1677/ERC-10-0244. [PMID: 21051558 ] [DOI] [PubMed] [Google Scholar]
  • 32.Hisatsune C, et al. J Biol Chem. 2007;282:37225–37231. doi: 10.1074/jbc.M705641200. [PMID: 17925404 ] [DOI] [PubMed] [Google Scholar]
  • 33.Holst B, et al. Endocrinology. 2007;148:13–20. doi: 10.1210/en.2006-0933. [PMID: 16959833 ] [DOI] [PubMed] [Google Scholar]
  • 34.Ignatov A, et al. Neuropharmacology. 2004;46:1114–1120. doi: 10.1016/j.neuropharm.2004.02.004. [PMID: 15111018 ] [DOI] [PubMed] [Google Scholar]
  • 35.Ignatov A, et al. J Neurosci. 2003;23:907–914. doi: 10.1523/JNEUROSCI.23-03-00907.2003. [PMID: 12574419 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Ignatov A, et al. Biochem Biophys Res Commun. 2003;311:329–336. doi: 10.1016/j.bbrc.2003.10.006. [PMID: 14592418 ] [DOI] [PubMed] [Google Scholar]
  • 37.Ignatov A, et al. Br J Pharmacol. 2006;149:490–497. doi: 10.1038/sj.bjp.0706909. [PMID: 17001303 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Inoue A, et al. Nat Methods. 2012;9:1021–1029. doi: 10.1038/nmeth.2172. [PMID: 22983457 ] [DOI] [PubMed] [Google Scholar]
  • 39.Jin C, et al. Invest Ophthalmol Vis Sci. 2008;49:4245–4253. doi: 10.1167/iovs.08-1860. [PMID: 18487371 ] [DOI] [PubMed] [Google Scholar]
  • 40.Jones PG, et al. Biochim Biophys Acta. 2007;1770:890–901. doi: 10.1016/j.bbagen.2007.01.013. [PMID: 17363172 ] [DOI] [PubMed] [Google Scholar]
  • 41.Kabarowski JH, et al. Science. 2001;293:702–705. doi: 10.1126/science.1061781. [PMID: 11474113 ] [DOI] [PubMed] [Google Scholar]
  • 42.Kamohara M, et al. Biochem Biophys Res Commun. 2005;330:1146–1152. doi: 10.1016/j.bbrc.2005.03.088. [PMID: 15823563 ] [DOI] [PubMed] [Google Scholar]
  • 43.Kapas S, et al. J Biol Chem. 1995;270:25344–25347. doi: 10.1074/jbc.270.43.25344. [PMID: 7592696 ] [DOI] [PubMed] [Google Scholar]
  • 44.Kelly LM, et al. J Immunol. 2011;187:3026–3032. doi: 10.4049/jimmunol.1101262. [PMID: 21844396 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Kennedy SP, et al. Biochem Biophys Res Commun. 1998;244:832–837. doi: 10.1006/bbrc.1998.8349. [PMID: 9535752 ] [DOI] [PubMed] [Google Scholar]
  • 46.Kerkhof HJ, et al. Arthritis Rheum. 2010;62:499–510. doi: 10.1002/art.27184. [PMID: 20112360 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Kim SV, et al. Science. 2013;340:1456–1459. doi: 10.1126/science.1237013. [PMID: 23661644 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Kitamura H, et al. J Biochem. 2012;151:511–518. doi: 10.1093/jb/mvs011. [PMID: 22343749 ] [DOI] [PubMed] [Google Scholar]
  • 49.Kojima D, et al. PLoS ONE. 2011;6:e26388. doi: 10.1371/journal.pone.0026388. [PMID: 22043319 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Kottyan LC, et al. Blood. 2009;114:2774–2782. doi: 10.1182/blood-2009-05-220681. [PMID: 19641187 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Krishnamoorthy S, et al. Proc Natl Acad Sci USA. 2010;107:1660–1665. doi: 10.1073/pnas.0907342107. [PMID: 20080636 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Ku GM, et al. PLoS Genet. 2012;8:e1002449. doi: 10.1371/journal.pgen.1002449. [PMID: 22253604 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Kuc D, et al. Amino Acids. 2008;35:503–505. doi: 10.1007/s00726-007-0631-z. [PMID: 18235993 ] [DOI] [PubMed] [Google Scholar]
  • 54.Lautner RQ, et al. Circ Res. 2013;112:1104–1111. doi: 10.1161/CIRCRESAHA.113.301077. [PMID: 23446738 ] [DOI] [PubMed] [Google Scholar]
  • 55.Ledent C, et al. Proc Natl Acad Sci U S A. 2005;102:8922–8926. doi: 10.1073/pnas.0503840102. [PMID: 15956199 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Lembo PM, et al. Nat Neurosci. 2002;5:201–209. doi: 10.1038/nn815. [PMID: 11850634 ] [DOI] [PubMed] [Google Scholar]
  • 57.Levoye A, et al. EMBO J. 2006;25:3012–3023. doi: 10.1038/sj.emboj.7601193. [PMID: 16778767 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Li X, et al. Prostaglandins Other Lipid Mediat. 2002;67:173–180. doi: 10.1016/s0090-6980(01)00186-1. [PMID: 12013525 ] [DOI] [PubMed] [Google Scholar]
  • 59.Liebscher I, et al. J Biol Chem. 2011;286:2101–2110. doi: 10.1074/jbc.M110.196659. [PMID: 21097509 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Liu C, et al. Nature. 2011;475:519–523. doi: 10.1038/nature10226. [PMID: 21796211 ] [DOI] [PubMed] [Google Scholar]
  • 61.Liu Q, et al. Cell. 2009;139:1353–1365. doi: 10.1016/j.cell.2009.11.034. [PMID: 20004959 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Lobo MK, et al. Nat Neurosci. 2007;10:1395–1397. doi: 10.1038/nn1987. [PMID: 17934457 ] [DOI] [PubMed] [Google Scholar]
  • 63.Logue SF, et al. Mol Cell Neurosci. 2009;42:438–447. doi: 10.1016/j.mcn.2009.09.007. [PMID: 19796684 ] [DOI] [PubMed] [Google Scholar]
  • 64.Luo J, et al. Development. 2009;136:2747–2756. doi: 10.1242/dev.033571. [PMID: 19605502 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Maekawa A, et al. Proc Natl Acad Sci USA. 2009;106:11685–11690. doi: 10.1073/pnas.0905364106. [PMID: 19561298 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Marazziti D, et al. Autophagy. 2009;5:741–742. doi: 10.4161/auto.5.5.8700. [PMID: 19398891 ] [DOI] [PubMed] [Google Scholar]
  • 67.Marazziti D, et al. FASEB J. 2011;25:2071–2081. doi: 10.1096/fj.10-175737. [PMID: 21372109 ] [DOI] [PubMed] [Google Scholar]
  • 68.Marazziti D, et al. Proc Natl Acad Sci USA. 2007;104:9846–9851. doi: 10.1073/pnas.0703368104. [PMID: 17519329 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Murakami M, et al. Biochem Biophys Res Commun. 2008;371:707–712. doi: 10.1016/j.bbrc.2008.04.145. [PMID: 18466763 ] [DOI] [PubMed] [Google Scholar]
  • 70.Nambu H, et al. Life Sci. 2011;89:765–772. doi: 10.1016/j.lfs.2011.09.002. [PMID: 21971119 ] [DOI] [PubMed] [Google Scholar]
  • 71.Nelson G, et al. Cell. 2001;106:381–390. doi: 10.1016/s0092-8674(01)00451-2. [PMID: 11509186 ] [DOI] [PubMed] [Google Scholar]
  • 72.Niedernberg A, et al. Cell Signal. 2003;15:435–446. doi: 10.1016/s0898-6568(02)00119-5. [PMID: 12618218 ] [DOI] [PubMed] [Google Scholar]
  • 73.Oka S, et al. Biochem Biophys Res Commun. 2010;395:232–237. doi: 10.1016/j.bbrc.2010.03.169. [PMID: 20361937 ] [DOI] [PubMed] [Google Scholar]
  • 74.Osborn O, et al. J Clin Invest. 2012;122:2444–2453. doi: 10.1172/JCI61953. [PMID: 22653059 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Padmanabhan S, et al. FEBS Lett. 2009;583:107–112. doi: 10.1016/j.febslet.2008.11.033. [PMID: 19059244 ] [DOI] [PubMed] [Google Scholar]
  • 76.Pereira JP, et al. Nature. 2009;460:1122–1126. doi: 10.1038/nature08226. [PMID: 19597478 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Petersen PS, et al. FASEB J. 2011. [Epub ahead of print]. [PMID: 21784784 ] [DOI] [PubMed] [Google Scholar]
  • 78.Rezgaoui M, et al. J Cell Sci. 2006;119:542–549. doi: 10.1242/jcs.02766. [PMID: 16443751 ] [DOI] [PubMed] [Google Scholar]
  • 79.Robas N, et al. J Biol Chem. 2003;278:44400–44404. doi: 10.1074/jbc.M302456200. [PMID: 12915402 ] [DOI] [PubMed] [Google Scholar]
  • 80.Ruffner H, et al. PLoS ONE. 2012;7:e40976. doi: 10.1371/journal.pone.0040976. [PMID: 22815884 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Ruiz-Medina J, et al. Neuropharmacology. 2011;61:43–50. doi: 10.1016/j.neuropharm.2011.02.014. [PMID: 21352831 ] [DOI] [PubMed] [Google Scholar]
  • 82.Russell JL, et al. ACS Chem Biol. 2012;7:1077–1083. doi: 10.1021/cb300001m. [PMID: 22462679 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Römpler H, et al. J Biol Chem. 2005;280:31068–31075. doi: 10.1074/jbc.M503586200. [PMID: 15987686 ] [DOI] [PubMed] [Google Scholar]
  • 84.Santos RA, et al. Proc Natl Acad Sci USA. 2003;100:8258–8263. doi: 10.1073/pnas.1432869100. [PMID: 12829792 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Seuwen K, et al. J Recept Signal Transduct Res. 2006;26:599–610. doi: 10.1080/10799890600932220. [PMID: 17118800 ] [DOI] [PubMed] [Google Scholar]
  • 86.Shimizu N, et al. J Virol. 1999;73:5231–5239. doi: 10.1128/jvi.73.6.5231-5239.1999. [PMID: 10233994 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Shinohara T, et al. J Biol Chem. 2004;279:23559–23564. doi: 10.1074/jbc.M314240200. [PMID: 15037633 ] [DOI] [PubMed] [Google Scholar]
  • 88.Sikand P, et al. J Neurosci. 2011;31:7563–7567. doi: 10.1523/JNEUROSCI.1192-11.2011. [PMID: 21593341 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Song H, et al. J Biol Chem. 2008;283:36687–36697. doi: 10.1074/jbc.M800721200. [PMID: 18955481 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Southern C, et al. J Biomol Screen. 2013;18:599–609. doi: 10.1177/1087057113475480. [PMID: 23396314 ] [DOI] [PubMed] [Google Scholar]
  • 91.Sugo T, et al. Biochem Biophys Res Commun. 2006;341:1078–1087. doi: 10.1016/j.bbrc.2006.01.069. [PMID: 16460680 ] [DOI] [PubMed] [Google Scholar]
  • 92.Suzuki M, et al. J Biol Chem. 2013;288:10684–10691. doi: 10.1074/jbc.M112.420042. [PMID: 23449982 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Tabata K, et al. Biochem Biophys Res Commun. 2007;363:861–866. doi: 10.1016/j.bbrc.2007.09.063. [PMID: 17905198 ] [DOI] [PubMed] [Google Scholar]
  • 94.Takeda S, et al. J Biochem. 2004;135:597–604. doi: 10.1093/jb/mvh073. [PMID: 15173198 ] [DOI] [PubMed] [Google Scholar]
  • 95.Taniguchi Y, et al. FEBS Lett. 2006;580:5003–5008. doi: 10.1016/j.febslet.2006.08.015. [PMID: 16934253 ] [DOI] [PubMed] [Google Scholar]
  • 96.Thathiah A, et al. Science. 2009;323:946–951. doi: 10.1126/science.1160649. [PMID: 19213921 ] [DOI] [PubMed] [Google Scholar]
  • 97.Uhlenbrock K, et al. Cell Signal. 2002;14:941–953. doi: 10.1016/s0898-6568(02)00041-4. [PMID: 12220620 ] [DOI] [PubMed] [Google Scholar]
  • 98.Valdes AM, Spector TD. Curr Opin Rheumatol. 2010;22:139–143. doi: 10.1097/BOR.0b013e3283367a6e. [PMID: 20090528 ] [DOI] [PubMed] [Google Scholar]
  • 99.Wang J, et al. J Biol Chem. 2006;281:22021–22028. doi: 10.1074/jbc.M603503200. [PMID: 16754668 ] [DOI] [PubMed] [Google Scholar]
  • 100.Wang J, et al. J Biol Chem. 2006;281:34457–34464. doi: 10.1074/jbc.M608019200. [PMID: 16966319 ] [DOI] [PubMed] [Google Scholar]
  • 101.Weng J, et al. Proc Natl Acad Sci USA. 2008;105:6081–6086. doi: 10.1073/pnas.0708257105. [PMID: 18424556 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Witte ON, et al. Science. 2005;307:206. doi: 10.1126/science.307.5707.206b. [PMID: 15653487 ] [DOI] [PubMed] [Google Scholar]
  • 103.Xu Y, et al. Nat Cell Biol. 2000;2:261–267. doi: 10.1038/35010529. [PMID: 10806476 ] [DOI] [PubMed] [Google Scholar]
  • 104.Xu Y, et al. Retraction of: Xu Y, Zhu K, Hong G, Wu W, Baudhuin LM, Xiao Y, Damron DS. (2000) Nat Cell Biol. 2(5):261–267. Nat Cell Biol. 2006;8:299. doi: 10.1038/35010529. –. [PMID: 16508674 ] [DOI] [PubMed] [Google Scholar]
  • 105.Yasuda H, et al. Biochem Biophys Res Commun. 2007;354:154–159. doi: 10.1016/j.bbrc.2006.12.168. [PMID: 17214962 ] [DOI] [PubMed] [Google Scholar]
  • 106.Yin H, et al. J Biol Chem. 2009;284:12328–12338. doi: 10.1074/jbc.M806516200. [PMID: 19286662 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Yosten GL, et al. J Endocrinol. 2013. [Epub ahead of print]. [PMID: 23759446 ] [DOI] [PubMed] [Google Scholar]
  • 108.Zhang LL, et al. Neuroscience. 2011;196:203–214. doi: 10.1016/j.neuroscience.2011.08.069. [PMID: 21924326 ] [DOI] [PubMed] [Google Scholar]
  • 109.Zhang Y, et al. Cell. 2003;112:293–301. doi: 10.1016/s0092-8674(03)00071-0. [PMID: 12581520 ] [DOI] [PubMed] [Google Scholar]
  • 110.Zhao P, et al. Mol Pharmacol. 2010;78:560–568. doi: 10.1124/mol.110.066746. [PMID: 20826425 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Zhu K, et al. J Biol Chem. 2001;276:41325–41335. doi: 10.1074/jbc.M008057200. [PMID: 11535583 ] [DOI] [PubMed] [Google Scholar]
  • 112.J Biol Chem. 2005;280:43280–PMID. 16498716 ] [PubMed] [Google Scholar]
  • 113.Yang LV, et al. Mol Cell Biol. 2007;27:1334–1347. doi: 10.1128/MCB.01909-06. [PMID: 17145776 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Adham N, et al. Neuropharmacology. 1997;36:569–576. doi: 10.1016/s0028-3908(97)00020-8. [PMID: 9225282 ] [DOI] [PubMed] [Google Scholar]
  • 115.Adham N, et al. Proc Natl Acad Sci U S A. 1993;90:408–412. doi: 10.1073/pnas.90.2.408. [PMID: 8380639 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Amlaiky N, et al. J Biol Chem. 1992;267:19761–19764. [PMID: 1328180 ] [PubMed] [Google Scholar]
  • 117.Bach T, et al. Naunyn Schmiedebergs Arch Pharmacol. 2001;363:146–160. doi: 10.1007/s002100000299. [PMID: 11218067 ] [DOI] [PubMed] [Google Scholar]
  • 118.Bard JA, et al. J Biol Chem. 1993;268:23422–23426. [PMID: 8226867 ] [PubMed] [Google Scholar]
  • 119.Beattie DT, et al. Br J Pharmacol. 2004;143:549–560. doi: 10.1038/sj.bjp.0705929. [PMID: 15466450 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Bender E, et al. J Neurochem. 2000;74:478–489. doi: 10.1046/j.1471-4159.2000.740478.x. [PMID: 10646498 ] [DOI] [PubMed] [Google Scholar]
  • 121.Berque-Bestel I, et al. J Med Chem. 2003;46:2606–2620. doi: 10.1021/jm0307887. [PMID: 12801225 ] [DOI] [PubMed] [Google Scholar]
  • 122.Blair JB, et al. J Med Chem. 2000;43:4701–4710. doi: 10.1021/jm000339w. [PMID: 11101361 ] [DOI] [PubMed] [Google Scholar]
  • 123.Blondel O, et al. J Neurochem. 1998;70:2252–2261. doi: 10.1046/j.1471-4159.1998.70062252.x. [PMID: 9603189 ] [DOI] [PubMed] [Google Scholar]
  • 124.Bockaert J, et al. Cell Tissue Res. 2006;326:553–572. doi: 10.1007/s00441-006-0286-1. [PMID: 16896947 ] [DOI] [PubMed] [Google Scholar]
  • 125.Boess FG, et al. Mol Pharmacol. 1997;52:515–523. doi: 10.1124/mol.52.3.515. [PMID: 9284367 ] [DOI] [PubMed] [Google Scholar]
  • 126.Boess FG, et al. Mol Pharmacol. 1998;54:577–583. doi: 10.1124/mol.54.3.577. [PMID: 9730917 ] [DOI] [PubMed] [Google Scholar]
  • 127.Bonhaus DW, et al. Neuropharmacology. 1997;36:671–679. doi: 10.1016/s0028-3908(97)00039-7. [PMID: 9225293 ] [DOI] [PubMed] [Google Scholar]
  • 128.Bonhaus DW, et al. Br J Pharmacol. 1999;127:1075–1082. doi: 10.1038/sj.bjp.0702632. [PMID: 10455251 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Bonhaus DW, et al. Neuropharmacology. 1977;36:621–629. doi: 10.1016/s0028-3908(97)00049-x. [PMID: 9225287 ] [DOI] [PubMed] [Google Scholar]
  • 130.Boulenguez P, et al. J Neurochem. 1992;58:951–959. doi: 10.1111/j.1471-4159.1992.tb09348.x. [PMID: 1738002 ] [DOI] [PubMed] [Google Scholar]
  • 131.Branchek T, et al. Mol Pharmacol. 1990;38:604–609. [PMID: 2233697 ] [PubMed] [Google Scholar]
  • 132.Brenchat A, et al. Pain. 2009;141:239–247. doi: 10.1016/j.pain.2008.11.009. [PMID: 19118950 ] [DOI] [PubMed] [Google Scholar]
  • 133.Bromidge SM, et al. J Med Chem. 1999;42:202–205. doi: 10.1021/jm980532e. [PMID: 9925723 ] [DOI] [PubMed] [Google Scholar]
  • 134.Bromidge SM, et al. Bioorg Med Chem Lett. 2001;11:55–58. doi: 10.1016/s0960-894x(00)00597-7. [PMID: 11140733 ] [DOI] [PubMed] [Google Scholar]
  • 135.Brown AM, et al. Br J Pharmacol. 1993;110:10. [Google Scholar]
  • 136.Brown AM, et al. British Book of Pharmacology. 1998;123:233. [Google Scholar]
  • 137.Bryant HU, et al. Life Sci. 1996;59:1259–1268. doi: 10.1016/0024-3205(96)00449-3. [PMID: 8845011 ] [DOI] [PubMed] [Google Scholar]
  • 138.Claeysen S, et al. Neuroreport. 1997;8:3189–3196. doi: 10.1097/00001756-199710200-00002. [PMID: 9351641 ] [DOI] [PubMed] [Google Scholar]
  • 139.Corbett DF, et al. Bioorg Med Chem Lett. 2005;15:4014–4018. doi: 10.1016/j.bmcl.2005.06.024. [PMID: 16002289 ] [DOI] [PubMed] [Google Scholar]
  • 140.De Vry J, et al. J Pharmacol Exp Ther. 1998;284:1082–1094. [PMID: 9495870 ] [PubMed] [Google Scholar]
  • 141.Dunlop J, et al. J Pharmacol Exp Ther. 2005;313:862–869. doi: 10.1124/jpet.104.075382. [PMID: 15705738 ] [DOI] [PubMed] [Google Scholar]
  • 142.Egan C, et al. Synapse. 2000;35:144–150. doi: 10.1002/(SICI)1098-2396(200002)35:2<144::AID-SYN7>3.0.CO;2-K. [PMID: 10611640 ] [DOI] [PubMed] [Google Scholar]
  • 143.Ennis MD, et al. J Med Chem. 1998;41:2180–2183. doi: 10.1021/jm980137o. [PMID: 9632349 ] [DOI] [PubMed] [Google Scholar]
  • 144.Fitzgerald LW, et al. J Neurochem. 1999;72:2127–2134. doi: 10.1046/j.1471-4159.1999.0722127.x. [PMID: 10217294 ] [DOI] [PubMed] [Google Scholar]
  • 145.Forbes IT, et al. Bioorg Med Chem Lett. 2002;12:3341–3344. doi: 10.1016/s0960-894x(02)00690-x. [PMID: 12392747 ] [DOI] [PubMed] [Google Scholar]
  • 146.Gaster LM, et al. J Med Chem. 1998;41:1218–1235. doi: 10.1021/jm970457s. [PMID: 9548813 ] [DOI] [PubMed] [Google Scholar]
  • 147.Gershon MD. Aliment Pharmacol Ther. 1999;13:15–30. Suppl 2:. [PMID: 10429737 ] [PubMed] [Google Scholar]
  • 148.Grailhe R, et al. Eur J Pharmacol. 2001;418:157–167. doi: 10.1016/s0014-2999(01)00933-5. [PMID: 11343685 ] [DOI] [PubMed] [Google Scholar]
  • 149.Granas C, Larhammar D. Eur J Pharmacol. 1999;380:171–181. doi: 10.1016/s0014-2999(99)00520-8. [PMID: 10513577 ] [DOI] [PubMed] [Google Scholar]
  • 150.Hamblin MW, Metcalf MA. Mol Pharmacol. 1991;40:143–148. [PMID: 1652050 ] [PubMed] [Google Scholar]
  • 151.Hameg A, et al. Biochem Pharmacol. 2003;65:435–440. doi: 10.1016/s0006-2952(02)01515-0. [PMID: 12527336 ] [DOI] [PubMed] [Google Scholar]
  • 152.Harada K, et al. Eur J Pharmacol. 2006;553:171–184. doi: 10.1016/j.ejphar.2006.09.042. [PMID: 17074317 ] [DOI] [PubMed] [Google Scholar]
  • 153.Hartig PR, et al. Trends Pharmacol Sci. 1996;17:103–105. doi: 10.1016/0165-6147(96)30002-3. [PMID: 8936345 ] [DOI] [PubMed] [Google Scholar]
  • 154.Hegde SS, Eglen RM. FASEB J. 1996;10:1398–1407. doi: 10.1096/fasebj.10.12.8903510. [PMID: 8903510 ] [DOI] [PubMed] [Google Scholar]
  • 155.Heusler P, et al. Naunyn Schmiedebergs Arch Pharmacol. 2010;382:321–330. doi: 10.1007/s00210-010-0551-4. [PMID: 20799027 ] [DOI] [PubMed] [Google Scholar]
  • 156.Hirst WD, et al. Eur J Pharmacol. 2006;553:109–119. doi: 10.1016/j.ejphar.2006.09.049. [PMID: 17069795 ] [DOI] [PubMed] [Google Scholar]
  • 157.Holenz J, et al. J Med Chem. 2005;48:1781–1795. doi: 10.1021/jm049615n. [PMID: 15771424 ] [DOI] [PubMed] [Google Scholar]
  • 158.Hoyer D, et al. Pharmacol Rev. 1994;46:157–203. [PMID: 7938165 ] [PubMed] [Google Scholar]
  • 159.Hoyer D, et al. Pharmacol Biochem Behav. 2002;71:533–554. doi: 10.1016/s0091-3057(01)00746-8. [PMID: 11888546 ] [DOI] [PubMed] [Google Scholar]
  • 160.Jerning E, et al. Eur J Pharmacol. 1998;360:219–225. doi: 10.1016/s0014-2999(98)00667-0. [PMID: 9851589 ] [DOI] [PubMed] [Google Scholar]
  • 161.Johansson L, et al. J Pharmacol Exp Ther. 1997;283:216–225. [PMID: 9336327 ] [PubMed] [Google Scholar]
  • 162.Kalipatnapu S, et al. Biosci Rep. 2004;24:101–115. doi: 10.1007/s10540-004-7191-1. [PMID: 15628665 ] [DOI] [PubMed] [Google Scholar]
  • 163.Kennett GA, et al. Neuropharmacology. 1997;36:609–620. doi: 10.1016/s0028-3908(97)00038-5. [PMID: 9225286 ] [DOI] [PubMed] [Google Scholar]
  • 164.Khawaja X, et al. Life Sci. 1997;60:653–665. doi: 10.1016/s0024-3205(96)00701-1. [PMID: 9048968 ] [DOI] [PubMed] [Google Scholar]
  • 165.Kimura Y, et al. Eur J Pharmacol. 2004;483:37–43. doi: 10.1016/j.ejphar.2003.10.004. [PMID: 14709324 ] [DOI] [PubMed] [Google Scholar]
  • 166.Knight AR, et al. Naunyn Schmiedebergs Arch Pharmacol. 2004;370:114–123. doi: 10.1007/s00210-004-0951-4. [PMID: 15322733 ] [DOI] [PubMed] [Google Scholar]
  • 167.Koe BK, et al. Drug Development Research. 1992;26:241–250. [Google Scholar]
  • 168.Kovacs A, et al. Cardiovasc Drugs Ther. 2003;17:427–434. doi: 10.1023/b:card.0000015857.96371.43. [PMID: 15107597 ] [DOI] [PubMed] [Google Scholar]
  • 169.Kursar JD, et al. Mol Pharmacol. 1994;46:227–234. [PMID: 8078486 ] [PubMed] [Google Scholar]
  • 170.Lejeune F, et al. J Pharmacol Exp Ther. 1997;280:1241–1249. [PMID: 9067310 ] [PubMed] [Google Scholar]
  • 171.Lesage AS, et al. Br J Pharmacol. 1998;123:1655–1665. doi: 10.1038/sj.bjp.0701766. [PMID: 9605573 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Leysen JE, et al. Mol Pharmacol. 1996;50:1567–1580. [PMID: 8967979 ] [PubMed] [Google Scholar]
  • 173.Lopez-Gimenez JF, et al. Mol Pharmacol. 2001;60:690–699. [PMID: 11562430 ] [PubMed] [Google Scholar]
  • 174.Madsen K, et al. Nucl Med Biol. 2011;38:1085–1091. doi: 10.1016/j.nucmedbio.2011.04.006. [PMID: 21831646 ] [DOI] [PubMed] [Google Scholar]
  • 175.Maier DL, et al. J Pharmacol Exp Ther. 2009;330:342–351. doi: 10.1124/jpet.109.150722. [PMID: 19401496 ] [DOI] [PubMed] [Google Scholar]
  • 176.Malgouris C, et al. Eur J Pharmacol. 1993;233:37–45. doi: 10.1016/0014-2999(93)90346-j. [PMID: 8472747 ] [DOI] [PubMed] [Google Scholar]
  • 177.McAllister G, et al. Proc Natl Acad Sci U S A. 1992;89:5517–5521. doi: 10.1073/pnas.89.12.5517. [PMID: 1608964 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.McCall RB, et al. J Pharmacol Exp Ther. 1994;271:875–883. [PMID: 7965808 ] [PubMed] [Google Scholar]
  • 179.Mialet J, et al. Br J Pharmacol. 2000;129:771–781. doi: 10.1038/sj.bjp.0703101. [PMID: 10683202 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Mialet J, et al. Br J Pharmacol. 2000;131:827–835. doi: 10.1038/sj.bjp.0703641. [PMID: 11030734 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Mialet J, et al. Br J Pharmacol. 2000;130:527–538. doi: 10.1038/sj.bjp.0703356. [PMID: 10821780 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Middlemiss DN, et al. Eur J Pharmacol. 1999;375:359–365. doi: 10.1016/s0014-2999(99)00262-9. [PMID: 10443589 ] [DOI] [PubMed] [Google Scholar]
  • 183.Millan MJ, et al. Synapse. 2000;35:79–95. doi: 10.1002/(SICI)1098-2396(200002)35:2<79::AID-SYN1>3.0.CO;2-X. [PMID: 10611634 ] [DOI] [PubMed] [Google Scholar]
  • 184.Napier C, et al. Eur J Pharmacol. 1999;368:259–268. doi: 10.1016/s0014-2999(99)00026-6. [PMID: 10193663 ] [DOI] [PubMed] [Google Scholar]
  • 185.Nelson DL, et al. Naunyn Schmiedebergs Arch Pharmacol. 1999;359:1–6. doi: 10.1007/pl00005315. [PMID: 9933142 ] [DOI] [PubMed] [Google Scholar]
  • 186.Nelson DL, et al. Cephalalgia. 2010;30:1159–1169. doi: 10.1177/0333102410370873. [PMID: 20855361 ] [DOI] [PubMed] [Google Scholar]
  • 187.Newman-Tancredi A, et al. Mol Pharmacol. 2000;58:1042–1049. doi: 10.1124/mol.58.5.1042. [PMID: 11040052 ] [DOI] [PubMed] [Google Scholar]
  • 188.Newman-Tancredi A, et al. Naunyn Schmiedebergs Arch Pharmacol. 1999;359:447–453. doi: 10.1007/pl00005374. [PMID: 10431754 ] [DOI] [PubMed] [Google Scholar]
  • 189.Newman-Tancredi A, et al. Eur J Pharmacol. 1998;355:245–256. doi: 10.1016/s0014-2999(98)00483-x. [PMID: 9760039 ] [DOI] [PubMed] [Google Scholar]
  • 190.Newman-Tancredi A, et al. Br J Pharmacol. 2009;156:338–353. doi: 10.1111/j.1476-5381.2008.00001.x. [PMID: 19154445 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Newman-Tancredi A, et al. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:205–217. doi: 10.1007/pl00005159. [PMID: 9550290 ] [DOI] [PubMed] [Google Scholar]
  • 192.Newman-Tancredi A, et al. Biochem J. 1992;285:933–938. doi: 10.1042/bj2850933. [PMID: 1386736 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Noda M, et al. J Neurochem. 2003;84:222–232. doi: 10.1046/j.1471-4159.2003.01518.x. [PMID: 12558985 ] [DOI] [PubMed] [Google Scholar]
  • 194.Parker EM, et al. J Neurochem. 1996;67:2096–2103. doi: 10.1046/j.1471-4159.1996.67052096.x. [PMID: 8863519 ] [DOI] [PubMed] [Google Scholar]
  • 195.Phebus LA, et al. Life Sci. 1997;61:2117–2212. doi: 10.1016/s0024-3205(97)00885-0. [PMID: 9395253 ] [DOI] [PubMed] [Google Scholar]
  • 196.Price GW, et al. Naunyn Schmiedebergs Arch Pharmacol. 1997;356:312–320. doi: 10.1007/pl00005056. [PMID: 9303567 ] [DOI] [PubMed] [Google Scholar]
  • 197.Ramage AG, Villalón CM. Trends Pharmacol Sci. 2008;29:472–481. doi: 10.1016/j.tips.2008.06.009. [PMID: 19086344 ] [DOI] [PubMed] [Google Scholar]
  • 198.Rashid M, et al. Life Sci. 2003;73:193–207. doi: 10.1016/s0024-3205(03)00227-3. [PMID: 12738034 ] [DOI] [PubMed] [Google Scholar]
  • 199.Reavill C, et al. Br J Pharmacol. 1999;126:572–574. doi: 10.1038/sj.bjp.0702350. [PMID: 10188965 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Rivail L, et al. Br J Pharmacol. 2004;143:361–370. doi: 10.1038/sj.bjp.0705950. [PMID: 15351779 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Schaerlinger B, et al. Br J Pharmacol. 2003;140:277–284. doi: 10.1038/sj.bjp.0705437. [PMID: 12970106 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Schechter LE, et al. Neuropsychopharmacology. 2008;33:1323–1335. doi: 10.1038/sj.npp.1301503. [PMID: 17625499 ] [DOI] [PubMed] [Google Scholar]
  • 203.Selkirk JV, et al. Br J Pharmacol. 1998;125:202–208. doi: 10.1038/sj.bjp.0702059. [PMID: 9776361 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Sleight AJ, et al. Br J Pharmacol. 1998;124:556–562. doi: 10.1038/sj.bjp.0701851. [PMID: 9647481 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.Sleight AJ, et al. Biochem Pharmacol. 1996;51:71–76. doi: 10.1016/0006-2952(95)02122-1. [PMID: 8534270 ] [DOI] [PubMed] [Google Scholar]
  • 206.Stam NJ, et al. FEBS Lett. 1997;413:489–494. doi: 10.1016/s0014-5793(97)00964-2. [PMID: 9303561 ] [DOI] [PubMed] [Google Scholar]
  • 207.Thomas DR, et al. Br J Pharmacol. 2000;130:409–417. doi: 10.1038/sj.bjp.0703318. [PMID: 10807680 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Thomas DR, et al. Br J Pharmacol. 1998;124:1300–1306. doi: 10.1038/sj.bjp.0701946. [PMID: 9720804 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Thomsen WJ, et al. J Pharmacol Exp Ther. 2008;325:577–587. doi: 10.1124/jpet.107.133348. [PMID: 18252809 ] [DOI] [PubMed] [Google Scholar]
  • 210.Van den Wyngaert I, et al. J Neurochem. 1997;69:1810–1819. doi: 10.1046/j.1471-4159.1997.69051810.x. [PMID: 9349523 ] [DOI] [PubMed] [Google Scholar]
  • 211.Villalón CM, Centurión D. Naunyn Schmiedebergs Arch Pharmacol. 2007;376:45–63. doi: 10.1007/s00210-007-0179-1. [PMID: 17703282 ] [DOI] [PubMed] [Google Scholar]
  • 212.Wainscott DB, et al. Mol Pharmacol. 1993;43:419–426. [PMID: 8450835 ] [PubMed] [Google Scholar]
  • 213.Wainscott DB, et al. Naunyn Schmiedebergs Arch Pharmacol. 2005;371:169–177. doi: 10.1007/s00210-005-1035-9. [PMID: 15900510 ] [DOI] [PubMed] [Google Scholar]
  • 214.Ward SE, et al. J Med Chem. 2005;48:3478–3480. doi: 10.1021/jm049039v. [PMID: 15887956 ] [DOI] [PubMed] [Google Scholar]
  • 215.Weinshank RL, et al. Proc Natl Acad Sci USA. 1992;89:3630–3634. doi: 10.1073/pnas.89.8.3630. [PMID: 1565658 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Werry TD, et al. Pharmacol Ther. 2008;119:7–23. doi: 10.1016/j.pharmthera.2008.03.012. [PMID: 18554725 ] [DOI] [PubMed] [Google Scholar]
  • 217.Wurch T, et al. Mol Pharmacol. 1998;54:1088–1096. doi: 10.1124/mol.54.6.1088. [PMID: 9855638 ] [DOI] [PubMed] [Google Scholar]
  • 218.Xie Z, et al. FEBS Lett. 1999;456:63–67. doi: 10.1016/s0014-5793(99)00918-7. [PMID: 10452531 ] [DOI] [PubMed] [Google Scholar]
  • 219.Antony J, et al. FASEB J. 2009;23:442–450. doi: 10.1096/fj.08-114751. [PMID: 18842964 ] [DOI] [PubMed] [Google Scholar]
  • 220.Avlani VA, et al. Mol Pharmacol. 2010;78:94–104. doi: 10.1124/mol.110.064345. [PMID: 20413650 ] [DOI] [PubMed] [Google Scholar]
  • 221.Birdsall NJ, Lazareno S. Mini Rev Med Chem. 2005;5:523–543. doi: 10.2174/1389557054023251. [PMID: 15974931 ] [DOI] [PubMed] [Google Scholar]
  • 222.Brady AE, et al. J Pharmacol Exp Ther. 2008;327:941–953. doi: 10.1124/jpet.108.140350. [PMID: 18772318 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Bridges TM, et al. J Med Chem. 2009;52:3445–3448. doi: 10.1021/jm900286j. [PMID: 19438238 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Caulfield MP, Birdsall NJM. Pharmacol Rev. 1998;50:279–290. [PMID: 9647869 ] [PubMed] [Google Scholar]
  • 225.Cembala TM, et al. Br J Pharmacol. 1998;125:1088–1094. doi: 10.1038/sj.bjp.0702166. [PMID: 9846649 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Chan WY, et al. Proc Natl Acad Sci USA. 2008;105:10978–10983. doi: 10.1073/pnas.0800567105. [PMID: 18678919 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Cheng K, et al. J Pharmacol Exp Ther. 2002;303:29–35. doi: 10.1124/jpet.102.036376. [PMID: 12235229 ] [DOI] [PubMed] [Google Scholar]
  • 228.Christopoulos A, et al. Mol Pharmacol. 1998;53:1120–1130. [PMID: 9614217 ] [PubMed] [Google Scholar]
  • 229.Christopoulos A, Wilson K. Brain Res. 2001;915:70–78. doi: 10.1016/s0006-8993(01)02825-6. [PMID: 11578621 ] [DOI] [PubMed] [Google Scholar]
  • 230.Hirose H, et al. J Pharmacol Exp Ther. 2001;297:790–797. [PMID: 11303071 ] [PubMed] [Google Scholar]
  • 231.Huang F, et al. AAPS PharmSci. 2001;3:E30–E30. doi: 10.1208/ps030430. [PMID: 12049493 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Jakubik J, et al. Mol Pharmacol. 1997;52:172–179. doi: 10.1124/mol.52.1.172. [PMID: 9224827 ] [DOI] [PubMed] [Google Scholar]
  • 233.Jakubik J, et al. Mol Pharmacol. 2006;70:656–666. doi: 10.1124/mol.106.023762. [PMID: 16675658 ] [DOI] [PubMed] [Google Scholar]
  • 234.Jolkkonen M, et al. FEBS Lett. 1994;352:91–94. doi: 10.1016/0014-5793(94)00933-3. [PMID: 7925952 ] [DOI] [PubMed] [Google Scholar]
  • 235.Jones CK, et al. J Neurosci. 2008;28:10422–10433. doi: 10.1523/JNEUROSCI.1850-08.2008. [PMID: 18842902 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 236.Khattar SK, et al. Biotechnol Lett. 2006;28:121–129. doi: 10.1007/s10529-005-5130-2. [PMID: 16369696 ] [DOI] [PubMed] [Google Scholar]
  • 237.Langmead CJ, et al. Br J Pharmacol. 2008;154:1104–1115. doi: 10.1038/bjp.2008.152. [PMID: 18454168 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 238.Langmead CJ, et al. Mol Pharmacol. 2006;69:236–246. doi: 10.1124/mol.105.017814. [PMID: 16207821 ] [DOI] [PubMed] [Google Scholar]
  • 239.Lazareno S, Birdsall NJM. Mol Pharmacol. 1995;48:362–378. [PMID: 7651370 ] [PubMed] [Google Scholar]
  • 240.Lazareno S, et al. Mol Pharmacol. 2000;58:194–207. doi: 10.1124/mol.58.1.194. [PMID: 10860942 ] [DOI] [PubMed] [Google Scholar]
  • 241.Lazareno S, et al. Mol Pharmacol. 2002;62:1492–1505. doi: 10.1124/mol.62.6.1492. [PMID: 12435818 ] [DOI] [PubMed] [Google Scholar]
  • 242.Leach K, et al. Mol Pharmacol. 2011;79:855–865. doi: 10.1124/mol.111.070938. [PMID: 21300722 ] [DOI] [PubMed] [Google Scholar]
  • 243.Leach K, et al. Neuropsychopharmacology. 2010;35:855–869. doi: 10.1038/npp.2009.194. [PMID: 19940843 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 244.Ma L, et al. Proc Natl Acad Sci USA. 2009;106:15950–15955. doi: 10.1073/pnas.0900903106. [PMID: 19717450 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Marlo JE, et al. Mol Pharmacol. 2009;75:577–588. doi: 10.1124/mol.108.052886. [PMID: 19047481 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246.May LT, et al. Mol Pharmacol. 2007;72:463–476. doi: 10.1124/mol.107.037630. [PMID: 17525129 ] [DOI] [PubMed] [Google Scholar]
  • 247.Nawaratne V, et al. J Biol Chem. 2010;285:19012–19021. doi: 10.1074/jbc.M110.125096. [PMID: 20406819 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Nawaratne V, et al. Mol Pharmacol. 2008;74:1119–1131. doi: 10.1124/mol.108.049353. [PMID: 18628403 ] [DOI] [PubMed] [Google Scholar]
  • 249.Näsman J, et al. Biochem Biophys Res Commun. 2000;271:435–439. doi: 10.1006/bbrc.2000.2657. [PMID: 10799315 ] [DOI] [PubMed] [Google Scholar]
  • 250.Olianas MC, et al. J Pharmacol Exp Ther. 1999;288:164–170. [PMID: 9862767 ] [PubMed] [Google Scholar]
  • 251.Peralta EG, et al. EMBO J. 1987;6:3923–3929. doi: 10.1002/j.1460-2075.1987.tb02733.x. [PMID: 3443095 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252.Reid PR, et al. Bioorg Med Chem Lett. 2011;21:2697–2701. doi: 10.1016/j.bmcl.2010.12.015. [PMID: 21194936 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Sams AG, et al. J Med Chem. 2010;53:6386–6397. doi: 10.1021/jm100697g. [PMID: 20684563 ] [DOI] [PubMed] [Google Scholar]
  • 254.Sheffler DJ, et al. Mol Pharmacol. 2009;76:356–368. doi: 10.1124/mol.109.056531. [PMID: 19407080 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255.Smith CM, Wallis RM. J Recept Signal Transduct Res. 1997;17:177–184. doi: 10.3109/10799899709036602. [PMID: 9029489 ] [DOI] [PubMed] [Google Scholar]
  • 256.Spalding TA, et al. Mol Pharmacol. 2006;70:1974–1983. doi: 10.1124/mol.106.024901. [PMID: 16959945 ] [DOI] [PubMed] [Google Scholar]
  • 257.Spalding TA, et al. Mol Pharmacol. 2002;61:1297–1302. doi: 10.1124/mol.61.6.1297. [PMID: 12021390 ] [DOI] [PubMed] [Google Scholar]
  • 258.Steinfeld T, et al. Mol Pharmacol. 2007;72:291–302. doi: 10.1124/mol.106.033746. [PMID: 17478612 ] [DOI] [PubMed] [Google Scholar]
  • 259.Sur C, et al. Proc Natl Acad Sci U S A. 2003;100:13674–13679. doi: 10.1073/pnas.1835612100. [PMID: 14595031 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Tränkle C, et al. Mol Pharmacol. 2003;64:180–190. doi: 10.1124/mol.64.1.180. [PMID: 12815174 ] [DOI] [PubMed] [Google Scholar]
  • 261.Valant C, et al. J Biol Chem. 2008;283:29312–29321. doi: 10.1074/jbc.M803801200. [PMID: 18723515 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Wang SZ, El-Fakahany EE. J Pharmacol Exp Ther. 1993;266:237–243. [PMID: 7687290 ] [PubMed] [Google Scholar]
  • 263.Watson M, et al. Brain Res. 1984;290:179–182. doi: 10.1016/0006-8993(84)90751-0. [PMID: 6546354 ] [DOI] [PubMed] [Google Scholar]
  • 264.Abo-Salem OM, et al. J Pharmacol Exp Ther. 2004;308:358–366. doi: 10.1124/jpet.103.056036. [PMID: 14563788 ] [DOI] [PubMed] [Google Scholar]
  • 265.Alexander SP, et al. Br J Pharmacol. 1996;119:1286–1290. doi: 10.1111/j.1476-5381.1996.tb16035.x. [PMID: 8937736 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266.Alexander SP, Millns PJ. Eur J Pharmacol. 2001;411:205–210. doi: 10.1016/s0014-2999(00)00899-2. [PMID: 11164377 ] [DOI] [PubMed] [Google Scholar]
  • 267.Auchampach JA, et al. J Pharmacol Exp Ther. 2009;329:2–13. doi: 10.1124/jpet.108.148270. [PMID: 19141710 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 268.Beukers MW, et al. Mol Pharmacol. 2000;58:1349–1356. doi: 10.1124/mol.58.6.1349. [PMID: 11093773 ] [DOI] [PubMed] [Google Scholar]
  • 269.Borrmann T, et al. J Med Chem. 2009;52:3994–4006. doi: 10.1021/jm900413e. [PMID: 19569717 ] [DOI] [PubMed] [Google Scholar]
  • 270.Bosch MP, et al. J Med Chem. 2004;47:4041–4053. doi: 10.1021/jm031143+. [PMID: 15267242 ] [DOI] [PubMed] [Google Scholar]
  • 271.Brambilla R, et al. Naunyn Schmiedebergs Arch Pharmacol. 2000;361:225–234. doi: 10.1007/s002109900186. [PMID: 10731034 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 272.Briddon SJ, et al. Proc Natl Acad Sci USA. 2004;101:4673–4678. doi: 10.1073/pnas.0400420101. [PMID: 15070776 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 273.Cunha RA, et al. Naunyn Schmiedebergs Arch Pharmacol. 1996;353:261–271. doi: 10.1007/BF00168627. [PMID: 8692280 ] [DOI] [PubMed] [Google Scholar]
  • 274.Dalpiaz A, et al. Biochem Pharmacol. 1998;56:1437–1445. doi: 10.1016/s0006-2952(98)00202-0. [PMID: 9827575 ] [DOI] [PubMed] [Google Scholar]
  • 275.de Ligt RA, et al. Eur J Pharmacol. 2005;510:1–8. doi: 10.1016/j.ejphar.2005.01.007. [PMID: 15740718 ] [DOI] [PubMed] [Google Scholar]
  • 276.Dionisotti S, et al. Br J Pharmacol. 1997;121:353–360. doi: 10.1038/sj.bjp.0701119. [PMID: 9179373 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 277.Eckle T, et al. Circulation. 2007;115:1581–1590. doi: 10.1161/CIRCULATIONAHA.106.669697. [PMID: 17353435 ] [DOI] [PubMed] [Google Scholar]
  • 278.Feoktistov I, et al. Biochem Pharmacol. 2001;62:1163–1173. doi: 10.1016/s0006-2952(01)00765-1. [PMID: 11705449 ] [DOI] [PubMed] [Google Scholar]
  • 279.Franchetti P, et al. J Med Chem. 2009;52:2393–2406. doi: 10.1021/jm801456g. [PMID: 19317449 ] [DOI] [PubMed] [Google Scholar]
  • 280.Fredholm BB, et al. Pharmacol Rev. 2001;53:527–552. [PMID: 11734617 ] [PMC free article] [PubMed] [Google Scholar]
  • 281.Gallo-Rodriguez C, et al. J Med Chem. 1994;37:636–646. doi: 10.1021/jm00031a014. [PMID: 8126704 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 282.Gao ZG, et al. Biochem Pharmacol. 2000;60:661–668. doi: 10.1016/s0006-2952(00)00357-9. [PMID: 10927024 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 283.Gao ZG, et al. Biochem Pharmacol. 2004;68:1985–1993. doi: 10.1016/j.bcp.2004.06.011. [PMID: 15476669 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284.Hayallah AM, et al. J Med Chem. 2002;45:1500–1510. doi: 10.1021/jm011049y. [PMID: 11906291 ] [DOI] [PubMed] [Google Scholar]
  • 285.Heitman LH, et al. Br J Pharmacol. 2006;147:533–541. doi: 10.1038/sj.bjp.0706655. [PMID: 16444290 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 286.Iredale PA, et al. Br J Pharmacol. 1994;111:1252–1256. doi: 10.1111/j.1476-5381.1994.tb14880.x. [PMID: 8032613 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 287.Jaakola VP, et al. Science. 2008;322:1211–1217. doi: 10.1126/science.1164772. [PMID: 18832607 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 288.Jacobson KA, Gao ZG. Nat Rev Drug Discov. 2006;5:247–264. doi: 10.1038/nrd1983. [PMID: 16518376 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 289.Jacobson KA, et al. Neuropharmacology. 1997;36:1157–1165. doi: 10.1016/s0028-3908(97)00104-4. [PMID: 9364471 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Jacobson MA, et al. Genomics. 1995;27:374–376. doi: 10.1006/geno.1995.1061. [PMID: 7558011 ] [DOI] [PubMed] [Google Scholar]
  • 291.Jarvis MF, et al. J Pharmacol Exp Ther. 1989;251:888–893. [PMID: 2600819 ] [PubMed] [Google Scholar]
  • 292.Ji X, et al. Biochem Pharmacol. 2001;61:657–663. doi: 10.1016/s0006-2952(01)00531-7. [PMID: 11266650 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 293.Ji XD, Jacobson KA. Drug Des Discov. 1999;16:217–226. [PMID: 10624567 ] [PMC free article] [PubMed] [Google Scholar]
  • 294.Jiang JL, et al. J Med Chem. 1996;39:4667–4675. doi: 10.1021/jm960457c. [PMID: 8917655 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 295.Jockers R, et al. J Biol Chem. 1994;269:32077–32084. [PMID: 7798201 ] [PubMed] [Google Scholar]
  • 296.Johansson B, Fredholm BB. Neuropharmacology. 1995;34:393–403. doi: 10.1016/0028-3908(95)00009-u. [PMID: 7566470 ] [DOI] [PubMed] [Google Scholar]
  • 297.Kalk P, et al. Br J Pharmacol. 2007;151:1025–1032. doi: 10.1038/sj.bjp.0707319. [PMID: 17558436 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 298.Kim HO, et al. J Med Chem. 1994;37:3614–3621. doi: 10.1021/jm00047a018. [PMID: 7932588 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 299.Kim J, et al. J Biol Chem. 1995;270:13987–13997. doi: 10.1074/jbc.270.23.13987. [PMID: 7775460 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 300.Kim YC, et al. J Med Chem. 2000;43:1165–1172. doi: 10.1021/jm990421v. [PMID: 10737749 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 301.Kim YC, et al. J Med Chem. 1996;39:4142–4148. doi: 10.1021/jm960482i. [PMID: 8863790 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 302.Klotz K-N, et al. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:1–9. doi: 10.1007/pl00005131. [PMID: 9459566 ] [DOI] [PubMed] [Google Scholar]
  • 303.Kull B, et al. Biochem Pharmacol. 1999;57:65–75. doi: 10.1016/s0006-2952(98)00298-6. [PMID: 9920286 ] [DOI] [PubMed] [Google Scholar]
  • 304.Li AH, et al. J Med Chem. 1998;41:3186–3201. doi: 10.1021/jm980093j. [PMID: 9703464 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 305.Liang BT. Adenosine A3 receptors in muscle protection. In: Borea P, et al., editors; Springer, editor. Adenosine Receptors from Cell Biology to Pharmacology. 2010. 280 pp. Edited by 257 [ISBN: 9789048131440 ] [Google Scholar]
  • 306.Linden J, et al. Mol Pharmacol. 1999;56:705–713. [PMID: 10496952 ] [PubMed] [Google Scholar]
  • 307.Lorenzen A, et al. Biochem Pharmacol. 1996;52:1375–1385. doi: 10.1016/s0006-2952(96)00465-0. [PMID: 8937447 ] [DOI] [PubMed] [Google Scholar]
  • 308.Obiefuna PC, et al. J Pharmacol Exp Ther. 2005;315:329–336. doi: 10.1124/jpet.105.088179. [PMID: 16020631 ] [DOI] [PubMed] [Google Scholar]
  • 309.Ongini E, et al. Naunyn Schmiedebergs Arch Pharmacol. 1999;359:7–10. doi: 10.1007/pl00005326. [PMID: 9933143 ] [DOI] [PubMed] [Google Scholar]
  • 310.Peirce SM, et al. Am J Physiol Heart Circ Physiol. 2001;281:H67–H74. doi: 10.1152/ajpheart.2001.281.1.H67. [PMID: 11406470 ] [DOI] [PubMed] [Google Scholar]
  • 311.Rivkees SA, et al. J Biol Chem. 1999;274:3617–3621. doi: 10.1074/jbc.274.6.3617. [PMID: 9920910 ] [DOI] [PubMed] [Google Scholar]
  • 312.Salvatore CA, et al. Proc Natl Acad Sci USA. 1993;90:10365–10369. doi: 10.1073/pnas.90.21.10365. [PMID: 8234299 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 313.Shinkre BA, et al. Bioorg Med Chem Lett. 2010;20:5690–5694. doi: 10.1016/j.bmcl.2010.08.021. [PMID: 20801028 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 314.Stewart M, et al. Biochem Pharmacol. 2004;68:305–312. doi: 10.1016/j.bcp.2004.03.026. [PMID: 15194002 ] [DOI] [PubMed] [Google Scholar]
  • 315.Sullivan GW, et al. Br J Pharmacol. 2001;132:1017–1026. doi: 10.1038/sj.bjp.0703893. [PMID: 11226132 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 316.Todde S, et al. J Med Chem. 2000;43:4359–4362. doi: 10.1021/jm0009843. [PMID: 11087559 ] [DOI] [PubMed] [Google Scholar]
  • 317.Townsend-Nicholson A, Schofield PR. J Biol Chem. 1994;269:2373–2376. [PMID: 8300561 ] [PubMed] [Google Scholar]
  • 318.van Muijlwijk-Koezen JE, et al. J Med Chem. 2000;43:2227–2238. doi: 10.1021/jm000002u. [PMID: 10841801 ] [DOI] [PubMed] [Google Scholar]
  • 319.Varani K, et al. Biochem Pharmacol. 2005;70:1601–1612. doi: 10.1016/j.bcp.2005.08.018. [PMID: 16219300 ] [DOI] [PubMed] [Google Scholar]
  • 320.Varani K, et al. Mol Pharmacol. 2000;57:968–975. [PMID: 10779381 ] [PubMed] [Google Scholar]
  • 321.Wan W, et al. J Neurochem. 1990;55:1763–1771. doi: 10.1111/j.1471-4159.1990.tb04967.x. [PMID: 2213023 ] [DOI] [PubMed] [Google Scholar]
  • 322.Weyler S, et al. ChemMedChem. 2006;1:891–902. doi: 10.1002/cmdc.200600066. [PMID: 16902942 ] [DOI] [PubMed] [Google Scholar]
  • 323.Xu F, et al. Science. 2011;332:322–327. doi: 10.1126/science.1202793. [PMID: 21393508 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 324.Yan L, et al. Expert Opin Emerg Drugs. 2003;8:537–576. doi: 10.1517/14728214.8.2.537. [PMID: 14662005 ] [DOI] [PubMed] [Google Scholar]
  • 325.Yates L, et al. Auton Autacoid Pharmacol. 2006;26:191–200. doi: 10.1111/j.1474-8673.2006.00372.x. [PMID: 16553647 ] [DOI] [PubMed] [Google Scholar]
  • 326.Fredriksson R, et al. Mol Pharmacol. 2003;63:1256–1272. doi: 10.1124/mol.63.6.1256. [PMID: 12761335 ] [DOI] [PubMed] [Google Scholar]
  • 327.Jacobson SG, et al. Hum Mol Genet. 2008;17:2405–2415. doi: 10.1093/hmg/ddn140. [PMID: 18463160 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 328.Luo R, et al. Proc Natl Acad Sci USA. 2011;108:12925–12930. doi: 10.1073/pnas.1104821108. [PMID: 21768377 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 329.Park D, et al. Nature. 2007;450:430–434. doi: 10.1038/nature06329. [PMID: 17960134 ] [DOI] [PubMed] [Google Scholar]
  • 330.Xu L, et al. Proc Natl Acad Sci U S A. 2006;103:9023–9028. doi: 10.1073/pnas.0602681103. [PMID: 16757564 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 331.Yona S, et al. Trends Biochem Sci. 2008;33:491–500. doi: 10.1016/j.tibs.2008.07.005. [PMID: 18789697 ] [DOI] [PubMed] [Google Scholar]
  • 332.Baker JG. Br J Pharmacol. 2005;144:317–322. doi: 10.1038/sj.bjp.0706048. [PMID: 15655528 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 333.Baker JG. PLoS ONE. 2010;5:e15487. doi: 10.1371/journal.pone.0015487. [PMID: 21152092 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 334.Baker JG. Br J Pharmacol. 2010;160:1048–1061. doi: 10.1111/j.1476-5381.2010.00754.x. [PMID: 20590599 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 335.Baker JG, et al. Mol Pharmacol. 2003;64:679–688. doi: 10.1124/mol.64.3.679. [PMID: 12920204 ] [DOI] [PubMed] [Google Scholar]
  • 336.Baker JG, et al. Br J Pharmacol. 2003;139:232–242. doi: 10.1038/sj.bjp.0705287. [PMID: 12770928 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 337.Baker JG, et al. Mol Pharmacol. 2003;64:1357–1369. doi: 10.1124/mol.64.6.1357. [PMID: 14645666 ] [DOI] [PubMed] [Google Scholar]
  • 338.Blin N, et al. Mol Pharmacol. 1993;44:1094–1104. [PMID: 7903415 ] [PubMed] [Google Scholar]
  • 339.Blue DR, et al. BJU Int. 2004;93:162–170. doi: 10.1111/j.1464-410x.2004.04577.x. [PMID: 14678390 ] [DOI] [PubMed] [Google Scholar]
  • 340.Bylund DB, et al. Pharmacol Rev. 1994;46:121–136. [PMID: 7938162 ] [PubMed] [Google Scholar]
  • 341.Candelore MR, et al. J Pharmacol Exp Ther. 1999;290:649–655. [PMID: 10411574 ] [PubMed] [Google Scholar]
  • 342.Carroll WA, et al. Bioorganic & Medicinal Chemistry Letters. 2001;11:1119–1121. doi: 10.1016/s0960-894x(01)00159-7. [PMID: 11354357 ] [DOI] [PubMed] [Google Scholar]
  • 343.Chang DJ, et al. FEBS Lett. 1998;422:279–283. doi: 10.1016/s0014-5793(98)00024-6. [PMID: 9490024 ] [DOI] [PubMed] [Google Scholar]
  • 344.Cherezov V, et al. Science. 2007;318:1258–1265. doi: 10.1126/science.1150577. [PMID: 17962520 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 345.Cottingham C, et al. J Biol Chem. 2011;286:36063–36075. doi: 10.1074/jbc.M111.261578. [PMID: 21859713 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 346.Daniels DV, et al. Eur J Pharmacol. 1999;370:337–343. doi: 10.1016/s0014-2999(99)00154-5. [PMID: 10334511 ] [DOI] [PubMed] [Google Scholar]
  • 347.De Ponti F, et al. Br J Pharmacol. 1996;117:1374–1376. doi: 10.1111/j.1476-5381.1996.tb15294.x. [PMID: 8730727 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 348.Dolan JA, et al. J Pharmacol Exp Ther. 1994;269:1000–1006. [PMID: 7912272 ] [PubMed] [Google Scholar]
  • 349.Drake MT, et al. J Biol Chem. 2008;283:5669–5676. doi: 10.1074/jbc.M708118200. [PMID: 18086673 ] [DOI] [PubMed] [Google Scholar]
  • 350.Eason MG, Liggett SB. J Biol Chem. 1995;270:24753–24760. doi: 10.1074/jbc.270.42.24753. [PMID: 7559592 ] [DOI] [PubMed] [Google Scholar]
  • 351.Evans BA, et al. Mol Pharmacol. 2011;79:298–307. doi: 10.1124/mol.110.067454. [PMID: 20978120 ] [DOI] [PubMed] [Google Scholar]
  • 352.Evans BA, et al. Br J Pharmacol. 1999;127:1525–1531. doi: 10.1038/sj.bjp.0702688. [PMID: 10455305 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 353.Evans BA, et al. Br J Pharmacol. 2010;159:1022–1038. doi: 10.1111/j.1476-5381.2009.00602.x. [PMID: 20132209 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 354.Flacco N, et al. Br J Pharmacol. 2013;169:413–425. doi: 10.1111/bph.12121. [PMID: 23373597 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 355.Ford APDW, et al. Br J Pharmacol. 1997;121:1127–1135. doi: 10.1038/sj.bjp.0701207. [PMID: 9249248 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 356.Frielle T, et al. Proc Natl Acad Sci U S A. 1988;85:9494–9498. doi: 10.1073/pnas.85.24.9494. [PMID: 2849109 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 357.Galandrin S, Bouvier M. Mol Pharmacol. 2006;70:1575–1584. doi: 10.1124/mol.106.026716. [PMID: 16901982 ] [DOI] [PubMed] [Google Scholar]
  • 358.Galandrin S, et al. Mol Pharmacol. 2008;74:162–172. doi: 10.1124/mol.107.043893. [PMID: 18403719 ] [DOI] [PubMed] [Google Scholar]
  • 359.Hague C, et al. J Pharmacol Exp Ther. 2004;309:388–397. doi: 10.1124/jpet.103.060509. [PMID: 14718583 ] [DOI] [PubMed] [Google Scholar]
  • 360.Hieble JP. Pharmaceutica Acta Helvetiae. 2000;74:163–171. doi: 10.1016/s0031-6865(99)00030-8. [PMID: 10812954 ] [DOI] [PubMed] [Google Scholar]
  • 361.Hieble JP, et al. Pharmacol Rev. 1995;47:267–270. [PMID: 7568329 ] [PubMed] [Google Scholar]
  • 362.Hoffmann C, et al. Naunyn Schmiedebergs Arch Pharmacol. 2004;369:151–159. doi: 10.1007/s00210-003-0860-y. [PMID: 14730417 ] [DOI] [PubMed] [Google Scholar]
  • 363.Hutchinson DS, et al. Br J Pharmacol. 2002;135:1903–1914. doi: 10.1038/sj.bjp.0704654. [PMID: 11959793 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 364.Isogaya M, et al. Mol Pharmacol. 1999;56:875–885. doi: 10.1124/mol.56.5.875. [PMID: 10531390 ] [DOI] [PubMed] [Google Scholar]
  • 365.Jasper JR, et al. Biochem Pharmacol. 1998;55:1035–1043. doi: 10.1016/s0006-2952(97)00631-x. [PMID: 9605427 ] [DOI] [PubMed] [Google Scholar]
  • 366.Joseph SS, et al. Naunyn Schmiedebergs Arch Pharmacol. 2004;369:525–532. doi: 10.1007/s00210-004-0884-y. [PMID: 15060759 ] [DOI] [PubMed] [Google Scholar]
  • 367.Kaumann AJ, et al. Naunyn Schmiedebergs Arch Pharmacol. 2001;363:87–93. doi: 10.1007/s002100000336. [PMID: 11191841 ] [DOI] [PubMed] [Google Scholar]
  • 368.Kaumann AJ, Molenaar P. Br J Pharmacol. 1996;118:2085–2098. doi: 10.1111/j.1476-5381.1996.tb15648.x. [PMID: 8864547 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 369.Knepper SM, et al. J Pharmacol Exp Ther. 1995;274:97–103. [PMID: 7616455 ] [PubMed] [Google Scholar]
  • 370.Konkar AA, et al. Mol Pharmacol. 2000;57:252–258. [PMID: 10648634 ] [PubMed] [Google Scholar]
  • 371.Leonardi A, et al. J Pharmacol Exp Ther. 1997;281:1272–1283. [PMID: 9190863 ] [PubMed] [Google Scholar]
  • 372.Liu JJ, et al. Science. 2012;335:1106–1110. doi: 10.1126/science.1215802. [PMID: 22267580 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 373.Louis SN, et al. Eur J Pharmacol. 1999;367:431–435. doi: 10.1016/s0014-2999(99)00019-9. [PMID: 10079020 ] [DOI] [PubMed] [Google Scholar]
  • 374.MacLennan SJ, et al. Br J Pharmacol. 1997;121:1721–1729. doi: 10.1038/sj.bjp.0701296. [PMID: 9283709 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 375.Manara L, et al. Br J Pharmacol. 1996;117:435–442. doi: 10.1111/j.1476-5381.1996.tb15209.x. [PMID: 8821531 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 376.Mejean A, et al. Eur J Pharmacol. 1995;291:359–366. doi: 10.1016/0922-4106(95)90077-2. [PMID: 8719421 ] [DOI] [PubMed] [Google Scholar]
  • 377.Methven L, et al. Br J Pharmacol. 2009;158:209–224. doi: 10.1111/j.1476-5381.2009.00269.x. [PMID: 19572943 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 378.Methven L, et al. Br J Pharmacol. 2009;158:1663–1675. doi: 10.1111/j.1476-5381.2009.00462.x. [PMID: 19888965 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 379.Michel AD, et al. Br J Pharmacol. 1990;99:560–564. doi: 10.1111/j.1476-5381.1990.tb12968.x. [PMID: 1970500 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 380.Molenaar P, et al. Br J Pharmacol. 1997;120:165–176. doi: 10.1038/sj.bjp.0700850. [PMID: 9117106 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 381.Morishima S, et al. J Urol. 2007;177:377–381. doi: 10.1016/j.juro.2006.08.080. [PMID: 17162094 ] [DOI] [PubMed] [Google Scholar]
  • 382.Nishimune A, et al. J Pharmacol Sci. 2010;113:169–181. doi: 10.1254/jphs.10093fp. [PMID: 20508391 ] [DOI] [PubMed] [Google Scholar]
  • 383.Nishimune A, et al. Br J Pharmacol. 2012;165:1226–1234. doi: 10.1111/j.1476-5381.2011.01591.x. [PMID: 21745191 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 384.Pauwels PJ, et al. J Pharmacol Exp Ther. 2003;305:1015–1023. doi: 10.1124/jpet.102.048215. [PMID: 12649300 ] [DOI] [PubMed] [Google Scholar]
  • 385.Popp BD, et al. Eur J Pharmacol. 2004;484:323–331. doi: 10.1016/j.ejphar.2003.11.034. [PMID: 14744619 ] [DOI] [PubMed] [Google Scholar]
  • 386.Quinton L, et al. Br J Pharmacol. 2010;159:316–325. doi: 10.1111/j.1476-5381.2009.00532.x. [PMID: 20015090 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 387.Ramsay D, et al. Mol Pharmacol. 2004;66:228–239. doi: 10.1124/mol.66.2.228. [PMID: 15266013 ] [DOI] [PubMed] [Google Scholar]
  • 388.Rasmussen SG, et al. Nature. 2011;469:175–180. doi: 10.1038/nature09648. [PMID: 21228869 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 389.Rasmussen SG, et al. Nature. 2011;477:549–555. doi: 10.1038/nature10361. [PMID: 21772288 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 390.Rosenbaum DM, et al. Nature. 2011;469:236–240. doi: 10.1038/nature09665. [PMID: 21228876 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 391.Rosengren AH, et al. Science. 2010;327:217–220. doi: 10.1126/science.1176827. [PMID: 19965390 ] [DOI] [PubMed] [Google Scholar]
  • 392.Sallinen J, et al. Br J Pharmacol. 2007;150:391–402. doi: 10.1038/sj.bjp.0707005. [PMID: 17220913 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 393.Sato M, et al. Mol Pharmacol. 2007;72:1359–1368. doi: 10.1124/mol.107.035337. [PMID: 17717109 ] [DOI] [PubMed] [Google Scholar]
  • 394.Sato M, et al. Mol Pharmacol. 2008;74:1417–1428. doi: 10.1124/mol.108.046979. [PMID: 18684840 ] [DOI] [PubMed] [Google Scholar]
  • 395.Sato Y, et al. Eur J Pharmacol. 1996;315:363–367. doi: 10.1016/s0014-2999(96)00648-6. [PMID: 8982677 ] [DOI] [PubMed] [Google Scholar]
  • 396.Sharpe IA, et al. J Biol Chem. 2003;278:34451–34457. doi: 10.1074/jbc.M305410200. [PMID: 12824165 ] [DOI] [PubMed] [Google Scholar]
  • 397.Shibata K, et al. Mol Pharmacol. 1995;48:250–258. [PMID: 7651358 ] [PubMed] [Google Scholar]
  • 398.Small KM, et al. Biochemistry. 2006;45:4760–4767. doi: 10.1021/bi052074z. [PMID: 16605244 ] [DOI] [PubMed] [Google Scholar]
  • 399.Strosberg AD. Annu Rev Pharmacol Toxicol. 1997;37:421–450. doi: 10.1146/annurev.pharmtox.37.1.421. [PMID: 9131260 ] [DOI] [PubMed] [Google Scholar]
  • 400.Suzuki T, et al. J Pharmacol Exp Ther. 1993;267:785–790. [PMID: 7902433 ] [PubMed] [Google Scholar]
  • 401.Tan M, et al. J Biol Chem. 2009;284:6270–6281. doi: 10.1074/jbc.M806742200. [PMID: 19126537 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 402.Uberti MA, et al. J Pharmacol Exp Ther. 2005;313:16–23. doi: 10.1124/jpet.104.079541. [PMID: 15615865 ] [DOI] [PubMed] [Google Scholar]
  • 403.Uhlén S, et al. J Pharmacol Exp Ther. 1994;271:1558–1565. [PMID: 7996470 ] [PubMed] [Google Scholar]
  • 404.Ventura S. Br J Pharmacol. 2012;165:1223–1225. doi: 10.1111/j.1476-5381.2011.01663.x. [PMID: 21913893 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 405.Vilardaga JP, et al. Nat Chem Biol. 2008;4:126–131. doi: 10.1038/nchembio.64. [PMID: 18193048 ] [DOI] [PubMed] [Google Scholar]
  • 406.Warne T, et al. Nature. 2011;469:241–244. doi: 10.1038/nature09746. [PMID: 21228877 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 407.Warne T, et al. Nature. 2008;454:486–491. doi: 10.1038/nature07101. [PMID: 18594507 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 408.Weber AE, et al. Bioorg Med Chem Lett. 1998;8:2111–2116. doi: 10.1016/s0960-894x(98)00381-3. [PMID: 9873496 ] [DOI] [PubMed] [Google Scholar]
  • 409.Wetzel JM, et al. J Med Chem. 1995;38:1579–1581. doi: 10.1021/jm00010a001. [PMID: 7752182 ] [DOI] [PubMed] [Google Scholar]
  • 410.Williams TJ, et al. Br J Pharmacol. 1999;127:252–258. doi: 10.1038/sj.bjp.0702541. [PMID: 10369480 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 411.Yanagisawa T, et al. Tohoku J Exp Med. 2000;192:181–193. doi: 10.1620/tjem.192.181. [PMID: 11249148 ] [DOI] [PubMed] [Google Scholar]
  • 412.Yang J, et al. J Biol Chem. 2012;287:24795–24806. doi: 10.1074/jbc.M112.344259. [PMID: 22645144 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 413.Yoshio R, et al. Jpn J Pharmacol. 2001;86:189–195. doi: 10.1254/jjp.86.189. [PMID: 11459121 ] [DOI] [PubMed] [Google Scholar]
  • 414.Young P, et al. Eur J Pharmacol. 1989;168:381–386. doi: 10.1016/0014-2999(89)90801-7. [PMID: 2573535 ] [DOI] [PubMed] [Google Scholar]
  • 415.Ann N Y Acad Sci. 1988;547:1–541. [PMID: 3071214 ] [PubMed] [Google Scholar]
  • 416.AbdAlla S, et al. Nature. 2000;407:94–98. doi: 10.1038/35024095. [PMID: 10993080 ] [DOI] [PubMed] [Google Scholar]
  • 417.Bosnyak S, et al. Clin Sci. 2011;121:297–303. doi: 10.1042/CS20110036. [PMID: 21542804 ] [DOI] [PubMed] [Google Scholar]
  • 418.Cappelli A, et al. J Med Chem. 2004;47:2574–2586. doi: 10.1021/jm031100t. [PMID: 15115399 ] [DOI] [PubMed] [Google Scholar]
  • 419.Chang RS, Lotti VJ. Mol Pharmacol. 1990;37:347–351. [PMID: 2314387 ] [PubMed] [Google Scholar]
  • 420.Chansel D, et al. Eur J Pharmacol. 1993;247:193–198. doi: 10.1016/0922-4106(93)90077-m. [PMID: 8282008 ] [DOI] [PubMed] [Google Scholar]
  • 421.Chen TB, et al. Mol Pharmacol. 1992;42:1077–1082. [PMID: 1480133 ] [PubMed] [Google Scholar]
  • 422.Chiu AT, et al. Biochem Biophys Res Commun. 1989;165:196–203. doi: 10.1016/0006-291x(89)91054-1. [PMID: 2590220 ] [DOI] [PubMed] [Google Scholar]
  • 423.Chiu AT, et al. Biochem Biophys Res Commun. 1992;188:1030–1039. doi: 10.1016/0006-291x(92)91335-n. [PMID: 1445340 ] [DOI] [PubMed] [Google Scholar]
  • 424.de Gasparo M, et al. Pharmacol Rev. 2000;52:415–472. [PMID: 10977869 ] [PubMed] [Google Scholar]
  • 425.de Gasparo M, Whitebread S. Regul Pept. 1995;59:303–311. doi: 10.1016/0167-0115(95)00085-p. [PMID: 8577935 ] [DOI] [PubMed] [Google Scholar]
  • 426.de Gasparo M. Heterogeneity of angiotensin receptor subtypes. In: Timmermanns PBMWM, et al., editors. Medicinal Chemistry of the Renin-Angiotensin System Edited by. Wexler RR Elsevier; 1994. pp. 269–294. [ISBN: 0444820531 ] [Google Scholar]
  • 427.Dudley DT, et al. Mol Pharmacol. 1990;38:370–377. [PMID: 2402226 ] [PubMed] [Google Scholar]
  • 428.Dudley DT, Summerfelt RM. Regul Pept. 1993;44:199–206. doi: 10.1016/0167-0115(93)90243-2. [PMID: 8469774 ] [DOI] [PubMed] [Google Scholar]
  • 429.Edwards RM, et al. J Pharmacol Exp Ther. 1992;260:175–181. [PMID: 1309870 ] [PubMed] [Google Scholar]
  • 430.Hancock AA, et al. Eur J Pharmacol. 1994;267:49–54. doi: 10.1016/0922-4106(94)90223-2. [PMID: 8206129 ] [DOI] [PubMed] [Google Scholar]
  • 431.Luttrell LM, Gesty-Palmer D. Pharmacol Rev. 2010;62:305–330. doi: 10.1124/pr.109.002436. [PMID: 20427692 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 432.Moeller I, et al. J Neurochem. 1997;68:2530–2537. doi: 10.1046/j.1471-4159.1997.68062530.x. [PMID: 9166749 ] [DOI] [PubMed] [Google Scholar]
  • 433.Perlman S, et al. J Biol Chem. 1995;270:1493–1496. doi: 10.1074/jbc.270.4.1493. [PMID: 7829475 ] [DOI] [PubMed] [Google Scholar]
  • 434.Speth RC, Kim KH. Biochem Biophys Res Commun. 1990;169:997–1006. doi: 10.1016/0006-291x(90)91993-3. [PMID: 2194459 ] [DOI] [PubMed] [Google Scholar]
  • 435.Timmermans PBMWM, et al. Pharmacol Rev. 1993;45:205–251. [PMID: 8372104 ] [PubMed] [Google Scholar]
  • 436.Vanderheyden PML, et al. Br J Pharmacol. 1999;126:1057–1065. doi: 10.1038/sj.bjp.0702398. [PMID: 10193788 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 437.Verheijen I, et al. Fundam Clin Pharmacol. 2000;14:577–585. doi: 10.1111/j.1472-8206.2000.tb00443.x. [PMID: 11206708 ] [DOI] [PubMed] [Google Scholar]
  • 438.Whitebread S, et al. Biochem Biophys Res Commun. 1989;163:284–291. doi: 10.1016/0006-291x(89)92133-5. [PMID: 2775266 ] [DOI] [PubMed] [Google Scholar]
  • 439.Whitebread SE, et al. Biochem Biophys Res Commun. 1991;181:1365–1371. doi: 10.1016/0006-291x(91)92089-3. [PMID: 1764088 ] [DOI] [PubMed] [Google Scholar]
  • 440.Wiest SA, et al. J Cardiovasc Pharmacol. 1991;17:177–184. doi: 10.1097/00005344-199102000-00001. [PMID: 1709220 ] [DOI] [PubMed] [Google Scholar]
  • 441.Cayabyab M, et al. J Virol. 2000;74:11972–11976. doi: 10.1128/jvi.74.24.11972-11976.2000. [PMID: 11090199 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 442.El Messari S, et al. J Neurochem. 2004;90:1290–1301. doi: 10.1111/j.1471-4159.2004.02591.x. [PMID: 15341513 ] [DOI] [PubMed] [Google Scholar]
  • 443.Fan X, et al. Biochemistry. 2003;42:10163–10168. doi: 10.1021/bi030049s. [PMID: 12939143 ] [DOI] [PubMed] [Google Scholar]
  • 444.Hosoya M, et al. J Biol Chem. 2000;275:21061–21067. doi: 10.1074/jbc.M908417199. [PMID: 10777510 ] [DOI] [PubMed] [Google Scholar]
  • 445.Katugampola SD, et al. Br J Pharmacol. 2001;132:1255–1260. doi: 10.1038/sj.bjp.0703939. [PMID: 11250876 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 446.Kawamata Y, et al. Biochim Biophys Acta. 2001;1538:162–171. doi: 10.1016/s0167-4889(00)00143-9. [PMID: 11336787 ] [DOI] [PubMed] [Google Scholar]
  • 447.Lee DK, et al. Endocrinology. 2005;146:231–236. doi: 10.1210/en.2004-0359. [PMID: 15486224 ] [DOI] [PubMed] [Google Scholar]
  • 448.Medhurst AD, et al. J Neurochem. 2003;84:1162–1172. doi: 10.1046/j.1471-4159.2003.01587.x. [PMID: 12603839 ] [DOI] [PubMed] [Google Scholar]
  • 449.Pitkin SL, et al. Pharmacol Rev. 2010;62:331–342. doi: 10.1124/pr.110.002949. [PMID: 20605969 ] [DOI] [PubMed] [Google Scholar]
  • 450.Tatemoto K, et al. Biochem Biophys Res Commun. 1998;251:471–476. doi: 10.1006/bbrc.1998.9489. [PMID: 9792798 ] [DOI] [PubMed] [Google Scholar]
  • 451.Genet C, et al. J Med Chem. 2010;53:178–190. doi: 10.1021/jm900872z. [PMID: 19911773 ] [DOI] [PubMed] [Google Scholar]
  • 452.Kawamata Y, et al. J Biol Chem. 2003;278:9435–9440. doi: 10.1074/jbc.M209706200. [PMID: 12524422 ] [DOI] [PubMed] [Google Scholar]
  • 453.Londregan AT, et al. Med Chem Lett. 2013;23:1407–1411. doi: 10.1016/j.bmcl.2012.12.076. [PMID: 23337601 ] [DOI] [PubMed] [Google Scholar]
  • 454.Maruyama T, et al. Biochem Biophys Res Commun. 2002;298:714–719. doi: 10.1016/s0006-291x(02)02550-0. [PMID: 12419312 ] [DOI] [PubMed] [Google Scholar]
  • 455.Sato H, et al. Biochem Biophys Res Commun. 2007;362:793–798. doi: 10.1016/j.bbrc.2007.06.130. [PMID: 17825251 ] [DOI] [PubMed] [Google Scholar]
  • 456.Takada Y, Aggarwal BB. J Immunol. 2003;171:3278–3286. doi: 10.4049/jimmunol.171.6.3278. [PMID: 12960358 ] [DOI] [PubMed] [Google Scholar]
  • 457.Vassileva G, et al. Biochem J. 2006;398:423–430. doi: 10.1042/BJ20060537. [PMID: 16724960 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 458.Benya RV, et al. Mol Pharmacol. 1995;47:10–20. [PMID: 7838118 ] [PubMed] [Google Scholar]
  • 459.González N, et al. Peptides. 2009;30:1473–1486. doi: 10.1016/j.peptides.2009.05.007. [PMID: 19463875 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 460.Hall MD, et al. Bioorganic and Medicinal Chemistry Letters. 1996;6:2617–2622. [Google Scholar]
  • 461.Heimbrook DC, et al. J Biol Chem. 1989;264:11258–11262. [PMID: 2544588 ] [PubMed] [Google Scholar]
  • 462.Jensen RT, et al. Pharmacol Rev. 2008;60:1–42. doi: 10.1124/pr.107.07108. [PMID: 18055507 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 463.Jian X, et al. J Biol Chem. 1999;274:11573–11581. doi: 10.1074/jbc.274.17.11573. [PMID: 10206964 ] [DOI] [PubMed] [Google Scholar]
  • 464.Llinares M, et al. J Pept Res. 1999;53:275–283. doi: 10.1034/j.1399-3011.1999.00028.x. [PMID: 10231715 ] [DOI] [PubMed] [Google Scholar]
  • 465.Mantey S, et al. Mol Pharmacol. 1993;43:762–774. [PMID: 7684815 ] [PubMed] [Google Scholar]
  • 466.Mantey SA, et al. J Pharmacol Exp Ther. 2004;310:1161–1170. doi: 10.1124/jpet.104.066761. [PMID: 15102928 ] [DOI] [PubMed] [Google Scholar]
  • 467.Mantey SA, et al. J Biol Chem. 1997;272:26062–26071. doi: 10.1074/jbc.272.41.26062. [PMID: 9325344 ] [DOI] [PubMed] [Google Scholar]
  • 468.Ryan R, et al. J Pharmacol Exp Ther. 1999;290:1202–1211. [PMID: 10454496 ] [PubMed] [Google Scholar]
  • 469.Tokita K, et al. Mol Pharmacol. 2002;61:1435–1443. doi: 10.1124/mol.61.6.1435. [PMID: 12021405 ] [DOI] [PubMed] [Google Scholar]
  • 470.Tokita K, et al. J Biol Chem. 2001;276:36652–36663. doi: 10.1074/jbc.M104566200. [PMID: 11463790 ] [DOI] [PubMed] [Google Scholar]
  • 471.Austin CE, et al. J Biol Chem. 1997;272:11420–11425. doi: 10.1074/jbc.272.17.11420. [PMID: 9111052 ] [DOI] [PubMed] [Google Scholar]
  • 472.Bastian S, et al. Br J Pharmacol. 1997;122:393–399. doi: 10.1038/sj.bjp.0701380. [PMID: 9313952 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 473.Gera L, et al. J Pharmacol Exp Ther. 2006;317:300–308. doi: 10.1124/jpet.105.095661. [PMID: 16368899 ] [DOI] [PubMed] [Google Scholar]
  • 474.Gobeil F, et al. Hypertension. 1999;33:823–829. doi: 10.1161/01.hyp.33.3.823. [PMID: 10082494 ] [DOI] [PubMed] [Google Scholar]
  • 475.Gobeil F, et al. Hypertension. 1996;28:833–839. doi: 10.1161/01.hyp.28.5.833. [PMID: 8901831 ] [DOI] [PubMed] [Google Scholar]
  • 476.Gobeil F, et al. Br J Pharmacol. 1996;118:289–294. doi: 10.1111/j.1476-5381.1996.tb15401.x. [PMID: 8735629 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 477.Jones C, et al. Eur J Pharmacol. 1999;374:423–433. doi: 10.1016/s0014-2999(99)00315-5. [PMID: 10422787 ] [DOI] [PubMed] [Google Scholar]
  • 478.Leeb-Lundberg LM, et al. Pharmacol Rev. 2005;57:27–77. doi: 10.1124/pr.57.1.2. [PMID: 15734727 ] [DOI] [PubMed] [Google Scholar]
  • 479.Pruneau D, et al. Immunopharmacology. 1999;43:187–194. doi: 10.1016/s0162-3109(99)00128-9. [PMID: 10596852 ] [DOI] [PubMed] [Google Scholar]
  • 480.Regoli D, et al. Eur J Pharmacol. 1998;348:1–10. doi: 10.1016/s0014-2999(98)00165-4. [PMID: 9650825 ] [DOI] [PubMed] [Google Scholar]
  • 481.Rizzi A, et al. Hypertension. 1997;29:951–956. doi: 10.1161/01.hyp.29.4.951. [PMID: 9095082 ] [DOI] [PubMed] [Google Scholar]
  • 482.Windischhofer W, Leis HJ. J Bone Miner Res. 1997;12:1615–1625. doi: 10.1359/jbmr.1997.12.10.1615. [PMID: 9333122 ] [DOI] [PubMed] [Google Scholar]
  • 483.Zhang SP, Codd EE. Life Sci. 1998;62:2303–2314. doi: 10.1016/s0024-3205(98)00211-2. [PMID: 9651119 ] [DOI] [PubMed] [Google Scholar]
  • 484.Zhang SP, et al. Int Immunopharmacol. 2001;1:955–965. doi: 10.1016/s1567-5769(01)00032-7. [PMID: 11379050 ] [DOI] [PubMed] [Google Scholar]
  • 485.Aiyar N, et al. Mol Cell Biochem. 2001;224:123–133. doi: 10.1023/a:1011907328682. [PMID: 11693189 ] [DOI] [PubMed] [Google Scholar]
  • 486.Albrandt K, et al. Endocrinology. 1995;136:5377–5384. doi: 10.1210/endo.136.12.7588285. [PMID: 7588285 ] [DOI] [PubMed] [Google Scholar]
  • 487.Armour SL, et al. J Pharmacol Toxicol Methods. 1999;42:217–224. doi: 10.1016/s1056-8719(00)00074-5. [PMID: 11033437 ] [DOI] [PubMed] [Google Scholar]
  • 488.Christopoulos G, et al. Mol Pharmacol. 1999;56:235–242. doi: 10.1124/mol.56.1.235. [PMID: 10385705 ] [DOI] [PubMed] [Google Scholar]
  • 489.Doods H, et al. Br J Pharmacol. 2000;129:420–423. doi: 10.1038/sj.bjp.0703110. [PMID: 10711339 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 490.Evans BN, et al. J Biol Chem. 2000;275:31438–31443. doi: 10.1074/jbc.M005604200. [PMID: 10903324 ] [DOI] [PubMed] [Google Scholar]
  • 491.Fraser NJ, et al. Mol Pharmacol. 1999;55:1054–1059. doi: 10.1124/mol.55.6.1054. [PMID: 10347248 ] [DOI] [PubMed] [Google Scholar]
  • 492.Hay DL, et al. Mol Pharmacol. 2005;67:1655–1665. doi: 10.1124/mol.104.008615. [PMID: 15692146 ] [DOI] [PubMed] [Google Scholar]
  • 493.Hay DL, et al. Mol Pharmacol. 2006;70:1984–1991. doi: 10.1124/mol.106.027953. [PMID: 16959943 ] [DOI] [PubMed] [Google Scholar]
  • 494.Hay DL, et al. Br J Pharmacol. 2003;140:477–486. doi: 10.1038/sj.bjp.0705472. [PMID: 12970090 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 495.Hay DL, et al. Pharmacol Rev. 2008;60:143–145. doi: 10.1124/pr.108.00372. [PMID: 18552275 ] [DOI] [PubMed] [Google Scholar]
  • 496.Hong Y, et al. Br J Pharmacol. 2011. [Epub ahead of print]. [PMID: 21658025 ] [Google Scholar]
  • 497.Katafuchi T, et al. J Biol Chem. 2003;278:12046–12054. doi: 10.1074/jbc.M207970200. [PMID: 12556539 ] [DOI] [PubMed] [Google Scholar]
  • 498.Kuwasako K, et al. Biochem Biophys Res Commun. 2003;301:460–464. doi: 10.1016/s0006-291x(02)03072-3. [PMID: 12565884 ] [DOI] [PubMed] [Google Scholar]
  • 499.Leuthauser K, et al. Biochem J. 2000;351:347–351. [PMID: 11023820 ] [PMC free article] [PubMed] [Google Scholar]
  • 500.Mallee JJ, et al. J Biol Chem. 2002;277:14294–14298. doi: 10.1074/jbc.M109661200. [PMID: 11847213 ] [DOI] [PubMed] [Google Scholar]
  • 501.McLatchie LM, et al. Nature. 1998;393:333–339. doi: 10.1038/30666. [PMID: 9620797 ] [DOI] [PubMed] [Google Scholar]
  • 502.Morfis M, et al. Endocrinology. 2008;149:5423–5431. doi: 10.1210/en.2007-1735. [PMID: 18599553 ] [DOI] [PubMed] [Google Scholar]
  • 503.Muff R, et al. Endocrinology. 1999;140:2924–2927. doi: 10.1210/endo.140.6.6930. [PMID: 10342886 ] [DOI] [PubMed] [Google Scholar]
  • 504.Poyner DR, et al. Pharmacol Rev. 2002;54:233–246. doi: 10.1124/pr.54.2.233. [PMID: 12037140 ] [DOI] [PubMed] [Google Scholar]
  • 505.Qi T, et al. Br J Pharmacol. 2013;168:644–657. doi: 10.1111/j.1476-5381.2012.02197.x. [PMID: 22946511 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 506.Salvatore CA, et al. J Pharmacol Exp Ther. 2008;324:416–421. doi: 10.1124/jpet.107.130344. [PMID: 18039958 ] [DOI] [PubMed] [Google Scholar]
  • 507.Tilakaratne N, et al. J Pharmacol Exp Ther. 2000;294:61–72. [PMID: 10871296 ] [PubMed] [Google Scholar]
  • 508.Walker CS, et al. Trends Pharmacol Sci. 2010;31:476–483. doi: 10.1016/j.tips.2010.06.006. [PMID: 20633935 ] [DOI] [PubMed] [Google Scholar]
  • 509.Brown EM, et al. Nature. 1993;366:575–580. doi: 10.1038/366575a0. [PMID: 8255296 ] [DOI] [PubMed] [Google Scholar]
  • 510.Chang W, et al. Sci Signal. 2008;1:ra1. doi: 10.1126/scisignal.1159945. [PMID: 18765830 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 511.Conigrave AD, et al. Proc Natl Acad Sci USA. 2000;97:4814–4819. doi: 10.1073/pnas.97.9.4814. [PMID: 10781086 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 512.Ho C, et al. Nat Genet. 1995;11:389–394. doi: 10.1038/ng1295-389. [PMID: 7493018 ] [DOI] [PubMed] [Google Scholar]
  • 513.Kessler A, et al. Bioorg Med Chem Lett. 2004;14:3345–3349. doi: 10.1016/j.bmcl.2004.03.056. [PMID: 15149704 ] [DOI] [PubMed] [Google Scholar]
  • 514.Ma JN, et al. J Pharmacol Exp Ther. 2011;337:275–284. doi: 10.1124/jpet.110.178194. [PMID: 21239511 ] [DOI] [PubMed] [Google Scholar]
  • 515.Nemeth EF, et al. J Pharmacol Exp Ther. 2001;299:323–331. [PMID: 11561095 ] [PubMed] [Google Scholar]
  • 516.Nemeth EF, et al. J Pharmacol Exp Ther. 2004;308:627–635. doi: 10.1124/jpet.103.057273. [PMID: 14593085 ] [DOI] [PubMed] [Google Scholar]
  • 517.Nemeth EF, et al. Proc Natl Acad Sci U S A. 1998;95:4040–4045. doi: 10.1073/pnas.95.7.4040. [PMID: 9520489 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 518.Petrel C, et al. J Biol Chem. 2004;279:18990–18997. doi: 10.1074/jbc.M400724200. [PMID: 14976203 ] [DOI] [PubMed] [Google Scholar]
  • 519.Petrel C, et al. J Biol Chem. 2003;278:49487–49494. doi: 10.1074/jbc.M308010200. [PMID: 14506236 ] [DOI] [PubMed] [Google Scholar]
  • 520.Quinn SJ, et al. J Biol Chem. 2004;279:37241–37249. doi: 10.1074/jbc.M404520200. [PMID: 15201280 ] [DOI] [PubMed] [Google Scholar]
  • 521.Quinn SJ, et al. J Biol Chem. 1998;273:19579–19586. doi: 10.1074/jbc.273.31.19579. [PMID: 9677383 ] [DOI] [PubMed] [Google Scholar]
  • 522.Quinn SJ, et al. Am J Physiol. 1997;273:C1315–C1323. doi: 10.1152/ajpcell.1997.273.4.C1315. [PMID: 9357776 ] [DOI] [PubMed] [Google Scholar]
  • 523.Ward DT, Riccardi D. Br J Pharmacol. 2012;165:35–48. doi: 10.1111/j.1476-5381.2011.01511.x. [PMID: 21627634 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 524.Wellendorph P, et al. Mol Pharmacol. 2005;67:589–597. doi: 10.1124/mol.104.007559. [PMID: 15576628 ] [DOI] [PubMed] [Google Scholar]
  • 525.Yang W, et al. Bioorg Med Chem Lett. 2005;15:1225–1228. doi: 10.1016/j.bmcl.2004.11.071. [PMID: 15686947 ] [DOI] [PubMed] [Google Scholar]
  • 526.Alexander SP, Kendall DA. Br J Pharmacol. 2007;152:602–623. doi: 10.1038/sj.bjp.0707456. [PMID: 17876303 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 527.Breivogel CS, et al. J Pharmacol Exp Ther. 1997;282:1632–1642. [PMID: 9316881 ] [PubMed] [Google Scholar]
  • 528.Di Marzo V, et al. Biochem Biophys Res Commun. 2001;281:444–451. doi: 10.1006/bbrc.2001.4354. [PMID: 11181068 ] [DOI] [PubMed] [Google Scholar]
  • 529.Felder CC, et al. J Pharmacol Exp Ther. 1998;284:291–297. [PMID: 9435190 ] [PubMed] [Google Scholar]
  • 530.Felder CC, et al. Mol Pharmacol. 1995;48:443–450. [PMID: 7565624 ] [PubMed] [Google Scholar]
  • 531.Gareau Y, et al. Bioorg Med Chem Lett. 1996;6:189–194. [Google Scholar]
  • 532.Hanus L, et al. Proc Natl Acad Sci USA. 1999;96:14228–14233. doi: 10.1073/pnas.96.25.14228. [PMID: 10588688 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 533.Hillard CJ, et al. J Pharmacol Exp Ther. 1999;289:1427–1433. [PMID: 10336536 ] [PubMed] [Google Scholar]
  • 534.Hirst RA, et al. Neurosci Lett. 1996;220:101–104. doi: 10.1016/s0304-3940(96)13233-x. [PMID: 8981483 ] [DOI] [PubMed] [Google Scholar]
  • 535.Huffman JW, et al. Bioorg Med Chem. 1999;7:2905–2914. doi: 10.1016/s0968-0896(99)00219-9. [PMID: 10658595 ] [DOI] [PubMed] [Google Scholar]
  • 536.Jung M, et al. J Neurochem. 1997;68:402–409. doi: 10.1046/j.1471-4159.1997.68010402.x. [PMID: 8978752 ] [DOI] [PubMed] [Google Scholar]
  • 537.Khanolkar AD, et al. J Med Chem. 1996;39:4515–4519. doi: 10.1021/jm960152y. [PMID: 8893848 ] [DOI] [PubMed] [Google Scholar]
  • 538.Lan R, et al. AAPS Pharmsci. 1999;1:E4-null. doi: 10.1208/ps010204. [PMID: 11741201 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 539.Lan R, et al. J Med Chem. 1999;42:769–776. doi: 10.1021/jm980363y. [PMID: 10052983 ] [DOI] [PubMed] [Google Scholar]
  • 540.O'Sullivan SE. Br J Pharmacol. 2007;152:576–582. doi: 10.1038/sj.bjp.0707423. [PMID: 17704824 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 541.Pertwee RG. Expert Opin Investig Drugs. 2000;9:1553–1571. doi: 10.1517/13543784.9.7.1553. [PMID: 11060760 ] [DOI] [PubMed] [Google Scholar]
  • 542.Pertwee RG, et al. Pharmacol Rev. 2010;62:588–631. doi: 10.1124/pr.110.003004. [PMID: 21079038 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 543.Petitet F, et al. Neuroreport. 1996;7:789–792. doi: 10.1097/00001756-199602290-00026. [PMID: 8733746 ] [DOI] [PubMed] [Google Scholar]
  • 544.Price MR, et al. Mol Pharmacol. 2005;68:1484–1495. doi: 10.1124/mol.105.016162. [PMID: 16113085 ] [DOI] [PubMed] [Google Scholar]
  • 545.Rinaldi-Carmona M, et al. FEBS Lett. 1994;350:240–244. doi: 10.1016/0014-5793(94)00773-x. [PMID: 8070571 ] [DOI] [PubMed] [Google Scholar]
  • 546.Rinaldi-Carmona M, et al. J Pharmacol Exp Ther. 1998;284:644–650. [PMID: 9454810 ] [PubMed] [Google Scholar]
  • 547.Rinaldi-Carmona M, et al. Life Sci. 1996;58:1239–1247. doi: 10.1016/0024-3205(96)00085-9. [PMID: 8614277 ] [DOI] [PubMed] [Google Scholar]
  • 548.Ross RA, et al. Br J Pharmacol. 1999;126:665–672. doi: 10.1038/sj.bjp.0702351. [PMID: 10188977 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 549.Ruiu S, et al. J Pharmacol Exp Ther. 2003;306:363–370. doi: 10.1124/jpet.103.049924. [PMID: 12663689 ] [DOI] [PubMed] [Google Scholar]
  • 550.Showalter VM, et al. J Pharmacol Exp Ther. 1996;278:989–999. [PMID: 8819477 ] [PubMed] [Google Scholar]
  • 551.Sim LJ, et al. J Neurosci. 1996;16:8057–8066. doi: 10.1523/JNEUROSCI.16-24-08057.1996. [PMID: 8987831 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 552.Slipetz DM, et al. Mol Pharmacol. 1995;48:352–361. [PMID: 7651369 ] [PubMed] [Google Scholar]
  • 553.Song ZH, Bonner TI. Mol Pharmacol. 1996;49:891–896. [PMID: 8622639 ] [PubMed] [Google Scholar]
  • 554.Thomas BF, et al. J Pharmacol Exp Ther. 1998;285:285–292. [PMID: 9536023 ] [PubMed] [Google Scholar]
  • 555.Yao BB, et al. Br J Pharmacol. 2006;149:145–154. doi: 10.1038/sj.bjp.0706838. [PMID: 16894349 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 556.Zygmunt PM, et al. Nature. 1999;400:452–457. doi: 10.1038/22761. [PMID: 10440374 ] [DOI] [PubMed] [Google Scholar]
  • 557.Arita M, et al. J Exp Med. 2005;201:713–722. doi: 10.1084/jem.20042031. [PMID: 15753205 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 558.Arita M, et al. J Immunol. 2007;178:3912–3917. doi: 10.4049/jimmunol.178.6.3912. [PMID: 17339491 ] [DOI] [PubMed] [Google Scholar]
  • 559.Krishnamoorthy S, et al. Proc Natl Acad Sci USA. 2010;107:1660–16605. [PMID: 20080636 ] [Google Scholar]
  • 560.Luangsay S, et al. J Immunol. 2009;183:6489–6499. doi: 10.4049/jimmunol.0901037. [PMID: 19841182 ] [DOI] [PubMed] [Google Scholar]
  • 561.Meder W, et al. FEBS Lett. 2003;555:495–499. doi: 10.1016/s0014-5793(03)01312-7. [PMID: 14675762 ] [DOI] [PubMed] [Google Scholar]
  • 562.Zabel BA, et al. J Immunol. 2005;174:244–251. doi: 10.4049/jimmunol.174.1.244. [PMID: 15611246 ] [DOI] [PubMed] [Google Scholar]
  • 563.Ahuja SK, Murphy PM. J Biol Chem. 1996;271:20545–20550. doi: 10.1074/jbc.271.34.20545. [PMID: 8702798 ] [DOI] [PubMed] [Google Scholar]
  • 564.Ai LS, Liao F. Biochemistry. 2002;41:8332–8341. doi: 10.1021/bi025855y. [PMID: 12081481 ] [DOI] [PubMed] [Google Scholar]
  • 565.Baba M, et al. J Biol Chem. 1997;272:14893–14898. doi: 10.1074/jbc.272.23.14893. [PMID: 9169459 ] [DOI] [PubMed] [Google Scholar]
  • 566.Baba M, et al. Proc Natl Acad Sci USA. 1999;96:5698–5703. doi: 10.1073/pnas.96.10.5698. [PMID: 10318947 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 567.Barnea G, et al. Proc Natl Acad Sci USA. 2008;105:64–69. doi: 10.1073/pnas.0710487105. [PMID: 18165312 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 568.Ben-Baruch A, et al. J Biol Chem. 1995;270:22123–22128. doi: 10.1074/jbc.270.38.22123. [PMID: 7545673 ] [DOI] [PubMed] [Google Scholar]
  • 569.Bertini R, et al. Proc Natl Acad Sci U S A. 2004;101:11791–11796. doi: 10.1073/pnas.0402090101. [PMID: 15282370 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 570.Blanpain C, et al. Blood. 1999;94:1899–1905. [PMID: 10477718 ] [PubMed] [Google Scholar]
  • 571.Chou CC, et al. Br J Pharmacol. 2002;137:663–675. doi: 10.1038/sj.bjp.0704907. [PMID: 12381680 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 572.Combadiere C, et al. J Biol Chem. 1995;270:29671–29675. doi: 10.1074/jbc.270.50.29671. [PMID: 8530354 ] [DOI] [PubMed] [Google Scholar]
  • 573.Coulin F, et al. Eur J Biochem. 1997;248:507–515. doi: 10.1111/j.1432-1033.1997.00507.x. [PMID: 9346309 ] [DOI] [PubMed] [Google Scholar]
  • 574.Dairaghi DJ, et al. J Biol Chem. 1999;274:21569–21574. doi: 10.1074/jbc.274.31.21569. [PMID: 10419462 ] [DOI] [PubMed] [Google Scholar]
  • 575.Daugherty BL, et al. J Exp Med. 1996;183:2349–2354. doi: 10.1084/jem.183.5.2349. [PMID: 8642344 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 576.Di Salvo J, et al. Eur J Pharmacol. 2000;409:143–154. doi: 10.1016/s0014-2999(00)00846-3. [PMID: 11104827 ] [DOI] [PubMed] [Google Scholar]
  • 577.Duggal P, et al. Genes Immun. 2003;4:245–250. doi: 10.1038/sj.gene.6363950. [PMID: 12761559 ] [DOI] [PubMed] [Google Scholar]
  • 578.Garin A, et al. J Immunol. 2003;171:5305–5312. doi: 10.4049/jimmunol.171.10.5305. [PMID: 14607932 ] [DOI] [PubMed] [Google Scholar]
  • 579.Gladue RP, et al. J Biol Chem. 2003;278:40473–40480. doi: 10.1074/jbc.M306875200. [PMID: 12909630 ] [DOI] [PubMed] [Google Scholar]
  • 580.Gong X, et al. J Biol Chem. 1997;272:11682–11685. doi: 10.1074/jbc.272.18.11682. [PMID: 9115216 ] [DOI] [PubMed] [Google Scholar]
  • 581.Gravel S, et al. J Biol Chem. 2010. [Epub ahead of print]. [PMID: 20956518 ] [Google Scholar]
  • 582.Greaves DR, et al. J Exp Med. 1997;186:837–844. doi: 10.1084/jem.186.6.837. [PMID: 9294138 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 583.Habasque C, et al. Mol Hum Reprod. 2002;8:419–425. doi: 10.1093/molehr/8.5.419. [PMID: 11994538 ] [DOI] [PubMed] [Google Scholar]
  • 584.Hall DA, et al. Br J Pharmacol. 1999;126:810–818. doi: 10.1038/sj.bjp.0702329. [PMID: 10188995 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 585.Haskell CA, et al. Mol Pharmacol. 2006;69:309–316. doi: 10.1124/mol.105.014779. [PMID: 16221874 ] [DOI] [PubMed] [Google Scholar]
  • 586.Heise CE, et al. J Pharmacol Exp Ther. 2005;313:1263–1271. doi: 10.1124/jpet.105.083683. [PMID: 15761110 ] [DOI] [PubMed] [Google Scholar]
  • 587.Hesselgesser J, et al. J Immunol. 1998;160:877–883. [PMID: 9551924 ] [PubMed] [Google Scholar]
  • 588.Hesselgesser J, et al. J Biol Chem. 1998;273:15687–15692. doi: 10.1074/jbc.273.25.15687. [PMID: 9624164 ] [DOI] [PubMed] [Google Scholar]
  • 589.Imai T, et al. J Biol Chem. 1998;273:1764–1768. doi: 10.1074/jbc.273.3.1764. [PMID: 9430724 ] [DOI] [PubMed] [Google Scholar]
  • 590.Inngjerdingen M, et al. Blood. 2001;97:367–375. doi: 10.1182/blood.v97.2.367. [PMID: 11154210 ] [DOI] [PubMed] [Google Scholar]
  • 591.Kitaura M, et al. J Biol Chem. 1999;274:27975–27980. doi: 10.1074/jbc.274.39.27975. [PMID: 10488147 ] [DOI] [PubMed] [Google Scholar]
  • 592.Lee J, et al. J Biol Chem. 1992;267:16283–16287. [PMID: 1379593 ] [PubMed] [Google Scholar]
  • 593.Liang M, et al. J Biol Chem. 2000;275:19000–19008. doi: 10.1074/jbc.M001222200. [PMID: 10748002 ] [DOI] [PubMed] [Google Scholar]
  • 594.Loetscher P, et al. J Biol Chem. 1998;273:22279–22283. doi: 10.1074/jbc.273.35.22279. [PMID: 9712844 ] [DOI] [PubMed] [Google Scholar]
  • 595.Lüttichau HR, et al. J Biol Chem. 2003;278:10928–10933. doi: 10.1074/jbc.M211329200. [PMID: 12554737 ] [DOI] [PubMed] [Google Scholar]
  • 596.Maeda K, et al. J Biol Chem. 2006;281:12688–12698. doi: 10.1074/jbc.M512688200. [PMID: 16476734 ] [DOI] [PubMed] [Google Scholar]
  • 597.Maeda K, et al. J Biol Chem. 2001;276:35194–35200. doi: 10.1074/jbc.M105670200. [PMID: 11454872 ] [DOI] [PubMed] [Google Scholar]
  • 598.Mirzadegan T, et al. J Biol Chem. 2000;275:25562–25571. doi: 10.1074/jbc.M000692200. [PMID: 10770925 ] [DOI] [PubMed] [Google Scholar]
  • 599.Morokata T, et al. J Pharmacol Exp Ther. 2005. : -. [PMID: 16339911 ] [PubMed] [Google Scholar]
  • 600.Murphy PM. Pharmacol Rev. 2002;54:227–229. doi: 10.1124/pr.54.2.227. [PMID: 12037138 ] [DOI] [PubMed] [Google Scholar]
  • 601.Murphy PM, et al. Pharmacol Rev. 2000;52:145–176. [PMID: 10699158 ] [PubMed] [Google Scholar]
  • 602.Napier C, et al. Biochem Pharmacol. 2005;71:163–172. doi: 10.1016/j.bcp.2005.10.024. [PMID: 16298345 ] [DOI] [PubMed] [Google Scholar]
  • 603.Naya A, et al. Bioorg Med Chem. 2003;11:875–884. doi: 10.1016/s0968-0896(02)00559-x. [PMID: 12614873 ] [DOI] [PubMed] [Google Scholar]
  • 604.Palani A, et al. J Med Chem. 2001;44:3339–3342. doi: 10.1021/jm015526o. [PMID: 11585437 ] [DOI] [PubMed] [Google Scholar]
  • 605.Parody TR, Stone MJ. Cytokine. 2004;27:38–46. doi: 10.1016/j.cyto.2004.03.013. [PMID: 15207250 ] [DOI] [PubMed] [Google Scholar]
  • 606.Power CA, et al. J Exp Med. 1997;186:825–835. doi: 10.1084/jem.186.6.825. [PMID: 9294137 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 607.Richardson RM, et al. J Immunol. 2003;170:2904–2911. doi: 10.4049/jimmunol.170.6.2904. [PMID: 12626541 ] [DOI] [PubMed] [Google Scholar]
  • 608.Roos RS, et al. J Biol Chem. 1997;272:17251–17254. doi: 10.1074/jbc.272.28.17251. [PMID: 9211859 ] [DOI] [PubMed] [Google Scholar]
  • 609.Ruffing N, et al. Cell Immunol. 1998;189:160–168. doi: 10.1006/cimm.1998.1379. [PMID: 9790730 ] [DOI] [PubMed] [Google Scholar]
  • 610.Sabroe I, et al. J Biol Chem. 2000;275:25985–25992. doi: 10.1074/jbc.M908864199. [PMID: 10854442 ] [DOI] [PubMed] [Google Scholar]
  • 611.Sarau HM, et al. J Pharmacol Exp Ther. 1997;283:411–418. [PMID: 9336350 ] [PubMed] [Google Scholar]
  • 612.Southern C, et al. J Biomol Screen. 2013;18:599–609. doi: 10.1177/1087057113475480. [PMID: 23396314 ] [DOI] [PubMed] [Google Scholar]
  • 613.Strizki JM, et al. Antimicrob Agents Chemother. 2005;49:4911–4919. doi: 10.1128/AAC.49.12.4911-4919.2005. [PMID: 16304152 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 614.Tamamura H, et al. Biochem Biophys Res Commun. 1998;253:877–882. doi: 10.1006/bbrc.1998.9871. [PMID: 9918823 ] [DOI] [PubMed] [Google Scholar]
  • 615.Uguccioni M, et al. J Clin Invest. 1997;100:1137–1143. doi: 10.1172/JCI119624. [PMID: 9276730 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 616.Wacker DA, et al. Bioorg Med Chem Lett. 2002;12:1785–1789. doi: 10.1016/s0960-894x(02)00206-8. [PMID: 12067561 ] [DOI] [PubMed] [Google Scholar]
  • 617.Wan Y, et al. Eur J Pharmacol. 2002;456:1–10. doi: 10.1016/s0014-2999(02)02621-3. [PMID: 12450563 ] [DOI] [PubMed] [Google Scholar]
  • 618.Watts AO, et al. J Biol Chem. 2013;288:7169–7181. doi: 10.1074/jbc.M112.406108. [PMID: 23341447 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 619.Weng Y, et al. J Biol Chem. 1998;273:18288–18291. doi: 10.1074/jbc.273.29.18288. [PMID: 9660793 ] [DOI] [PubMed] [Google Scholar]
  • 620.White JR, et al. J Biol Chem. 1998;273:10095–10098. doi: 10.1074/jbc.273.17.10095. [PMID: 9553055 ] [DOI] [PubMed] [Google Scholar]
  • 621.Wilbanks A, et al. J Immunol. 2001;166:5145–5154. doi: 10.4049/jimmunol.166.8.5145. [PMID: 11290797 ] [DOI] [PubMed] [Google Scholar]
  • 622.Wilson S, et al. J Biol Chem. 2005;280:28663–28674. doi: 10.1074/jbc.M413475200. [PMID: 15946947 ] [DOI] [PubMed] [Google Scholar]
  • 623.Wu L, et al. J Biol Chem. 1996;271:31202–31209. doi: 10.1074/jbc.271.49.31202. [PMID: 8940121 ] [DOI] [PubMed] [Google Scholar]
  • 624.Wuyts A, et al. Eur J Biochem. 1998;255:67–73. doi: 10.1046/j.1432-1327.1998.2550067.x. [PMID: 9692902 ] [DOI] [PubMed] [Google Scholar]
  • 625.Yang D, et al. Science. 1999;286:525–528. doi: 10.1126/science.286.5439.525. [PMID: 10521347 ] [DOI] [PubMed] [Google Scholar]
  • 626.Yoshida R, et al. J Biol Chem. 1997;272:13803–13809. doi: 10.1074/jbc.272.21.13803. [PMID: 9153236 ] [DOI] [PubMed] [Google Scholar]
  • 627.Yoshida R, et al. J Biol Chem. 1998;273:7118–7122. doi: 10.1074/jbc.273.12.7118. [PMID: 9507024 ] [DOI] [PubMed] [Google Scholar]
  • 628.Yoshie O, Zlotnik A. Immunity. 2000;2:121–127. doi: 10.1016/s1074-7613(00)80165-x. [PMID: 10714678 ] [DOI] [PubMed] [Google Scholar]
  • 629.Zhang WB, et al. J Biol Chem. 2002;277:24515–24521. doi: 10.1074/jbc.M200889200. [PMID: 11923301 ] [DOI] [PubMed] [Google Scholar]
  • 630.Zoffmann S, et al. J Med Chem. 2001;44:215–222. doi: 10.1021/jm000982i. [PMID: 11170631 ] [DOI] [PubMed] [Google Scholar]
  • 631.Akgün E, et al. J Med Chem. 2009;52:2138–2147. doi: 10.1021/jm801439x. [PMID: 19271701 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 632.Gouldson P, et al. Eur J Pharmacol. 2000;400:185–194. doi: 10.1016/s0014-2999(00)00414-3. [PMID: 10988332 ] [DOI] [PubMed] [Google Scholar]
  • 633.Henke BR, et al. J Med Chem. 1997;40:2706–2725. doi: 10.1021/jm970265x. [PMID: 9276016 ] [DOI] [PubMed] [Google Scholar]
  • 634.Hughes J, et al. Proc Natl Acad Sci U S A. 1990;87:6728–6732. doi: 10.1073/pnas.87.17.6728. [PMID: 1975695 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 635.Hunter JC, et al. Mol Pharmacol. 1993;43:595–602. [PMID: 8474432 ] [PubMed] [Google Scholar]
  • 636.Ito M, et al. J Biol Chem. 1993;268:18300–18305. [PMID: 8349705 ] [PubMed] [Google Scholar]
  • 637.Iwamoto Y, et al. Pancreas. 1987;2:85–90. [PMID: 2437574 ] [PubMed] [Google Scholar]
  • 638.Jagerschmidt A, et al. Eur J Pharmacol. 1996;296:97–106. doi: 10.1016/0014-2999(95)00676-1. [PMID: 8720482 ] [DOI] [PubMed] [Google Scholar]
  • 639.Kennedy K, et al. Biochem Biophys Res Commun. 1995;213:845–852. doi: 10.1006/bbrc.1995.2206. [PMID: 7654246 ] [DOI] [PubMed] [Google Scholar]
  • 640.Lee YM, et al. J Biol Chem. 1993;268:8164–8169. [PMID: 7681836 ] [PubMed] [Google Scholar]
  • 641.Lindström E, et al. Br J Pharmacol. 1999;127:530–536. doi: 10.1038/sj.bjp.0702538. [PMID: 10385255 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 642.Morton MF, et al. J Pharmacol Exp Ther. 2011;338:328–336. doi: 10.1124/jpet.110.178483. [PMID: 21493750 ] [DOI] [PubMed] [Google Scholar]
  • 643.Nilsson I, et al. Regul Pept. 2002;103:29–37. doi: 10.1016/s0167-0115(01)00324-x. [PMID: 11738246 ] [DOI] [PubMed] [Google Scholar]
  • 644.Noble F, et al. Pharmacol Rev. 1999;51:745–781. [PMID: 10581329 ] [PubMed] [Google Scholar]
  • 645.Powers SP, et al. Int J Pept Protein Res. 1988;31:429–434. doi: 10.1111/j.1399-3011.1988.tb00899.x. [PMID: 3410633 ] [DOI] [PubMed] [Google Scholar]
  • 646.Rasmussen SG, et al. Nature. 2011;469:175–180. doi: 10.1038/nature09648. [PMID: 21228869 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 647.Singh L, et al. Eur J Pharmacol. 1995;286:185–191. doi: 10.1016/0014-2999(95)00445-q. [PMID: 8605955 ] [DOI] [PubMed] [Google Scholar]
  • 648.Smith JP, et al. Int J Mol Med. 2002;10:689–694. [PMID: 12429993 ] [PubMed] [Google Scholar]
  • 649.Song I, et al. Proc Natl Acad Sci U S A. 1993;90:9085–9089. doi: 10.1073/pnas.90.19.9085. [PMID: 8415658 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 650.Taniguchi H, et al. Eur J Pharmacol. 1996;304:147–154. doi: 10.1016/0014-2999(96)00091-x. [PMID: 8813597 ] [DOI] [PubMed] [Google Scholar]
  • 651.Ursini A, et al. J Med Chem. 2000;43:3596–3613. doi: 10.1021/jm990967h. [PMID: 11020274 ] [DOI] [PubMed] [Google Scholar]
  • 652.Ames RS, et al. J Immunol. 2001;166:6341–6348. doi: 10.4049/jimmunol.166.10.6341. [PMID: 11342658 ] [DOI] [PubMed] [Google Scholar]
  • 653.Ames RS, et al. FEBS Lett. 1996;395:157–159. doi: 10.1016/0014-5793(96)01018-6. [PMID: 8898085 ] [DOI] [PubMed] [Google Scholar]
  • 654.Ames RS, et al. Immunopharmacology. 1997;38:87–92. doi: 10.1016/s0162-3109(97)00079-9. [PMID: 9476119 ] [DOI] [PubMed] [Google Scholar]
  • 655.Bamberg CE, et al. J Biol Chem. 2010;285:7633–7644. doi: 10.1074/jbc.M109.092106. [PMID: 20044484 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 656.Cain SA, Monk PN. J Biol Chem. 2002;277:7165–7169. doi: 10.1074/jbc.C100714200. [PMID: 11773063 ] [DOI] [PubMed] [Google Scholar]
  • 657.Chao TH, et al. J Biol Chem. 1999;274:9721–9728. doi: 10.1074/jbc.274.14.9721. [PMID: 10092660 ] [DOI] [PubMed] [Google Scholar]
  • 658.Gao H, et al. FASEB J. 2005;19:1003–1005. doi: 10.1096/fj.04-3424fje. [PMID: 15784721 ] [DOI] [PubMed] [Google Scholar]
  • 659.Gavrilyuk V, et al. J Neurochem. 2005;92:1140–1149. doi: 10.1111/j.1471-4159.2004.02942.x. [PMID: 15715664 ] [DOI] [PubMed] [Google Scholar]
  • 660.Honczarenko M, et al. Leukemia. 2005;19:1682–1683. doi: 10.1038/sj.leu.2403862. ; author reply 1684–5. [PMID: 15990859 ] [DOI] [PubMed] [Google Scholar]
  • 661.Huey R, Hugli TE. J Immunol. 1985;135:2063–2068. [PMID: 4020139 ] [PubMed] [Google Scholar]
  • 662.Kalant D, et al. J Biol Chem. 2003;278:11123–11129. doi: 10.1074/jbc.M206169200. [PMID: 12540846 ] [DOI] [PubMed] [Google Scholar]
  • 663.Kalant D, et al. J Biol Chem. 2005;280:23936–23944. doi: 10.1074/jbc.M406921200. [PMID: 15833747 ] [DOI] [PubMed] [Google Scholar]
  • 664.Kawai M, et al. J Med Chem. 1992;35:220–223. doi: 10.1021/jm00080a004. [PMID: 1732540 ] [DOI] [PubMed] [Google Scholar]
  • 665.Klos A, et al. Pharmacol Rev. 2013;65:500–543. doi: 10.1124/pr.111.005223. [PMID: 23383423 ] [DOI] [PubMed] [Google Scholar]
  • 666.Konteatis ZD, et al. J Immunol. 1994;153:4200–4205. [PMID: 7930622 ] [PubMed] [Google Scholar]
  • 667.Li R, et al. FASEB J. 2013;27:855–864. doi: 10.1096/fj.12-220509. [PMID: 23239822 ] [DOI] [PubMed] [Google Scholar]
  • 668.Mathieu MC, et al. Immunol Lett. 2005;100:139–145. doi: 10.1016/j.imlet.2005.03.003. [PMID: 16154494 ] [DOI] [PubMed] [Google Scholar]
  • 669.Okinaga S, et al. Biochemistry. 2003;42:9406–9415. doi: 10.1021/bi034489v. [PMID: 12899627 ] [DOI] [PubMed] [Google Scholar]
  • 670.Postma B, et al. J Immunol. 2004;172:6994–7001. doi: 10.4049/jimmunol.172.11.6994. [PMID: 15153520 ] [DOI] [PubMed] [Google Scholar]
  • 671.Scola AM, et al. Mol Immunol. 2009;46:1149–1162. doi: 10.1016/j.molimm.2008.11.001. [PMID: 19100624 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 672.Sumichika H, et al. J Biol Chem. 2002;277:49403–49407. doi: 10.1074/jbc.M209672200. [PMID: 12384495 ] [DOI] [PubMed] [Google Scholar]
  • 673.Van Lith LH, et al. J Biomol Screen. 2009;14:1067–1075. doi: 10.1177/1087057109341407. [PMID: 19641221 ] [DOI] [PubMed] [Google Scholar]
  • 674.Wong AK, et al. J Med Chem. 1998;41:3417–3425. doi: 10.1021/jm9800651. [PMID: 9719594 ] [DOI] [PubMed] [Google Scholar]
  • 675.Yamamoto T. Pathol Int. 2000;50:863–871. doi: 10.1046/j.1440-1827.2000.01132.x. [PMID: 11107061 ] [DOI] [PubMed] [Google Scholar]
  • 676.Chaki S, et al. Eur J Pharmacol. 1999;371:205–211. doi: 10.1016/s0014-2999(99)00120-x. [PMID: 10357258 ] [DOI] [PubMed] [Google Scholar]
  • 677.Chen C, et al. J Med Chem. 1996;39:4358–4360. doi: 10.1021/jm960149e. [PMID: 8893829 ] [DOI] [PubMed] [Google Scholar]
  • 678.Chen YL, et al. J Med Chem. 2008;51:1385–1392. doi: 10.1021/jm070579c. [PMID: 18288792 ] [DOI] [PubMed] [Google Scholar]
  • 679.Dautzenberg FM, et al. Biochem Pharmacol. 2004;68:1833–1844. doi: 10.1016/j.bcp.2004.07.013. [PMID: 15450949 ] [DOI] [PubMed] [Google Scholar]
  • 680.Dautzenberg FM, et al. J Pharmacol Exp Ther. 2001;296:113–120. [PMID: 11123370 ] [PubMed] [Google Scholar]
  • 681.Gully D, et al. J Pharmacol Exp Ther. 2002;301:322–332. doi: 10.1124/jpet.301.1.322. [PMID: 11907190 ] [DOI] [PubMed] [Google Scholar]
  • 682.Hauger RL, et al. Pharmacol Rev. 2003;55:21–26. doi: 10.1124/pr.55.1.3. [PMID: 12615952 ] [DOI] [PubMed] [Google Scholar]
  • 683.He L, et al. J Med Chem. 2000;43:449–456. doi: 10.1021/jm9904351. [PMID: 10669572 ] [DOI] [PubMed] [Google Scholar]
  • 684.Lawrence AJ, et al. Br J Pharmacol. 2002;136:896–904. doi: 10.1038/sj.bjp.0704783. [PMID: 12110614 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 685.Lundkvist J, et al. Eur J Pharmacol. 1996;309:195–200. doi: 10.1016/0014-2999(96)00337-8. [PMID: 8874139 ] [DOI] [PubMed] [Google Scholar]
  • 686.Perkins AV, et al. J Endocrinol. 1995;146:395–401. doi: 10.1677/joe.0.1460395. [PMID: 7595134 ] [DOI] [PubMed] [Google Scholar]
  • 687.Rühmann A, et al. Peptides. 2002;23:453–460. doi: 10.1016/s0196-9781(01)00640-4. [PMID: 11835994 ] [DOI] [PubMed] [Google Scholar]
  • 688.Webster EL, et al. Endocrinology. 1996;137:5747–5750. doi: 10.1210/endo.137.12.8940412. [PMID: 8940412 ] [DOI] [PubMed] [Google Scholar]
  • 689.Zobel AW, et al. J Psychiatr Res. 2000;34:171–181. doi: 10.1016/s0022-3956(00)00016-9. [PMID: 10867111 ] [DOI] [PubMed] [Google Scholar]
  • 690.Akunne HC, et al. Life Sci. 1995;57:1401–1410. doi: 10.1016/0024-3205(95)02102-o. [PMID: 7674830 ] [DOI] [PubMed] [Google Scholar]
  • 691.Andersen PH, Jansen JA. Eur J Pharmacol. 1990;188:335–347. doi: 10.1016/0922-4106(90)90194-3. [PMID: 1973652 ] [DOI] [PubMed] [Google Scholar]
  • 692.Bunzow JR, et al. Nature. 1988;336:783–787. doi: 10.1038/336783a0. [PMID: 2974511 ] [DOI] [PubMed] [Google Scholar]
  • 693.Burris KD, et al. Neuropsychopharmacology. 1995;12:335–345. doi: 10.1016/0893-133X(94)00099-L. [PMID: 7576010 ] [DOI] [PubMed] [Google Scholar]
  • 694.Dearry A, et al. Nature. 1990;347:72–76. doi: 10.1038/347072a0. [PMID: 2144334 ] [DOI] [PubMed] [Google Scholar]
  • 695.Freedman SB, et al. J Pharmacol Exp Ther. 1994;268:417–426. [PMID: 8301582 ] [PubMed] [Google Scholar]
  • 696.Grundt P, et al. Bioorg Med Chem Lett. 2007;17:745–749. doi: 10.1016/j.bmcl.2006.10.076. [PMID: 17095222 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 697.Grundt P, et al. J Med Chem. 2007;50:4135–4146. doi: 10.1021/jm0704200. [PMID: 17672446 ] [DOI] [PubMed] [Google Scholar]
  • 698.Hidaka K, et al. Neurosci Lett. 1995;186:145–148. doi: 10.1016/0304-3940(95)11306-h. [PMID: 7777184 ] [DOI] [PubMed] [Google Scholar]
  • 699.Hoare SR, et al. Br J Pharmacol. 2000;130:1045–1059. doi: 10.1038/sj.bjp.0703370. [PMID: 10882389 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 700.Kortagere S, et al. Mol Pharmacol. 2004;66:1491–1499. doi: 10.1124/mol.104.001321. [PMID: 15448188 ] [DOI] [PubMed] [Google Scholar]
  • 701.Kulagowski JJ, et al. J Med Chem. 1996;39:1941–1942. doi: 10.1021/jm9600712. [PMID: 8642550 ] [DOI] [PubMed] [Google Scholar]
  • 702.Köhler C, et al. Biochem Pharmacol. 1985;34:2251–2259. doi: 10.1016/0006-2952(85)90778-6. [PMID: 4015674 ] [DOI] [PubMed] [Google Scholar]
  • 703.Lahti RA, et al. Eur J Pharmacol. 1993;236:483–486. doi: 10.1016/0014-2999(93)90488-4. [PMID: 8102973 ] [DOI] [PubMed] [Google Scholar]
  • 704.MacKenzie RG, et al. Eur J Pharmacol. 1994;266:79–85. doi: 10.1016/0922-4106(94)90212-7. [PMID: 7907989 ] [DOI] [PubMed] [Google Scholar]
  • 705.McCall RB, et al. J Pharmacol Exp Ther. 2005;314:1248–1256. doi: 10.1124/jpet.105.084202. [PMID: 15980060 ] [DOI] [PubMed] [Google Scholar]
  • 706.Mierau J, et al. Eur J Pharmacol. 1995;290:29–36. doi: 10.1016/0922-4106(95)90013-6. [PMID: 7664822 ] [DOI] [PubMed] [Google Scholar]
  • 707.Millan MJ, et al. Eur J Pharmacol. 1994;260:R3–R5. doi: 10.1016/0014-2999(94)90353-0. [PMID: 7988633 ] [DOI] [PubMed] [Google Scholar]
  • 708.Millan MJ, et al. J Pharmacol Exp Ther. 2000;293:1048–1062. [PMID: 10869410 ] [PubMed] [Google Scholar]
  • 709.Millan MJ, et al. J Pharmacol Exp Ther. 2002;303:791–804. doi: 10.1124/jpet.102.039867. [PMID: 12388666 ] [DOI] [PubMed] [Google Scholar]
  • 710.Millan MJ, et al. J Pharmacol Exp Ther. 1995;275:885–898. [PMID: 7473180 ] [PubMed] [Google Scholar]
  • 711.Moreland RB, et al. Pharmacol Biochem Behav. 2005;82:140–147. doi: 10.1016/j.pbb.2005.08.001. [PMID: 16153699 ] [DOI] [PubMed] [Google Scholar]
  • 712.Nergårdh R, et al. Pharmacol Biochem Behav. 2005;82:495–505. doi: 10.1016/j.pbb.2005.09.017. [PMID: 16318870 ] [DOI] [PubMed] [Google Scholar]
  • 713.Patel S, et al. Mol Pharmacol. 1996;50:1658–1664. [PMID: 8967990 ] [PubMed] [Google Scholar]
  • 714.Primus RJ, et al. J Pharmacol Exp Ther. 1997;282:1020–1027. [PMID: 9262371 ] [PubMed] [Google Scholar]
  • 715.Pugsley TA, et al. J Pharmacol Exp Ther. 1995;275:1355–1366. [PMID: 8531103 ] [PubMed] [Google Scholar]
  • 716.Reavill C, et al. J Pharmacol Exp Ther. 2000;294:1154–1165. [PMID: 10945872 ] [PubMed] [Google Scholar]
  • 717.Ricci A, Amenta F. J Neuroimmunol. 1994;53:1–7. doi: 10.1016/0165-5728(94)90057-4. [PMID: 8051291 ] [DOI] [PubMed] [Google Scholar]
  • 718.Ricci A, et al. J Neuroimmunol. 1995;58:139–144. doi: 10.1016/0165-5728(95)00004-l. [PMID: 7759603 ] [DOI] [PubMed] [Google Scholar]
  • 719.Rowley M, et al. J Med Chem. 1996;39:1943–1945. doi: 10.1021/jm960072u. [PMID: 8642551 ] [DOI] [PubMed] [Google Scholar]
  • 720.Sautel F, et al. Neuroreport. 1995;6:329–332. doi: 10.1097/00001756-199501000-00026. [PMID: 7756621 ] [DOI] [PubMed] [Google Scholar]
  • 721.Sautel F, et al. J Pharmacol Exp Ther. 1995;275:1239–1246. [PMID: 8531087 ] [PubMed] [Google Scholar]
  • 722.Schlachter SK, et al. Eur J Pharmacol. 1997;322:283–286. doi: 10.1016/s0014-2999(97)00013-7. [PMID: 9098699 ] [DOI] [PubMed] [Google Scholar]
  • 723.Schwartz JC. Dopamine receptors. In: Girdlestone D, et al., editors. The IUPHAR Compendium of Receptor Characterization and Classification Edited by IUPHAR media. 1998. pp. 141–151. [Google Scholar]
  • 724.Sokoloff P, et al. Eur J Pharmacol. 1992;225:331–337. doi: 10.1016/0922-4106(92)90107-7. [PMID: 1354163 ] [DOI] [PubMed] [Google Scholar]
  • 725.Sokoloff P, et al. Nature. 1990;347:146–151. doi: 10.1038/347146a0. [PMID: 1975644 ] [DOI] [PubMed] [Google Scholar]
  • 726.Sunahara RK, et al. Nature. 1991;350:614–619. doi: 10.1038/350614a0. [PMID: 1826762 ] [DOI] [PubMed] [Google Scholar]
  • 727.Tiberi M, Caron MG. J Biol Chem. 1994;269:27925–27931. [PMID: 7525564 ] [PubMed] [Google Scholar]
  • 728.Tice MA, et al. Pharmacol Biochem Behav. 1994;49:567–571. doi: 10.1016/0091-3057(94)90070-1. [PMID: 7862709 ] [DOI] [PubMed] [Google Scholar]
  • 729.Van Tol HHM, et al. Nature. 1991;350:610–614. doi: 10.1038/350610a0. [PMID: 1840645 ] [DOI] [PubMed] [Google Scholar]
  • 730.Xi ZX, Gardner EL. CNS Drug Rev. 2007;13:240–259. doi: 10.1111/j.1527-3458.2007.00013.x. [PMID: 17627675 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 731.Zhen J, et al. J Neurosci Methods. 2010;188:32–38. doi: 10.1016/j.jneumeth.2010.01.031. [PMID: 20122961 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 732.Zhou QZ, et al. Nature. 1990;347:76–86. [PMID: 2168520 ] [Google Scholar]
  • 733.Bolli MH, et al. J Med Chem. 2004;47:2776–2795. doi: 10.1021/jm031115r. [PMID: 15139756 ] [DOI] [PubMed] [Google Scholar]
  • 734.Breu V, et al. FEBS Lett. 1996;383:37–41. doi: 10.1016/0014-5793(96)00213-x. [PMID: 8612786 ] [DOI] [PubMed] [Google Scholar]
  • 735.Clozel M, et al. J Pharmacol Exp Ther. 1994;270:228–235. [PMID: 8035319 ] [PubMed] [Google Scholar]
  • 736.Davenport AP. Pharmacol Rev. 2002;54:219–226. doi: 10.1124/pr.54.2.219. [PMID: 12037137 ] [DOI] [PubMed] [Google Scholar]
  • 737.Davenport AP, et al. Br J Pharmacol. 1998;123:223–230. doi: 10.1038/sj.bjp.0701597. [PMID: 9489609 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 738.Davenport AP, et al. Br J Pharmacol. 1994;111:4–6. doi: 10.1111/j.1476-5381.1994.tb14015.x. [PMID: 8012722 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 739.Elliott JD, et al. J Med Chem. 1994;37:1553–1557. doi: 10.1021/jm00037a003. [PMID: 8201588 ] [DOI] [PubMed] [Google Scholar]
  • 740.Harland SP, et al. J Cardiovasc Pharmacol. 1995;26:S408–S411. [PMID: 8587429 ] [PubMed] [Google Scholar]
  • 741.Hatae N, et al. Mol Endocrinol. 2007;21:1192–1204. doi: 10.1210/me.2006-0343. [PMID: 17312275 ] [DOI] [PubMed] [Google Scholar]
  • 742.Ihara M, et al. Eur J Pharmacol. 1995;274:1–6. doi: 10.1016/0014-2999(94)00670-3. [PMID: 7768260 ] [DOI] [PubMed] [Google Scholar]
  • 743.Kuc RE, et al. J Cardiovasc Pharmacol. 1995;26:S373–S375. [PMID: 8587419 ] [PubMed] [Google Scholar]
  • 744.Maguire JJ, Davenport AP. Br J Pharmacol. 1995;115:191–197. doi: 10.1111/j.1476-5381.1995.tb16338.x. [PMID: 7647976 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 745.Maguire JJ, et al. J Pharmacol Exp Ther. 1997;280:1102–1108. [PMID: 9023329 ] [PubMed] [Google Scholar]
  • 746.Mizuguchi T, et al. Br J Pharmacol. 1997;120:1427–1430. doi: 10.1038/sj.bjp.0701054. [PMID: 9113361 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 747.Molenaar P, et al. Br J Pharmacol. 1992;107:637–639. doi: 10.1111/j.1476-5381.1992.tb14498.x. [PMID: 1472961 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 748.Nambi P, et al. J Pharmacol Exp Ther. 1994;268:202–207. [PMID: 8301559 ] [PubMed] [Google Scholar]
  • 749.Opgenorth TJ, et al. J Pharmacol Exp Ther. 1996;276:473–481. [PMID: 8632312 ] [PubMed] [Google Scholar]
  • 750.Peter MG, Davenport AP. Br J Pharmacol. 1996;117:455–462. doi: 10.1111/j.1476-5381.1996.tb15212.x. [PMID: 7881728 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 751.Reynolds EE, et al. Biochem Biophys Res Commun. 1995;209:506–512. doi: 10.1006/bbrc.1995.1530. [PMID: 7733918 ] [DOI] [PubMed] [Google Scholar]
  • 752.Russell FD, Davenport AP. Br J Pharmacol. 1996;119:631–636. doi: 10.1111/j.1476-5381.1996.tb15720.x. [PMID: 8904635 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 753.von Geldern TW, et al. J Med Chem. 1999;42:3668–3678. doi: 10.1021/jm990170q. [PMID: 10479298 ] [DOI] [PubMed] [Google Scholar]
  • 754.Watakabe T, et al. Biochem Biophys Res Commun. 1992;185:867–873. doi: 10.1016/0006-291x(92)91707-w. [PMID: 1320877 ] [DOI] [PubMed] [Google Scholar]
  • 755.Watanabe T, et al. Br J Pharmacol. 1995;114:949–954. doi: 10.1111/j.1476-5381.1995.tb13296.x. [PMID: 7780649 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 756.Aronica SM, et al. Proc Natl Acad Sci USA. 1994;91:8517–8521. doi: 10.1073/pnas.91.18.8517. [PMID: 8078914 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 757.Bologa CG, et al. Nat Chem Biol. 2006;2:207–212. doi: 10.1038/nchembio775. [PMID: 16520733 ] [DOI] [PubMed] [Google Scholar]
  • 758.Carmeci C, et al. Genomics. 1997;45:607–617. doi: 10.1006/geno.1997.4972. [PMID: 9367686 ] [DOI] [PubMed] [Google Scholar]
  • 759.Dennis MK, et al. Nat Chem Biol. 2009;5:421–427. doi: 10.1038/nchembio.168. [PMID: 19430488 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 760.Dennis MK, et al. J Steroid Biochem Mol Biol. 2011;127:358–366. doi: 10.1016/j.jsbmb.2011.07.002. [PMID: 21782022 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 761.Filardo EJ, et al. Mol Endocrinol. 2000;14:1649–1660. doi: 10.1210/mend.14.10.0532. [PMID: 11043579 ] [DOI] [PubMed] [Google Scholar]
  • 762.Maggiolini M, et al. J Biol Chem. 2004;279:27008–27016. doi: 10.1074/jbc.M403588200. [PMID: 15090535 ] [DOI] [PubMed] [Google Scholar]
  • 763.Revankar CM, et al. Science. 2005;307:1625–1630. doi: 10.1126/science.1106943. [PMID: 15705806 ] [DOI] [PubMed] [Google Scholar]
  • 764.Thomas P, et al. Endocrinology. 2005;146:624–632. doi: 10.1210/en.2004-1064. [PMID: 15539556 ] [DOI] [PubMed] [Google Scholar]
  • 765.Clish CB, et al. Proc Natl Acad Sci USA. 1999;96:8247–8252. doi: 10.1073/pnas.96.14.8247. [PMID: 10393980 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 766.Fiore S, et al. J Exp Med. 1994;180:253–260. doi: 10.1084/jem.180.1.253. [PMID: 8006586 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 767.Fiore S, et al. J Biol Chem. 1992;267:16168–16176. [PMID: 1322894 ] [PubMed] [Google Scholar]
  • 768.Fiore S, Serhan CN. Biochemistry. 1995;34:16678–16686. doi: 10.1021/bi00051a016. [PMID: 8527441 ] [DOI] [PubMed] [Google Scholar]
  • 769.Freer RJ, et al. Biochemistry. 1980;19:2404–2410. doi: 10.1021/bi00552a019. [PMID: 7387981 ] [DOI] [PubMed] [Google Scholar]
  • 770.Gronert K, et al. Am J Pathol. 2001;158:3–9. doi: 10.1016/S0002-9440(10)63937-5. [PMID: 11141472 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 771.Guilford WJ, et al. J Med Chem. 2004;47:2157–2165. doi: 10.1021/jm030569l. [PMID: 15056011 ] [DOI] [PubMed] [Google Scholar]
  • 772.Hanson J, et al. Biochem Pharmacol. 2013;85:1795–1802. doi: 10.1016/j.bcp.2013.04.019. [PMID: 23643932 ] [DOI] [PubMed] [Google Scholar]
  • 773.He HQ, et al. Mol Pharmacol. 2013;83:389–398. doi: 10.1124/mol.112.081315. [PMID: 23160941 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 774.Koo C, et al. Biochem Biophys Res Commun. 1982;106:442–449. doi: 10.1016/0006-291x(82)91130-5. [PMID: 6285921 ] [DOI] [PubMed] [Google Scholar]
  • 775.Krishnamoorthy S, et al. Proc Natl Acad Sci USA. 2010;107:1660–1665. doi: 10.1073/pnas.0907342107. [PMID: 20080636 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 776.Le Y, et al. Trends Immunol. 2002;23:541–548. doi: 10.1016/s1471-4906(02)02316-5. [PMID: 12401407 ] [DOI] [PubMed] [Google Scholar]
  • 777.Liang TS, et al. J Immunol. 2001;167:6609–6614. doi: 10.4049/jimmunol.167.11.6609. [PMID: 11714831 ] [DOI] [PubMed] [Google Scholar]
  • 778.Maddox JF, et al. J Biol Chem. 1997;272:6972–6978. doi: 10.1074/jbc.272.11.6972. [PMID: 9054386 ] [DOI] [PubMed] [Google Scholar]
  • 779.Migeotte I, et al. J Exp Med. 2005;201:83–93. doi: 10.1084/jem.20041277. [PMID: 15623572 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 780.Murphy PM, et al. J Biol Chem. 1992;267:7637–7643. [PMID: 1373134 ] [PubMed] [Google Scholar]
  • 781.Planagumà A, et al. Clin Exp Immunol. 2013;173:298–309. doi: 10.1111/cei.12110. [PMID: 23607720 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 782.Showell HJ, et al. J Exp Med. 1976;143:1154–1169. doi: 10.1084/jem.143.5.1154. [PMID: 1262785 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 783.Sun R, et al. J Immunology. 2004;173:428–436. doi: 10.4049/jimmunol.173.1.428. [PMID: 15210802 ] [DOI] [PubMed] [Google Scholar]
  • 784.Takano T, et al. J Exp Med. 1997;185:1693–1704. doi: 10.1084/jem.185.9.1693. [PMID: 9151906 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 785.Wenzel-Seifert K, Seifert R. J Immunol. 1993;150:4591–4599. [PMID: 8387097 ] [PubMed] [Google Scholar]
  • 786.Yan P, et al. J Immunology. 2006;177:7050–7058. doi: 10.4049/jimmunol.177.10.7050. [PMID: 17082621 ] [DOI] [PubMed] [Google Scholar]
  • 787.Ye RD, et al. Pharmacol Rev. 2009;61:119–161. doi: 10.1124/pr.109.001578. [PMID: 19498085 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 788.Briscoe CP, et al. Br J Pharmacol. 2006;148:619–628. doi: 10.1038/sj.bjp.0706770. [PMID: 16702987 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 789.Briscoe CP, et al. J Biol Chem. 2003;278:11303–11311. doi: 10.1074/jbc.M211495200. [PMID: 12496284 ] [DOI] [PubMed] [Google Scholar]
  • 790.Brown AJ, et al. J Biol Chem. 2003;278:11312–11319. doi: 10.1074/jbc.M211609200. [PMID: 12496283 ] [DOI] [PubMed] [Google Scholar]
  • 791.Christiansen E, et al. ACS Med Chem Lett. 2013;4:441–445. doi: 10.1021/ml4000673. [PMID: 23687558 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 792.Davenport AP, et al. Pharmacol Rev. 2013;65:967–986. doi: 10.1124/pr.112.007179. [PMID: 23686350 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 793.Hirasawa A, et al. Nat Med. 2005;11:90–94. doi: 10.1038/nm1168. [PMID: 15619630 ] [DOI] [PubMed] [Google Scholar]
  • 794.Hudson BD, et al. J Biol Chem. 2013;288:17296–17312. doi: 10.1074/jbc.M113.455337. [PMID: 23589301 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 795.Hudson BD, et al. J Biol Chem. 2012;287:41195–41209. doi: 10.1074/jbc.M112.396259. [PMID: 23066016 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 796.Ichimura A, et al. Nature. 2012;483:350–354. doi: 10.1038/nature10798. [PMID: 22343897 ] [DOI] [PubMed] [Google Scholar]
  • 797.Itoh Y, et al. Nature. 2003;422:173–176. doi: 10.1038/nature01478. [PMID: 12629551 ] [DOI] [PubMed] [Google Scholar]
  • 798.Kimura I, et al. Proc Natl Acad Sci USA. 2011;108:8030–8035. doi: 10.1073/pnas.1016088108. [PMID: 21518883 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 799.Kotarsky K, et al. Biochem Biophys Res Commun. 2003;301:406–410. doi: 10.1016/s0006-291x(02)03064-4. [PMID: 12565875 ] [DOI] [PubMed] [Google Scholar]
  • 800.Kotarsky K, et al. Pharmacol Toxicol. 2003;93:249–258. doi: 10.1111/j.1600-0773.2003.pto930601.x. [PMID: 14675457 ] [DOI] [PubMed] [Google Scholar]
  • 801.Le Poul E, et al. J Biol Chem. Vol. 278. 2003. pp. 25481–25489. [PMID: 12711604 ] [DOI] [PubMed] [Google Scholar]
  • 802.Lee T, et al. Mol Pharmacol. 2008;74:1599–1609. doi: 10.1124/mol.108.049536. [PMID: 18818303 ] [DOI] [PubMed] [Google Scholar]
  • 803.Liaw CW, Connolly DT. DNA Cell Biol. 2009;28:555–560. doi: 10.1089/dna.2009.0916. [PMID: 19630535 ] [DOI] [PubMed] [Google Scholar]
  • 804.Lin DC, et al. Mol Pharmacol. 2012;82:843–859. doi: 10.1124/mol.112.079640. [PMID: 22859723 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 805.Moore K, et al. Comp Biochem Physiol B, Biochem Mol Biol. 2009;154:419–426. doi: 10.1016/j.cbpb.2009.08.005. [PMID: 19723586 ] [DOI] [PubMed] [Google Scholar]
  • 806.Nilsson NE, et al. Biochem Biophys Res Commun. 2003;303:1047–1052. doi: 10.1016/s0006-291x(03)00488-1. [PMID: 12684041 ] [DOI] [PubMed] [Google Scholar]
  • 807.Oh DY, et al. Cell. 2010;142:687–698. doi: 10.1016/j.cell.2010.07.041. [PMID: 20813258 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 808.Schmidt J, et al. J Biol Chem. 2011;286:10628–10640. doi: 10.1074/jbc.M110.210872. [PMID: 21220428 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 809.Schröder R, et al. Nat Biotechnol. 2010;28:943–949. doi: 10.1038/nbt.1671. [PMID: 20711173 ] [DOI] [PubMed] [Google Scholar]
  • 810.Shimpukade B, et al. J Med Chem. 2012;55:4511–4515. doi: 10.1021/jm300215x. [PMID: 22519963 ] [DOI] [PubMed] [Google Scholar]
  • 811.Smith NJ, et al. J Biol Chem. 2009;284:17527–17539. doi: 10.1074/jbc.M109.012849. [PMID: 19398560 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 812.Smith NJ, et al. Mol Pharmacol. 2011;80:163–173. doi: 10.1124/mol.110.070789. [PMID: 21498659 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 813.Stoddart LA, et al. Mol Pharmacol. 2007;71:994–1005. doi: 10.1124/mol.106.031534. [PMID: 17200419 ] [DOI] [PubMed] [Google Scholar]
  • 814.Stoddart LA, et al. Pharmacol Rev. 2008;60:405–417. doi: 10.1124/pr.108.00802. [PMID: 19047536 ] [DOI] [PubMed] [Google Scholar]
  • 815.Sun Q, et al. Mol Pharmacol. 2010;78:804–810. doi: 10.1124/mol.110.066324. [PMID: 20685848 ] [DOI] [PubMed] [Google Scholar]
  • 816.Suzuki T, et al. J Med Chem. 2008;51:7640–7644. doi: 10.1021/jm800970b. [PMID: 19007110 ] [DOI] [PubMed] [Google Scholar]
  • 817.Tsujihata Y, et al. J Pharmacol Exp Ther. 2011;339:228–237. doi: 10.1124/jpet.111.183772. [PMID: 21752941 ] [DOI] [PubMed] [Google Scholar]
  • 818.Wang J, et al. J Biol Chem. 2006;281:34457–34464. doi: 10.1074/jbc.M608019200. [PMID: 16966319 ] [DOI] [PubMed] [Google Scholar]
  • 819.Watson SJ, et al. Mol Pharmacol. 2012;81:631–642. doi: 10.1124/mol.111.077388. [PMID: 22282525 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 820.Xiong Y, et al. Proc Natl Acad Sci U S A. 2004;101:1045–1050. doi: 10.1073/pnas.2637002100. [PMID: 14722361 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 821.Xiong Y, et al. Mol Cell Endocrinol. 2013;369:119–129. doi: 10.1016/j.mce.2013.01.009. [PMID: 23403053 ] [DOI] [PubMed] [Google Scholar]
  • 822.Ahumada A, et al. Science. 2002;298:2006–2010. doi: 10.1126/science.1073776. [PMID: 12471263 ] [DOI] [PubMed] [Google Scholar]
  • 823.Bryja V, et al. Proc Natl Acad Sci USA. 2007;104:6690–6695. doi: 10.1073/pnas.0611356104. [PMID: 17426148 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 824.Bryja V, et al. EMBO Rep. 2008;9:1244–1250. doi: 10.1038/embor.2008.193. [PMID: 18953287 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 825.Chan SD, et al. J Biol Chem. 1992;267:25202–25207. [PMID: 1334084 ] [PubMed] [Google Scholar]
  • 826.Chen W, et al. Science. 2003;301:1394–1397. doi: 10.1126/science.1083195. [PMID: 12958365 ] [DOI] [PubMed] [Google Scholar]
  • 827.Dijksterhuis JP, et al. Br J Pharmacol. 2013. [PMID: 24032637 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 828.Hansen C, et al. J Biol Chem. 2009;284:27533–27543. doi: 10.1074/jbc.M109.048884. [PMID: 19651774 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 829.Kikuchi A, et al. Trends Cell Biol. 2009;19:119–129. doi: 10.1016/j.tcb.2009.01.003. [PMID: 19208479 ] [DOI] [PubMed] [Google Scholar]
  • 830.Kilander MB, et al. Cell Signal. 2011;23:550–554. doi: 10.1016/j.cellsig.2010.11.004. [PMID: 21070854 ] [DOI] [PubMed] [Google Scholar]
  • 831.Kim GH, Han JK. EMBO J. 2007;26:2513–2526. doi: 10.1038/sj.emboj.7601688. [PMID: 17476309 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 832.Schulte G. Pharmacol Rev. 2010;62:632–667. doi: 10.1124/pr.110.002931. [PMID: 21079039 ] [DOI] [PubMed] [Google Scholar]
  • 833.Slusarski DC, et al. Nature. 1997;390:410–413. doi: 10.1038/37138. [PMID: 9389482 ] [DOI] [PubMed] [Google Scholar]
  • 834.Adams CL, Lawrence AJ. CNS Drug Rev. 2007;13:308–316. doi: 10.1111/j.1527-3458.2007.00021.x. [PMID: 17894647 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 835.Bartoi T, et al. J Biol Chem. 2010;285:20625–20633. doi: 10.1074/jbc.M109.049700. [PMID: 20406808 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 836.Belley M, et al. Bioorg Med Chem. 1999;7:2697–2704. doi: 10.1016/s0968-0896(99)00214-x. [PMID: 10658574 ] [DOI] [PubMed] [Google Scholar]
  • 837.Bettler B, et al. Physiol Rev. 2004;84:835–867. doi: 10.1152/physrev.00036.2003. [PMID: 15269338 ] [DOI] [PubMed] [Google Scholar]
  • 838.Binet V, et al. J Biol Chem. 2004;279:29085–29091. doi: 10.1074/jbc.M400930200. [PMID: 15126507 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 839.Bowery NG, et al. Pharmacol Rev. 2002;54:247–264. doi: 10.1124/pr.54.2.247. [PMID: 12037141 ] [DOI] [PubMed] [Google Scholar]
  • 840.Bowery NG, Enna SJ. J Pharmacol Exp Ther. 2000;292:2–7. [PMID: 10604925 ] [PubMed] [Google Scholar]
  • 841.Comps-Agrar L, et al. EMBO J. 2011;30:2336–2349. doi: 10.1038/emboj.2011.143. [PMID: 21552208 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 842.Dupuis DS, et al. Mol Pharmacol. 2006;70:2027–2036. doi: 10.1124/mol.106.028183. [PMID: 16966477 ] [DOI] [PubMed] [Google Scholar]
  • 843.Emson PC. Prog Brain Res. 2007;160:43–57. doi: 10.1016/S0079-6123(06)60004-6. [PMID: 17499108 ] [DOI] [PubMed] [Google Scholar]
  • 844.Enna SJ, Bowery NG. Biochem Pharmacol. 2004;68:1541–1548. doi: 10.1016/j.bcp.2004.06.037. [PMID: 15451397 ] [DOI] [PubMed] [Google Scholar]
  • 845.Froestl W. Future Med Chem. 2011;3:163–175. doi: 10.4155/fmc.10.285. [PMID: 21428811 ] [DOI] [PubMed] [Google Scholar]
  • 846.Froestl W, Mickel SJ. Chemistry of GABAB modulators. In: Enna SJ, Bowery NG, editors. The GABA Receptors Edited by Humana Press. 1997. pp. 271–296. [ISBN: 0896034585 ] [Google Scholar]
  • 847.Galvez T, et al. Mol Pharmacol. 2000;57:419–426. doi: 10.1124/mol.57.3.419. [PMID: 10692480 ] [DOI] [PubMed] [Google Scholar]
  • 848.Gassmann M, et al. J Neurosci. 2004;24:6086–6097. doi: 10.1523/JNEUROSCI.5635-03.2004. [PMID: 15240800 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 849.Geng Y, et al. Nat Neurosci. 2012;15:970–978. doi: 10.1038/nn.3133. [PMID: 22660477 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 850.Hannan S, et al. J Biol Chem. 2011;286:24324–24335. doi: 10.1074/jbc.M110.220814. [PMID: 21724853 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 851.Hirst WD, et al. Biochem Pharmacol. 2003;65:1103–1113. doi: 10.1016/s0006-2952(02)01658-1. [PMID: 12663046 ] [DOI] [PubMed] [Google Scholar]
  • 852.Jones KA, et al. Nature. 1998;396:674–679. doi: 10.1038/25348. [PMID: 9872315 ] [DOI] [PubMed] [Google Scholar]
  • 853.Kaupmann K, et al. Nature. 1997;386:239–246. doi: 10.1038/386239a0. [PMID: 9069281 ] [DOI] [PubMed] [Google Scholar]
  • 854.Keir MJ, et al. Brain Res Mol Brain Res. 1999;71:279–289. doi: 10.1016/s0169-328x(99)00199-0. [PMID: 10521582 ] [DOI] [PubMed] [Google Scholar]
  • 855.Kubo Y, Tateyama M. Curr Opin Neurobiol. 2005;15:289–295. doi: 10.1016/j.conb.2005.05.011. [PMID: 15922585 ] [DOI] [PubMed] [Google Scholar]
  • 856.Lee C, et al. PLoS ONE. 2010;5:e14044–PMID. doi: 10.1371/journal.pone.0014044. 21124972 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 857.Monnier C, et al. EMBO J. 2011;30:32–42. doi: 10.1038/emboj.2010.270. [PMID: 21063387 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 858.Pin JP, et al. J Physiol (Lond) (Pt 22) 2009;587:5337–5344. doi: 10.1113/jphysiol.2009.179978. [PMID: 19723778 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 859.Pin JP, et al. Biochem Pharmacol. 2004;68:1565–1572. doi: 10.1016/j.bcp.2004.06.035. [PMID: 15451400 ] [DOI] [PubMed] [Google Scholar]
  • 860.Pin JP, et al. Pharmacol Rev. 2007;59:5–13. doi: 10.1124/pr.59.1.5. [PMID: 17329545 ] [DOI] [PubMed] [Google Scholar]
  • 861.Pinard A, et al. Adv Pharmacol. 2010;58:231–255. doi: 10.1016/S1054-3589(10)58010-4. [PMID: 20655485 ] [DOI] [PubMed] [Google Scholar]
  • 862.Pérez-Garci E, et al. Neuron. 2006;50:603–616. doi: 10.1016/j.neuron.2006.04.019. [PMID: 16701210 ] [DOI] [PubMed] [Google Scholar]
  • 863.Rives ML, et al. EMBO J. 2009;28:2195–2208. doi: 10.1038/emboj.2009.177. [PMID: 19590495 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 864.Schwenk J, et al. Nature. 2010;465:231–235. doi: 10.1038/nature08964. [PMID: 20400944 ] [DOI] [PubMed] [Google Scholar]
  • 865.Tabata T, et al. Proc Natl Acad Sci USA. 2004;101:16952–16957. doi: 10.1073/pnas.0405387101. [PMID: 15550547 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 866.Ulrich D, Bettler B. Curr Opin Neurobiol. 2007;17:298–303. doi: 10.1016/j.conb.2007.04.001. [PMID: 17433877 ] [DOI] [PubMed] [Google Scholar]
  • 867.Vacher CM, et al. J Neurochem. 2006;97:979–991. doi: 10.1111/j.1471-4159.2006.03806.x. [PMID: 16606363 ] [DOI] [PubMed] [Google Scholar]
  • 868.Vigot R, et al. Neuron. 2006;50:589–601. doi: 10.1016/j.neuron.2006.04.014. [PMID: 16701209 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 869.Wood MD, et al. Br J Pharmacol. 2000;131:1050–1054. doi: 10.1038/sj.bjp.0703682. [PMID: 11082110 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 870.Bartfai T, et al. Proc Natl Acad Sci USA. 1991;88:10961–10965. doi: 10.1073/pnas.88.23.10961. [PMID: 1720557 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 871.Bartfai T, et al. Proc Natl Acad Sci USA. 1993;90:11287–11291. doi: 10.1073/pnas.90.23.11287. [PMID: 7504301 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 872.Bersani M, et al. FEBS Lett. 1991;283:189–194. doi: 10.1016/0014-5793(91)80585-q. [PMID: 1710578 ] [DOI] [PubMed] [Google Scholar]
  • 873.Bersani M, et al. Endocrinology. 1991;129:2693–2698. doi: 10.1210/endo-129-5-2693. [PMID: 1718731 ] [DOI] [PubMed] [Google Scholar]
  • 874.Evans HF, Shine J. Endocrinology. 1991;129:1682–1684. doi: 10.1210/endo-129-3-1682. [PMID: 1714839 ] [DOI] [PubMed] [Google Scholar]
  • 875.Fitzgerald LW, et al. J Pharmacol Exp Ther. 1998;287:448–456. [PMID: 9808667 ] [PubMed] [Google Scholar]
  • 876.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 877.Gu ZF, et al. J Pharmacol Exp Ther. 1995;272:371–378. [PMID: 7529309 ] [PubMed] [Google Scholar]
  • 878.Lang R, et al. Neuropeptides. 2005;39:179–184. doi: 10.1016/j.npep.2004.12.015. [PMID: 15944009 ] [DOI] [PubMed] [Google Scholar]
  • 879.Leibowitz SF, Kim T. Brain Res. 1992;599:148–152. doi: 10.1016/0006-8993(92)90863-5. [PMID: 1283559 ] [DOI] [PubMed] [Google Scholar]
  • 880.Lu X, et al. Neuropeptides. 2005;39:165–167. doi: 10.1016/j.npep.2004.12.013. [PMID: 15944007 ] [DOI] [PubMed] [Google Scholar]
  • 881.Ohtaki T, et al. J Biol Chem. 1999;274:37041–37045. doi: 10.1074/jbc.274.52.37041. [PMID: 10601261 ] [DOI] [PubMed] [Google Scholar]
  • 882.Pang L, et al. J Neurochem. 1998;71:2252–2259. doi: 10.1046/j.1471-4159.1998.71062252.x. [PMID: 9832122 ] [DOI] [PubMed] [Google Scholar]
  • 883.Saar I, et al. J Neurochem. 2013. [Epub ahead of print]. [PMID: 23600864 ] [Google Scholar]
  • 884.Scott MK, et al. Bioorg Med Chem. 2000;8:1383–1391. doi: 10.1016/s0968-0896(00)00062-6. [PMID: 10896115 ] [DOI] [PubMed] [Google Scholar]
  • 885.Sillard R, et al. Peptides. 1992;13:1055–1060. doi: 10.1016/0196-9781(92)90005-n. [PMID: 1283627 ] [DOI] [PubMed] [Google Scholar]
  • 886.Skofitsch G, et al. Peptides. 1986;7:1029–1042. doi: 10.1016/0196-9781(86)90133-6. [PMID: 2436195 ] [DOI] [PubMed] [Google Scholar]
  • 887.Smith KE, et al. J Biol Chem. 1997;272:24612–24616. doi: 10.1074/jbc.272.39.24612. [PMID: 9305929 ] [DOI] [PubMed] [Google Scholar]
  • 888.Smith KE, et al. J Biol Chem. 1998;273:23321–23326. doi: 10.1074/jbc.273.36.23321. [PMID: 9722565 ] [DOI] [PubMed] [Google Scholar]
  • 889.Sollenberg UE, et al. International Book of Peptide Research and Therapeutics. 2006;12:115–119. [Google Scholar]
  • 890.Ulman LG, et al. J Physiol (Lond) 1993;464:491–499. doi: 10.1113/jphysiol.1993.sp019647. [PMID: 7693918 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 891.Wang S, et al. FEBS Lett. 1998;434:277–282. doi: 10.1016/s0014-5793(98)00957-0. [PMID: 9742938 ] [DOI] [PubMed] [Google Scholar]
  • 892.Wang S, et al. Mol Pharmacol. 1997;52:337–343. doi: 10.1124/mol.52.3.337. [PMID: 9281594 ] [DOI] [PubMed] [Google Scholar]
  • 893.Wang S, et al. J Biol Chem. 1997;272:31949–31952. doi: 10.1074/jbc.272.51.31949. [PMID: 9405385 ] [DOI] [PubMed] [Google Scholar]
  • 894.Wiesenfeld-Hallin Z, et al. Proc Natl Acad Sci USA. 1992;89:3334–3337. doi: 10.1073/pnas.89.8.3334. [PMID: 1373497 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 895.Wynick D, et al. Proc Natl Acad Sci USA. 1993;90:4231–4235. doi: 10.1073/pnas.90.9.4231. [PMID: 7683428 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 896.Bedendi I, et al. Eur J Pharmacol. 2003;476:87–95. doi: 10.1016/s0014-2999(03)02083-1. [PMID: 12969753 ] [DOI] [PubMed] [Google Scholar]
  • 897.Bednarek MA, et al. J Med Chem. 2000;43:4370–4376. doi: 10.1021/jm0001727. [PMID: 11087562 ] [DOI] [PubMed] [Google Scholar]
  • 898.Davenport AP, et al. Pharmacol Rev. 2005;57:541–546. doi: 10.1124/pr.57.4.1. [PMID: 16382107 ] [DOI] [PubMed] [Google Scholar]
  • 899.Esler WP, et al. Endocrinology. 2007;148:5175–5185. doi: 10.1210/en.2007-0239. [PMID: 17656463 ] [DOI] [PubMed] [Google Scholar]
  • 900.Fraser GL, et al. Endocrinology. 2008;149:6280–6288. doi: 10.1210/en.2008-0804. [PMID: 18719021 ] [DOI] [PubMed] [Google Scholar]
  • 901.Holst B, et al. Mol Endocrinol. 2003;17:2201–2210. doi: 10.1210/me.2003-0069. [PMID: 12907757 ] [DOI] [PubMed] [Google Scholar]
  • 902.Holst B, et al. Mol Pharmacol. 2009;75:44–59. doi: 10.1124/mol.108.049189. [PMID: 18923064 ] [DOI] [PubMed] [Google Scholar]
  • 903.Holst B, et al. J Biol Chem. 2004;279:53806–53817. doi: 10.1074/jbc.M407676200. [PMID: 15383539 ] [DOI] [PubMed] [Google Scholar]
  • 904.Hosoda H, et al. J Biol Chem. 2000;275:21995–22000. doi: 10.1074/jbc.M002784200. [PMID: 10801861 ] [DOI] [PubMed] [Google Scholar]
  • 905.Katugampola SD, et al. Br J Pharmacol. 2001;134:143–149. doi: 10.1038/sj.bjp.0704228. [PMID: 11522606 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 906.Kojima M, et al. Nature. 1999;402:656–660. doi: 10.1038/45230. [PMID: 10604470 ] [DOI] [PubMed] [Google Scholar]
  • 907.Matsumoto M, et al. Biochem Biophys Res Commun. 2001;287:142–146. doi: 10.1006/bbrc.2001.5553. [PMID: 11549267 ] [DOI] [PubMed] [Google Scholar]
  • 908.Moulin A, et al. Amino Acids. 2013;44:301–314. doi: 10.1007/s00726-012-1355-2. [PMID: 22798076 ] [DOI] [PubMed] [Google Scholar]
  • 909.Muccioli G, et al. J Endocrinol Invest. 2001;24:RC7–RC9. doi: 10.1007/BF03343831. [PMID: 11314756 ] [DOI] [PubMed] [Google Scholar]
  • 910.Pantel J, et al. J Clin Invest. 2006;116:760–768. doi: 10.1172/JCI25303. [PMID: 16511605 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 911.Perdonà E, et al. Eur J Pharmacol. 2011;650:178–183. doi: 10.1016/j.ejphar.2010.10.042. [PMID: 21034740 ] [DOI] [PubMed] [Google Scholar]
  • 912.Sabbatini FM, et al. ChemMedChem. 2010;5:1450–1455. doi: 10.1002/cmdc.201000185. [PMID: 20593439 ] [DOI] [PubMed] [Google Scholar]
  • 913.Yang J, et al. Cell. 2008;132:387–396. doi: 10.1016/j.cell.2008.01.017. [PMID: 18267071 ] [DOI] [PubMed] [Google Scholar]
  • 914.Boulanger L, et al. Peptides. 2002;23:43–50. doi: 10.1016/s0196-9781(01)00577-0. [PMID: 11814616 ] [DOI] [PubMed] [Google Scholar]
  • 915.Cascieri MA, et al. J Biol Chem. 1999;274:8694–8697. doi: 10.1074/jbc.274.13.8694. [PMID: 10085108 ] [DOI] [PubMed] [Google Scholar]
  • 916.Chow BK. Biochem Biophys Res Commun. 1995;212:204–211. doi: 10.1006/bbrc.1995.1957. [PMID: 7612008 ] [DOI] [PubMed] [Google Scholar]
  • 917.Christopoulos A, et al. J Biol Chem. 2003;278:3293–3297. doi: 10.1074/jbc.C200629200. [PMID: 12446722 ] [DOI] [PubMed] [Google Scholar]
  • 918.Coy DH, Murphy WA. Ann NY Acad Sci. 1996;805:149–158. doi: 10.1111/j.1749-6632.1996.tb17480.x. [PMID: 8993400 ] [DOI] [PubMed] [Google Scholar]
  • 919.Dillon JS, et al. Endocrinology. 1993;133:1907–1910. doi: 10.1210/endo.133.4.8404634. [PMID: 8404634 ] [DOI] [PubMed] [Google Scholar]
  • 920.Gallwitz B, et al. Regul Pept. 1996;63:17–22. doi: 10.1016/0167-0115(96)00019-5. [PMID: 8795084 ] [DOI] [PubMed] [Google Scholar]
  • 921.Haffar BM, et al. J Biol Chem. 1991;266:316–322. [PMID: 1702423 ] [PubMed] [Google Scholar]
  • 922.Irwin DM. Regul Pept. 2001;98:1–12. doi: 10.1016/s0167-0115(00)00232-9. [PMID: 11179772 ] [DOI] [PubMed] [Google Scholar]
  • 923.Jorgensen R, et al. Mol Endocrinol. 2005;19:812–823. doi: 10.1210/me.2004-0312. [PMID: 15528268 ] [DOI] [PubMed] [Google Scholar]
  • 924.Kanashiro-Takeuchi RM, et al. Proc Natl Acad Sci USA. 2010;107:2604–2609. doi: 10.1073/pnas.0914138107. [PMID: 20133784 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 925.Madsen P, et al. J Med Chem. 1998;41:5150–5157. doi: 10.1021/jm9810304. [PMID: 9857085 ] [DOI] [PubMed] [Google Scholar]
  • 926.Mayo KE, et al. Pharmacol Rev. 2003;55:167–194. doi: 10.1124/pr.55.1.6. [PMID: 12615957 ] [DOI] [PubMed] [Google Scholar]
  • 927.Montrose-Rafizadeh C, et al. J Biol Chem. 1997;272:21201–21206. doi: 10.1074/jbc.272.34.21201. [PMID: 9261127 ] [DOI] [PubMed] [Google Scholar]
  • 928.Petersen KF, Sullivan JT. Diabetologia. 2001;44:2018–2024. doi: 10.1007/s001250100006. [PMID: 11719833 ] [DOI] [PubMed] [Google Scholar]
  • 929.Pohl SL, et al. Science. 1969;164:566–567. doi: 10.1126/science.164.3879.566. [PMID: 4305077 ] [DOI] [PubMed] [Google Scholar]
  • 930.Raufman JP, et al. J Biol Chem. 1991;266:2897–2902. [PMID: 1704369 ] [PubMed] [Google Scholar]
  • 931.Schally AV, Varga JL. Trends Endocrinol Metab. 1999;10:383–391. doi: 10.1016/s1043-2760(99)00209-x. [PMID: 10542394 ] [DOI] [PubMed] [Google Scholar]
  • 932.Thulesen J, et al. Regul Pept. 2002;103:9–15. doi: 10.1016/s0167-0115(01)00316-0. [PMID: 11738243 ] [DOI] [PubMed] [Google Scholar]
  • 933.Tibaduiza EC, et al. J Biol Chem. 2001;276:37787–37793. doi: 10.1074/jbc.M106692200. [PMID: 11498540 ] [DOI] [PubMed] [Google Scholar]
  • 934.Unson C, Merrifield RB. Proc Natl Acad Sci USA. 1987;84:4083–4087. doi: 10.1073/pnas.84.12.4083. [PMID: 3035568 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 935.Unson CG, et al. Peptides. 1989;10:1171–1177. doi: 10.1016/0196-9781(89)90010-7. [PMID: 2560175 ] [DOI] [PubMed] [Google Scholar]
  • 936.Varga JL, Rekasi Z. Proc Natl Acad Sci USA. 1999;96:692–697. doi: 10.1073/pnas.96.2.692. [PMID: 9892695 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 937.Varga JL, et al. Proc Natl Acad Sci U S A. 2004;101:1708–1713. doi: 10.1073/pnas.0307288101. [PMID: 14755056 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 938.Volz A, et al. FEBS Lett. 1995;373:23–29. doi: 10.1016/0014-5793(95)01006-z. [PMID: 7589426 ] [DOI] [PubMed] [Google Scholar]
  • 939.Aittomäki K, et al. Cell. 1995;82:959–968. doi: 10.1016/0092-8674(95)90275-9. [PMID: 7553856 ] [DOI] [PubMed] [Google Scholar]
  • 940.Beau I, et al. J Clin Invest. 1998;102:1352–1359. doi: 10.1172/JCI3795. [PMID: 9769327 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 941.Gromoll J, et al. J Clin Endocrinol Metab. 1996;81:1367–1370. doi: 10.1210/jcem.81.4.8636335. [PMID: 8636335 ] [DOI] [PubMed] [Google Scholar]
  • 942.Jia XC, et al. Mol Endocrinol. 1991;5:759–768. doi: 10.1210/mend-5-6-759. [PMID: 1922095 ] [DOI] [PubMed] [Google Scholar]
  • 943.Kopp P, et al. N Engl J Med. 1995;332:150–154. doi: 10.1056/NEJM199501193320304. [PMID: 7800007 ] [DOI] [PubMed] [Google Scholar]
  • 944.Latronico AC, Segaloff DL. Am J Hum Genet. 1999;65:949–958. doi: 10.1086/302602. [PMID: 10486313 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 945.Liu G, et al. N Engl J Med. 1999;341:1731–1736. doi: 10.1056/NEJM199912023412304. [PMID: 10580072 ] [DOI] [PubMed] [Google Scholar]
  • 946.Müller T, et al. J Clin Endocrinol Metab. 2003;88:2242–2249. doi: 10.1210/jc.2002-021946. [PMID: 12727981 ] [DOI] [PubMed] [Google Scholar]
  • 947.Parma J, et al. Nature. 1993;365:649–651. doi: 10.1038/365649a0. [PMID: 8413627 ] [DOI] [PubMed] [Google Scholar]
  • 948.Quintana J, et al. J Biol Chem. 1994;269:8772–8779. [PMID: 8132609 ] [PubMed] [Google Scholar]
  • 949.Rapoport B, et al. Endocr Rev. 1998;19:673–716. doi: 10.1210/edrv.19.6.0352. [PMID: 9861544 ] [DOI] [PubMed] [Google Scholar]
  • 950.Sairam MR. FASEB J. 1989;3:1915–1926. doi: 10.1096/fasebj.3.8.2542111. [PMID: 2542111 ] [DOI] [PubMed] [Google Scholar]
  • 951.Shenker A. Receptors Channels. 2002;8:3–18. [PMID: 12408104 ] [PubMed] [Google Scholar]
  • 952.Sunthornthepvarakui T, et al. N Engl J Med. 1995;332:155–160. doi: 10.1056/NEJM199501193320305. [PMID: 7528344 ] [DOI] [PubMed] [Google Scholar]
  • 953.Touraine P, et al. Mol Endocrinol. 1999;13:1844–1854. doi: 10.1210/mend.13.11.0370. [PMID: 10551778 ] [DOI] [PubMed] [Google Scholar]
  • 954.Beckers T, et al. Biochem Biophys Res Commun. 2001;289:653–663. doi: 10.1006/bbrc.2001.5939. [PMID: 11726197 ] [DOI] [PubMed] [Google Scholar]
  • 955.Caunt CJ, et al. Endocrinology. 2004;145:3594–3602. doi: 10.1210/en.2004-0092. [PMID: 15059960 ] [DOI] [PubMed] [Google Scholar]
  • 956.Cheng CK, Leung PC. Endocr Rev. 2005;26:283–306. doi: 10.1210/er.2003-0039. [PMID: 15561800 ] [DOI] [PubMed] [Google Scholar]
  • 957.Conn PM, et al. Endocrinology. 1982;111:335–337. doi: 10.1210/endo-111-1-335. [PMID: 6282571 ] [DOI] [PubMed] [Google Scholar]
  • 958.Grosse R, et al. J Biol Chem. 2000;275:9193–9200. doi: 10.1074/jbc.275.13.9193. [PMID: 10734055 ] [DOI] [PubMed] [Google Scholar]
  • 959.Gründker C, et al. Am J Obstet Gynecol. 2002;187:528–537. doi: 10.1067/mob.2002.124278. [PMID: 12237622 ] [DOI] [PubMed] [Google Scholar]
  • 960.Harrison GS, et al. Endocr Relat Cancer. 2004;11:725–748. doi: 10.1677/erc.1.00777. [PMID: 15613448 ] [DOI] [PubMed] [Google Scholar]
  • 961.Kiesel LA, et al. Clin Endocrinol (Oxf) 2002;56:677–687. doi: 10.1046/j.1365-2265.2002.01291.x. [PMID: 12072036 ] [DOI] [PubMed] [Google Scholar]
  • 962.Kroeger KM, et al. J Biol Chem. 2001;276:12736–12743. doi: 10.1074/jbc.M011311200. [PMID: 11278883 ] [DOI] [PubMed] [Google Scholar]
  • 963.Krsmanovic LZ, et al. Proc Natl Acad Sci USA. 2003;100:2969–2974. doi: 10.1073/pnas.0535708100. [PMID: 12591945 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 964.Kuphal D, et al. Endocrinology. 1994;135:315–320. doi: 10.1210/endo.135.1.8013367. [PMID: 8013367 ] [DOI] [PubMed] [Google Scholar]
  • 965.Leaños-Miranda A, et al. J Clin Endocrinol Metab. 2003;88:3360–3367. doi: 10.1210/jc.2003-030084. [PMID: 12843188 ] [DOI] [PubMed] [Google Scholar]
  • 966.Limonta P, et al. Front Neuroendocrinol. 2003;24:279–295. doi: 10.1016/j.yfrne.2003.10.003. [PMID: 14726258 ] [DOI] [PubMed] [Google Scholar]
  • 967.Maiti K, et al. Mol Cells. 2003;16:173–179. [PMID: 14651258 ] [PubMed] [Google Scholar]
  • 968.Maudsley S, et al. Cancer Res. 2004;64:7533–7544. doi: 10.1158/0008-5472.CAN-04-1360. [PMID: 15492280 ] [DOI] [PubMed] [Google Scholar]
  • 969.Millar RP. Anim Reprod Sci. 2005;88:5–28. doi: 10.1016/j.anireprosci.2005.05.032. [PMID: 16140177 ] [DOI] [PubMed] [Google Scholar]
  • 970.Millar RP, et al. Endocr Rev. 2004;25:235–275. doi: 10.1210/er.2003-0002. [PMID: 15082521 ] [DOI] [PubMed] [Google Scholar]
  • 971.Morgan K, et al. Endocrinology. 2003;144:423–436. doi: 10.1210/en.2002-220622. [PMID: 12538601 ] [DOI] [PubMed] [Google Scholar]
  • 972.Neill JD. Endocrinology. 2002;143:737–743. doi: 10.1210/endo.143.3.8705. [PMID: 11861490 ] [DOI] [PubMed] [Google Scholar]
  • 973.Schally AV, Nagy A. Trends Endocrinol Metab. 2004;15:300–310. doi: 10.1016/j.tem.2004.07.002. [PMID: 15350601 ] [DOI] [PubMed] [Google Scholar]
  • 974.Sealfon SC, et al. Endocr Rev. 1997;18:180–205. doi: 10.1210/edrv.18.2.0295. [PMID: 9101136 ] [DOI] [PubMed] [Google Scholar]
  • 975.Silver MR, et al. Endocrinology. 2005;146:3351–3361. doi: 10.1210/en.2005-0305. [PMID: 15878963 ] [DOI] [PubMed] [Google Scholar]
  • 976.Struthers RS, et al. Endocrinology. 2007;148:857–867. doi: 10.1210/en.2006-1213. [PMID: 17095587 ] [DOI] [PubMed] [Google Scholar]
  • 977.Chu ZL, et al. Mol Endocrinol. 2010;24:161–170. doi: 10.1210/me.2009-0239. [PMID: 19901198 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 978.Henstridge CM, et al. Br J Pharmacol. 2010;160:604–614. doi: 10.1111/j.1476-5381.2009.00625.x. [PMID: 20136841 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 979.Heynen-Genel S, et al. Screening for Selective Ligands for GPR55 - Antagonists. 2010. Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD): National Center for Biotechnology Information. [PubMed]
  • 980.Kapur A, et al. J Biol Chem. 2009;284:29817–29827. doi: 10.1074/jbc.M109.050187. [PMID: 19723626 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 981.Kargl J, et al. J Pharmacol Exp Ther. 2013;346:54–66. doi: 10.1124/jpet.113.204180. [PMID: 23639801 ] [DOI] [PubMed] [Google Scholar]
  • 982.Kohno M, et al. Biochem Biophys Res Commun. 2006;347:827–832. doi: 10.1016/j.bbrc.2006.06.175. [PMID: 16844083 ] [DOI] [PubMed] [Google Scholar]
  • 983.McHugh D, et al. Br J Pharmacol. 2011. [Epub ahead of print]. [PMID: 21595653 ] [Google Scholar]
  • 984.Ning Y, et al. Br J Pharmacol. 2008;155:1056–1065. doi: 10.1038/bjp.2008.337. [PMID: 18724386 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 985.Oka S, et al. Biochem Biophys Res Commun. 2007;362:928–934. doi: 10.1016/j.bbrc.2007.08.078. [PMID: 17765871 ] [DOI] [PubMed] [Google Scholar]
  • 986.Oka S, et al. J Biochem. 2009;145:13–20. doi: 10.1093/jb/mvn136. [PMID: 18845565 ] [DOI] [PubMed] [Google Scholar]
  • 987.Overton HA, et al. Cell Metab. 2006;3:167–175. doi: 10.1016/j.cmet.2006.02.004. [PMID: 16517404 ] [DOI] [PubMed] [Google Scholar]
  • 988.Pertwee RG, et al. Pharmacol Rev. 2010;62:588–631. doi: 10.1124/pr.110.003004. [PMID: 21079038 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 989.Ryberg E, et al. Br J Pharmacol. 2007;152:1092–1101. doi: 10.1038/sj.bjp.0707460. [PMID: 17876302 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 990.Southern C, et al. J Biomol Screen. 2013;18:599–609. doi: 10.1177/1087057113475480. [PMID: 23396314 ] [DOI] [PubMed] [Google Scholar]
  • 991.Yamashita A, et al. Prostaglandins Other Lipid Mediat. 2013. [Epub ahead of print]. [PMID: 23714700 ] [Google Scholar]
  • 992.Yin H, et al. J Biol Chem. 2009;284:12328–12338. doi: 10.1074/jbc.M806516200. [PMID: 19286662 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 993.Yoshida S, et al. Biochem Biophys Res Commun. 2010;400:437–441. doi: 10.1016/j.bbrc.2010.08.097. [PMID: 20804735 ] [DOI] [PubMed] [Google Scholar]
  • 994.Beukers MW, et al. Br J Pharmacol. 1997;122:867–874. doi: 10.1038/sj.bjp.0701466. [PMID: 9384502 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 995.Booth RG, et al. J Pharmacol Exp Ther. 2002;302:328–336. doi: 10.1124/jpet.302.1.328. [PMID: 12065734 ] [DOI] [PubMed] [Google Scholar]
  • 996.Chen J, et al. Eur J Pharmacol. 2003;467:57–65. doi: 10.1016/s0014-2999(03)01635-2. [PMID: 12706455 ] [DOI] [PubMed] [Google Scholar]
  • 997.Cogé F, et al. Biochem J. 2001;355:279–288. doi: 10.1042/0264-6021:3550279. [PMID: 11284713 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 998.De Backer MD, et al. Biochem J. 1998;335:663–670. doi: 10.1042/bj3350663. [PMID: 9794809 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 999.Esbenshade TA, et al. Biochem Pharmacol. 2004;68:933–945. doi: 10.1016/j.bcp.2004.05.048. [PMID: 15294456 ] [DOI] [PubMed] [Google Scholar]
  • 1000.Esbenshade TA, et al. J Pharmacol Exp Ther. 2003;305:887–896. doi: 10.1124/jpet.102.047183. [PMID: 12606603 ] [DOI] [PubMed] [Google Scholar]
  • 1001.Gbahou F, et al. Br J Pharmacol. 2006;147:744–754. doi: 10.1038/sj.bjp.0706666. [PMID: 16432504 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1002.Hancock AA, et al. Eur J Pharmacol. 2004;487:183–197. doi: 10.1016/j.ejphar.2004.01.015. [PMID: 15033391 ] [DOI] [PubMed] [Google Scholar]
  • 1003.Hill SJ, et al. Pharmacol Rev. 1997;49:253–278. [PMID: 9311023 ] [PubMed] [Google Scholar]
  • 1004.Ishiwata K, et al. Nucl Med Biol. 2004;31:493–502. doi: 10.1016/j.nucmedbio.2003.11.005. [PMID: 15093820 ] [DOI] [PubMed] [Google Scholar]
  • 1005.Jansen FP, et al. Br J Pharmacol. 1994;113:355–362. doi: 10.1111/j.1476-5381.1994.tb16995.x. [PMID: 7834183 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1006.Kitbunnadaj R, et al. J Med Chem. 2005;48:2100–2107. doi: 10.1021/jm049475h. [PMID: 15771452 ] [DOI] [PubMed] [Google Scholar]
  • 1007.Kitbunnadaj R, et al. J Med Chem. 2004;47:2414–2417. doi: 10.1021/jm049932u. [PMID: 15115383 ] [DOI] [PubMed] [Google Scholar]
  • 1008.Kraus A, et al. Chem Med Chem. 2009;4:232–240. [PMID: 19072936 ] [Google Scholar]
  • 1009.Kühn B, et al. Mol Endocrinol. 1996;10:1697–1707. doi: 10.1210/mend.10.12.8961278. [PMID: 8961278 ] [DOI] [PubMed] [Google Scholar]
  • 1010.Leurs R, et al. Br J Pharmacol. 1994;112:847–854. doi: 10.1111/j.1476-5381.1994.tb13157.x. [PMID: 7921611 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1011.Ligneau X, et al. Br J Pharmacol. 2000;131:1247–1250. doi: 10.1038/sj.bjp.0703712. [PMID: 11090094 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1012.Lim HD, et al. J Med Chem. 2006;49:6650–6651. doi: 10.1021/jm060880d. [PMID: 17154494 ] [DOI] [PubMed] [Google Scholar]
  • 1013.Lim HD, et al. J Pharmacol Exp Ther. 2005;314:1310–1321. doi: 10.1124/jpet.105.087965. [PMID: 15947036 ] [DOI] [PubMed] [Google Scholar]
  • 1014.Liu C, et al. Mol Pharmacol. 2001;59:420–426. doi: 10.1124/mol.59.3.420. [PMID: 11179434 ] [DOI] [PubMed] [Google Scholar]
  • 1015.Liu C, et al. J Pharmacol Exp Ther. 2001;299:121–130. [PMID: 11561071 ] [PubMed] [Google Scholar]
  • 1016.Lovenberg TW, et al. J Pharmacol Exp Ther. 2000;293:771–778. [PMID: 10869375 ] [PubMed] [Google Scholar]
  • 1017.Moguilevsky N, et al. Eur J Biochem. 1994;224:489–495. doi: 10.1111/j.1432-1033.1994.00489.x. [PMID: 7925364 ] [DOI] [PubMed] [Google Scholar]
  • 1018.Monczor F, et al. Mol Pharmacol. 2003;64:512–520. doi: 10.1124/mol.64.2.512. [PMID: 12869657 ] [DOI] [PubMed] [Google Scholar]
  • 1019.Morse KL, et al. J Pharmacol Exp Ther. 2001;296:1058–1066. [PMID: 11181941 ] [PubMed] [Google Scholar]
  • 1020.Nakamura T, et al. Biochem Biophys Res Commun. 2000;279:615–620. doi: 10.1006/bbrc.2000.4008. [PMID: 11118334 ] [DOI] [PubMed] [Google Scholar]
  • 1021.Nguyen T, et al. Mol Pharmacol. 2001;59:427–433. doi: 10.1124/mol.59.3.427. [PMID: 11179435 ] [DOI] [PubMed] [Google Scholar]
  • 1022.Oda T, et al. J Biol Chem. 2000;275:36781–36786. doi: 10.1074/jbc.M006480200. [PMID: 10973974 ] [DOI] [PubMed] [Google Scholar]
  • 1023.Ratnala VR, et al. Eur J Biochem. 2004;271:2636–2646. doi: 10.1111/j.1432-1033.2004.04192.x. [PMID: 15206929 ] [DOI] [PubMed] [Google Scholar]
  • 1024.Schotte A, et al. Psychopharmacology (Berl) 1996;124:57–73. doi: 10.1007/BF02245606. [PMID: 8935801 ] [DOI] [PubMed] [Google Scholar]
  • 1025.Seifert R, et al. J Pharmacol Exp Ther. 2003;305:1104–1115. doi: 10.1124/jpet.103.049619. [PMID: 12626648 ] [DOI] [PubMed] [Google Scholar]
  • 1026.Smits RA, et al. J Med Chem. 2006;49:4512–4516. doi: 10.1021/jm051008s. [PMID: 16854056 ] [DOI] [PubMed] [Google Scholar]
  • 1027.Thurmond RL, et al. J Pharmacol Exp Ther. 2004;309:404–413. doi: 10.1124/jpet.103.061754. [PMID: 14722321 ] [DOI] [PubMed] [Google Scholar]
  • 1028.Wieland K, et al. J Pharmacol Exp Ther. 2001;299:908–914. [PMID: 11714875 ] [PubMed] [Google Scholar]
  • 1029.Wulff BS, et al. Eur J Pharmacol. 2002;453:33–41. doi: 10.1016/s0014-2999(02)02382-8. [PMID: 12393057 ] [DOI] [PubMed] [Google Scholar]
  • 1030.Zhu Y, et al. Mol Pharmacol. 2001;59:434–441. doi: 10.1124/mol.59.3.434. [PMID: 11179436 ] [DOI] [PubMed] [Google Scholar]
  • 1031.Ahmed K, et al. J Biol Chem. 2009;284:21928–21933. doi: 10.1074/jbc.M109.019455. [PMID: 19561068 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1032.Ahmed K, et al. Cell Metab. 2010;11:311–319. doi: 10.1016/j.cmet.2010.02.012. [PMID: 20374963 ] [DOI] [PubMed] [Google Scholar]
  • 1033.Boatman PD, et al. J Med Chem. 2012;55:3644–3666. doi: 10.1021/jm2010964. [PMID: 22435740 ] [DOI] [PubMed] [Google Scholar]
  • 1034.Cai TQ, et al. Biochem Biophys Res Commun. 2008;377:987–991. doi: 10.1016/j.bbrc.2008.10.088. [PMID: 18952058 ] [DOI] [PubMed] [Google Scholar]
  • 1035.Liu C, et al. J Pharmacol Exp Ther. 2012;341:794–801. doi: 10.1124/jpet.112.192799. [PMID: 22434674 ] [DOI] [PubMed] [Google Scholar]
  • 1036.Liu C, et al. J Biol Chem. 2009;284:2811–2822. doi: 10.1074/jbc.M806409200. [PMID: 19047060 ] [DOI] [PubMed] [Google Scholar]
  • 1037.Offermanns S, et al. Pharmacol Rev. 2011;63:269–290. doi: 10.1124/pr.110.003301. [PMID: 21454438 ] [DOI] [PubMed] [Google Scholar]
  • 1038.Semple G, et al. J Med Chem. 2006;49:1227–1230. doi: 10.1021/jm051099t. [PMID: 16480258 ] [DOI] [PubMed] [Google Scholar]
  • 1039.Shen HC, et al. J Med Chem. 2010;53:2666–2670. doi: 10.1021/jm100022r. [PMID: 20184326 ] [DOI] [PubMed] [Google Scholar]
  • 1040.Soga T, et al. Biochem Biophys Res Commun. 2003;303:364–369. doi: 10.1016/s0006-291x(03)00342-5. [PMID: 12646212 ] [DOI] [PubMed] [Google Scholar]
  • 1041.Southern C, et al. J Biomol Screen. 2013;18:599–609. doi: 10.1177/1087057113475480. [PMID: 23396314 ] [DOI] [PubMed] [Google Scholar]
  • 1042.Taggart AK, et al. J Biol Chem. 2005;280:26649–26652. doi: 10.1074/jbc.C500213200. [PMID: 15929991 ] [DOI] [PubMed] [Google Scholar]
  • 1043.Tang H, et al. Biochem Biophys Res Commun. 2008;375:562–565. doi: 10.1016/j.bbrc.2008.08.041. [PMID: 18722346 ] [DOI] [PubMed] [Google Scholar]
  • 1044.Tunaru S, et al. Nat Med. 2003;9:352–355. doi: 10.1038/nm824. [PMID: 12563315 ] [DOI] [PubMed] [Google Scholar]
  • 1045.Wise A, et al. J Biol Chem. 2003;278:9869–9874. doi: 10.1074/jbc.M210695200. [PMID: 12522134 ] [DOI] [PubMed] [Google Scholar]
  • 1046.Curtis AE, et al. Am J Physiol Endocrinol Metab. 2010;298:E296–E303. doi: 10.1152/ajpendo.00426.2009. [PMID: 19934405 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1047.Kirby HR, et al. Pharmacol Rev. 2010;62:565–578. doi: 10.1124/pr.110.002774. [PMID: 21079036 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1048.Kotani M, et al. J Biol Chem. 2001;276:34631–34636. doi: 10.1074/jbc.M104847200. [PMID: 11457843 ] [DOI] [PubMed] [Google Scholar]
  • 1049.Mead EJ, et al. Endocrinology. 2007;148:140–147. doi: 10.1210/en.2006-0818. [PMID: 17023533 ] [DOI] [PubMed] [Google Scholar]
  • 1050.Muir AI, et al. J Biol Chem. 2001;276:28969–28975. doi: 10.1074/jbc.M102743200. [PMID: 11387329 ] [DOI] [PubMed] [Google Scholar]
  • 1051.Ohtaki T, et al. Nature. 2001;411:613–617. doi: 10.1038/35079135. [PMID: 11385580 ] [DOI] [PubMed] [Google Scholar]
  • 1052.Roseweir AK, et al. J Neurosci. 2009;29:3920–3929. doi: 10.1523/JNEUROSCI.5740-08.2009. [PMID: 19321788 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1053.Tomita K, et al. Biopolymers. 2008;90:503–511. doi: 10.1002/bip.20968. [PMID: 18302161 ] [DOI] [PubMed] [Google Scholar]
  • 1054.Ariel A, et al. J Immunol. 2003;170:6266–6272. doi: 10.4049/jimmunol.170.12.6266. [PMID: 12794159 ] [DOI] [PubMed] [Google Scholar]
  • 1055.Boie Y, et al. Eur J Pharmacol. 1999;380:203–213. doi: 10.1016/s0014-2999(99)00514-2. [PMID: 10513580 ] [DOI] [PubMed] [Google Scholar]
  • 1056.Brink C, et al. Pharmacol Rev. 2004;56:149–157. doi: 10.1124/pr.56.1.4. [PMID: 15001665 ] [DOI] [PubMed] [Google Scholar]
  • 1057.Bäck M, et al. Pharmacol Rev. 2011;63:539–584. doi: 10.1124/pr.110.004184. [PMID: 21771892 ] [DOI] [PubMed] [Google Scholar]
  • 1058.Chiang N, et al. J Exp Med. 2000;191:1197–1208. doi: 10.1084/jem.191.7.1197. [PMID: 10748237 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1059.Ciana P, et al. EMBO J. 2006;25:4615–4627. doi: 10.1038/sj.emboj.7601341. [PMID: 16990797 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1060.Clish CB, et al. Proc Natl Acad Sci USA. 1999;96:8247–8252. doi: 10.1073/pnas.96.14.8247. [PMID: 10393980 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1061.Fiore S, et al. J Exp Med. 1994;180:253–260. doi: 10.1084/jem.180.1.253. [PMID: 8006586 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1062.Fiore S, et al. J Biol Chem. 1992;267:16168–16176. [PMID: 1322894 ] [PubMed] [Google Scholar]
  • 1063.Fiore S, Serhan CN. Biochemistry. 1995;34:16678–16686. doi: 10.1021/bi00051a016. [PMID: 8527441 ] [DOI] [PubMed] [Google Scholar]
  • 1064.Grant GE, et al. Prostaglandins Other Lipid Mediat. 2009;89:98–104. doi: 10.1016/j.prostaglandins.2009.05.002. [PMID: 19450703 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1065.Gronert K, et al. Am J Pathol. 2001;158:3–9. doi: 10.1016/S0002-9440(10)63937-5. [PMID: 11141472 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1066.Guilford WJ, et al. J Med Chem. 2004;47:2157–2165. doi: 10.1021/jm030569l. [PMID: 15056011 ] [DOI] [PubMed] [Google Scholar]
  • 1067.Hanson J, et al. Biochem Pharmacol. 2013;85:1795–1802. doi: 10.1016/j.bcp.2013.04.019. [PMID: 23643932 ] [DOI] [PubMed] [Google Scholar]
  • 1068.Heise CE, et al. J Biol Chem. 2000;275:30531–30536. doi: 10.1074/jbc.M003490200. [PMID: 10851239 ] [DOI] [PubMed] [Google Scholar]
  • 1069.Herron DK, et al. J Med Chem. 1992;35:1818–1828. doi: 10.1021/jm00088a018. [PMID: 1316967 ] [DOI] [PubMed] [Google Scholar]
  • 1070.Hosoi T, et al. J Biol Chem. 2002;277:31459–31465. doi: 10.1074/jbc.M203194200. [PMID: 12065583 ] [DOI] [PubMed] [Google Scholar]
  • 1071.Hosoi T, et al. Biochem Biophys Res Commun. 2005;334:987–995. doi: 10.1016/j.bbrc.2005.06.191. [PMID: 16039985 ] [DOI] [PubMed] [Google Scholar]
  • 1072.Jackson RH, et al. J Pharmacol Exp Ther. 1992;262:80–89. [PMID: 1320692 ] [PubMed] [Google Scholar]
  • 1073.Jiang Y, et al. Blood. 2007;110:3263–3270. doi: 10.1182/blood-2007-07-100453. [PMID: 17693579 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1074.Jones CE, et al. Mol Pharmacol. 2003;63:471–477. doi: 10.1124/mol.63.3.471. [PMID: 12606753 ] [DOI] [PubMed] [Google Scholar]
  • 1075.Krishnamoorthy S, et al. Proc Natl Acad Sci USA. 2010;107:1660–1665. doi: 10.1073/pnas.0907342107. [PMID: 20080636 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1076.Lin Q, et al. Biochemistry. 1999;38:185–190. doi: 10.1021/bi9816094. [PMID: 9890897 ] [DOI] [PubMed] [Google Scholar]
  • 1077.Lynch KR, et al. Nature. 1999;399:789–793. doi: 10.1038/21658. [PMID: 10391245 ] [DOI] [PubMed] [Google Scholar]
  • 1078.Maddox JF, et al. J Biol Chem. 1997;272:6972–6978. doi: 10.1074/jbc.272.11.6972. [PMID: 9054386 ] [DOI] [PubMed] [Google Scholar]
  • 1079.Maddox JF, Serhan CN. J Exp Med. 1996;183:137–146. doi: 10.1084/jem.183.1.137. [PMID: 8551217 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1080.Mellor EA, et al. Proc Natl Acad Sci USA. 2003;100:11589–11593. doi: 10.1073/pnas.2034927100. [PMID: 13679572 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1081.Mellor EA, et al. Proc Natl Acad Sci USA. 2001;98:7964–7969. doi: 10.1073/pnas.141221498. [PMID: 11438743 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1082.Nothacker HP, et al. Mol Pharmacol. 2000;58:1601–1608. doi: 10.1124/mol.58.6.1601. [PMID: 11093801 ] [DOI] [PubMed] [Google Scholar]
  • 1083.O'Flaherty JT, et al. J Immunol. 2000;164:3345–3352. doi: 10.4049/jimmunol.164.6.3345. [PMID: 10706729 ] [DOI] [PubMed] [Google Scholar]
  • 1084.O'Flaherty JT, et al. J Biol Chem. 1998;273:32535–32541. doi: 10.1074/jbc.273.49.32535. [PMID: 9829988 ] [DOI] [PubMed] [Google Scholar]
  • 1085.Okuno T, et al. J Exp Med. 2008;205:759–766. doi: 10.1084/jem.20072329. [PMID: 18378794 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1086.Patel P, et al. J Pharmacol Exp Ther. 2008;325:698–707. doi: 10.1124/jpet.107.134908. [PMID: 18292294 ] [DOI] [PubMed] [Google Scholar]
  • 1087.Perretti M, et al. Nat Med. 2002;8:1296–1302. doi: 10.1038/nm786. [PMID: 12368905 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1088.Planagumà A, et al. Clin Exp Immunol. 2013;173:298–309. doi: 10.1111/cei.12110. [PMID: 23607720 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1089.Powell WS, et al. J Biol Chem. 1992;267:19233–19241. [PMID: 1326548 ] [PubMed] [Google Scholar]
  • 1090.Resnati M, et al. Proc Natl Acad Sci USA. 2002;99:1359–1364. doi: 10.1073/pnas.022652999. [PMID: 11818541 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1091.Romano M, et al. J Immunol. 1996;157:2149–2154. [PMID: 8757340 ] [PubMed] [Google Scholar]
  • 1092.Rovati GE, et al. Biochem Pharmacol. 1992;44:1411–1415. doi: 10.1016/0006-2952(92)90543-r. [PMID: 1329767 ] [DOI] [PubMed] [Google Scholar]
  • 1093.Sarau HM, et al. Mol Pharmacol. 1999;56:657–663. doi: 10.1124/mol.56.3.657. [PMID: 10462554 ] [DOI] [PubMed] [Google Scholar]
  • 1094.Schwenk U, Schröder JM. J Biol Chem. 1995;270:15029–15036. doi: 10.1074/jbc.270.25.15029. [PMID: 7797484 ] [DOI] [PubMed] [Google Scholar]
  • 1095.Showell HJ, et al. J Pharmacol Exp Ther. 1995;273:176–184. [PMID: 7714764 ] [PubMed] [Google Scholar]
  • 1096.Sodin-Semrl S, et al. Int J Immunopathol Pharmacol. 2004;17:145–156. doi: 10.1177/039463200401700206. [PMID: 15171815 ] [DOI] [PubMed] [Google Scholar]
  • 1097.Su SB, et al. J Exp Med. 1999;189:395–402. doi: 10.1084/jem.189.2.395. [PMID: 9892621 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1098.Takano T, et al. J Exp Med. 1997;185:1693–1704. doi: 10.1084/jem.185.9.1693. [PMID: 9151906 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1099.Takasaki J, et al. Biochem Biophys Res Commun. 2000;274:316–322. doi: 10.1006/bbrc.2000.3140. [PMID: 10913337 ] [DOI] [PubMed] [Google Scholar]
  • 1100.Tudhope SR, et al. Eur J Pharmacol. 1994;264:317–323. doi: 10.1016/0014-2999(94)00485-4. [PMID: 7698171 ] [DOI] [PubMed] [Google Scholar]
  • 1101.Ye RD, et al. Pharmacol Rev. 2009;61:119–161. doi: 10.1124/pr.109.001578. [PMID: 19498085 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1102.Yokomizo T, et al. Nature. 1997;387:620–624. doi: 10.1038/42506. [PMID: 9177352 ] [DOI] [PubMed] [Google Scholar]
  • 1103.Yokomizo T, et al. J Biol Chem. 2001;276:12454–12459. doi: 10.1074/jbc.M011361200. [PMID: 11278893 ] [DOI] [PubMed] [Google Scholar]
  • 1104.Chun J, et al. Pharmacol Rev. 2010;62:579–587. doi: 10.1124/pr.110.003111. [PMID: 21079037 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1105.Fells JI, et al. Bioorg Med Chem. 2008;16:6207–6217. doi: 10.1016/j.bmc.2008.04.035. [PMID: 18467108 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1106.Fischer DJ, et al. Mol Pharmacol. 2001;60:776–784. [PMID: 11562440 ] [PubMed] [Google Scholar]
  • 1107.Fukushima N, et al. Proc Natl Acad Sci USA. 1998;95:6151–6156. doi: 10.1073/pnas.95.11.6151. [PMID: 9600933 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1108.Hasegawa Y, et al. J Biol Chem. 2003;278:11962–11969. doi: 10.1074/jbc.M209168200. [PMID: 12554733 ] [DOI] [PubMed] [Google Scholar]
  • 1109.Heasley BH, et al. Bioorg Med Chem Lett. 2004;14:2735–2740. doi: 10.1016/j.bmcl.2004.03.076. [PMID: 15125924 ] [DOI] [PubMed] [Google Scholar]
  • 1110.Heise CE, et al. Mol Pharmacol. 2001;60:1173–1180. doi: 10.1124/mol.60.6.1173. [PMID: 11723223 ] [DOI] [PubMed] [Google Scholar]
  • 1111.Inoue A, et al. Nat Methods. 2012;9:1021–1029. doi: 10.1038/nmeth.2172. [PMID: 22983457 ] [DOI] [PubMed] [Google Scholar]
  • 1112.Kimura T, et al. Cardiovasc Res. 2011;92:149–158. doi: 10.1093/cvr/cvr154. [PMID: 21632882 ] [DOI] [PubMed] [Google Scholar]
  • 1113.Kiss GN, et al. Mol Pharmacol. 2012;82:1162–1173. doi: 10.1124/mol.112.079699. [PMID: 22968304 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1114.Kotarsky K, et al. J Pharmacol Exp Ther. 2006;318:619–628. doi: 10.1124/jpet.105.098848. [PMID: 16651401 ] [DOI] [PubMed] [Google Scholar]
  • 1115.Lee CW, et al. J Biol Chem. 2007;282:4310–4317. doi: 10.1074/jbc.M610826200. [PMID: 17166850 ] [DOI] [PubMed] [Google Scholar]
  • 1116.Lee CW, et al. J Biol Chem. 2006;281:23589–23597. doi: 10.1074/jbc.M603670200. [PMID: 16774927 ] [DOI] [PubMed] [Google Scholar]
  • 1117.McIntyre TM, et al. Proc Natl Acad Sci USA. 2003;100:131–136. doi: 10.1073/pnas.0135855100. [PMID: 12502787 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1118.Ohta H, et al. Mol Pharmacol. 2003;64:994–1005. doi: 10.1124/mol.64.4.994. [PMID: 14500756 ] [DOI] [PubMed] [Google Scholar]
  • 1119.Simon MF, et al. J Biol Chem. 2005;280:14656–14662. doi: 10.1074/jbc.M412585200. [PMID: 15710620 ] [DOI] [PubMed] [Google Scholar]
  • 1120.Swaney JS, et al. Br J Pharmacol. 2010;160:1699–1713. doi: 10.1111/j.1476-5381.2010.00828.x. [PMID: 20649573 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1121.Virag T, et al. Mol Pharmacol. 2003;63:1032–1042. doi: 10.1124/mol.63.5.1032. [PMID: 12695531 ] [DOI] [PubMed] [Google Scholar]
  • 1122.Yanagida K, et al. J Biol Chem. 2009;284:17731–17741. doi: 10.1074/jbc.M808506200. [PMID: 19386608 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1123.Albert R, et al. J Med Chem. 2005;48:5373–5377. doi: 10.1021/jm050242f. [PMID: 16078855 ] [DOI] [PubMed] [Google Scholar]
  • 1124.Ancellin N, Hla T. J Biol Chem. 1999;274:18997–19002. doi: 10.1074/jbc.274.27.18997. [PMID: 10383399 ] [DOI] [PubMed] [Google Scholar]
  • 1125.Brinkmann V, et al. J Biol Chem. 2002;277:21453–21457. doi: 10.1074/jbc.C200176200. [PMID: 11967257 ] [DOI] [PubMed] [Google Scholar]
  • 1126.Choi JW, et al. Proc Natl Acad Sci USA. 2011;108:751–756. doi: 10.1073/pnas.1014154108. [PMID: 21177428 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1127.Chun J, Brinkmann V. Discov Med. 2011;12:213–228. [PMID: 21955849 ] [PMC free article] [PubMed] [Google Scholar]
  • 1128.Chun J, et al. Pharmacol Rev. 2010;62:579–587. doi: 10.1124/pr.110.003111. [PMID: 21079037 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1129.Cohen JA, Chun J. Ann Neurol. 2011;69:759–777. doi: 10.1002/ana.22426. [PMID: 21520239 ] [DOI] [PubMed] [Google Scholar]
  • 1130.Davenport AP, et al. Pharmacol Rev. 2013;65:967–986. doi: 10.1124/pr.112.007179. [PMID: 23686350 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1131.Groves A, et al. J Neurol Sci. 2013;328:9–18. doi: 10.1016/j.jns.2013.02.011. [PMID: 23518370 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1132.Hanson MA, et al. Science. 2012;335:851–855. doi: 10.1126/science.1215904. [PMID: 22344443 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1133.Im DS, et al. J Biol Chem. 2000;275:14281–14286. doi: 10.1074/jbc.275.19.14281. [PMID: 10799507 ] [DOI] [PubMed] [Google Scholar]
  • 1134.Mandala S, et al. Science. 2002;296:346–349. doi: 10.1126/science.1070238. [PMID: 11923495 ] [DOI] [PubMed] [Google Scholar]
  • 1135.Marsolais D, Rosen H. Nat Rev Drug Discov. 2009;8:297–307. doi: 10.1038/nrd2356. [PMID: 19300460 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1136.Noguchi K, Chun J. Crit Rev Biochem Mol Biol. 2011;46:2–10. doi: 10.3109/10409238.2010.522975. [PMID: 20979571 ] [DOI] [PubMed] [Google Scholar]
  • 1137.Okamoto H, et al. J Biol Chem. 1998;273:27104–27110. doi: 10.1074/jbc.273.42.27104. [PMID: 9765227 ] [DOI] [PubMed] [Google Scholar]
  • 1138.Osada M, et al. Biochem Biophys Res Commun. 2002;299:483–487. doi: 10.1016/s0006-291x(02)02671-2. [PMID: 12445827 ] [DOI] [PubMed] [Google Scholar]
  • 1139.Pan S, et al. Chem Biol. 2006;13:1227–1234. doi: 10.1016/j.chembiol.2006.09.017. [PMID: 17114004 ] [DOI] [PubMed] [Google Scholar]
  • 1140.Sanna MG, et al. J Biol Chem. 2004;279:13839–13848. doi: 10.1074/jbc.M311743200. [PMID: 14732717 ] [DOI] [PubMed] [Google Scholar]
  • 1141.Sanna MG, et al. Nat Chem Biol. 2006;2:434–441. doi: 10.1038/nchembio804. [PMID: 16829954 ] [DOI] [PubMed] [Google Scholar]
  • 1142.Takabe K, et al. Pharmacol Rev. 2008;60:181–195. doi: 10.1124/pr.107.07113. [PMID: 18552276 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1143.Van Brocklyn JR, et al. Blood. 2000;95:2624–2629. [PMID: 10753843 ] [PubMed] [Google Scholar]
  • 1144.Audinot V, et al. Br J Pharmacol. 2001;133:371–378. doi: 10.1038/sj.bjp.0704085. [PMID: 11375253 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1145.Borowsky B, et al. Nat Med. 2002;8:825–830. doi: 10.1038/nm741. [PMID: 12118247 ] [DOI] [PubMed] [Google Scholar]
  • 1146.Burgaud JL, et al. Biochem Biophys Res Commun. 1997;241:622–629. doi: 10.1006/bbrc.1997.7849. [PMID: 9434758 ] [DOI] [PubMed] [Google Scholar]
  • 1147.Chaki S, et al. J Pharmacol Exp Ther. 2005;313:831–839. doi: 10.1124/jpet.104.081711. [PMID: 15677346 ] [DOI] [PubMed] [Google Scholar]
  • 1148.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 1149.Hertzog DL, et al. Bioorg Med Chem Lett. 2006;16:4723–4727. doi: 10.1016/j.bmcl.2006.07.008. [PMID: 16870432 ] [DOI] [PubMed] [Google Scholar]
  • 1150.Hill J, et al. J Biol Chem. 2001;276:20125–20129. doi: 10.1074/jbc.M102068200. [PMID: 11274220 ] [DOI] [PubMed] [Google Scholar]
  • 1151.Mori M, et al. Biochem Biophys Res Commun. 2001;283:1013–1018. doi: 10.1006/bbrc.2001.4893. [PMID: 11355873 ] [DOI] [PubMed] [Google Scholar]
  • 1152.Rodriguez M, et al. Mol Pharmacol. 2001;60:632–639. [PMID: 11562423 ] [PubMed] [Google Scholar]
  • 1153.Takekawa S, et al. Eur J Pharmacol. 2002;438:129–135. doi: 10.1016/s0014-2999(02)01314-6. [PMID: 11909603 ] [DOI] [PubMed] [Google Scholar]
  • 1154.Tan CP, et al. Genomics. 2002;79:785–792. doi: 10.1006/geno.2002.6771. [PMID: 12036292 ] [DOI] [PubMed] [Google Scholar]
  • 1155.Bednarek MA, et al. J Med Chem. 2001;44:3665–3672. doi: 10.1021/jm010165y. [PMID: 11606131 ] [DOI] [PubMed] [Google Scholar]
  • 1156.Chagnon YC, et al. Mol Med. 1997;3:663–673. [PMID: 9392003 ] [PMC free article] [PubMed] [Google Scholar]
  • 1157.Farooqi IS, O'Rahilly S. Nat Clin Pract Endocrinol Metab. 2008;4:569–577. doi: 10.1038/ncpendmet0966. [PMID: 18779842 ] [DOI] [PubMed] [Google Scholar]
  • 1158.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 1159.Grieco P, et al. J Med Chem. 2000;43:4998–5002. doi: 10.1021/jm000211e. [PMID: 11150170 ] [DOI] [PubMed] [Google Scholar]
  • 1160.Grieco P, et al. Peptides. 2007;28:1191–1196. doi: 10.1016/j.peptides.2007.02.012. [PMID: 17482720 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1161.Kopanchuk S, et al. Eur J Pharmacol. 2005;512:85–95. doi: 10.1016/j.ejphar.2005.02.021. [PMID: 15840392 ] [DOI] [PubMed] [Google Scholar]
  • 1162.Krishna R, et al. Clin Pharmacol Ther. 2009;86:659–666. doi: 10.1038/clpt.2009.167. [PMID: 19741604 ] [DOI] [PubMed] [Google Scholar]
  • 1163.Nickolls SA, et al. J Pharmacol Exp Ther. 2003;304:1217–1227. doi: 10.1124/jpet.102.044974. [PMID: 12604699 ] [DOI] [PubMed] [Google Scholar]
  • 1164.Schioth HB, et al. Eur J Pharmacol. 1995;288:311–317. doi: 10.1016/0922-4106(95)90043-8. [PMID: 7774675 ] [DOI] [PubMed] [Google Scholar]
  • 1165.Schiöth HB, et al. Br J Pharmacol. 1998;124:75–82. doi: 10.1038/sj.bjp.0701804. [PMID: 9630346 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1166.Sebhat IK, et al. J Med Chem. 2002;45:4589–4593. doi: 10.1021/jm025539h. [PMID: 12361385 ] [DOI] [PubMed] [Google Scholar]
  • 1167.Audinot V, et al. Naunyn Schmiedebergs Arch Pharmacol. 2003;367:553–561. doi: 10.1007/s00210-003-0751-2. [PMID: 12764576 ] [DOI] [PubMed] [Google Scholar]
  • 1168.Ayoub MA, et al. Mol Pharmacol. 2004;66:312–321. doi: 10.1124/mol.104.000398. [PMID: 15266022 ] [DOI] [PubMed] [Google Scholar]
  • 1169.Browning C, et al. Br J Pharmacol. 2000;129:877–886. doi: 10.1038/sj.bjp.0703130. [PMID: 10696085 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1170.Dubocovich ML, et al. Pharmacol Rev. 2010;62:343–380. doi: 10.1124/pr.110.002832. [PMID: 20605968 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1171.Dubocovich ML, et al. Naunyn Schmiedebergs Arch Pharmacol. 1997;355:365–375. doi: 10.1007/pl00004956. [PMID: 9089668 ] [DOI] [PubMed] [Google Scholar]
  • 1172.Dubocovich ML, et al. FASEB J. 1998;12:1211–1220. doi: 10.1096/fasebj.12.12.1211. [PMID: 9737724 ] [DOI] [PubMed] [Google Scholar]
  • 1173.Dufourny L, et al. BMC Evol Biol. 2008;8:105–PMID. doi: 10.1186/1471-2148-8-105. 18400093 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1174.Eison AS, Mullins UL. Life Sci. 1993;53:PL393–PL398. doi: 10.1016/0024-3205(93)90494-n. [PMID: 8246675 ] [DOI] [PubMed] [Google Scholar]
  • 1175.Faust R, et al. J Med Chem. 2000;43:1050–1061. doi: 10.1021/jm980684+. [PMID: 10737738 ] [DOI] [PubMed] [Google Scholar]
  • 1176.Kato K, et al. Neuropharmacology. 2005;48:301–310. doi: 10.1016/j.neuropharm.2004.09.007. [PMID: 15695169 ] [DOI] [PubMed] [Google Scholar]
  • 1177.Lucchelli A, et al. Br J Pharmacol. 1997;121:1775–1781. doi: 10.1038/sj.bjp.0701287. [PMID: 9283717 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1178.Molinari EJ, et al. Eur J Pharmacol. 1996;301:159–168. doi: 10.1016/0014-2999(95)00870-5. [PMID: 8773460 ] [DOI] [PubMed] [Google Scholar]
  • 1179.Nosjean O, et al. J Biol Chem. 2000;275:31311–31317. doi: 10.1074/jbc.M005141200. [PMID: 10913150 ] [DOI] [PubMed] [Google Scholar]
  • 1180.Nosjean O, et al. Biochem Pharmacol. 2001;61:1369–1379. doi: 10.1016/s0006-2952(01)00615-3. [PMID: 11331072 ] [DOI] [PubMed] [Google Scholar]
  • 1181.Pintor J, et al. Br J Pharmacol. 2003;138:831–836. doi: 10.1038/sj.bjp.0705118. [PMID: 12642384 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1182.Popova JS, Dubocovich ML. J Neurochem. 1995;64:130–138. doi: 10.1046/j.1471-4159.1995.64010130.x. [PMID: 7798906 ] [DOI] [PubMed] [Google Scholar]
  • 1183.Sugden D, et al. Reprod Nutr Dev. 1999;39:335–344. doi: 10.1051/rnd:19990306. [PMID: 10420436 ] [DOI] [PubMed] [Google Scholar]
  • 1184.Teh MT, Sugden D. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:522–528. doi: 10.1007/pl00005288. [PMID: 9840420 ] [DOI] [PubMed] [Google Scholar]
  • 1185.Ting KN, et al. Br J Pharmacol. 1999;127:987. doi: 10.1038/sj.bjp.0702612. –995. [PMID: 10433507 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1186.Anderson JJ, et al. J Pharmacol Exp Ther. 2002;303:1044–1051. doi: 10.1124/jpet.102.040618. [PMID: 12438526 ] [DOI] [PubMed] [Google Scholar]
  • 1187.Barda DA, et al. Bioorg Med Chem Lett. 2004;14:3099–3102. doi: 10.1016/j.bmcl.2004.04.017. [PMID: 15149652 ] [DOI] [PubMed] [Google Scholar]
  • 1188.Bonnefous C, et al. Bioorg Med Chem Lett. 2005;15:1197–1200. doi: 10.1016/j.bmcl.2004.11.078. [PMID: 15686941 ] [DOI] [PubMed] [Google Scholar]
  • 1189.Bonnefous C, et al. Bioorg Med Chem Lett. 2005;15:4354–4358. doi: 10.1016/j.bmcl.2005.06.062. [PMID: 16046122 ] [DOI] [PubMed] [Google Scholar]
  • 1190.Brabet I, et al. Neuropharmacology. 1995;34:895–903. doi: 10.1016/0028-3908(95)00079-l. [PMID: 8532171 ] [DOI] [PubMed] [Google Scholar]
  • 1191.Brodkin J, et al. Eur J Neurosci. 2002;16:2241–2244. doi: 10.1046/j.1460-9568.2002.02294.x. [PMID: 12473093 ] [DOI] [PubMed] [Google Scholar]
  • 1192.Bräuner-Osborne H, et al. J Med Chem. 1996;39:3188–3194. doi: 10.1021/jm9602569. [PMID: 8759641 ] [DOI] [PubMed] [Google Scholar]
  • 1193.Carroll FY, et al. Mol Pharmacol. 2001;59:965–973. [PMID: 11306677 ] [PMC free article] [PubMed] [Google Scholar]
  • 1194.Chopra M, et al. J Pharmacol Exp Ther. 2009;330:212–219. doi: 10.1124/jpet.109.152553. [PMID: 19389924 ] [DOI] [PubMed] [Google Scholar]
  • 1195.Chung DS, et al. J Pharmacol Exp Ther. 1997;283:742–749. [PMID: 9353394 ] [PubMed] [Google Scholar]
  • 1196.Clark BP, et al. Bioorganic & Medicinal Chemistry Letters. 1997;7:2777–2780. [Google Scholar]
  • 1197.Costantino G, et al. Bioorg Med Chem. 2001;9:221–227. doi: 10.1016/s0968-0896(00)00270-4. [PMID: 11249114 ] [DOI] [PubMed] [Google Scholar]
  • 1198.de Paulis T, et al. J Med Chem. 2006;49:3332–3344. doi: 10.1021/jm051252j. [PMID: 16722652 ] [DOI] [PubMed] [Google Scholar]
  • 1199.Engers DW, et al. J Med Chem. 2009;52:4115–4118. doi: 10.1021/jm9005065. [PMID: 19469556 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1200.Escribano A, et al. Bioorg Med Chem Lett. 1998;8:765–770. doi: 10.1016/s0960-894x(98)00091-2. [PMID: 9871538 ] [DOI] [PubMed] [Google Scholar]
  • 1201.Fricker AC, et al. Neuropharmacology. 2009;56:1060–1067. doi: 10.1016/j.neuropharm.2009.03.002. [PMID: 19285517 ] [DOI] [PubMed] [Google Scholar]
  • 1202.Gasparini F, et al. Bioorg Med Chem Lett. 2002;12:407–409. doi: 10.1016/s0960-894x(01)00767-3. [PMID: 11814808 ] [DOI] [PubMed] [Google Scholar]
  • 1203.Gasparini F, et al. J Pharmacol Exp Ther. 1999;289:1678–1687. [PMID: 10336568 ] [PubMed] [Google Scholar]
  • 1204.Gasparini F, et al. Neuropharmacology. 1999;38:1493–1503. doi: 10.1016/s0028-3908(99)00082-9. [PMID: 10530811 ] [DOI] [PubMed] [Google Scholar]
  • 1205.Goudet C, et al. FASEB J. 2012;26:1682–1693. doi: 10.1096/fj.11-195941. [PMID: 22223752 ] [DOI] [PubMed] [Google Scholar]
  • 1206.Han G, Hampson DR. J Biol Chem. 1999;274:10008–10013. doi: 10.1074/jbc.274.15.10008. [PMID: 10187777 ] [DOI] [PubMed] [Google Scholar]
  • 1207.Jane DE, et al. Neuropharmacology. 1996;35:1029–1035. doi: 10.1016/s0028-3908(96)00048-2. [PMID: 9121605 ] [DOI] [PubMed] [Google Scholar]
  • 1208.Johnson MP, et al. J Med Chem. 2003;46:3189–3192. doi: 10.1021/jm034015u. [PMID: 12852748 ] [DOI] [PubMed] [Google Scholar]
  • 1209.Johnson MP, et al. Psychopharmacology (Berl) 2005;179:271–283. doi: 10.1007/s00213-004-2099-9. [PMID: 15717213 ] [DOI] [PubMed] [Google Scholar]
  • 1210.Kingston AE, et al. Neuropharmacology. 1998;37:1–12. doi: 10.1016/s0028-3908(97)00191-3. [PMID: 9680254 ] [DOI] [PubMed] [Google Scholar]
  • 1211.Kinney GG, et al. J Pharmacol Exp Ther. 2005;313:199–206. doi: 10.1124/jpet.104.079244. [PMID: 15608073 ] [DOI] [PubMed] [Google Scholar]
  • 1212.Klein J, et al. Neuropharmacology. 1997;36:305–311. doi: 10.1016/s0028-3908(97)00024-5. [PMID: 9175608 ] [DOI] [PubMed] [Google Scholar]
  • 1213.Knoflach F, et al. Proc Natl Acad Sci U S A. 2001;98:13402–13407. doi: 10.1073/pnas.231358298. [PMID: 11606768 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1214.Kohara A, et al. J Pharmacol Exp Ther. 2005;315:163–169. doi: 10.1124/jpet.105.087171. [PMID: 15976016 ] [DOI] [PubMed] [Google Scholar]
  • 1215.Kolczewski S, et al. Bioorg Med Chem Lett. 1999;9:2173–2176. doi: 10.1016/s0960-894x(99)00346-7. [PMID: 10465539 ] [DOI] [PubMed] [Google Scholar]
  • 1216.Lavreysen H, et al. Mol Pharmacol. 2003;63:1082–1093. doi: 10.1124/mol.63.5.1082. [PMID: 12695537 ] [DOI] [PubMed] [Google Scholar]
  • 1217.Lavreysen H, et al. Neuropharmacology. 2004;47:961–972. doi: 10.1016/j.neuropharm.2004.08.007. [PMID: 15555631 ] [DOI] [PubMed] [Google Scholar]
  • 1218.Li L, et al. Neuropharmacology. 2002;43:295. [Google Scholar]
  • 1219.Lindsley CW, et al. J Med Chem. 2004;47:5825–5828. doi: 10.1021/jm049400d. [PMID: 15537338 ] [DOI] [PubMed] [Google Scholar]
  • 1220.Litschig S, et al. Mol Pharmacol. 1999;55:453–461. [PMID: 10051528 ] [PubMed] [Google Scholar]
  • 1221.Madsen U, et al. Neuropharmacology. 2005;49:114–119. doi: 10.1016/j.neuropharm.2005.05.007. Suppl. 1:. [PMID: 15996690 ] [DOI] [PubMed] [Google Scholar]
  • 1222.Maj M, et al. Neuropharmacology. 2003;45:895–906. doi: 10.1016/s0028-3908(03)00271-5. [PMID: 14573382 ] [DOI] [PubMed] [Google Scholar]
  • 1223.Malherbe P, et al. J Biol Chem. 2003;278:8340–8347. doi: 10.1074/jbc.M211759200. [PMID: 12509432 ] [DOI] [PubMed] [Google Scholar]
  • 1224.Malherbe P, et al. Brain Res Mol Brain Res. 1999;67:201–210. doi: 10.1016/s0169-328x(99)00050-9. [PMID: 10216218 ] [DOI] [PubMed] [Google Scholar]
  • 1225.Mannaioni G, et al. Neuropharmacology. 1999;38:917–926. doi: 10.1016/s0028-3908(99)00021-0. [PMID: 10428410 ] [DOI] [PubMed] [Google Scholar]
  • 1226.Mathiesen JM, et al. Br J Pharmacol. 2003;138:1026–1030. doi: 10.1038/sj.bjp.0705159. [PMID: 12684257 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1227.Micheli F, et al. Bioorg Med Chem. 2003;11:171–183. doi: 10.1016/s0968-0896(02)00424-8. [PMID: 12470711 ] [DOI] [PubMed] [Google Scholar]
  • 1228.Mitsukawa K, et al. Proc Natl Acad Sci U S A. 2005;102:18712–18717. doi: 10.1073/pnas.0508063102. [PMID: 16339898 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1229.Monn JA, et al. J Med Chem. 1999;42:1027–1040. doi: 10.1021/jm980616n. [PMID: 10090786 ] [DOI] [PubMed] [Google Scholar]
  • 1230.Moroni F, et al. Neuropharmacology. 2002;42:741–751. doi: 10.1016/s0028-3908(02)00033-3. [PMID: 12015200 ] [DOI] [PubMed] [Google Scholar]
  • 1231.Moroni F, et al. J Pharmacol Exp Ther. 1997;281:721–729. [PMID: 9152378 ] [PubMed] [Google Scholar]
  • 1232.Mutel V, et al. J Neurochem. 2000;75:2590–2601. doi: 10.1046/j.1471-4159.2000.0752590.x. [PMID: 11080213 ] [DOI] [PubMed] [Google Scholar]
  • 1233.Neale JH. J Neurochem. 2011. [Epub ahead of print]. [PMID: 21740441 ] [Google Scholar]
  • 1234.Niswender CM, et al. Mol Pharmacol. 2010;77:459–468. doi: 10.1124/mol.109.058768. [PMID: 20026717 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1235.Niswender CM, et al. Mol Pharmacol. 2008;74:1345–1358. doi: 10.1124/mol.108.049551. [PMID: 18664603 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1236.O'Brien JA, et al. Mol Pharmacol. 2003;64:731–740. doi: 10.1124/mol.64.3.731. [PMID: 12920211 ] [DOI] [PubMed] [Google Scholar]
  • 1237.O'Brien JA, et al. J Pharmacol Exp Ther. 2004;309:568–577. doi: 10.1124/jpet.103.061747. [PMID: 14747613 ] [DOI] [PubMed] [Google Scholar]
  • 1238.Pellegrini-Giampietro DE, et al. Br J Pharmacol. 1996;118:1035–1043. doi: 10.1111/j.1476-5381.1996.tb15503.x. [PMID: 8799579 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1239.Pellicciari R, et al. J Med Chem. 1996;39:2259–2269. doi: 10.1021/jm960059+. [PMID: 8667369 ] [DOI] [PubMed] [Google Scholar]
  • 1240.Pin JP, Acher F. Curr Drug Targets CNS Neurol Disord. 2002;1:297–317. doi: 10.2174/1568007023339328. [PMID: 12769621 ] [DOI] [PubMed] [Google Scholar]
  • 1241.Porter RH, et al. J Pharmacol Exp Ther. 2005;315:711–721. doi: 10.1124/jpet.105.089839. [PMID: 16040814 ] [DOI] [PubMed] [Google Scholar]
  • 1242.Schaffhauser H, et al. Mol Pharmacol. 2003;64:798–810. doi: 10.1124/mol.64.4.798. [PMID: 14500736 ] [DOI] [PubMed] [Google Scholar]
  • 1243.Schoepp DD. Metabotropic glutamate receptors. In: Watson SP, Girdlestone Diuphar, et al., editors. Iuphar Compendium of Receptor Characterization and Classification Edited by Press. 2000. pp. 195–208. [Google Scholar]
  • 1244.Schoepp DD, et al. Neuropharmacology. 1997;36:1–11. doi: 10.1016/s0028-3908(96)00160-8. [PMID: 9144636 ] [DOI] [PubMed] [Google Scholar]
  • 1245.Schoepp DD, et al. Neuropharmacology. 1996;35:1661–1672. doi: 10.1016/s0028-3908(96)00121-9. [PMID: 9076745 ] [DOI] [PubMed] [Google Scholar]
  • 1246.Schweitzer C, et al. Neuropharmacology. 2000;39:1700–1706. doi: 10.1016/s0028-3908(99)00265-8. [PMID: 10884552 ] [DOI] [PubMed] [Google Scholar]
  • 1247.Suzuki G, et al. J Pharmacol Exp Ther. 2007;323:147–156. doi: 10.1124/jpet.107.124701. [PMID: 17609420 ] [DOI] [PubMed] [Google Scholar]
  • 1248.Thomas NK, et al. Neuropharmacology. 2001;40:311–318. doi: 10.1016/s0028-3908(00)00169-6. [PMID: 11166323 ] [DOI] [PubMed] [Google Scholar]
  • 1249.Thoreson WB, et al. Neuropharmacology. 1997;36:13–20. doi: 10.1016/s0028-3908(96)00164-5. [PMID: 9144637 ] [DOI] [PubMed] [Google Scholar]
  • 1250.Tuckmantel W, et al. Bioorg Med Chem Lett. 1997;7:601–606. [Google Scholar]
  • 1251.Uyama Y, et al. Brain Res. 1997;752:327–330. doi: 10.1016/s0006-8993(97)00079-6. [PMID: 9106476 ] [DOI] [PubMed] [Google Scholar]
  • 1252.Varney MA, et al. J Pharmacol Exp Ther. 1999;290:170–181. [PMID: 10381773 ] [PubMed] [Google Scholar]
  • 1253.Wermuth CG, et al. J Med Chem. 1996;39:814–816. doi: 10.1021/jm9508144. [PMID: 8632404 ] [DOI] [PubMed] [Google Scholar]
  • 1254.Wu S, et al. Brain Res Mol Brain Res. 1998;53:88–97. doi: 10.1016/s0169-328x(97)00277-5. [PMID: 9473604 ] [DOI] [PubMed] [Google Scholar]
  • 1255.Zheng GZ, et al. J Med Chem. 2005;48:7374–7388. doi: 10.1021/jm0504407. [PMID: 16279797 ] [DOI] [PubMed] [Google Scholar]
  • 1256.Broad J, Sanger GJ. Br J Pharmacol. 2013;168:1859–1867. doi: 10.1111/bph.12077. [PMID: 23190027 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1257.Clark MJ, et al. Clin Exp Pharmacol Physiol. 1999;26:242–245. doi: 10.1046/j.1440-1681.1999.03022.x. [PMID: 10081621 ] [DOI] [PubMed] [Google Scholar]
  • 1258.Coulie B, et al. J Biol Chem. 2001;276:35518–35522. doi: 10.1074/jbc.M104489200. [PMID: 11461914 ] [DOI] [PubMed] [Google Scholar]
  • 1259.Depoortere I, Peeters TL. Regul Pept. 1995;55:227–235. doi: 10.1016/0167-0115(94)00111-a. [PMID: 7761622 ] [DOI] [PubMed] [Google Scholar]
  • 1260.Feighner SD, et al. Science. 1999;284:2184–2188. doi: 10.1126/science.284.5423.2184. [PMID: 10381885 ] [DOI] [PubMed] [Google Scholar]
  • 1261.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 1262.Haramura M, et al. J Med Chem. 2002;45:670–675. doi: 10.1021/jm010332u. [PMID: 11806718 ] [DOI] [PubMed] [Google Scholar]
  • 1263.Koga H, et al. Bioorganic and Medicinal Chemistry Letters. 1994;4:1347–1352. [Google Scholar]
  • 1264.Li JJ, et al. J Med Chem. 2004;47:1704–1708. doi: 10.1021/jm0304865. [PMID: 15027861 ] [DOI] [PubMed] [Google Scholar]
  • 1265.Matsuura B, et al. J Pharmacol Exp Ther. 2005;313:1101–1108. doi: 10.1124/jpet.104.081562. [PMID: 15677347 ] [DOI] [PubMed] [Google Scholar]
  • 1266.Matsuura B, et al. J Biol Chem. 2002;277:9834–9839. doi: 10.1074/jbc.M111051200. [PMID: 11781320 ] [DOI] [PubMed] [Google Scholar]
  • 1267.Matsuura B, et al. J Biol Chem. 2006;281:12390–12396. doi: 10.1074/jbc.M511921200. [PMID: 16531413 ] [DOI] [PubMed] [Google Scholar]
  • 1268.McKee KK, et al. Genomics. 1997;46:426–434. doi: 10.1006/geno.1997.5069. [PMID: 9441746 ] [DOI] [PubMed] [Google Scholar]
  • 1269.Nieuwenhuijs VB, et al. Eur J Clin Invest. 1999;29:33–40. doi: 10.1046/j.1365-2362.1999.00364.x. [PMID: 10092986 ] [DOI] [PubMed] [Google Scholar]
  • 1270.Sanger GJ, et al. Neurogastroenterol Motil. 2009;21:657–664. doi: 10.1111/j.1365-2982.2008.01270.x. , e30–1. [PMID: 19374732 ] [DOI] [PubMed] [Google Scholar]
  • 1271.Sudo H, et al. Eur J Pharmacol. 2008;581:296–305. doi: 10.1016/j.ejphar.2007.11.049. [PMID: 18164286 ] [DOI] [PubMed] [Google Scholar]
  • 1272.Takanashi H, et al. J Pharmacol Exp Ther. 1995;273:624–628. [PMID: 7752063 ] [PubMed] [Google Scholar]
  • 1273.Takanashi H, et al. Pharmacology. 2007;79:137–148. doi: 10.1159/000098129. [PMID: 17183187 ] [DOI] [PubMed] [Google Scholar]
  • 1274.Thielemans L, et al. J Pharmacol Exp Ther. 2005;313:1397–1405. doi: 10.1124/jpet.104.081497. [PMID: 15764739 ] [DOI] [PubMed] [Google Scholar]
  • 1275.Westaway SM, et al. J Med Chem. 2009;52:1180–1189. doi: 10.1021/jm801332q. [PMID: 19191554 ] [DOI] [PubMed] [Google Scholar]
  • 1276.Westaway SM, Sanger GJ. Prog Med Chem. 2009;48:31–80. doi: 10.1016/s0079-6468(09)04802-4. [PMID: 21544957 ] [DOI] [PubMed] [Google Scholar]
  • 1277.Zhao DM, et al. Am J Physiol Lung Cell Mol Physiol. 2000;278:L726–L736. doi: 10.1152/ajplung.2000.278.4.L726. [PMID: 10749750 ] [DOI] [PubMed] [Google Scholar]
  • 1278.Brighton PJ, et al. Mol Pharmacol. 2004;66:1544–1556. doi: 10.1124/mol.104.002337. [PMID: 15331768 ] [DOI] [PubMed] [Google Scholar]
  • 1279.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 1280.Hedrick JA, et al. Mol Pharmacol. 2000;58:870–875. doi: 10.1124/mol.58.4.870. [PMID: 10999960 ] [DOI] [PubMed] [Google Scholar]
  • 1281.Hosoya M, et al. J Biol Chem. 2000;275:29528–29532. doi: 10.1074/jbc.M004261200. [PMID: 10887190 ] [DOI] [PubMed] [Google Scholar]
  • 1282.Hsu SH, Luo CW. Am J Physiol Endocrinol Metab. 2007;293:E1021–E1029. doi: 10.1152/ajpendo.00003.2007. [PMID: 17652154 ] [DOI] [PubMed] [Google Scholar]
  • 1283.Liu JJ, et al. J Pharmacol Exp Ther. 2009;330:268–275. doi: 10.1124/jpet.109.152967. [PMID: 19369576 ] [DOI] [PubMed] [Google Scholar]
  • 1284.Meng T, et al. Acta Pharmacol Sin. 2008;29:517–527. doi: 10.1111/j.1745-7254.2008.00769.x. [PMID: 18358099 ] [DOI] [PubMed] [Google Scholar]
  • 1285.Minamino N, et al. Biochem Biophys Res Commun. 1985;130:1078–1085. doi: 10.1016/0006-291x(85)91726-7. [PMID: 3839674 ] [DOI] [PubMed] [Google Scholar]
  • 1286.Mori K, et al. EMBO J. 2005;24:325–335. doi: 10.1038/sj.emboj.7600526. [PMID: 15635449 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1287.Gouardères C, et al. Neuropharmacology. 2007;52:376–386. doi: 10.1016/j.neuropharm.2006.07.034. [PMID: 17011599 ] [DOI] [PubMed] [Google Scholar]
  • 1288.Gouardères C, et al. Neuroscience. 2002;115:349–361. doi: 10.1016/s0306-4522(02)00419-0. [PMID: 12421602 ] [DOI] [PubMed] [Google Scholar]
  • 1289.Gouardères C, Zajac JM. Neurosci Res. 2007;58:91–94. doi: 10.1016/j.neures.2007.01.013. [PMID: 17337079 ] [DOI] [PubMed] [Google Scholar]
  • 1290.Lameh J, et al. J Pharmacol Exp Ther. 2010;334:244–254. doi: 10.1124/jpet.109.164384. [PMID: 20354177 ] [DOI] [PubMed] [Google Scholar]
  • 1291.Mollereau C, et al. Br J Pharmacol. 2001;133:1–4. doi: 10.1038/sj.bjp.0704049. [PMID: 11325787 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1292.Mollereau C, et al. Eur J Pharmacol. 2002;451:245–256. doi: 10.1016/s0014-2999(02)02224-0. [PMID: 12242085 ] [DOI] [PubMed] [Google Scholar]
  • 1293.Mollereau C, et al. Mol Pharmacol. 2005;67:965–975. doi: 10.1124/mol.104.004614. [PMID: 15608144 ] [DOI] [PubMed] [Google Scholar]
  • 1294.Quelven I, et al. Eur J Pharmacol. 2005;508:107–114. doi: 10.1016/j.ejphar.2004.12.002. [PMID: 15680260 ] [DOI] [PubMed] [Google Scholar]
  • 1295.Roussin A, et al. Biochem Biophys Res Commun. 2005;336:197–203. doi: 10.1016/j.bbrc.2005.08.060. [PMID: 16129413 ] [DOI] [PubMed] [Google Scholar]
  • 1296.Simonin F, et al. Proc Natl Acad Sci U S A. 2006;103:466–471. doi: 10.1073/pnas.0502090103. [PMID: 16407169 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1297.Talmont F, et al. Neurochem Int. 2009;55:815–819. doi: 10.1016/j.neuint.2009.08.004. [PMID: 19682524 ] [DOI] [PubMed] [Google Scholar]
  • 1298.Yang HY, et al. Proc Natl Acad Sci U S A. 1985;82:7757–7761. doi: 10.1073/pnas.82.22.7757. [PMID: 3865193 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1299.D'Amato M, et al. Gastroenterology. 2007;133:808–817. doi: 10.1053/j.gastro.2007.06.012. [PMID: 17854592 ] [DOI] [PubMed] [Google Scholar]
  • 1300.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 1301.Gupte J, et al. Proc Natl Acad Sci USA. 2004;101:1508–1513. doi: 10.1073/pnas.0308250100. [PMID: 14757815 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1302.Vendelin J, et al. Am J Respir Cell Mol Biol. 2005;33:262–270. doi: 10.1165/rcmb.2004-0405OC. [PMID: 15947423 ] [DOI] [PubMed] [Google Scholar]
  • 1303.Xu YL, et al. Neuron. 2004;43:487–497. doi: 10.1016/j.neuron.2004.08.005. [PMID: 15312648 ] [DOI] [PubMed] [Google Scholar]
  • 1304.Brezillon S, et al. J Biol Chem. 2003;278:776–783. doi: 10.1074/jbc.M206396200. [PMID: 12401809 ] [DOI] [PubMed] [Google Scholar]
  • 1305.Fujii R, et al. J Biol Chem. 2002;277:34010–34016. doi: 10.1074/jbc.M205883200. [PMID: 12118011 ] [DOI] [PubMed] [Google Scholar]
  • 1306.Kanesaka M, et al. J Pept Sci. 2007;13:379–385. doi: 10.1002/psc.855. [PMID: 17486669 ] [DOI] [PubMed] [Google Scholar]
  • 1307.Mazzocchi G, et al. J Clin Endocrinol Metab. 2005;90:3466–3471. doi: 10.1210/jc.2004-2132. [PMID: 15797961 ] [DOI] [PubMed] [Google Scholar]
  • 1308.Nagata-Kuroiwa R, et al. PLoS ONE. 2011;6:e16972–PMID. doi: 10.1371/journal.pone.0016972. 21390312 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1309.Shimomura Y, et al. J Biol Chem. 2002;277:35826–35832. doi: 10.1074/jbc.M205337200. [PMID: 12130646 ] [DOI] [PubMed] [Google Scholar]
  • 1310.Singh G, et al. Brain Res. 2004;1017:222–226. doi: 10.1016/j.brainres.2004.03.079. [PMID: 15261118 ] [DOI] [PubMed] [Google Scholar]
  • 1311.Bard JA, et al. J Biol Chem. 1995;270:26762–26765. doi: 10.1074/jbc.270.45.26762. [PMID: 7592911 ] [DOI] [PubMed] [Google Scholar]
  • 1312.Bonaventure P, et al. J Pharmacol Exp Ther. 2004;308:1130–1137. doi: 10.1124/jpet.103.060459. [PMID: 14617685 ] [DOI] [PubMed] [Google Scholar]
  • 1313.Cabrele C, et al. Biochemistry. 2002;41:8043–8049. doi: 10.1021/bi0201421. [PMID: 12069595 ] [DOI] [PubMed] [Google Scholar]
  • 1314.Cox HM, Tough IR. Br J Pharmacol. 1995;116:2673–2678. doi: 10.1111/j.1476-5381.1995.tb17225.x. [PMID: 8590988 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1315.Doods H, et al. Eur J Pharmacol. 1999;384:R3–R5. doi: 10.1016/s0014-2999(99)00650-0. [PMID: 10611450 ] [DOI] [PubMed] [Google Scholar]
  • 1316.Dumont Y, et al. Neuropeptides. 2004;38:163–174. doi: 10.1016/j.npep.2004.04.007. [PMID: 15337369 ] [DOI] [PubMed] [Google Scholar]
  • 1317.Eriksson H, et al. Regul Pept. 1998;75–76:29–37. doi: 10.1016/s0167-0115(98)00050-0. [PMID: 9802391 ] [DOI] [PubMed] [Google Scholar]
  • 1318.Gehlert DR, et al. Mol Pharmacol. 1996;49:224–228. [PMID: 8632753 ] [PubMed] [Google Scholar]
  • 1319.Gerald C, et al. Nature. 1996;382:168–171. doi: 10.1038/382168a0. [PMID: 8700207 ] [DOI] [PubMed] [Google Scholar]
  • 1320.Gerald C, et al. J Biol Chem. 1995;270:26758–26761. doi: 10.1074/jbc.270.45.26758. [PMID: 7592910 ] [DOI] [PubMed] [Google Scholar]
  • 1321.Gregor P, et al. FEBS Lett. 1996;381:58–62. doi: 10.1016/0014-5793(96)00067-1. [PMID: 8641440 ] [DOI] [PubMed] [Google Scholar]
  • 1322.Kanatani A, et al. Biochem Biophys Res Commun. 2000;272:169–173. doi: 10.1006/bbrc.2000.2696. [PMID: 10872822 ] [DOI] [PubMed] [Google Scholar]
  • 1323.Loetscher M, et al. J Biol Chem. 1994;269:232–237. [PMID: 8276799 ] [PubMed] [Google Scholar]
  • 1324.Lundell I, et al. J Biol Chem. 1995;270:29123–29128. doi: 10.1074/jbc.270.49.29123. [PMID: 7493937 ] [DOI] [PubMed] [Google Scholar]
  • 1325.Michel MC, et al. Pharmacol Rev. 1998;50:143–150. [PMID: 9549761 ] [PubMed] [Google Scholar]
  • 1326.Sjödin P, et al. Biochem J. 2006;393:161–169. doi: 10.1042/BJ20050708. [PMID: 16097949 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1327.Tough IR, et al. J Pharmacol Exp Ther. 2006;319:20–30. doi: 10.1124/jpet.106.106500. [PMID: 16807358 ] [DOI] [PubMed] [Google Scholar]
  • 1328.Wieland HA, et al. Br J Pharmacol. 1998;125:549–555. doi: 10.1038/sj.bjp.0702084. [PMID: 9806339 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1329.Yan H, et al. Proc Natl Acad Sci U S A. 1996;93:4661–4665. doi: 10.1073/pnas.93.10.4661. [PMID: 8643460 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1330.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 1331.Gully D, et al. J Pharmacol Exp Ther. 1997;280:802–812. [PMID: 9023294 ] [PubMed] [Google Scholar]
  • 1332.Hermans E, et al. Br J Pharmacol. 1997;121:1817–1823. doi: 10.1038/sj.bjp.0701334. [PMID: 9283723 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1333.Labbé-Jullié C, et al. Mol Pharmacol. 1995;47:1050–1056. [PMID: 7746272 ] [PubMed] [Google Scholar]
  • 1334.Martin S, et al. Gastroenterology. 2002;123:1135–1143. doi: 10.1053/gast.2002.36000. [PMID: 12360476 ] [DOI] [PubMed] [Google Scholar]
  • 1335.Mazella J, et al. J Neurosci. 1996;16:5613–5620. doi: 10.1523/JNEUROSCI.16-18-05613.1996. [PMID: 8795617 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1336.Nielsen MS, et al. J Biol Chem. 1999;274:8832–8836. doi: 10.1074/jbc.274.13.8832. [PMID: 10085125 ] [DOI] [PubMed] [Google Scholar]
  • 1337.Richard F, et al. Mol Pharmacol. 2001;60:1392–1398. doi: 10.1124/mol.60.6.1392. [PMID: 11723247 ] [DOI] [PubMed] [Google Scholar]
  • 1338.Souazé F, et al. J Biol Chem. 1997;272:10087–10094. doi: 10.1074/jbc.272.15.10087. [PMID: 9092553 ] [DOI] [PubMed] [Google Scholar]
  • 1339.Vita N, et al. Eur J Pharmacol. 1998;360:265–272. doi: 10.1016/s0014-2999(98)00678-5. [PMID: 9851594 ] [DOI] [PubMed] [Google Scholar]
  • 1340.Akiyama K, et al. Proc Natl Acad Sci USA. 1985;82:2543–2547. doi: 10.1073/pnas.82.8.2543. [PMID: 2986120 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1341.Bigoni R, et al. Naunyn Schmiedebergs Arch Pharmacol. 2002;365:442–449. doi: 10.1007/s00210-002-0548-8. [PMID: 12070757 ] [DOI] [PubMed] [Google Scholar]
  • 1342.Bruchas MR, et al. J Biol Chem. 2007;282:29803–29811. doi: 10.1074/jbc.M705540200. [PMID: 17702750 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1343.Béguin C, et al. Bioorg Med Chem Lett. 2005;15:2761–2765. doi: 10.1016/j.bmcl.2005.03.113. [PMID: 15869877 ] [DOI] [PubMed] [Google Scholar]
  • 1344.Búzás B, et al. Life Sci. 1992;50:PL75–PL78. doi: 10.1016/0024-3205(92)90103-v. [PMID: 1313131 ] [DOI] [PubMed] [Google Scholar]
  • 1345.Calderon SN, et al. J Med Chem. 1994;37:2125–2128. doi: 10.1021/jm00040a002. [PMID: 8035418 ] [DOI] [PubMed] [Google Scholar]
  • 1346.Calo G, et al. Br J Pharmacol. 2002;136:303–311. doi: 10.1038/sj.bjp.0704706. [PMID: 12010780 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1347.Chang KJ, et al. J Pharmacol Exp Ther. 1983;227:403–408. [PMID: 6313901 ] [PubMed] [Google Scholar]
  • 1348.Chavkin C, et al. J Pharmacol Exp Ther. 2004;308:1197–1203. doi: 10.1124/jpet.103.059394. [PMID: 14718611 ] [DOI] [PubMed] [Google Scholar]
  • 1349.Dooley CT, Houghten RA. Life Sci. 1996;59:PL23–PL29. doi: 10.1016/0024-3205(96)00261-5. [PMID: 8684262 ] [DOI] [PubMed] [Google Scholar]
  • 1350.Erspamer V. Ann N Y Acad Sci. 1988;547:3–9. doi: 10.1111/j.1749-6632.1988.tb23870.x. [PMID: 3071223 ] [DOI] [PubMed] [Google Scholar]
  • 1351.Erspamer V, et al. Proc Natl Acad Sci USA. 1989;86:5188–5192. doi: 10.1073/pnas.86.13.5188. [PMID: 2544892 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1352.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 1353.Gong J, et al. FEBS Lett. 1998;439:152–156. doi: 10.1016/s0014-5793(98)01362-3. [PMID: 9849897 ] [DOI] [PubMed] [Google Scholar]
  • 1354.Guerrini R, et al. J Med Chem. 1997;40:1789–1793. doi: 10.1021/jm970011b. [PMID: 9191955 ] [DOI] [PubMed] [Google Scholar]
  • 1355.Handa BK, et al. Eur J Pharmacol. 1981;70:531–540. doi: 10.1016/0014-2999(81)90364-2. [PMID: 6263640 ] [DOI] [PubMed] [Google Scholar]
  • 1356.Hawkins KN, et al. Eur J Pharmacol. 1987;133:351–352. doi: 10.1016/0014-2999(87)90033-1. [PMID: 3030778 ] [DOI] [PubMed] [Google Scholar]
  • 1357.Hunter JC, et al. Br J Pharmacol. 1990;101:183–189. doi: 10.1111/j.1476-5381.1990.tb12110.x. [PMID: 2178014 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1358.Jenck F, et al. Proc Natl Acad Sci U S A. 2000;97:4938–4943. doi: 10.1073/pnas.090514397. [PMID: 10758169 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1359.Jones RM, Portoghese PS. Eur J Pharmacol. 2000;396:49–52. doi: 10.1016/s0014-2999(00)00208-9. [PMID: 10822054 ] [DOI] [PubMed] [Google Scholar]
  • 1360.Jordan BA, Devi L. Nature. 1999;399:697–700. doi: 10.1038/21441. [PMID: 10385123 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1361.Kawamoto H, et al. J Med Chem. 1999;42:5061–5063. doi: 10.1021/jm990517p. [PMID: 10602690 ] [DOI] [PubMed] [Google Scholar]
  • 1362.Kuszak AJ, et al. J Biol Chem. 2009;284:26732–26741. doi: 10.1074/jbc.M109.026922. [PMID: 19542234 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1363.Lahti RA, et al. Eur J Pharmacol. 1985;109:281–284. doi: 10.1016/0014-2999(85)90431-5. [PMID: 2986999 ] [DOI] [PubMed] [Google Scholar]
  • 1364.Lever JR, Scheffel U. Eur J Pharmacol. 1998;350:335–344. doi: 10.1016/s0014-2999(98)00268-4. [PMID: 9696425 ] [DOI] [PubMed] [Google Scholar]
  • 1365.McDonald J, et al. Br J Pharmacol. 2003;140:61–70. doi: 10.1038/sj.bjp.0705401. [PMID: 12967935 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1366.Molinari S, et al. Br J Pharmacol. 2012. [Epub ahead of print]. [PMID: 22827708 ] [Google Scholar]
  • 1367.Mollereau C, et al. FEBS Lett. 1996;395:17–21. doi: 10.1016/0014-5793(96)00993-3. [PMID: 8849681 ] [DOI] [PubMed] [Google Scholar]
  • 1368.Mollereau C, et al. FEBS Lett. 1994;341:33–38. doi: 10.1016/0014-5793(94)80235-1. [PMID: 8137918 ] [DOI] [PubMed] [Google Scholar]
  • 1369.Mosberg HI, et al. Proc Natl Acad Sci USA. 1983;80:5871–5874. doi: 10.1073/pnas.80.19.5871. [PMID: 6310598 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1370.Neumeyer JL, et al. J Med Chem. 2003;46:5162–5170. doi: 10.1021/jm030139v. [PMID: 14613319 ] [DOI] [PubMed] [Google Scholar]
  • 1371.Oertel BG, et al. J Biol Chem. 2009;284:6530–6535. doi: 10.1074/jbc.M807030200. [PMID: 19116204 ] [DOI] [PubMed] [Google Scholar]
  • 1372.Okawa H, et al. Br J Pharmacol. 1999;127:123–130. doi: 10.1038/sj.bjp.0702539. [PMID: 10369464 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1373.Payza K. In: The Delta Receptor Edited by. Chang KJ, editor. CRC Press; 2003. pp. 261–275. [ISBN: 0824740319 ] [Google Scholar]
  • 1374.Portoghese PS, et al. J Med Chem. 1987;30:1991–1994. doi: 10.1021/jm00394a010. [PMID: 2444704 ] [DOI] [PubMed] [Google Scholar]
  • 1375.Portoghese PS, et al. Eur J Pharmacol. 1988;146:185–186. doi: 10.1016/0014-2999(88)90502-x. [PMID: 2832195 ] [DOI] [PubMed] [Google Scholar]
  • 1376.Quock RM, et al. Eur J Pharmacol. 1997;326:101–104. doi: 10.1016/s0014-2999(97)83488-7. [PMID: 9178661 ] [DOI] [PubMed] [Google Scholar]
  • 1377.Roth BL, et al. Proc Natl Acad Sci U S A. 2002;99:11934–11939. doi: 10.1073/pnas.182234399. [PMID: 12192085 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1378.Schiller PW, et al. J Med Chem. 1993;36:3182–3187. doi: 10.1021/jm00073a020. [PMID: 8230106 ] [DOI] [PubMed] [Google Scholar]
  • 1379.Simonin F, et al. Proc Natl Acad Sci U S A. 1995;92:7006–7010. doi: 10.1073/pnas.92.15.7006. [PMID: 7624359 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1380.Simonin F, et al. Eur J Pharmacol. 2001;414:189–195. doi: 10.1016/s0014-2999(01)00822-6. [PMID: 11239918 ] [DOI] [PubMed] [Google Scholar]
  • 1381.Sofuoglu M, et al. J Pharmacol Exp Ther. 1991;257:676–680. [PMID: 1851833 ] [PubMed] [Google Scholar]
  • 1382.Stefano GB, et al. Proc Natl Acad Sci USA. 1992;89:9316–9320. doi: 10.1073/pnas.89.19.9316. [PMID: 1329092 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1383.Stevens WC, et al. J Med Chem. 2000;43:2759–2769. doi: 10.1021/jm0000665. [PMID: 10893314 ] [DOI] [PubMed] [Google Scholar]
  • 1384.Toll L, et al. NIDA Res Monogr. 1998;178:440–466. [PMID: 9686407 ] [PubMed] [Google Scholar]
  • 1385.Volpe DA, et al. Regul Toxicol Pharmacol. 2011;59:385–390. doi: 10.1016/j.yrtph.2010.12.007. [PMID: 21215785 ] [DOI] [PubMed] [Google Scholar]
  • 1386.Vonvoigtlander PF, et al. J Pharmacol Exp Ther. 1983;224:7–12. [PMID: 6129321 ] [PubMed] [Google Scholar]
  • 1387.Yamamura MS, et al. Life Sci. 1992;50:PL119–PL124. doi: 10.1016/0024-3205(92)90464-z. [PMID: 1313133 ] [DOI] [PubMed] [Google Scholar]
  • 1388.Zadina JE, et al. Nature. 1997;386:499–502. doi: 10.1038/386499a0. [PMID: 9087409 ] [DOI] [PubMed] [Google Scholar]
  • 1389.Zagon IS, et al. Brain Res Brain Res Rev. 2002;38:351–376. doi: 10.1016/s0165-0173(01)00160-6. [PMID: 11890982 ] [DOI] [PubMed] [Google Scholar]
  • 1390.Zajac JM, Roques BP. Life Sci. 1983;33:155–158. doi: 10.1016/0024-3205(83)90467-8. Suppl 1:. [PMID: 6319853 ] [DOI] [PubMed] [Google Scholar]
  • 1391.Zaratin PF, et al. J Pharmacol Exp Ther. 2004;308:454–461. doi: 10.1124/jpet.103.055848. [PMID: 14593080 ] [DOI] [PubMed] [Google Scholar]
  • 1392.Zhu J, et al. Life Sci. 1995;56:PL201–PL207. doi: 10.1016/0024-3205(94)00507-o. [PMID: 7869844 ] [DOI] [PubMed] [Google Scholar]
  • 1393.Zhu J, et al. J Pharmacol Exp Ther. 1997;282:676–684. [PMID: 9262330 ] [PubMed] [Google Scholar]
  • 1394.Asahi S, et al. Bioorg Med Chem Lett. 2003;13:111–113. doi: 10.1016/s0960-894x(02)00851-x. [PMID: 12467628 ] [DOI] [PubMed] [Google Scholar]
  • 1395.Gotter AL, et al. Pharmacol Rev. 2012;64:389–420. doi: 10.1124/pr.111.005546. [PMID: 22759794 ] [DOI] [PubMed] [Google Scholar]
  • 1396.Hirose M, et al. Bioorg Med Chem Lett. 2003;13:4497–4499. doi: 10.1016/j.bmcl.2003.08.038. [PMID: 14643355 ] [DOI] [PubMed] [Google Scholar]
  • 1397.Holmqvist T, et al. Neurosci Lett. 2001;305:177–180. doi: 10.1016/s0304-3940(01)01839-0. [PMID: 11403934 ] [DOI] [PubMed] [Google Scholar]
  • 1398.Kukkonen JP, Åkerman KEO. Intracellular Signal Pathways Utilized by the Hypocretin/Orexin Receptors. In: Verlag, editor; de Lecea L, Sutcliffe JG, editors. Hypocretins. Integrators of Physiological Signals Edited by. Springer; 2005. pp. 221–231. [ISBN: 9780387254463 ] [Google Scholar]
  • 1399.Langmead CJ, et al. Br J Pharmacol. 2004;141:340–346. doi: 10.1038/sj.bjp.0705610. [PMID: 14691055 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1400.Lin L, et al. Cell. 1999;98:365–376. doi: 10.1016/s0092-8674(00)81965-0. [PMID: 10458611 ] [DOI] [PubMed] [Google Scholar]
  • 1401.Malherbe P, et al. Br J Pharmacol. 2009;156:1326–1341. doi: 10.1111/j.1476-5381.2009.00127.x. [PMID: 19751316 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1402.Malherbe P, et al. Mol Pharmacol. 2009;76:618–631. doi: 10.1124/mol.109.055152. [PMID: 19542319 ] [DOI] [PubMed] [Google Scholar]
  • 1403.McAtee LC, et al. Bioorg Med Chem Lett. 2004;14:4225–4229. doi: 10.1016/j.bmcl.2004.06.032. [PMID: 15261275 ] [DOI] [PubMed] [Google Scholar]
  • 1404.Porter RA, et al. Bioorg Med Chem Lett. 2001;11:1907–1910. doi: 10.1016/s0960-894x(01)00343-2. [PMID: 11459658 ] [DOI] [PubMed] [Google Scholar]
  • 1405.Putula J, et al. Neurosci Lett. 2011;494:57–60. doi: 10.1016/j.neulet.2011.02.055. [PMID: 21362456 ] [DOI] [PubMed] [Google Scholar]
  • 1406.Ramanjaneya M, et al. J Endocrinol. 2009;202:249–261. doi: 10.1677/JOE-08-0536. [PMID: 19460850 ] [DOI] [PubMed] [Google Scholar]
  • 1407.Sakurai T, et al. Cell. 1998;92:573–585. doi: 10.1016/s0092-8674(00)80949-6. [PMID: 9491897 ] [DOI] [PubMed] [Google Scholar]
  • 1408.He W, et al. Nature. 2004;429:188–193. doi: 10.1038/nature02488. [PMID: 15141213 ] [DOI] [PubMed] [Google Scholar]
  • 1409.Southern C, et al. J Biomol Screen. 2013;18:599–609. doi: 10.1177/1087057113475480. [PMID: 23396314 ] [DOI] [PubMed] [Google Scholar]
  • 1410.Abbracchio MP, et al. Trends Pharmacol Sci. 2003;24:52–55. doi: 10.1016/S0165-6147(02)00038-X. [PMID: 12559763 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1411.Abbracchio MP, et al. Pharmacol Rev. 2006;58:281–341. doi: 10.1124/pr.58.3.3. [PMID: 16968944 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1412.Akbar GK, et al. J Biol Chem. 1996;271:18363–18367. doi: 10.1074/jbc.271.31.18363. [PMID: 8702478 ] [DOI] [PubMed] [Google Scholar]
  • 1413.Balogh J, et al. J Mol Cell Cardiol. 2005;39:223–230. doi: 10.1016/j.yjmcc.2005.03.007. [PMID: 15893764 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1414.Baqi Y, et al. J Med Chem. 2009;52:3784–3793. doi: 10.1021/jm9003297. [PMID: 19463000 ] [DOI] [PubMed] [Google Scholar]
  • 1415.Belous A, et al. J Cell Biochem. 2004;92:1062–1073. doi: 10.1002/jcb.20144. [PMID: 15258927 ] [DOI] [PubMed] [Google Scholar]
  • 1416.Besada P, et al. J Med Chem. 2006;49:5532–5543. doi: 10.1021/jm060485n. [PMID: 16942026 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1417.Bogdanov YD, et al. J Biol Chem. 1997;272:12583–12590. doi: 10.1074/jbc.272.19.12583. [PMID: 9139711 ] [DOI] [PubMed] [Google Scholar]
  • 1418.Boyer JL, et al. Mol Pharmacol. 1996;50:1323–1329. [PMID: 8913364 ] [PubMed] [Google Scholar]
  • 1419.Castro E, et al. Br J Pharmacol. 1992;106:833–837. doi: 10.1111/j.1476-5381.1992.tb14421.x. [PMID: 1393282 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1420.Cattaneo M, et al. Biochem Pharmacol. 2004;68:1995–2002. doi: 10.1016/j.bcp.2004.06.026. [PMID: 15476670 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1421.Chhatriwala M, et al. J Pharmacol Exp Ther. 2004;311:1038–1043. doi: 10.1124/jpet.104.068650. [PMID: 15345752 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1422.Ciana P, et al. EMBO J. 2006;25:4615–4627. doi: 10.1038/sj.emboj.7601341. [PMID: 16990797 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1423.Communi D, et al. Biochem Biophys Res Commun. 1996;222:303–308. doi: 10.1006/bbrc.1996.0739. [PMID: 8670200 ] [DOI] [PubMed] [Google Scholar]
  • 1424.Communi D, et al. Br J Pharmacol. 1999;128:1199–1206. doi: 10.1038/sj.bjp.0702909. [PMID: 10578132 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1425.El-Tayeb A, et al. Bioorg Med Chem Lett. 2005;15:5450–5452. doi: 10.1016/j.bmcl.2005.08.104. [PMID: 16213725 ] [DOI] [PubMed] [Google Scholar]
  • 1426.El-Tayeb A, et al. J Med Chem. 2006;49:7076–7087. doi: 10.1021/jm060848j. [PMID: 17125260 ] [DOI] [PubMed] [Google Scholar]
  • 1427.El-Tayeb A, et al. J Med Chem. 2011;54:2878–2890. doi: 10.1021/jm1016297. [PMID: 21417463 ] [DOI] [PubMed] [Google Scholar]
  • 1428.Fricks IP, et al. J Pharmacol Exp Ther. 2008;325:588–594. doi: 10.1124/jpet.108.136309. [PMID: 18252808 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1429.Gao ZG, et al. Biochem Pharmacol. 2004;68:1985–1993. doi: 10.1016/j.bcp.2004.06.011. [PMID: 15476669 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1430.Gao ZG, et al. Purinergic Signal. 2013;9:31–40. doi: 10.1007/s11302-012-9325-4. [PMID: 22825617 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1431.He W, et al. Nature. 2004;429:188–193. doi: 10.1038/nature02488. [PMID: 15141213 ] [DOI] [PubMed] [Google Scholar]
  • 1432.Herbert JM, Savi P. Semin Vasc Med. 2003;3:113–122. doi: 10.1055/s-2003-40669. [PMID: 15199474 ] [DOI] [PubMed] [Google Scholar]
  • 1433.Humphries RG, et al. Br J Pharmacol. 1995;115:1110–1116. doi: 10.1111/j.1476-5381.1995.tb15925.x. [PMID: 7582510 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1434.Humphries RG, et al. Br J Pharmacol. 1994;113:1057–1063. doi: 10.1111/j.1476-5381.1994.tb17100.x. [PMID: 7858849 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1435.Inbe H, et al. J Biol Chem. 2004;279:19790–19799. doi: 10.1074/jbc.M400360200. [PMID: 15001573 ] [DOI] [PubMed] [Google Scholar]
  • 1436.Kemp PA, et al. Am J Respir Cell Mol Biol. 2004;31:446–455. doi: 10.1165/rcmb.2003-0211OC. [PMID: 15231488 ] [DOI] [PubMed] [Google Scholar]
  • 1437.Kennedy C, et al. Mol Pharmacol. 2000;57:926–931. [PMID: 10779375 ] [PubMed] [Google Scholar]
  • 1438.Kim HS, et al. J Med Chem. 2003;46:4974–4987. doi: 10.1021/jm030127+. [PMID: 14584948 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1439.Kim YC, et al. Biochem Pharmacol. 2005;70:266–274. doi: 10.1016/j.bcp.2005.04.021. [PMID: 15913566 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1440.King BF, Townsend-Nicholson A. J Auton Nerv Syst. 2000;81:164–170. doi: 10.1016/s0165-1838(00)00134-x. [PMID: 10869716 ] [DOI] [PubMed] [Google Scholar]
  • 1441.Ko H, et al. Bioorg Med Chem. 2008;16:6319–6332. doi: 10.1016/j.bmc.2008.05.013. [PMID: 18514530 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1442.Ko H, et al. J Med Chem. 2007;50:2030–2039. doi: 10.1021/jm061222w. [PMID: 17407275 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1443.Lazarowski ER, et al. Br J Pharmacol. 1995;116:1619–1627. doi: 10.1111/j.1476-5381.1995.tb16382.x. [PMID: 8564228 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1444.Lazarowski ER, et al. Br J Pharmacol. 1996;117:203–209. doi: 10.1111/j.1476-5381.1996.tb15175.x. [PMID: 8825364 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1445.Mamedova LK, et al. Biochem Pharmacol. 2004;67:1763–1770. doi: 10.1016/j.bcp.2004.01.011. [PMID: 15081875 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1446.Marteau F, et al. Mol Pharmacol. 2003;64:104–112. doi: 10.1124/mol.64.1.104. [PMID: 12815166 ] [DOI] [PubMed] [Google Scholar]
  • 1447.Maruoka H, et al. J Med Chem. 2010;53:4488–4501. doi: 10.1021/jm100287t. [PMID: 20446735 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1448.Maruoka H, et al. J Med Chem. 2011;54:4018–4033. doi: 10.1021/jm101591j. [PMID: 21528910 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1449.Meis S, et al. J Pharmacol Exp Ther. 2010;332:238–247. doi: 10.1124/jpet.109.157750. [PMID: 19815812 ] [DOI] [PubMed] [Google Scholar]
  • 1450.Mellor EA, et al. Proc Natl Acad Sci USA. 2003;100:11589–11593. doi: 10.1073/pnas.2034927100. [PMID: 13679572 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1451.Mellor EA, et al. Proc Natl Acad Sci U S A. 2001;98:7964–7969. doi: 10.1073/pnas.141221498. [PMID: 11438743 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1452.Moreschi I, et al. Cell Calcium. 2008;43:344–355. doi: 10.1016/j.ceca.2007.06.006. [PMID: 17707504 ] [DOI] [PubMed] [Google Scholar]
  • 1453.Moreschi I, et al. J Biol Chem. 2006;281:31419–31429. doi: 10.1074/jbc.M606625200. [PMID: 16926152 ] [DOI] [PubMed] [Google Scholar]
  • 1454.Noguchi K, et al. J Biol Chem. 2003;278:25600–25606. doi: 10.1074/jbc.M302648200. [PMID: 12724320 ] [DOI] [PubMed] [Google Scholar]
  • 1455.Ohlmann P, et al. Purinergic Signal. 2013;9:59–66. doi: 10.1007/s11302-012-9329-0. [PMID: 22892887 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1456.Pasternack SM, et al. Nat Genet. 2008;40:329–334. doi: 10.1038/ng.84. [PMID: 18297070 ] [DOI] [PubMed] [Google Scholar]
  • 1457.Patel K, et al. Eur J Pharmacol. 2001;430:203–210. doi: 10.1016/s0014-2999(01)01401-7. [PMID: 11711032 ] [DOI] [PubMed] [Google Scholar]
  • 1458.Schachter JB, Harden TK. Br J Pharmacol. 1997;121:338–344. doi: 10.1038/sj.bjp.0701136. [PMID: 9154346 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1459.Takasaki J, et al. Mol Pharmacol. 2001;60:432–439. [PMID: 11502873 ] [PubMed] [Google Scholar]
  • 1460.Ullmann H, et al. J Med Chem. 2005;48:7040–7048. doi: 10.1021/jm050301p. [PMID: 16250663 ] [DOI] [PubMed] [Google Scholar]
  • 1461.Waldo GL, et al. Mol Pharmacol. 2002;62:1249–1257. doi: 10.1124/mol.62.5.1249. [PMID: 12391289 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1462.Webb TE, et al. Mol Pharmacol. 1996;50:258–265. [PMID: 8700132 ] [PubMed] [Google Scholar]
  • 1463.Webb TE, et al. Biochem Biophys Res Commun. 1996;219:105–110. doi: 10.1006/bbrc.1996.0189. [PMID: 8619790 ] [DOI] [PubMed] [Google Scholar]
  • 1464.Yanagida K, et al. J Biol Chem. 2009;284:17731–17741. doi: 10.1074/jbc.M808506200. [PMID: 19386608 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1465.Yokomizo T, et al. Nature. 1997;387:620–624. doi: 10.1038/42506. [PMID: 9177352 ] [DOI] [PubMed] [Google Scholar]
  • 1466.Gardella TJ, et al. J Biol Chem. 1996;271:19888–19893. doi: 10.1074/jbc.271.33.19888. [PMID: 8702701 ] [DOI] [PubMed] [Google Scholar]
  • 1467.Gardella TJ, et al. J Biol Chem. 1995;270:6584–6588. doi: 10.1074/jbc.270.12.6584. [PMID: 7896796 ] [DOI] [PubMed] [Google Scholar]
  • 1468.Goold CP, et al. J Pharmacol Exp Ther. 2001;299:678–690. [PMID: 11602681 ] [PubMed] [Google Scholar]
  • 1469.Hoare SR, et al. J Biol Chem. 2000;275:27274–27283. doi: 10.1074/jbc.M003910200. [PMID: 10854439 ] [DOI] [PubMed] [Google Scholar]
  • 1470.Jonsson KB, et al. Endocrinology. 2001;142:704–709. doi: 10.1210/endo.142.2.7945. [PMID: 11159842 ] [DOI] [PubMed] [Google Scholar]
  • 1471.Fukusumi S, et al. J Biol Chem. 2003;278:46387–46395. doi: 10.1074/jbc.M305270200. [PMID: 12960173 ] [DOI] [PubMed] [Google Scholar]
  • 1472.Jiang Y, et al. J Biol Chem. 2003;278:27652–27657. doi: 10.1074/jbc.M302945200. [PMID: 12714592 ] [DOI] [PubMed] [Google Scholar]
  • 1473.Kuc RE, et al. Proceedings of the British Pharmacological Society. 2006;4:abst186. [Google Scholar]
  • 1474.Takayasu S, et al. Proc Natl Acad Sci USA. 2006;103:7438–7443. doi: 10.1073/pnas.0602371103. [PMID: 16648250 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1475.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 1476.Fukunaga K, et al. J Biol Chem. 2001;276:43025–43030. doi: 10.1074/jbc.M108288200. [PMID: 11560941 ] [DOI] [PubMed] [Google Scholar]
  • 1477.Goldring WP, et al. Bioorg Med Chem Lett. 2005;15:3263–3266. doi: 10.1016/j.bmcl.2005.04.048. [PMID: 15922596 ] [DOI] [PubMed] [Google Scholar]
  • 1478.Herbert JM, et al. J Lipid Mediat. 1993;7:57–78. [PMID: 8395255 ] [PubMed] [Google Scholar]
  • 1479.Marathe GK, et al. J Biol Chem. 1999;274:28395–28404. doi: 10.1074/jbc.274.40.28395. [PMID: 10497200 ] [DOI] [PubMed] [Google Scholar]
  • 1480.Nakamura M, et al. J Biol Chem. 1991;266:20400–20405. [PMID: 1657923 ] [PubMed] [Google Scholar]
  • 1481.Nakamura M, et al. FEBS Lett. 1992;314:125–129. doi: 10.1016/0014-5793(92)80957-i. [PMID: 1333988 ] [DOI] [PubMed] [Google Scholar]
  • 1482.Ogita T, et al. Am J Physiol. 1997;272:H17–H24. doi: 10.1152/ajpheart.1997.272.1.H17. (1 Pt 2):. [PMID: 9038918 ] [DOI] [PubMed] [Google Scholar]
  • 1483.Parent JL, et al. J Biol Chem. 1996;271:23298–23303. doi: 10.1074/jbc.271.38.23298. [PMID: 8798529 ] [DOI] [PubMed] [Google Scholar]
  • 1484.Svetlov S, Nigam S. Biochem Biophys Res Commun. 1993;190:162–166. doi: 10.1006/bbrc.1993.1025. [PMID: 8380690 ] [DOI] [PubMed] [Google Scholar]
  • 1485.Ann N Y Acad Sci. 1988;547:1–541. [PMID: 3071214 ] [PubMed] [Google Scholar]
  • 1486.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 1487.Lin DC, et al. J Biol Chem. 2002;277:19276–19280. doi: 10.1074/jbc.M202139200. [PMID: 11886876 ] [DOI] [PubMed] [Google Scholar]
  • 1488.Masuda Y, et al. Biochem Biophys Res Commun. 2002;293:396–402. doi: 10.1016/S0006-291X(02)00239-5. [PMID: 12054613 ] [DOI] [PubMed] [Google Scholar]
  • 1489.Mollay C, et al. Eur J Pharmacol. 1999;374:189–196. doi: 10.1016/s0014-2999(99)00229-0. [PMID: 10422759 ] [DOI] [PubMed] [Google Scholar]
  • 1490.Negri L, et al. Br J Pharmacol. 2005;146:625–632. doi: 10.1038/sj.bjp.0706376. [PMID: 16113687 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1491.Schweitz H, et al. FEBS Lett. 1999;461:183–188. doi: 10.1016/s0014-5793(99)01459-3. [PMID: 10567694 ] [DOI] [PubMed] [Google Scholar]
  • 1492.Soga T, et al. Biochim Biophys Acta. 2002;1579:173–179. doi: 10.1016/s0167-4781(02)00546-8. [PMID: 12427552 ] [DOI] [PubMed] [Google Scholar]
  • 1493.Ellacott KL, et al. Peptides. 2005;26:675–681. doi: 10.1016/j.peptides.2004.11.020. [PMID: 15752583 ] [DOI] [PubMed] [Google Scholar]
  • 1494.Engstrom M, et al. J Pharmacol Exp Ther. 2003;305:825–832. doi: 10.1124/jpet.102.047118. [PMID: 12606605 ] [DOI] [PubMed] [Google Scholar]
  • 1495.Hinuma S, et al. Nat Cell Biol. 2000;2:703–708. doi: 10.1038/35036326. [PMID: 11025660 ] [DOI] [PubMed] [Google Scholar]
  • 1496.Lagerström MC, et al. Genomics. 2005;85:688–703. doi: 10.1016/j.ygeno.2005.02.007. [PMID: 15885496 ] [DOI] [PubMed] [Google Scholar]
  • 1497.Langmead CJ, et al. Br J Pharmacol. 2000;131:683–688. doi: 10.1038/sj.bjp.0703617. [PMID: 11030716 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1498.Abramovitz M, et al. Biochim Biophys Acta. 2000;1483:285–293. doi: 10.1016/s1388-1981(99)00164-x. [PMID: 10634944 ] [DOI] [PubMed] [Google Scholar]
  • 1499.Abramovitz M, et al. J Biol Chem. 1994;269:2632–2636. [PMID: 8300593 ] [PubMed] [Google Scholar]
  • 1500.Amano H, et al. J Exp Med. 2003;197:221–232. doi: 10.1084/jem.20021408. [PMID: 12538661 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1501.Arimura A, et al. J Pharmacol Exp Ther. 2001;298:411–419. [PMID: 11454901 ] [PubMed] [Google Scholar]
  • 1502.Armstrong RA, et al. Br J Pharmacol. 1993;110:539–547. doi: 10.1111/j.1476-5381.1993.tb13844.x. [PMID: 8242228 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1503.Bley KR, et al. Br J Pharmacol. 2006;147:335–345. doi: 10.1038/sj.bjp.0706554. [PMID: 16331286 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1504.Blouin M, et al. J Med Chem. 2010;53:2227–2238. doi: 10.1021/jm901771h. [PMID: 20163116 ] [DOI] [PubMed] [Google Scholar]
  • 1505.Boie Y, et al. J Biol Chem. 1994;269:12173–12178. [PMID: 7512962 ] [PubMed] [Google Scholar]
  • 1506.Boie Y, et al. J Biol Chem. 1995;270:18910–18916. doi: 10.1074/jbc.270.32.18910. [PMID: 7642548 ] [DOI] [PubMed] [Google Scholar]
  • 1507.Cameron KO, et al. Bioorg Med Chem Lett. 2009;19:2075–2078. doi: 10.1016/j.bmcl.2009.01.059. [PMID: 19250823 ] [DOI] [PubMed] [Google Scholar]
  • 1508.Chang CS, et al. Prostaglandins. 1997;53:83–90. doi: 10.1016/s0090-6980(97)00003-8. [PMID: 9112287 ] [DOI] [PubMed] [Google Scholar]
  • 1509.Chen Q, et al. Br J Pharmacol. 2010;160:292–310. doi: 10.1111/j.1476-5381.2010.00647.x. [PMID: 20423341 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1510.Cirillo R, et al. Am J Obstet Gynecol. 2007;197:54. doi: 10.1016/j.ajog.2007.02.010. e1–e9. [PMID: 17618756 ] [DOI] [PubMed] [Google Scholar]
  • 1511.Clark P, et al. J Pharmacol Exp Ther. 2008;325:425–434. doi: 10.1124/jpet.107.134510. [PMID: 18287210 ] [DOI] [PubMed] [Google Scholar]
  • 1512.Coleman RA, et al. Pharmacol Rev. 1994;46:205–229. [PMID: 7938166 ] [PubMed] [Google Scholar]
  • 1513.Davis TL, Sharif NA. Br J Pharmacol. 2000;130:1919–1926. doi: 10.1038/sj.bjp.0703525. [PMID: 10952683 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1514.Foudi N, et al. Br J Pharmacol. 2011;163:826–834. doi: 10.1111/j.1476-5381.2011.01264.x. [PMID: 21323896 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1515.Foudi N, et al. Br J Pharmacol. 2008;154:1631–1639. doi: 10.1038/bjp.2008.214. [PMID: 18516068 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1516.Giblin GM, et al. Bioorg Med Chem Lett. 2007;17:385–389. doi: 10.1016/j.bmcl.2006.10.041. [PMID: 17084082 ] [DOI] [PubMed] [Google Scholar]
  • 1517.Giles H, et al. Br J Pharmacol. 1989;96:291–300. doi: 10.1111/j.1476-5381.1989.tb11816.x. [PMID: 2924081 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1518.Hata AN, et al. J Pharmacol Exp Ther. 2003;306:463–470. doi: 10.1124/jpet.103.050955. [PMID: 12721327 ] [DOI] [PubMed] [Google Scholar]
  • 1519.Hung GH, et al. Prostaglandins Leukot Essent Fatty Acids. 2006;74:401–415. doi: 10.1016/j.plefa.2006.04.002. [PMID: 16737803 ] [DOI] [PubMed] [Google Scholar]
  • 1520.Jones RL, et al. J Cardiovasc Pharmacol. 1997;29:525–535. doi: 10.1097/00005344-199704000-00015. [PMID: 9156364 ] [DOI] [PubMed] [Google Scholar]
  • 1521.Juteau H, et al. Bioorg Med Chem. 2001;9:1977–1984. doi: 10.1016/s0968-0896(01)00110-9. [PMID: 11504634 ] [DOI] [PubMed] [Google Scholar]
  • 1522.Kattelman EJ, et al. Thromb Res. 1986;41:471–481. doi: 10.1016/0049-3848(86)91692-0. [PMID: 3008368 ] [DOI] [PubMed] [Google Scholar]
  • 1523.Kotani M, et al. Mol Pharmacol. 1995;48:869–879. [PMID: 7476918 ] [PubMed] [Google Scholar]
  • 1524.Krauss AH, et al. Br J Pharmacol. 1996;117:1171–1180. doi: 10.1111/j.1476-5381.1996.tb16712.x. [PMID: 8882612 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1525.Leduc M, et al. J Pharmacol Exp Ther. 2009;331:297–307. doi: 10.1124/jpet.109.156398. [PMID: 19584306 ] [DOI] [PubMed] [Google Scholar]
  • 1526.Liljebris C, et al. J Med Chem. 1995;38:289–304. doi: 10.1021/jm00002a011. [PMID: 7830272 ] [DOI] [PubMed] [Google Scholar]
  • 1527.Longrois D, et al. Eur J Pharmacol. 2012;681:55–59. doi: 10.1016/j.ejphar.2012.01.041. [PMID: 22342278 ] [DOI] [PubMed] [Google Scholar]
  • 1528.Lumley P, et al. Br J Pharmacol. 1989;97:783–794. doi: 10.1111/j.1476-5381.1989.tb12017.x. [PMID: 2527074 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1529.Machwate M, et al. Mol Pharmacol. 2001;60:36–41. doi: 10.1124/mol.60.1.36. [PMID: 11408598 ] [DOI] [PubMed] [Google Scholar]
  • 1530.Mathiesen JM, et al. Mol Pharmacol. 2006;69:1441–1453. doi: 10.1124/mol.105.017681. [PMID: 16418339 ] [DOI] [PubMed] [Google Scholar]
  • 1531.Maubach KA, et al. Br J Pharmacol. 2009;156:316–327. doi: 10.1111/j.1476-5381.2009.00027.x. [PMID: 19154437 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1532.Mayeux PR, et al. J Biol Chem. 1991;266:13752–13758. [PMID: 1830308 ] [PubMed] [Google Scholar]
  • 1533.Monneret G, et al. J Pharmacol Exp Ther. 2003;304:349–355. doi: 10.1124/jpet.102.042937. [PMID: 12490611 ] [DOI] [PubMed] [Google Scholar]
  • 1534.Morinelli TA, et al. J Pharmacol Exp Ther. 1989;251:557–562. [PMID: 2530338 ] [PubMed] [Google Scholar]
  • 1535.Murase A, et al. Life Sci. 2008;82:226–232. doi: 10.1016/j.lfs.2007.11.002. [PMID: 18155068 ] [DOI] [PubMed] [Google Scholar]
  • 1536.Naka M, et al. J Pharmacol Exp Ther. 1992;262:632–637. [PMID: 1386885 ] [PubMed] [Google Scholar]
  • 1537.Negishi M, et al. J Biol Chem. 1995;270:16122–161227. doi: 10.1074/jbc.270.27.16122. [PMID: 7608175 ] [DOI] [PubMed] [Google Scholar]
  • 1538.Ogletree ML, et al. J Pharmacol Exp Ther. 1993;264:570–578. [PMID: 8437108 ] [PubMed] [Google Scholar]
  • 1539.Okuda-Ashitaka E, et al. J Biol Chem. 1996;271:31255–31261. doi: 10.1074/jbc.271.49.31255. [PMID: 8940129 ] [DOI] [PubMed] [Google Scholar]
  • 1540.Prasanna G, et al. Exp Eye Res. 2009;89:608–617. doi: 10.1016/j.exer.2009.05.002. [PMID: 19445930 ] [DOI] [PubMed] [Google Scholar]
  • 1541.Pratico D, et al. J Biol Chem. 1996;271:14916–14924. doi: 10.1074/jbc.271.25.14916. [PMID: 8663015 ] [DOI] [PubMed] [Google Scholar]
  • 1542.Raychowdhury MK, et al. J Biol Chem. 1994;269:19256–19261. [PMID: 8034687 ] [PubMed] [Google Scholar]
  • 1543.Royer JF, et al. Allergy. 2007;62:1401–1409. doi: 10.1111/j.1398-9995.2007.01452.x. [PMID: 17714552 ] [DOI] [PubMed] [Google Scholar]
  • 1544.Sawyer N, et al. Br J Pharmacol. 2002;137:1163–1172. doi: 10.1038/sj.bjp.0704973. [PMID: 12466225 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1545.Sharif NA, et al. J Pharmacol Exp Ther. 2000;293:321–328. [PMID: 10772998 ] [PubMed] [Google Scholar]
  • 1546.Sharif NA, Davis TL. J Pharm Pharmacol. 2002;54:539–547. doi: 10.1211/0022357021778655. [PMID: 11999132 ] [DOI] [PubMed] [Google Scholar]
  • 1547.Sharif NA, et al. J Ocul Pharmacol Ther. 2006;22:291–309. doi: 10.1089/jop.2006.22.291. [PMID: 17076623 ] [DOI] [PubMed] [Google Scholar]
  • 1548.Shichijo M, et al. J Pharmacol Exp Ther. 2003;307:518–525. doi: 10.1124/jpet.103.055442. [PMID: 12975488 ] [DOI] [PubMed] [Google Scholar]
  • 1549.Stillman BA, et al. Mol Pharmacol. 1999;56:545–551. doi: 10.1124/mol.56.3.545. [PMID: 10462542 ] [DOI] [PubMed] [Google Scholar]
  • 1550.Sturino CF, et al. J Med Chem. 2007;50:794–806. doi: 10.1021/jm0603668. [PMID: 17300164 ] [DOI] [PubMed] [Google Scholar]
  • 1551.Su X, et al. Am J Physiol Renal Physiol. 2008;295:F984–F994. doi: 10.1152/ajprenal.90373.2008. [PMID: 18632791 ] [DOI] [PubMed] [Google Scholar]
  • 1552.Sugimoto H, et al. Eur J Pharmacol. 2005;524:30–37. doi: 10.1016/j.ejphar.2005.09.005. [PMID: 16256979 ] [DOI] [PubMed] [Google Scholar]
  • 1553.Suzawa T, et al. Endocrinology. 2000;141:1554–1559. doi: 10.1210/endo.141.4.7405. [PMID: 10746663 ] [DOI] [PubMed] [Google Scholar]
  • 1554.Swayne GT, et al. Eur J Pharmacol. 1988;152:311–319. doi: 10.1016/0014-2999(88)90726-1. [PMID: 2975605 ] [DOI] [PubMed] [Google Scholar]
  • 1555.Takechi H, et al. J Biol Chem. 1996;271:5901–5906. doi: 10.1074/jbc.271.10.5901. [PMID: 8621463 ] [DOI] [PubMed] [Google Scholar]
  • 1556.Ulven T, Kostenis E. J Med Chem. 2005;48:897–900. doi: 10.1021/jm049036i. [PMID: 15715457 ] [DOI] [PubMed] [Google Scholar]
  • 1557.Watanabe K, et al. Cancer Res. 1999;59:5093–5096. [PMID: 10537280 ] [PubMed] [Google Scholar]
  • 1558.Whittle BJ, et al. Biochem Pharmacol. 2012;84:68–75. doi: 10.1016/j.bcp.2012.03.012. [PMID: 22480736 ] [DOI] [PubMed] [Google Scholar]
  • 1559.Wilson RJ, et al. Br J Pharmacol. 2006;148:326–339. doi: 10.1038/sj.bjp.0706726. [PMID: 16604093 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1560.Wilson RJ, Giles H. Br J Pharmacol. 2005;144:405–415. doi: 10.1038/sj.bjp.0706088. [PMID: 15655509 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1561.Wise H, et al. Eur J Pharmacol. 1995;278:265–269. doi: 10.1016/0014-2999(95)00173-i. [PMID: 7589166 ] [DOI] [PubMed] [Google Scholar]
  • 1562.Woodward DF, et al. Pharmacol Ther. 2008;120:71–80. doi: 10.1016/j.pharmthera.2008.08.001. [PMID: 18700152 ] [DOI] [PubMed] [Google Scholar]
  • 1563.Wright DH, et al. Br J Pharmacol. 1998;123:1317–1324. doi: 10.1038/sj.bjp.0701708. [PMID: 9579725 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1564.Wright DH, et al. Eur J Pharmacol. 1999;377:101–115. doi: 10.1016/s0014-2999(99)00358-1. [PMID: 10448933 ] [DOI] [PubMed] [Google Scholar]
  • 1565.Young RN, et al. Heterocycles. 2004;64:437–446. [Google Scholar]
  • 1566.Ahn HS, et al. Mol Pharmacol. 1997;51:350–356. doi: 10.1124/mol.51.2.350. [PMID: 9203642 ] [DOI] [PubMed] [Google Scholar]
  • 1567.Al-Ani B, et al. J Pharmacol Exp Ther. 1999;290:753–760. [PMID: 10411588 ] [PubMed] [Google Scholar]
  • 1568.Andrade-Gordon P, et al. Proc Natl Acad Sci USA. 1999;96:12257–12262. doi: 10.1073/pnas.96.22.12257. [PMID: 10535908 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1569.Austin KM, et al. Blood. 2013;121:431–439. doi: 10.1182/blood-2012-09-355958. [PMID: 23086754 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1570.Barry GD, et al. J Med Chem. 2010;53:7428–7440. doi: 10.1021/jm100984y. [PMID: 20873792 ] [DOI] [PubMed] [Google Scholar]
  • 1571.Blackhart BD, et al. J Biol Chem. 1996;271:16466–16471. doi: 10.1074/jbc.271.28.16466. [PMID: 8663335 ] [DOI] [PubMed] [Google Scholar]
  • 1572.Chackalamannil S, et al. J Med Chem. 2008;51:3061–3064. doi: 10.1021/jm800180e. [PMID: 18447380 ] [DOI] [PubMed] [Google Scholar]
  • 1573.Chung AW, et al. Br J Pharmacol. 2002;135:1123–1132. doi: 10.1038/sj.bjp.0704559. [PMID: 11877318 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1574.Hollenberg MD, Compton SJ. Pharmacol Rev. 2002;54:203–217. doi: 10.1124/pr.54.2.203. [PMID: 12037136 ] [DOI] [PubMed] [Google Scholar]
  • 1575.Hollenberg MD, et al. J Pharmacol Exp Ther. 2008;326:453–462. doi: 10.1124/jpet.108.136432. [PMID: 18477767 ] [DOI] [PubMed] [Google Scholar]
  • 1576.Kanke T, et al. Br J Pharmacol. 2005;145:255–263. doi: 10.1038/sj.bjp.0706189. [PMID: 15765104 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1577.Kawabata A, et al. J Pharmacol Exp Ther. 1999;288:358–370. [PMID: 9862790 ] [PubMed] [Google Scholar]
  • 1578.Kogushi M, et al. Eur J Pharmacol. 2011;657:131–137. doi: 10.1016/j.ejphar.2011.01.058. [PMID: 21300059 ] [DOI] [PubMed] [Google Scholar]
  • 1579.Lee MC, Huang SC. Neurogastroenterol Motil. 2008;20:385–391. doi: 10.1111/j.1365-2982.2007.01041.x. [PMID: 18179608 ] [DOI] [PubMed] [Google Scholar]
  • 1580.McGuire JJ, et al. J Pharmacol Exp Ther. 2004;309:1124–1131. doi: 10.1124/jpet.103.064584. [PMID: 14976230 ] [DOI] [PubMed] [Google Scholar]
  • 1581.Ramachandran R, et al. Nat Rev Drug Discov. 2012;11:69–86. doi: 10.1038/nrd3615. [PMID: 22212680 ] [DOI] [PubMed] [Google Scholar]
  • 1582.Sevigny LM, et al. Proc Natl Acad Sci USA. 2011;108:8491–8496. doi: 10.1073/pnas.1017091108. [PMID: 21536878 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1583.Suen JY, et al. Br J Pharmacol. 2012;165:1413–1423. doi: 10.1111/j.1476-5381.2011.01610.x. [PMID: 21806599 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1584.Bathgate RA, et al. Pharmacol Rev. 2006;58:7–31. doi: 10.1124/pr.58.1.9. [PMID: 16507880 ] [DOI] [PubMed] [Google Scholar]
  • 1585.Belgi A, et al. Biochemistry. 2011;50:8352–8361. doi: 10.1021/bi201093m. [PMID: 21866895 ] [DOI] [PubMed] [Google Scholar]
  • 1586.Büllesbach EE, Schwabe C. J Biol Chem. 2005;280:14586–14590. doi: 10.1074/jbc.M414443200. [PMID: 15708846 ] [DOI] [PubMed] [Google Scholar]
  • 1587.Del Borgo MP, et al. J Biol Chem. 2006. pp. 727–729. [PMID: 16547350 ] [DOI] [PubMed] [Google Scholar]
  • 1588.Ferlin A, et al. J Clin Endocrinol Metab. 2003;88:4273–4279. doi: 10.1210/jc.2003-030359. [PMID: 12970298 ] [DOI] [PubMed] [Google Scholar]
  • 1589.Ganella DE, et al. Behav Pharmacol. 2012;23:516–525. doi: 10.1097/FBP.0b013e3283576999. [PMID: 22854307 ] [DOI] [PubMed] [Google Scholar]
  • 1590.Halls ML, et al. Mol Pharmacol. 2006. : -. [PMID: 16569707 ] [DOI] [PubMed] [Google Scholar]
  • 1591.Halls ML, et al. J Pharmacol Exp Ther. 2005;313:677–687. doi: 10.1124/jpet.104.080655. [PMID: 15649866 ] [DOI] [PubMed] [Google Scholar]
  • 1592.Halls ML, Cooper DM. EMBO J. 2010;29:2772–2787. doi: 10.1038/emboj.2010.168. [PMID: 20664520 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1593.Halls ML, et al. Ann N Y Acad Sci. 2009;1160:108–111. doi: 10.1111/j.1749-6632.2008.03814.x. [PMID: 19416169 ] [DOI] [PubMed] [Google Scholar]
  • 1594.Halls ML, et al. Br J Pharmacol. 2007;150:677–691. doi: 10.1038/sj.bjp.0707140. [PMID: 17293890 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1595.Halls ML, et al. Mol Pharmacol. 2009;75:415–428. doi: 10.1124/mol.108.051227. [PMID: 19029286 ] [DOI] [PubMed] [Google Scholar]
  • 1596.Haugaard-Kedström LM, et al. J Am Chem Soc. 2011;133:4965–4974. doi: 10.1021/ja110567j. [PMID: 21384867 ] [DOI] [PubMed] [Google Scholar]
  • 1597.Hossain MA, et al. Amino Acids. 2010;39:409–416. doi: 10.1007/s00726-009-0454-1. [PMID: 20043231 ] [DOI] [PubMed] [Google Scholar]
  • 1598.Hsu SY, et al. Mol Endocrinol. 2000;14:1257–1271. doi: 10.1210/mend.14.8.0510. [PMID: 10935549 ] [DOI] [PubMed] [Google Scholar]
  • 1599.Hsu SY, et al. Science. 2002;295:671–674. doi: 10.1126/science.1065654. [PMID: 11809971 ] [DOI] [PubMed] [Google Scholar]
  • 1600.Kuei C, et al. J Biol Chem. 2007;282:25425–25435. doi: 10.1074/jbc.M701416200. [PMID: 17606621 ] [DOI] [PubMed] [Google Scholar]
  • 1601.Kumagai J, et al. J Biol Chem. 2002;277:31283–31286. doi: 10.1074/jbc.C200398200. [PMID: 12114498 ] [DOI] [PubMed] [Google Scholar]
  • 1602.Liu C, et al. Mol Pharmacol. 2005;67:231–240. doi: 10.1124/mol.104.006700. [PMID: 15465925 ] [DOI] [PubMed] [Google Scholar]
  • 1603.Liu C, et al. J Biol Chem. 2003;278:50765–50770. doi: 10.1074/jbc.M308996200. [PMID: 14522967 ] [DOI] [PubMed] [Google Scholar]
  • 1604.Liu C, et al. J Biol Chem. 2003;278:50754–50764. doi: 10.1074/jbc.M308995200. [PMID: 14522968 ] [DOI] [PubMed] [Google Scholar]
  • 1605.Liu C, et al. J Biol Chem. 2005;280:292–300. doi: 10.1074/jbc.M409916200. [PMID: 15525639 ] [DOI] [PubMed] [Google Scholar]
  • 1606.Matsumoto M, et al. Gene. 2000;248:183–189. doi: 10.1016/s0378-1119(00)00123-2. [PMID: 10806363 ] [DOI] [PubMed] [Google Scholar]
  • 1607.Metra M, et al. J Am Coll Cardiol. 2013;61:196–206. doi: 10.1016/j.jacc.2012.11.005. [PMID: 23273292 ] [DOI] [PubMed] [Google Scholar]
  • 1608.Muda M, et al. Mol Hum Reprod. 2005;11:591–600. doi: 10.1093/molehr/gah205. [PMID: 16051677 ] [DOI] [PubMed] [Google Scholar]
  • 1609.Ryan PJ, et al. Behav Brain Res. 2013;244:142–151. doi: 10.1016/j.bbr.2013.01.034. [PMID: 23380674 ] [DOI] [PubMed] [Google Scholar]
  • 1610.Scott DJ, et al. Ann N Y Acad Sci. 2005;1041:13–16. doi: 10.1196/annals.1282.003. [PMID: 15956681 ] [DOI] [PubMed] [Google Scholar]
  • 1611.Scott DJ, et al. Ann N Y Acad Sci. 2005;1041:8–12. doi: 10.1196/annals.1282.002. [PMID: 15956680 ] [DOI] [PubMed] [Google Scholar]
  • 1612.Scott DJ, et al. J Biol Chem. 2006;281:34942–34954. doi: 10.1074/jbc.M602728200. [PMID: 16963451 ] [DOI] [PubMed] [Google Scholar]
  • 1613.Shabanpoor F, et al. J Med Chem. 2012;55:1671–1681. doi: 10.1021/jm201505p. [PMID: 22257012 ] [DOI] [PubMed] [Google Scholar]
  • 1614.Shabanpoor F, et al. Biochem Biophys Res Commun. 2012;420:253–256. doi: 10.1016/j.bbrc.2012.02.141. [PMID: 22425984 ] [DOI] [PubMed] [Google Scholar]
  • 1615.Shabanpoor F, et al. Bioconjug Chem. 2008;19:1456–1463. doi: 10.1021/bc800127p. [PMID: 18529069 ] [DOI] [PubMed] [Google Scholar]
  • 1616.Shabanpoor F, et al. Biopolymers. 2011;96:81–87. doi: 10.1002/bip.21484. [PMID: 20560146 ] [DOI] [PubMed] [Google Scholar]
  • 1617.Shemesh R, et al. J Biol Chem. 2008;283:34643–34649. doi: 10.1074/jbc.M805181200. [PMID: 18854305 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1618.Sudo S, et al. J Biol Chem. 2003;278:7855–7862. doi: 10.1074/jbc.M212457200. [PMID: 12506116 ] [DOI] [PubMed] [Google Scholar]
  • 1619.van der Westhuizen ET, et al. Mol Pharmacol. 2010;77:759–772. doi: 10.1124/mol.109.061432. [PMID: 20159943 ] [DOI] [PubMed] [Google Scholar]
  • 1620.Van Der Westhuizen ET, et al. Curr Drug Targets. 2007;8:91–104. doi: 10.2174/138945007779315650. [PMID: 17266534 ] [DOI] [PubMed] [Google Scholar]
  • 1621.Wilkinson TN, et al. BMC Evol Biol. 2005;5:14–PMID. doi: 10.1186/1471-2148-5-14. 15707501 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1622.Xiao J, et al. Nat Commun. 2013;4:1953–PMID. doi: 10.1038/ncomms2953. 23764525 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1623.Bruns C, et al. Metabolism. 1996;45:17–20. doi: 10.1016/s0026-0495(96)90072-4. [PMID: 8769372 ] [DOI] [PubMed] [Google Scholar]
  • 1624.Castro SW, et al. Br J Pharmacol. 1996;117:639–646. doi: 10.1111/j.1476-5381.1996.tb15238.x. [PMID: 8646408 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1625.De Lecea L, et al. Nature. 1996;381:242–245. doi: 10.1038/381242a0. [PMID: 8622767 ] [DOI] [PubMed] [Google Scholar]
  • 1626.Erchegyi J, et al. J Med Chem. 2005;48:507–514. doi: 10.1021/jm049520l. [PMID: 15658864 ] [DOI] [PubMed] [Google Scholar]
  • 1627.Holloway S, et al. Neuropharmacology. 1996;35:1109–1120. doi: 10.1016/s0028-3908(96)00082-2. [PMID: 9121614 ] [DOI] [PubMed] [Google Scholar]
  • 1628.Hoyer D. Somatostatin receptors. In: Watson SP, Girdlestone Diuphar, et al., editors. The IUPHAR Compendium of Receptor Characterization and Classification Edited by Media. 2nd edn. 2000. pp. 354–364. [Google Scholar]
  • 1629.Hoyer D, et al. Neurosci Lett. 2004;361:132–135. doi: 10.1016/j.neulet.2004.02.017. [PMID: 15135911 ] [DOI] [PubMed] [Google Scholar]
  • 1630.Hoyer D, et al. 2004. Soc Neuroscience Abs,: -
  • 1631.Liu S, et al. J Med Chem. 1998;41:4693–4705. doi: 10.1021/jm980118e. [PMID: 9822540 ] [DOI] [PubMed] [Google Scholar]
  • 1632.Meyerhof W. Rev Physiol Biochem Pharmacol. 1998;133:55–108. doi: 10.1007/BFb0000613. [PMID: 9600011 ] [DOI] [PubMed] [Google Scholar]
  • 1633.Nunn C, et al. Naunyn Schmiedebergs Arch Pharmacol. 2003;367:1–9. doi: 10.1007/s00210-002-0656-5. [PMID: 12616335 ] [DOI] [PubMed] [Google Scholar]
  • 1634.Patel YC, Srikant CB. Endocrinology. 1994;135:2814–2817. doi: 10.1210/endo.135.6.7988476. [PMID: 7988476 ] [DOI] [PubMed] [Google Scholar]
  • 1635.Rohrer SP, et al. Science. 1998;282:737–740. doi: 10.1126/science.282.5389.737. [PMID: 9784130 ] [DOI] [PubMed] [Google Scholar]
  • 1636.Siehler S, et al. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:483–489. doi: 10.1007/pl00005197. [PMID: 9650799 ] [DOI] [PubMed] [Google Scholar]
  • 1637.Siehler S, et al. Eur J Pharmacol. 1998;348:311–320. doi: 10.1016/s0014-2999(98)00159-9. [PMID: 9652348 ] [DOI] [PubMed] [Google Scholar]
  • 1638.Siehler S, et al. Naunyn Schmiedebergs Arch Pharmacol. 1999;360:488–499. doi: 10.1007/s002109900141. [PMID: 10598788 ] [DOI] [PubMed] [Google Scholar]
  • 1639.Tulipano G, et al. Endocrinology. 2002;143:1218–1224. doi: 10.1210/endo.143.4.8716. [PMID: 11897676 ] [DOI] [PubMed] [Google Scholar]
  • 1640.Yang L, et al. Proc Natl Acad Sci U S A. 1998;95:10836–10841. doi: 10.1073/pnas.95.18.10836. [PMID: 9724791 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1641.He W, et al. Nature. 2004;429:188–193. doi: 10.1038/nature02488. [PMID: 15141213 ] [DOI] [PubMed] [Google Scholar]
  • 1642.Southern C, et al. J Biomol Screen. 2013;18:599–609. doi: 10.1177/1087057113475480. [PMID: 23396314 ] [DOI] [PubMed] [Google Scholar]
  • 1643.Anthes JC, et al. Eur J Pharmacol. 2002;450:191–202. doi: 10.1016/s0014-2999(02)02124-6. [PMID: 12206858 ] [DOI] [PubMed] [Google Scholar]
  • 1644.Beaujouan JC, et al. Eur J Pharmacol. 1997;319:307–316. doi: 10.1016/s0014-2999(96)00848-5. [PMID: 9042606 ] [DOI] [PubMed] [Google Scholar]
  • 1645.Bellucci F, et al. Br J Pharmacol. 2002;135:266–274. doi: 10.1038/sj.bjp.0704443. [PMID: 11786503 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1646.Bennacef I, et al. Bioorg Med Chem. 2004;12:4533–4541. doi: 10.1016/j.bmc.2004.05.020. [PMID: 15265501 ] [DOI] [PubMed] [Google Scholar]
  • 1647.Beresford IJ, et al. Eur J Pharmacol. 1995;272:241–248. doi: 10.1016/0014-2999(94)00655-q. [PMID: 7713168 ] [DOI] [PubMed] [Google Scholar]
  • 1648.Boden P, et al. J Med Chem. 1996;39:1664–1675. doi: 10.1021/jm950892r. [PMID: 8648606 ] [DOI] [PubMed] [Google Scholar]
  • 1649.Bradshaw CG, et al. J Med Chem. 1994;37:1991–1995. doi: 10.1021/jm00039a012. [PMID: 8027981 ] [DOI] [PubMed] [Google Scholar]
  • 1650.Catalioto RM, et al. Br J Pharmacol. 1998;123:81–91. doi: 10.1038/sj.bjp.0701587. [PMID: 9484857 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1651.Chung FZ, et al. Mol Pharmacol. 1995;48:711–716. [PMID: 7476898 ] [PubMed] [Google Scholar]
  • 1652.Cialdai C, et al. Eur J Pharmacol. 2006;549:140–148. doi: 10.1016/j.ejphar.2006.08.021. [PMID: 16979621 ] [DOI] [PubMed] [Google Scholar]
  • 1653.Deal MJ, et al. J Med Chem. 1992;35:4195–4204. doi: 10.1021/jm00100a027. [PMID: 1331460 ] [DOI] [PubMed] [Google Scholar]
  • 1654.Donaldson LF, et al. Biochem J. 1996;320:1–5. doi: 10.1042/bj3200001. (Pt 1):. [PMID: 8947459 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1655.Emonds-Alt X, et al. Life Sci. 1995;56:PL27–PL32. doi: 10.1016/0024-3205(94)00413-m. [PMID: 7830490 ] [DOI] [PubMed] [Google Scholar]
  • 1656.Emonds-Alt X, et al. Biochem Biophys Res Commun. 1993;191:1172–1177. doi: 10.1006/bbrc.1993.1340. [PMID: 7682062 ] [DOI] [PubMed] [Google Scholar]
  • 1657.Fong TM, et al. J Biol Chem. 1992;267:25668–25671. [PMID: 1281470 ] [PubMed] [Google Scholar]
  • 1658.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 1659.Giardina GA, et al. J Med Chem. 1996;39:2281–2284. doi: 10.1021/jm9602423. [PMID: 8691422 ] [DOI] [PubMed] [Google Scholar]
  • 1660.Gitter BD, et al. J Pharmacol Exp Ther. 1995;275:737–744. [PMID: 7473161 ] [PubMed] [Google Scholar]
  • 1661.Grisshammer R, et al. Recept Channels. 1994;2:295–302. [PMID: 7719707 ] [PubMed] [Google Scholar]
  • 1662.Hale JJ, et al. J Med Chem. 1998;41:4607–4614. doi: 10.1021/jm980299k. [PMID: 9804700 ] [DOI] [PubMed] [Google Scholar]
  • 1663.Hastrup H, Schwartz TW. FEBS Lett. 1996;399:264–266. doi: 10.1016/s0014-5793(96)01337-3. [PMID: 8985159 ] [DOI] [PubMed] [Google Scholar]
  • 1664.Huang SC, Korlipara VL. Expert Opin Ther Pat. 2010;20:1019–1045. doi: 10.1517/13543776.2010.495121. [PMID: 20533894 ] [DOI] [PubMed] [Google Scholar]
  • 1665.Kamali F. Curr Opin Investig Drugs. 2001;2:950–956. [PMID: 11757797 ] [PubMed] [Google Scholar]
  • 1666.Krause JE, et al. Proc Natl Acad Sci USA. 1997;94:310–315. doi: 10.1073/pnas.94.1.310. [PMID: 8990205 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1667.Matuszek MA, et al. Eur J Pharmacol. 1998;352:103–109. doi: 10.1016/s0014-2999(98)00331-8. [PMID: 9718274 ] [DOI] [PubMed] [Google Scholar]
  • 1668.Oury-Donat F, et al. J Pharmacol Exp Ther. 1995;274:148–154. [PMID: 7616392 ] [PubMed] [Google Scholar]
  • 1669.Roush ED, Kwatra MM. FEBS Lett. 1998;428:291–294. doi: 10.1016/s0014-5793(98)00553-5. [PMID: 9654151 ] [DOI] [PubMed] [Google Scholar]
  • 1670.Sarau HM, et al. Eur J Pharmacol. 2001;413:143–150. doi: 10.1016/s0014-2999(01)00732-4. [PMID: 11226387 ] [DOI] [PubMed] [Google Scholar]
  • 1671.Sarau HM, et al. J Pharmacol Exp Ther. 1997;281:1303–1311. [PMID: 9190866 ] [PubMed] [Google Scholar]
  • 1672.Smith PW, et al. J Med Chem. 1995;38:3772–3779. doi: 10.1021/jm00019a006. [PMID: 7562907 ] [DOI] [PubMed] [Google Scholar]
  • 1673.Tian Y, et al. J Biol Chem. 1996;271:20250–20257. doi: 10.1074/jbc.271.34.20250. [PMID: 8702757 ] [DOI] [PubMed] [Google Scholar]
  • 1674.Tousignant C, et al. Brain Res. 1990;524:263–270. doi: 10.1016/0006-8993(90)90700-l. [PMID: 1705465 ] [DOI] [PubMed] [Google Scholar]
  • 1675.Drummond AH, et al. Ann N Y Acad Sci. 1989;553:197–204. doi: 10.1111/j.1749-6632.1989.tb46642.x. [PMID: 2566295 ] [DOI] [PubMed] [Google Scholar]
  • 1676.Straub RE, et al. Proc Natl Acad Sci U S A. 1990;87:9514–9518. doi: 10.1073/pnas.87.24.9514. [PMID: 2175902 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1677.Sun Y, et al. J Mol Endocrinol. 2003;30:87–97. doi: 10.1677/jme.0.0300087. [PMID: 12683933 ] [DOI] [PubMed] [Google Scholar]
  • 1678.Borowsky B, et al. Proc Natl Acad Sci U S A. 2001;98:8966–8971. doi: 10.1073/pnas.151105198. [PMID: 11459929 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1679.Espinoza S, et al. Mol Pharmacol. 2011;80:416–425. doi: 10.1124/mol.111.073304. [PMID: 21670104 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1680.Maguire JJ, et al. Pharmacol Rev. 2009;61:1–8. doi: 10.1124/pr.109.001107. [PMID: 19325074 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1681.Scanlan TS, et al. Nat Med. 2004;10:638–642. doi: 10.1038/nm1051. [PMID: 15146179 ] [DOI] [PubMed] [Google Scholar]
  • 1682.Stalder H, et al. Bioorg Med Chem Lett. 2011;21:1227–1231. doi: 10.1016/j.bmcl.2010.12.075. [PMID: 21237643 ] [DOI] [PubMed] [Google Scholar]
  • 1683.Xie Z, Miller GM. Biochem Pharmacol. 2009;78:1095–1104. doi: 10.1016/j.bcp.2009.05.031. [PMID: 19482011 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1684.Ames RS, et al. Nature. 1999;401:282–286. doi: 10.1038/45809. [PMID: 10499587 ] [DOI] [PubMed] [Google Scholar]
  • 1685.Bern HA, et al. Recent Prog Horm Res. 1985;41:533–552. doi: 10.1016/b978-0-12-571141-8.50016-0. [PMID: 2864726 ] [DOI] [PubMed] [Google Scholar]
  • 1686.Brkovic A, et al. J Pharmacol Expl Ther. 2003;306:1200–1209. doi: 10.1124/jpet.103.052415. [PMID: 12807997 ] [DOI] [PubMed] [Google Scholar]
  • 1687.Clozel M, et al. J Pharmacol Exp Ther. 2004;311:204–212. doi: 10.1124/jpet.104.068320. [PMID: 15146030 ] [DOI] [PubMed] [Google Scholar]
  • 1688.Coulouarn Y, et al. FEBS Lett. 1999;457:28–32. doi: 10.1016/s0014-5793(99)01003-0. [PMID: 10486557 ] [DOI] [PubMed] [Google Scholar]
  • 1689.Coulouarn Y, et al. Proc Natl Acad Sci USA. 1998;95:15803–15808. doi: 10.1073/pnas.95.26.15803. [PMID: 9861051 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1690.Croston GE, et al. J Med Chem. 2002;45:4950–4953. doi: 10.1021/jm025551+. [PMID:] [DOI] [PubMed] [Google Scholar]
  • 1691.Douglas SA, Ohlstein EH. Urotensin receptors. In: Girdlestone D, editor. The IUPHAR Receptor Compendium of Receptor Characterization and Classification Edited by. IUPHAR Media Ltd; 2000. pp. 365–372. [Google Scholar]
  • 1692.Douglas SA, et al. Br J Pharmacol. 2005;145:620–635. doi: 10.1038/sj.bjp.0706229. [PMID: 15852036 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1693.Elshourbagy NA, et al. Br J Pharmacol. 2002;136:9–22. doi: 10.1038/sj.bjp.0704671. [PMID: 11976263 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1694.Foord SM, et al. Pharmacol Rev. 2005;57:279–288. doi: 10.1124/pr.57.2.5. [PMID: 15914470 ] [DOI] [PubMed] [Google Scholar]
  • 1695.Grieco P, et al. J Med Chem. 2002;45:4391–4394. doi: 10.1021/jm025549i. [PMID: 12238917 ] [DOI] [PubMed] [Google Scholar]
  • 1696.Kinney WA, et al. Angew Chem Int Ed Engl. 2002;41:2940–2944. doi: 10.1002/1521-3773(20020816)41:16<2940::AID-ANIE2940>3.0.CO;2-M. [PMID: 12203418 ] [DOI] [PubMed] [Google Scholar]
  • 1697.Lehmann F, et al. Bioorg Med Chem. 2009;17:4657–4665. doi: 10.1016/j.bmc.2009.04.062. [PMID: 19481466 ] [DOI] [PubMed] [Google Scholar]
  • 1698.Lehmann F, et al. Bioorg Med Chem. 2005;13:3057–3068. doi: 10.1016/j.bmc.2005.01.056. [PMID: 15781415 ] [DOI] [PubMed] [Google Scholar]
  • 1699.Lehmann F, et al. Eur J Med Chem. 2007;42:276–285. doi: 10.1016/j.ejmech.2006.09.015. [PMID: 17112638 ] [DOI] [PubMed] [Google Scholar]
  • 1700.Liu Q, et al. Biochem Biophys Res Commun. 1999;266:174–178. doi: 10.1006/bbrc.1999.1796. [PMID: 10581185 ] [DOI] [PubMed] [Google Scholar]
  • 1701.Maguire JJ, et al. Br J Pharmacol. 2000;131:441–446. doi: 10.1038/sj.bjp.0703601. [PMID: 11015293 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1702.Mori M, et al. Biochem Biophys Res Commun. 1999;265:123–129. doi: 10.1006/bbrc.1999.1640. [PMID: 10548501 ] [DOI] [PubMed] [Google Scholar]
  • 1703.Nothacker H-P, et al. Nat Cell Biol. 1999;1:383–385. doi: 10.1038/14081. [PMID: 10559967 ] [DOI] [PubMed] [Google Scholar]
  • 1704.Patacchini R, et al. Br J Pharmacol. 2003;140:1155–1158. doi: 10.1038/sj.bjp.0705555. [PMID: 14645137 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1705.Rakowski E, et al. J Mol Cell Cardiol. 2005;39:785–791. doi: 10.1016/j.yjmcc.2005.07.002. [PMID: 16171813 ] [DOI] [PubMed] [Google Scholar]
  • 1706.Stirrat A, et al. Am J Physiol Heart Circ Physiol. 2001;280:H925–H928. doi: 10.1152/ajpheart.2001.280.2.H925. [PMID: 11158995 ] [DOI] [PubMed] [Google Scholar]
  • 1707.Sugo T, Mori M. Peptides. 2008;29:809–812. doi: 10.1016/j.peptides.2007.06.005. [PMID: 17628210 ] [DOI] [PubMed] [Google Scholar]
  • 1708.Akerlund M, et al. Br J Obstet Gynaecol. 1999;106:1047–1053. doi: 10.1111/j.1471-0528.1999.tb08112.x. [PMID: 10519430 ] [DOI] [PubMed] [Google Scholar]
  • 1709.Ala Y, et al. J Am Soc Nephrol. 1998;9:1861–1872. doi: 10.1681/ASN.V9101861. [PMID: 9773787 ] [DOI] [PubMed] [Google Scholar]
  • 1710.Albright JD, et al. J Med Chem. 1998;41:2442–2444. doi: 10.1021/jm980179c. [PMID: 9651149 ] [DOI] [PubMed] [Google Scholar]
  • 1711.Andres M, et al. Br J Pharmacol. 2002;135:1828–1836. doi: 10.1038/sj.bjp.0704634. [PMID: 11934825 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1712.Bell IM, et al. J Med Chem. 1998;41:2146–2163. doi: 10.1021/jm9800797. [PMID: 9622556 ] [DOI] [PubMed] [Google Scholar]
  • 1713.Bichet DG, et al. Proc Assoc Am Physicians. 1998;110:387–394. [PMID: 9756088 ] [PubMed] [Google Scholar]
  • 1714.Breton C, et al. J Biol Chem. 2001;276:26931–26941. doi: 10.1074/jbc.M102073200. [PMID: 11337500 ] [DOI] [PubMed] [Google Scholar]
  • 1715.Cheng LL, et al. J Med Chem. 2004;47:2375–2388. doi: 10.1021/jm030611c. [PMID: 15084136 ] [DOI] [PubMed] [Google Scholar]
  • 1716.Chini B, et al. Br J Cancer. 2003;89:930–936. doi: 10.1038/sj.bjc.6601189. [PMID: 12942128 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1717.Chini B, et al. EMBO J. 1995;14:2176–2182. doi: 10.1002/j.1460-2075.1995.tb07211.x. [PMID: 7774575 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1718.Chini B, et al. FEBS letters. 1996;397:201–206. doi: 10.1016/s0014-5793(96)01135-0. [PMID: 8955347 ] [DOI] [PubMed] [Google Scholar]
  • 1719.Cotte N, et al. Eur J Biochem. 2000;267:4253–4263. doi: 10.1046/j.1432-1033.2000.01472.x. [PMID: 10866830 ] [DOI] [PubMed] [Google Scholar]
  • 1720.Cotte N, et al. J Biol Chem. 1998;273:29462–29468. doi: 10.1074/jbc.273.45.29462. [PMID: 9792651 ] [DOI] [PubMed] [Google Scholar]
  • 1721.Derick S, et al. Endocrinology. 2002;143:4655–4664. doi: 10.1210/en.2002-220363. [PMID: 12446593 ] [DOI] [PubMed] [Google Scholar]
  • 1722.Elands J, et al. Am J Physiol. 1988;254:E31–E38. doi: 10.1152/ajpendo.1988.254.1.E31. (1 Pt 1):. [PMID: 2827511 ] [DOI] [PubMed] [Google Scholar]
  • 1723.Failli AA, et al. Bioorg Med Chem Lett. 2006;16:954–959. doi: 10.1016/j.bmcl.2005.10.107. [PMID: 16297621 ] [DOI] [PubMed] [Google Scholar]
  • 1724.Fuchs AR, et al. Science. 1982;215:1396–1398. doi: 10.1126/science.6278592. [PMID: 6278592 ] [DOI] [PubMed] [Google Scholar]
  • 1725.Griebel G, et al. Proc Natl Acad Sci U S A. 2002;99:6370–6375. doi: 10.1073/pnas.092012099. [PMID: 11959912 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1726.Griffante C, et al. Br J Pharmacol. 2005;146:744–751. doi: 10.1038/sj.bjp.0706383. [PMID: 16158071 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1727.Jasper JR, et al. Life Sci. 1995;57:2253–2261. doi: 10.1016/0024-3205(95)02218-8. [PMID: 7475979 ] [DOI] [PubMed] [Google Scholar]
  • 1728.Kimura T, et al. Eur J Endocrinol. 1994;131:385–390. doi: 10.1530/eje.0.1310385. [PMID: 7921228 ] [DOI] [PubMed] [Google Scholar]
  • 1729.Lemaire W, et al. Eur J Pharmacol. 2002;450:19–28. doi: 10.1016/s0014-2999(02)02048-4. [PMID: 12176104 ] [DOI] [PubMed] [Google Scholar]
  • 1730.Nakamura S, et al. Br J Pharmacol. 2000;129:1700–1706. doi: 10.1038/sj.bjp.0703221. [PMID: 10780976 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1731.Pena A, et al. J Med Chem. 2007;50:835–847. doi: 10.1021/jm060928n. [PMID: 17300166 ] [DOI] [PubMed] [Google Scholar]
  • 1732.Phalipou S, et al. J Biol Chem. 1997;272:26536–26544. doi: 10.1074/jbc.272.42.26536. [PMID: 9334232 ] [DOI] [PubMed] [Google Scholar]
  • 1733.Saito M, et al. Biochem Pharmacol. 1997;53:1711–1717. doi: 10.1016/s0006-2952(97)00070-1. [PMID: 9264324 ] [DOI] [PubMed] [Google Scholar]
  • 1734.Serradeil-Le Gal C, et al. J Clin Invest. Vol. 98. 1996. pp. 2729–2738. [PMID: 8981918 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1735.Serradeil-Le Gal C, et al. Kidney Int. Vol. 58. 2000. pp. 1613–1622. [PMID: 11012895 ] [DOI] [PubMed] [Google Scholar]
  • 1736.Serradeil-Le Gal C, et al. J Pharmacol Exp Therap. Vol. 309. 2004. pp. 414–424. [PMID: 14722330 ] [DOI] [PubMed] [Google Scholar]
  • 1737.Serradeil-Le Gal C, et al. J Pharmacol Exp Ther. Vol. 300. 2002. pp. 1122–1130. [PMID: 11861823 ] [DOI] [PubMed] [Google Scholar]
  • 1738.Tahara A, et al. Br J Pharmacol. 1998;125:1463–1470. doi: 10.1038/sj.bjp.0702220. [PMID: 9884074 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1739.Tahara A, et al. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:63–69. doi: 10.1007/pl00005139. [PMID: 9459574 ] [DOI] [PubMed] [Google Scholar]
  • 1740.Thibonnier M, et al. J Biol Chem. 1994;269:3304–3310. [PMID: 8106369 ] [PubMed] [Google Scholar]
  • 1741.Thibonnier M, et al. Endocrinology. 1997;138:4109–4122. doi: 10.1210/endo.138.10.5432. [PMID: 9322919 ] [DOI] [PubMed] [Google Scholar]
  • 1742.Tsukada J, et al. Br J Pharmacol. 2001;133:746–754. doi: 10.1038/sj.bjp.0704117. [PMID: 11429400 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1743.Yamamura Y, et al. J Pharmacol Exp Ther. 1998;287:860–867. [PMID: 9864265 ] [PubMed] [Google Scholar]
  • 1744.Yamamura Y, et al. Br J Pharmacol. 1992;105:787–791. doi: 10.1111/j.1476-5381.1992.tb09058.x. [PMID: 1387020 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 1745.Dautzenberg FM, et al. J Neuroendocrinol. 1999;11:941–949. doi: 10.1046/j.1365-2826.1999.00411.x. [PMID: 10583729 ] [DOI] [PubMed] [Google Scholar]
  • 1746.Dickson L, et al. Neuropharmacology. 2006;51:1086–1098. doi: 10.1016/j.neuropharm.2006.07.017. [PMID: 16930633 ] [DOI] [PubMed] [Google Scholar]
  • 1747.Gourlet P, et al. Peptides. 1997;18:1555–1560. doi: 10.1016/s0196-9781(97)00230-1. [PMID: 9437716 ] [DOI] [PubMed] [Google Scholar]
  • 1748.Gourlet P, et al. Peptides. 1997;18:403–408. doi: 10.1016/s0196-9781(96)00322-1. [PMID: 9145428 ] [DOI] [PubMed] [Google Scholar]
  • 1749.Harmar AJ, et al. Pharmacol Rev. 1998;50:265–270. [PMID: 9647867 ] [PMC free article] [PubMed] [Google Scholar]
  • 1750.Juarranz MG, et al. Mol Pharmacol. 1999;56:1280–1287. doi: 10.1124/mol.56.6.1280. [PMID: 10570056 ] [DOI] [PubMed] [Google Scholar]
  • 1751.Moody TW, et al. J Mol Neurosci. 2002;18:29–35. doi: 10.1385/JMN:18:1-2:29. [PMID: 11931347 ] [DOI] [PubMed] [Google Scholar]
  • 1752.Moreno D, et al. Peptides. 2000;21:1543–1549. doi: 10.1016/s0196-9781(00)00309-0. [PMID: 11068102 ] [DOI] [PubMed] [Google Scholar]
  • 1753.Moro O, Lerner EA. J Biol Chem. 1997;272:966–970. doi: 10.1074/jbc.272.2.966. [PMID: 8995389 ] [DOI] [PubMed] [Google Scholar]
  • 1754.Moro O, et al. J Biol Chem. 1999;274:23103–23110. doi: 10.1074/jbc.274.33.23103. [PMID: 10438479 ] [DOI] [PubMed] [Google Scholar]
  • 1755.Nicole P. J Biol Chem. 2000;275:24003–24012. doi: 10.1074/jbc.M002325200. [PMID: 10801840 ] [DOI] [PubMed] [Google Scholar]
  • 1756.Pisegna JR, et al. Ann N Y Acad Sci. 2000;921:195–201. doi: 10.1111/j.1749-6632.2000.tb06966.x. [PMID: 11193823 ] [DOI] [PubMed] [Google Scholar]
  • 1757.Spengler D, et al. Nature. 1993;365:170–175. doi: 10.1038/365170a0. [PMID: 8396727 ] [DOI] [PubMed] [Google Scholar]
  • 1758.Uchida D, et al. Ann N Y Acad Sci. 1998;865:253–258. doi: 10.1111/j.1749-6632.1998.tb11185.x. [PMID: 9928019 ] [DOI] [PubMed] [Google Scholar]
  • 1759.Van Rampelbergh J, et al. Mol Pharmacol. 1996;50:1596–1604. [PMID: 8967982 ] [PubMed] [Google Scholar]
  • 1760.Xia M, et al. J Pharmacol Exp Ther. 1997;281:629–633. [PMID: 9152366 ] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES