Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.
Enzymes are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets.
It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
An Introduction to Enzymes
Enzymes are protein catalysts facilitating the conversion of substrates into products. The Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) classifies enzymes into families, using a four number code, on the basis of the reactions they catalyse. There are six main families:
EC 1.-.-.- Oxidoreductases;
EC 2.-.-.- Transferases;
EC 3.-.-.- Hydrolases;
EC 4.-.-.- Lyases;
EC 5.-.-.- Isomerases;
EC 6.-.-.- Ligases.
Although there are many more enzymes than receptors in biology, and many drugs that target prokaryotic enzymes are effective medicines, overall the number of enzyme drug targets is relatively small 1,2, which is not to say that they are of modest importance. In the Concise Guide to PHARMACOLOGY 2013/14, enzymes are presented as a group involved in metabolic pathways (for example, of the neurotransmitters acetylcholine, GABA and dopamine). An alternative grouping for presentation is epitomized by the cytochrome P450 enzymes, which essentially conduct the same enzymatic function, albeit on a very diverse range of substrates.
The majority of drugs which act on enzymes act as inhibitors; one exception is metformin, which appears to stimulate activity of AMP-activated protein kinase, albeit through an imprecisely-defined mechanism. Kinetic assays allow discrimination of competitive, non-competitive and un-competitive inhibitors. The majority of inhibitors are competitive (acting at the enzyme's ligand recognition site), non-competitive (acting at a distinct site; potentially interfering with co-factor or co-enzyme binding) or of mixed type. One rare example of an uncompetitive inhibitor is lithium ions, which are effective inhibitors at inositol monophosphatase only in the presence of high substrate concentrations. Some inhibitors are irreversible, including a group known as suicide substrates, which bind to the ligand recognition site and then couple covalently to the enzyme. It is beyond the scope of the Concise Guide To PHARMACOLOGY 2013/14 to give mechanistic information about the inhibitors described, although generally this information is available from the indicated literature.
Many enzymes require additional entities for functional activity. Some of these are used in the catalytic steps, while others promote a particular conformational change. Co-factors are tightly bound to the enzyme and include metal ions and heme groups. Co-enzymes are typically small molecules which accept or donate functional groups to assist in the enzymatic reaction. Examples include ATP, NAD, NADP and S-adenosylmethionine, as well as a number of vitamins, such as riboflavin (vitamin B1) and thiamine (vitamin B2). Where co-factors/co-enzymes have been identified, the Guide indicates their involvement.
Acknowledgments
We wish to acknowledge the tremendous help provided by the Consultants to the Guides past and present (see list in the Overview, p. 1452). We are also extremely grateful for the financial contributions from the British Pharmacological Society, the International Union of Basic and Clinical Pharmacology, the Wellcome Trust (099156/Z/12/Z]), which support the website and the University of Edinburgh, who host the guidetopharmacology.org website.
Conflict of interest
The authors state that there is no conflict of interest to disclose.
List of records presented
1799 Acetylcholine turnover
1800 Adenosine turnover
1801 Amino acid hydroxylases
1802 L-Arginine turnover
1805 Carboxylases and decarboxylases
1807 Catecholamine turnover
1810 Ceramide turnover
1815 Cyclic nucleotide turnover
1820 Cytochrome P450
1824 Eicosanoid turnover
1828 Endocannabinoid turnover
1830 GABA turnover
1832 Glycerophospholipid turnover
1838 Haem oxygenase
1839 Hydrogen sulfide synthesis
1840 Inositol phosphate turnover
1842 Lanosterol biosynthesis pathway
1845 Peptidases and proteinases
1853 Protein serine/threonine kinases
1860 Sphingosine 1-phosphate turnover
1862 Thyroid hormone turnover
Acetylcholine turnover
Overview
Acetylcholine is familiar as a neurotransmitter in the central nervous system and in the periphery. In the somatic nervous system, it activates nicotinic acetylcholine receptors at the skeletal neuromuscular junction. It is also employed in the autonomic nervous system, in both parasympathetic and sympathetic branches; in the former, at the smooth muscle neuromuscular junction, activating muscarinic acetylcholine receptors. In the latter, acetylcholine is involved as a neurotransmitter at the ganglion, activating nicotinic acetylcholine receptors. Acetylcholine is synthesised in neurones through the action of choline O-acetyltransferase and metabolised after release through the extracellular action of acetylcholinesterase and cholinesterase. Choline is accumulated from the extracellular medium by selective transporters (see SLC5A7 and the SLC44 family). Acetylcholine is accumulated in synaptic vesicles through the action of the vesicular acetylcholine transporter SLC18A3.
Nomenclature | Common abbreviation | HGNC, UniProt | EC number: reaction | Comment |
choline O-acetyltransferase | ChAT | CHAT, P28329 | 2.3.1.6: acetyl CoA + choline = acetylcholine + coenzyme A | Splice variants of choline O-acetyltransferase are suggested to be differentially distributed in the periphery and CNS (see 3) |
Nomenclature | acetylcholinesterase | butyrylcholinesterase |
Common abbreviation | AChE | BChE |
HGNC, UniProt | ACHE, P22303 | BCHE, P06276 |
EC number | 3.1.1.7: acetylcholine + H2O = acetic acid + choline + H+ | 3.1.1.7: acetylcholine + H2O = acetic acid + choline + H+ |
(Sub)family-selective inhibitors (pIC50) | physostigmine (7.6 – 7.8) 6 | physostigmine (7.6 – 7.8) 6 |
Selective inhibitors (pIC50) | donepezil (7.7 – 8.1) 4,6, BW284C51 (7.7) 5 | bambuterol (8.5) 5, rivastigmine (7.4) 6 |
Comments
A number of organophosphorus compounds inhibit acetylcholinesterase and cholinesterase irreversibly, including pesticides such as chlorpyrifos-oxon, and nerve agents such as tabun, soman and sarin. AChE is unusual in its exceptionally high turnover rate which has been calculated at 740 000/min/molecule 7.
Adenosine turnover
Overview
A multifunctional, ubiquitous molecule, adenosine acts at cell-surface G protein-coupled receptors, as well as numerous enzymes, including protein kinases and adenylyl cyclase. Extracellular adenosine is thought to be produced either by export or by metabolism, predominantly through ecto-5′-nucleotidase activity (also producing inorganic PO34-). It is inactivated either by extracellular metabolism via adenosine deaminase (also producing NH3) or, following uptake by nucleoside transporters, via adenosine deaminase or adenosine kinase (requiring ATP as co-substrate). Intracellular adenosine may be produced by cytosolic 5′-nucleotidases or through S-adenosylhomocysteine hydrolase (also producing L-homocysteine).
Nomenclature | Adenosine deaminase | Adenosine kinase | Ecto-5′-Nucleotidase | S-Adenosylhomocysteine hydrolase |
Common abbreviation | ADA | ADK | NT5E | SAHH |
HGNC, UniProt | ADA, P00813 | ADK, P55263 | NT5E, P21589 | AHCY, P23526 |
EC number | 3.5.4.4 | 2.7.1.20 | 3.1.3.5 | 3.3.1.1 |
Rank order of affinity | 2'-deoxyadenosine > adenosine | adenosine | AMP, 5′-GMP, 5′-IMP, 5′-UMP > 5′-dAMP, 5′-dGMP | S-adenosylhomocysteine |
Products | 2'-deoxyinosine, inosine | AMP | adenosine, guanine, inosine, uridine | adenosine |
Selective inhibitors (pIC50) | EHNA (pKi 8.8) 8, pentostatin (10.8) 8 | A134974 (10.2) 14, ABT702 (8.8) 11 | αβ-methyleneADP (8.7) 9 | 3-deazaadenosine (8.5) 10 |
Comments
With the exception of mitochondrial 5′-nucleotidase, each of the 5′-nucleotidases are localised to the cytoplasm.
An extracellular adenosine deaminase activity, termed ADA2 or adenosine deaminase growth factor (ADGF, CECR1, Q9NZK5) has been identified 13, which is insensitive to EHNA 15. Other forms of adenosine deaminase act on ribonucleic acids and may be divided into two families: ADAT1 (Q9BUB4) deaminates transfer RNA; ADAR (EC 3.5.4.-, also known as 136 kDa double-stranded RNA-binding protein, P136, K88DSRBP, Interferon-inducible protein 4); ADARB1 (EC 3.5.-.-, also known as dsRNA adenosine deaminase) and ADARB2 (EC 3.5.-.-, also known as dsRNA adenosine deaminase B2, RNA-dependent adenosine deaminase 3) act on double-stranded RNA. Particular polymorphisms of the ADA gene result in loss-of-function and severe combined immunodeficiency syndrome. Adenosine deaminase is able to complex with dipeptidyl peptidase IV (EC 3.4.14.5, DPP4, also known as T-cell activation antigen CD26, TP103, adenosine deaminase complexing protein 2) to form a cell-surface activity 12.
Amino acid hydroxylases
Overview
The amino acid hydroxylases (monooxygenases), E.C.1.14.16.-, are iron-containing enzymes which utilise molecular oxygen and tetrahydrobiopterin as co-substrate and co-factor, respectively. In humans, as well as in other mammals, there are two distinct L-tryptophan hydroxylase 2 genes. In humans, these genes are located on chromosomes 11 and 12 and encode two different homologous enzymes, TPH1 and TPH2.
Nomenclature | L-Phenylalanine hydroxylase | L-Tyrosine hydroxylase | L-Tryptophan hydroxylase 1 | L-Tryptophan hydroxylase 2 |
Common abbreviation | PH | TH | TPH | TPH |
HGNC, UniProt | PAH, P00439 | TH, P07101 | TPH1, P17752 | TPH2, Q8IWU9 |
EC number | 1.14.16.1: L-phenylalanine + O2 -> L-tyrosine | 1.14.16.2: L-tyrosine + O2 -> L-DOPA | 1.14.16.4 | 1.14.16.4 |
Endogenous activator (Rat) | Protein kinase A-mediated phosphorylation 16 | Protein kinase A-mediated phosphorylation 19 | Protein kinase A-mediated phosphorylation 20 | Protein kinase A-mediated phosphorylation 20 |
Endogenous substrates | L-phenylalanine | L-tyrosine | L-tryptophan | L-tryptophan |
Products | L-tyrosine | L-DOPA | 5-hydroxy-L-tryptophan | 5-hydroxy-L-tryptophan |
Cofactors | tetrahydrobiopterin | Fe2+, tetrahydrobiopterin | – | – |
Selective inhibitors (pIC50) | α-methylphenylalanine 18, PCPA | – | 6-fluorotryptophan 21, α-propyldopacetamide, fenfluramine, PCPA | 6-fluorotryptophan 21, α-propyldopacetamide, fenfluramine, PCPA |
Inhibitors (pIC50) | – | 3-chlorotyrosine, 3-iodotyrosine, α-methyltyrosine, α-propyldopacetamide | – | – |
Comment | PAH is an iron bound homodimer or -tetramer from the same structural family as tyrosine 3-monooxygenase and the tryptophan hydroxylases. Deficiency or loss-of-function of PAH is associated with phenylketonuria | TH is a homotetramer, which is inhibited by dopamine and other catecholamines in a physiological negative feedback pathway 17 | – | – |
L-Arginine turnover
Overview
L-arginine is a basic amino acid with a guanidino sidechain. As an amino acid, metabolism of L-arginine to form L-ornithine, catalysed by arginase, forms the last step of the urea production cycle. L-Ornithine may be utilised as a precursor of polyamines (see Carboxylases and Decarboxylases) or recycled via L-argininosuccinic acid to L-arginine. L-Arginine may itself be decarboxylated to form agmatine, although the prominence of this pathway in human tissues is uncertain. L-Arginine may be used as a precursor for guanidoacetic acid formation in the creatine synthesis pathway under the influence of arginine:glycine amidinotransferase with L-ornithine as a byproduct. Nitric oxide synthase uses L-arginine to generate NO, with L-citrulline also as a byproduct.
L-Arginine in proteins may be subject to post-translational modification through methylation, catalysed by protein arginine methyltransferases. Subsequent proteolysis can liberate asymmetric NG,NG-dimethyl-L-arginine (ADMA), which is an endogenous inhibitor of nitric oxide synthase activities. ADMA is hydrolysed by dimethylarginine dimethylhydrolase activities to generate L-citrulline and dimethylamine.
Arginase
Overview
Arginase (EC 3.5.3.1) are manganese-containing isoforms, which appear to show differential distribution, where the ARG1 isoform predominates in the liver and erythrocytes, while ARG2 is associated more with the kidney.
Comments
Nω-hydroxyarginine, an intermediate in NOS metabolism of L-arginine acts as a weak inhibitor and may function as a physiological regulator of arginase activity. Although isoform-selective inhibitors of arginase are not available, examples of inhibitors selective for arginase compared to NOS are Nω-hydroxy-nor-L-arginine 34, S-(2-boronoethyl)-L-cysteine 25,30 and 2(S)-amino-6-boronohexanoic acid 23,25.
Arginine: glycine amidinotransferase
Nomenclature | Arginine:glycine amidinotransferase |
Common abbreviation | AGAT |
HGNC, UniProt | GATM, P50440 |
EC number | 2.1.4.1 |
Dimethylarginine dimethylaminohydrolases
Overview
Dimethylarginine dimethylaminohydrolases (DDAH, EC 3.5.3.18) are cytoplasmic enzymes which hydrolyse NG,NG-dimethyl-L-arginine to form dimethylamine and L-citrulline.
Nitric oxide synthases
Overview
Nitric oxide synthases (NOS, E.C. 1.14.13.39) utilise L-arginine (not D-arginine) and molecular oxygen to generate NO and L-citrulline. The nomenclature suggested by NC-IUPHAR of NOS I, II and III 32 has not gained wide acceptance. eNOS and nNOS isoforms are activated at concentrations of calcium greater than 100 nM, while iNOS shows higher affinity for Ca2+/calmodulin (CALM2, CALM3, CALM1, P62158) and thus appears to be constitutively active. All the three isoforms are homodimers and require tetrahydrobiopterin, flavin adenine dinucleotide, flavin mononucleotide and NADPH for catalytic activity. L-NAME is an inhibitor of all three isoforms, with an IC50 value in the micromolar range.
Nomenclature | Endothelial NOS | Inducible NOS | Neuronal NOS |
Common abbreviation | eNOS | iNOS | nNOS |
HGNC, UniProt | NOS3, P29474 | NOS2, P35228 | NOS1, P29475 |
Selective inhibitors (pIC50) | – | aminoguanidine 26, 1400W (8.2) 28, 2-amino-4-methylpyridine (7.4) 27, PIBTU (7.3) 29, NIL (5.5) 33 | Nωpropyl-L-arginine (pKi 7.2 - Rat) 35, 3-bromo-7NI (6.1 – 6.5) 24, 7NI (5.3) 22 |
Comments
The reductase domain of NOS catalyses the reduction of cytochrome c and other redox-active dyes 31. NADPH:O2 oxidoreductase catalyses the formation of superoxide anion/H2O2 in the absence of L-arginine and tetrahydrobiopterin.
Protein arginine N-methyltransferases
Overview
Protein arginine N-methyltransferases (PRMT, EC 2.1.1.-) encompass histone arginine N-methyltransferases (PRMT4, PRMT7, EC 2.1.1.125) and myelin basic protein N-methyltransferases (PRMT7, EC 2.1.1.126). They are dimeric or tetrameric enzymes which use S-adenosyl methionine as a methyl donor, generating S-adenosyl-L-homocysteine as a by-product. They generate both mono-methylated and di-methylated products; these may be symmetric (SDMA) or asymmetric (NG,NG-dimethyl-L-arginine) versions, where both guanidine nitrogens are monomethylated or one of the two is dimethylated, respectively.
Carboxylases and decarboxylases
Carboxylases
Overview
The carboxylases allow the production of new carbon-carbon bonds by introducing HCO3- or CO2 into target molecules. Two groups of carboxylase activities, some of which are bidirectional, can be defined on the basis of the cofactor requirement, making use of biotin (EC 6.4.1.-) or vitamin K hydroquinone (EC 4.1.1.-).
Nomenclature | Pyruvate carboxylase | Acetyl-CoA carboxylase 1 | Acetyl-CoA carboxylase 2 | Propionyl-CoA carboxylase | γ-Glutamyl carboxylase |
Common abbreviation | PC | ACC1 | ACC2 | – | GGCX |
HGNC, UniProt | PC, P11498 | ACACA, Q13085 | ACACB, O00763 | – | GGCX, P38435 |
Subunits | – | – | – | Propionyl-CoA carboxylase α subunit, Propionyl-CoA carboxylase β subunit | – |
EC number | 6.4.1.1 | 6.4.1.2 | 6.4.1.2 | 6.4.1.3 | 4.1.1.90 |
Endogenous substrates | ATP, pyruvic acid | ATP, acetyl CoA | ATP, acetyl CoA | ATP, propionyl-CoA | glutamyl peptides |
Products | ADP, oxalacetic acid, PO34- | malonyl-CoA, ADP, PO34- | malonyl-CoA, ADP, PO34- | ADP, methylmalonyl-CoA, PO34- | carboxyglutamyl peptides |
Cofactors | biotin | biotin | biotin | biotin | NADPH, vitamin K hydroquinone |
Selective inhibitors (pIC50) | – | TOFA 38 | TOFA 38 | – | – |
Comment | – | Citrate and other dicarboxylic acids are allosteric activators of acetyl-CoA carboxylase | Citrate and other dicarboxylic acids are allosteric activators of acetyl-CoA carboxylase | Propionyl-CoA carboxylase is able to function in both forward and reverse activity modes, as a ligase (carboxylase) or lyase (decarboxylase), respectively | Loss-of-function mutations in γ-glutamyl carboxylase are associated with clotting disorders |
Decarboxylases
Overview
The decarboxylases generate CO2 and the indicated products from acidic substrates, requiring pyridoxal phosphate or pyruvic acid as a co-factor.
Nomenclature | S-Adenosylmethionine decarboxylase | L-Arginine decarboxylase | L-Aromatic amino-acid decarboxylase | Glutamic acid decarboxylase 1 | Glutamic acid decarboxylase 2 |
Common abbreviation | SAMDC | ADC | AADC | GAD1 | GAD2 |
HGNC, UniProt | AMD1, P17707 | ADC, Q96A70 | DDC, P20711 | GAD1, Q99259 | GAD2, Q05329 |
EC number | 4.1.1.50 | 4.1.1.19 | 4.1.1.28: L-DOPA -> dopamine + CO2 | 4.1.1.15: L-glutamic acid + H+ -> GABA + CO2 | 4.1.1.15: L-glutamic acid + H+ -> GABA + CO2 |
Endogenous substrates | S-adenosyl methionine | L-arginine | L-tryptophan, L-DOPA, 5-hydroxy-L-tryptophan | L-glutamic acid, L-aspartic acid | L-glutamic acid, L-aspartic acid |
Products | 5′-deoxyadenosyl-(3-aminopropyl) methylsulfonium | agmatine 43 | 5-HT, dopamine | GABA | GABA |
Cofactors | pyruvic acid | pyridoxal phosphate | pyridoxal phosphate | pyridoxal phosphate | pyridoxal phosphate |
Selective inhibitors (pIC50) | SAM486A (8.0) 41 | – | 3-hydroxybenzylhydrazine, benserazide, carbidopa, L-α-methyldopa | s-allylglycine | s-allylglycine |
Comment | s-allylglycine is also an inhibitor of SAMDC 39 | The presence of a functional ADC activity in human tissues has been questioned 36 | AADC is a homodimer. Reaction 1: L-DOPA -> dopamine + CO2, Reaction 2: 5-hydroxy-L-tryptophan -> 5-HT + CO2, Reaction 3: L-tryptophan -> tryptamine + CO2 | L-aspartic acid is a less rapidly metabolised substrate of mouse brain glutamic acid decarboxylase generating β-alanine 42. Autoantibodies against GAD1 and GAD2 are elevated in type 1 diabetes mellitus and neurological disorders (see Further reading) |
Nomenclature | Histidine decarboxylase | Malonyl-CoA decarboxylase | Ornithine decarboxylase | Phosphatidylserine decarboxylase |
Common abbreviation | HDC | MLYCD | ODC | PSDC |
HGNC, UniProt | HDC, P19113 | MLYCD, O95822 | ODC1, P11926 | PISD, Q9UG56 |
EC number | 4.1.1.22 | 4.1.1.9 | 4.1.1.17 | 4.1.1.65 |
Endogenous substrates | L-histidine | malonyl-CoA | L-ornithine | phosphatidylserine |
Products | histamine | acetyl CoA | putrescine | phosphatidylethanolamine |
Cofactors | pyridoxal phosphate | pyridoxal phosphate | pyridoxal phosphate | pyruvic acid |
Selective inhibitors (pIC50) | AMA, FMH 37 | – | APA, DFMO | – |
Comment | – | Inhibited by AMP-activated protein kinase-evoked phosphorylation 40 | The activity of ODC is regulated by the presence of an antizyme (ENSG00000104904) and an ODC antizyme inhibitor (ENSG00000155096) | S-allylglycine is also an inhibitor of SAMDC 39 |
Catecholamine turnover
Overview
Catecholamines are defined by the presence of two adjacent hydroxyls on a benzene ring with a sidechain containing an amine. The predominant catacholamines in mammalian biology are the neurotransmitter/hormones dopamine, (-)-noradrenaline (norepinephrine) and (-)-adrenaline (epinephrine). These hormone/transmitters are synthesized by sequential metabolism from L-phenylalanine via L-tyrosine. Hydroxylation of L-tyrosine generates L-DOPA, which is decarboxylated to form dopamine. Hydroxylation of the ethylamine sidechain generates (-)-noradrenaline (norepinephrine), which can be methylated to form (-)-adrenaline (epinephrine). In particular neuronal and adrenal chromaffin cells, the catecholamines dopamine, (-)-noradrenaline and (-)-adrenaline are accumulated into vesicles under the influence of the vesicular monoamine transporters (VMAT1/SLC18A1 and VMAT2/SLC18A2). After release into the synapse or the bloodstream, catecholamines are accumulated through the action cell-surface transporters, primarily the dopamine (DAT/SLC6A3) and norepinephrine transporter (NET/SLC6A2). The primary routes of metabolism of these catecholamines are oxidation via monoamine oxidase activities of methylation via catechol O-methyltransferase.
Nomenclature | Common abbreviation | HGNC, UniProt | EC number | Endogenous activator (Rat) | Endogenous substrates | Products | Cofactors | Selective inhibitors (pIC50) | Comment |
L-Phenylalanine hydroxylase | PH | PAH, P00439 | 1.14.16.1: L-phenylalanine + O2 -> L-tyrosine | Protein kinase A-mediated phosphorylation 44 | L-phenylalanine | L-tyrosine | tetrahydrobiopterin | α-methylphenylalanine 49, PCPA | PAH is an iron bound homodimer or -tetramer from the same structural family as tyrosine 3-monooxygenase and the tryptophan hydroxylases. Deficiency or loss-of-function of PAH is associated with phenylketonuria |
Nomenclature | Common abbreviation | HGNC, UniProt | EC number | Cofactors | Comment |
Tyrosine aminotransferase | TAT | TAT, P17735 | 2.6.1.5: L-tyrosine + α-ketoglutaric acid -> 4-hydroxyphenylpyruvic acid + L-glutamic acid | pyridoxal phosphate | Tyrosine may also be metabolized in the liver by tyrosine transaminase to generate 4-hydroxyphenylpyruvic acid, which can be further metabolized to homogentisic acid., TAT is a homodimer, where loss-of-function mutations are associated with type II tyrosinemia |
Nomenclature | Common abbreviation | HGNC, UniProt | EC number | Endogenous substrates | Products | Cofactors | Selective inhibitors (pIC50) | Comment |
L-Aromatic amino-acid decarboxylase | AADC | DDC, P20711 | 4.1.1.28: L-DOPA -> dopamine + CO2 | L-tryptophan, L-DOPA, 5-hydroxy-L-tryptophan | 5-HT, dopamine | pyridoxal phosphate | 3-hydroxybenzylhydrazine, benserazide, carbidopa, L-α-methyldopa | AADC is a homodimer, Reaction 1: L-DOPA -> dopamine + CO2, Reaction 2: 5-hydroxy-L-tryptophan -> 5-HT + CO2, Reaction 3: L-tryptophan -> tryptamine + CO2 |
Nomenclature | Common abbreviation | HGNC, UniProt | EC number | Endogenous activators | Endogenous substrates | Products | Cofactors | Inhibitors (pIC50) | Comment |
L-Tyrosine hydroxylase | TH | TH, P07101 | 1.14.16.2: L-tyrosine + O2 -> L-DOPA | Protein kinase A-mediated phosphorylation 51 | L-tyrosine | L-DOPA | Fe2+, tetrahydrobiopterin | 3-chlorotyrosine, 3-iodotyrosine, α-methyltyrosine, α-propyldopacetamide | TH is a homotetramer, which is inhibited by dopamine and other catecholamines in a physiological negative feedback pathway 47 |
Nomenclature | Common abbreviation | HGNC, UniProt | EC number | Cofactors | Selective inhibitors (pIC50) | Comment |
Dopamine beta-hydroxylase (dopamine beta-monooxygenase) | DBH | DBH, P09172 | 1.14.17.1: dopamine + O2 -> (-)-noradrenaline + H2O | Cu2+, L-ascorbic acid | nepicastat (8.0) 55 | DBH is a homotetramer. A protein structurally-related to DBH (MOXD1, Q6UVY6) has been described and for which a function has yet to be identified 45 |
Nomenclature | Monoamine oxidase A | Monoamine oxidase B |
Common abbreviation | MAO-A | MAO-B |
HGNC, UniProt | MAOA, P21397 | MAOB, P27338 |
EC number | 1.4.3.4: dopamine -> 3,4-dihydroxyphenylacetaldehyde + NH3 | 1.4.3.4: dopamine -> 3,4-dihydroxyphenylacetaldehyde + NH3 |
Cofactors | flavin adenine dinucleotide | flavin adenine dinucleotide |
Selective inhibitors (pIC50) | befloxatone 46, clorgyline, pirlindole 53 | lazabemide 50, L-Deprenyl, rasagiline 56 |
Comment | Reaction 1: dopamine -> 3,4-dihydroxyphenylacetaldehyde + NH3, Reaction 2: (-)-noradrenaline -> 3,4-dihydroxymandelic acid + NH3, Reaction 3: (-)-adrenaline -> 3,4-dihydroxymandelic acid + NH3, Reaction 4: 5-HT -> 5-hydroxyindole acetaldehyde + NH3, Reaction 5: tyramine -> 4-hydroxyphenyl acetaldehyde + NH3 | – |
Nomenclature | Common abbreviation | HGNC, UniProt | EC number | Cofactors | Selective inhibitors (pIC50) | Comment |
Catechol-O-methyltransferase | COMT | COMT, P21964 | 2.1.1.6: dopamine -> 3-methoxytyramine | S-adenosyl methionine | entacapone 52,54, tolcapone 52,54 | COMT appears to exist in both membrane-bound and soluble forms. COMT has also been described to methylate steroids, particularly hydroxyestradiols, Reaction 1: dopamine -> 3-methoxytyramine, Reaction 2: (-)-noradrenaline -> normetanephrine, Reaction 3: (-)-adrenaline -> metanephrine, Reaction 4: 3,4-dihydroxymandelic acid -> vanillylmandelic acid |
Ceramide turnover
Overview
Ceramides are a family of sphingophospholipids synthesized in the endoplasmic reticulum, which mediate cell stress responses, including apoptosis, autophagy and senescence, Serine palmitoyltransferase generates 3-Ketosphinganine, which is reduced to sphinganine (dihydrosphingosine). N-Acylation allows the formation of dihydroceramides, which are subsequently reduced to form ceramides. Once synthesized, ceramides are trafficked from the ER to the Golgi bound to the ceramide transfer protein, CERT (COL4A3BP, Q9Y5P4). Ceramide can be metabolized via multiple routes, ensuring tight regulation of its cellular levels. Addition of phosphocholine generates sphingomyelin while carbohydrate is added to form glucosyl- or galactosylceramides. Ceramidase re-forms sphingosine or sphinganine from ceramide or dihydroceramide. Phosphorylation of ceramide generates ceramide phosphate. The determination of accurate kinetic parameters for many of the enzymes in the sphingolipid metabolic pathway is complicated by the lipophilic nature of the substrates.
Serine palmitoyltransferase
Overview
The functional enzyme is a heterodimer of SPT1 (LCB1) with either SPT2 (LCB2) or SPT3 (LCB2B); the small subunits of SPT (ssSPTa or ssSPTb) bind to the heterodimer to enhance enzymatic activity. The complexes of SPT1/SPT2/ssSPTa and SPT1/SPT2/ssSPTb were most active with palmitoylCoA as substrate, with the latter complex also showing some activity with stearoylCoA 62. Complexes involving SPT3 appeared more broad in substrate selectivity, with incorporation of myristoylCoA prominent for SPT1/SPT3/ssSPTa complexes, while SP1/SPT3/ssSPTb complexes had similar activity with C16, C18 and C20 acylCoAs 62.
Nomenclature | serine palmitoyltransferase, long chain base subunit 1 | serine palmitoyltransferase, long chain base subunit 2 | serine palmitoyltransferase, long chain base subunit 3 | serine palmitoyltransferase, small subunit A | serine palmitoyltransferase, small subunit B |
Common abbreviation | SPT1 | SPT2 | SPT3 | SPTSSA | SPTSSB |
HGNC, UniProt | SPTLC1, O15269 | SPTLC2, O15270 | SPTLC3, Q9NUV7 | SPTSSA, Q969W0 | SPTSSB, Q8NFR3 |
EC number | 2.3.1.50: palmitoylCoA + L-serine -> 3-Ketosphinganine + coenzyme A + CO2 | – | – | ||
Cofactors | pyridoxal phosphate | pyridoxal phosphate | pyridoxal phosphate | – | – |
Selective inhibitors (pIC50) | myriocin 67 | myriocin 67 | myriocin 67 | – | – |
3-ketodihydrosphingosine reductase
Nomenclature | HGNC, UniProt | EC number | Cofactors |
3-ketodihydrosphingosine reductase | KDSR, Q06136 | 1.1.1.102: 3-Ketosphinganine + NADPH -> sphinganine + NADP+ | NADPH |
Ceramide synthase
Overview
This family of enzymes, also known as sphingosine N-acyltransferase, is located in the ER facing the cytosol with an as-yet undefined topology and stoichiometry. Ceramide synthase in vitro is sensitive to inhibition by the fungal derived toxin, fumonisin B1.
Nomenclature | ceramide synthase 1 | ceramide synthase 2 | ceramide synthase 3 |
Common abbreviation | CERS1 | CERS2 | CERS3 |
HGNC, UniProt | CERS1, P27544 | CERS2, Q96G23 | CERS3, Q8IU89 |
EC number | 2.3.1.24: sphinganine + acylCoA -> dihydroceramide + coenzyme A, sphingosine + acylCoA -> ceramide + coenzyme A | ||
Substrates | C18-CoA 76 | C24- and C26-CoA 65 | C26-CoA and longer 69,71 |
Nomenclature | ceramide synthase 4 | ceramide synthase 5 | ceramide synthase 6 |
Common abbreviation | CERS4 | CERS5 | CERS6 |
HGNC, UniProt | CERS4, Q9HA82 | CERS5, Q8N5B7 | CERS6, Q6ZMG9 |
EC number | 2.3.1.24: sphinganine + acylCoA -> dihydroceramide + coenzyme A, sphingosine + acylCoA -> ceramide + coenzyme A | ||
Substrates | C18-, C20- and C22-CoA 72 | C16-CoA 64,72 | C14- and C16-CoA 68 |
Sphingolipid Δ4-desaturase
Overview
DEGS1 and DEGS2 are 4TM membrane proteins.
Nomenclature | delta(4)-desaturase, sphingolipid 1 | delta(4)-desaturase, sphingolipid 2 |
HGNC, UniProt | DEGS1, O15121 | DEGS2, Q6QHC5 |
EC number | 1.14.-.-: dihydroceramide + NADH + O2 -> ceramide + H2O + NAD, sphinganine + NADH + O2 -> sphingosine + H2O + NAD | |
Cofactors | NAD | NAD |
Comment | Myristoylation of DEGS1 enhances its activity and targets it to the mitochondria 59 | – |
Comments
DEGS1 activity is inhibited by a number of natural products, including curcumin and Δ9-tetrahydrocannabinol 60.
Sphingomyelin synthase
Overview
Following translocation from the ER to the Golgi under the influence of the ceramide transfer protein, sphingomyelin synthases allow the formation of sphingomyelin by the transfer of phosphocholine from the phospholipid phosphatidylcholine.
Sphingomyelin synthase-related protein 1 is structurally related but lacks sphingomyelin synthase activity.
Nomenclature | HGNC, UniProt | EC number |
sterile alpha motif domain containing 8 | SAMD8, Q96LT4 | 2.7.8.-: ceramide + phosphatidylethanolamine -> ceramide phosphoethanolamine |
Sphingomyelin phosphodiesterase
Overview
Also known as sphingomyelinase.
Nomenclature | sphingomyelin phosphodiesterase 1, acid lysosomal | sphingomyelin phosphodiesterase 2, neutral membrane (neutral sphingomyelinase) | sphingomyelin phosphodiesterase 3, neutral membrane (neutral sphingomyelinase II) | sphingomyelin phosphodiesterase 4, neutral membrane (neutral sphingomyelinase-3) |
HGNC, UniProt | SMPD1, P17405 | SMPD2, O60906 | SMPD3, Q9NY59 | SMPD4, Q9NXE4 |
EC number | 3.1.4.12: sphingomyelin -> ceramide + phosphocholine |
Neutral sphingomyelinase coupling factors
Overview
Protein FAN 58 and polycomb protein EED 70 allow coupling between TNF receptors and neutral sphingomyelinase phosphodiesterases.
Ceramide glucosyltransferase
Nomenclature | HGNC, UniProt | EC number | Selective inhibitors | Comment |
UDP-glucose ceramide glucosyltransferase | UGCG, Q16739 | 2.4.1.80: UDP-glucose + ceramide = UDP + glucosylceramide | miglustat 57 | Glycoceramides are an extended family of sphingolipids, differing in the content and organization of the sugar moieties, as well as the acyl sidechains |
Acid ceramidase
Overview
The five human ceramidases may be divided on the basis of pH optimae into acid, neutral and alkaline ceramidases, which also differ in their subcellular location.
Neutral ceramidases
Overview
The five human ceramidases may be divided on the basis of pH optimae into acid, neutral and alkaline ceramidases, which also differ in their subcellular location.
Nomenclature | N-acylsphingosine amidohydrolase (non-lysosomal ceramidase) 2 | N-acylsphingosine amidohydrolase (non-lysosomal ceramidase) 2B | N-acylsphingosine amidohydrolase (non-lysosomal ceramidase) 2C |
HGNC, UniProt | ASAH2, Q9NR71 | ASAH2B, P0C7U1 | ASAH2C, P0C7U2 |
EC number | 3.5.1.23: ceramide -> sphingosine + a fatty acid | – | – |
Comment | The enzyme is associated with the plasma membrane 74 | – | – |
Comments
Two further structurally-related proteins have been identified (ASAH2B, P0C7U1 and ASAH2C, P0C7U2). ASAH2B appears to be an enzymatically inactive protein, which may result from gene duplication and truncation.
Alkaline ceramidases
Overview
The five human ceramidases may be divided on the basis of pH optimae into acid, neutral and alkaline ceramidases, which also differ in their subcellular location.
Nomenclature | alkaline ceramidase 1 | alkaline ceramidase 2 | alkaline ceramidase 3 |
HGNC, UniProt | ACER1, Q8TDN7 | ACER2, Q5QJU3 | ACER3, Q9NUN7 |
EC number | 3.5.1.23: ceramide -> sphingosine + a fatty acid | 3.5.1.23: ceramide -> sphingosine + a fatty acid | 3.5.1.- |
Comment | ACER1 is associated with the ER 73 | ACER2 is associated with the Golgi apparatus 77 | ACER3 is associated with the ER and Golgi apparatus 66 |
Ceramide kinase
Comments
A ceramide kinase-like protein has been identified in the human genome (CERKL, Q49MI3).
Cyclic nucleotide turnover
Overview
Cyclic nucleotides are second messengers generated by cyclase enzymes from precursor triphosphates and hydrolysed by phosphodiesterases. The cellular actions of these cyclic nucleotides are mediated through activation of protein kinases (cAMP- and cGMP-dependent protein kinases), ion channels (cyclic nucleotide-gated, CNG, and hyperpolarization and cyclic nucleotide-gated, HCN) and guanine nucleotide exchange factors (GEFs, Epac).
Adenylyl cyclases
Overview
Adenylyl cyclase (ENSF00000000188), E.C. 4.6.1.1, converts ATP to cAMP and diphosphate ion. Mammalian membrane-bound adenylyl cyclases are typically made up of two clusters of six TM domains separating two intracellular, overlapping catalytic domains that are the target for the nonselective activators forskolin, NKH477 (except AC9, 121) and Gαs (the stimulatory G protein α subunit). adenosine and its derivatives (e.g. 2',5'-dideoxyadenosine), acting through the P-site, appear to be physiological inhibitors of adenylyl cyclase activity 135. Three families of adenylyl cyclase are distinguishable: calmodulin (CALM2, CALM3, CALM1, P62158)-stimulated (AC1, AC3 and AC8), Ca2+-inhibitable (AC5, AC6 and AC9) and Ca2+-insensitive (AC2, AC4 and AC7) forms.
Calmodulin-stimulated adenylyl cyclases
Nomenclature | AC1 | AC3 | AC8 |
HGNC, UniProt | ADCY1, Q08828 | ADCY3, O60266 | ADCY8, P40145 |
Endogenous activators | calmodulin (CALM2, CALM3, CALM1, P62158), PKC-evoked phosphorylation 110,132 | calmodulin (CALM2, CALM3, CALM1, P62158), PKC-evoked phosphorylation 88,110 | – |
Endogenous inhibitors | Gαi, Gαo, Gβγ 133,134 | Gαi, RGS2 (RGS2, P41220), CaM kinase II-evoked phosphorylation 127,134,140 | Ca2+ 82 |
Calcium-inhibitable adenylyl cyclases
Nomenclature | AC5 | AC6 | AC9 |
HGNC, UniProt | ADCY5, O95622 | ADCY6, O43306 | ADCY9, O60503 |
Endogenous activators | PKC-evoked phophorylation 111 | – | – |
Endogenous inhibitors | Gαi, Ca2+, PKA-evoked phosphorylation 108,109,134 | Gαi, Ca2+, PKA-evoked phosphorylation, PKC-evoked phosphorylation 87,112,134,141 | Ca2+/calcineurin 120 |
Selective inhibitors (pIC50) | NKY80 119 | – | – |
Calcium-independent adenylyl cyclases
Comments
NO has been proposed to inhibit AC5 and AC6 selectively 104, although it is unclear whether this phenomenon is of physiological significance. A soluble adenylyl cyclase has been described (ADCY10, Q96PN6 81), unaffected by either Gα or Gβγ subunits, which has been suggested to be a cytoplasmic bicarbonate (pH-insensitive) sensor 86. It can be inhibited selectively by KH7 (pIC50 5.0–5.5) 103.
Soluble guanylyl cyclase
Overview
Soluble guanylyl cyclase (GTP diphosphate-lyase (cyclising)), E.C. 4.6.1.2, is a heterodimer comprising α and β chains, both of which have two subtypes in man (predominantly α1β1; 142). A haem group is associated with the β chain and is the target for the endogenous ligand NO, and, potentially, carbon monoxide 96. The enzyme converts guanosine-5'-triphosphate (GTP) to the intracellular second messenger 3',5'-guanosine monophosphate (cGMP).
Nomenclature | Soluble guanylyl cyclase |
Common abbreviation | sGC |
Subunits | Soluble guanylyl cyclase α 1 subunit, Soluble guanylyl cyclase β 1 subunit |
EC number | 4.6.1.2 |
Selective activators | ataciguat 125, BAY412272 129, cinaciguat 130, NO, riociguat 130, YC1 96 |
Selective inhibitors (pIC50) | NS 2028 (8.1 - Bovine) 118, ODQ (7.5) 101 |
Comments
ODQ also shows activity at other haem-containing proteins 92, while YC1 may also inhibit cGMP-hydrolysing phosphodiesterases 95,98.
Exchange protein activated by cyclic AMP (Epac)
Overview
Epacs are members of a family of guanine nucleotide exchange factors (ENSFM00250000000899), which also includes RapGEF5 (GFR, KIAA0277, MR-GEF, Q92565) and RapGEFL1 (Link-GEFII, Q9UHV5). They are activated endogenously by cAMP and with some pharmacological selectivity by 8-pCPT-2'-O-Me-cAMP 90. Once activated, Epacs induce an enhanced activity of the monomeric G proteins, Rap1 and Rap2 by facilitating binding of GTP in place of GDP, leading to activation of phospholipase C 126.
Phosphodiesterases, 3',5'-cyclic nucleotide
Overview
3',5'-Cyclic nucleotide phosphodiesterases (PDEs, 3',5'-cyclic-nucleotide 5'-nucleotidohydrolase), E.C. 3.1.4.17, catalyse the hydrolysis of a 3',5'-cyclic nucleotide (usually cAMP or cGMP). IBMX is a nonselective inhibitor with an IC50 value in the millimolar range for all isoforms except PDE 8A, 8B and 9A. A 2',3'-cyclic nucleotide 3'-phosphodiesterase (E.C. 3.1.4.37 CNPase) activity is associated with myelin formation in the development of the CNS.
Nomenclature | PDE1A | PDE1B | PDE1C |
HGNC, UniProt | PDE1A, P54750 | PDE1B, Q01064 | PDE1C, Q14123 |
Rank order of affinity | cGMP > cAMP | cGMP > cAMP | cGMP = cAMP |
Endogenous activators | calmodulin (CALM2, CALM3, CALM1, P62158) | calmodulin (CALM2, CALM3, CALM1, P62158) | calmodulin (CALM2, CALM3, CALM1, P62158) |
Selective inhibitors (pIC50) | SCH51866 (7.2) 137, vinpocetine (5.1) 113 | SCH51866 (7.2) 137 | SCH51866 (7.2) 137, vinpocetine (4.3) 113 |
Comments
PDE1A, 1B and 1C appear to act as soluble homodimers.
Nomenclature | PDE2A | PDE3A | PDE3B |
HGNC, UniProt | PDE2A, O00408 | PDE3A, Q14432 | PDE3B, Q13370 |
Rank order of affinity | cAMP >> cGMP | – | – |
Endogenous activators | cGMP | – | – |
Endogenous inhibitors (pIC50) | – | cGMP (Selective) | cGMP (Selective) |
Selective inhibitors (pIC50) | BAY607550 (8.3 – 8.8) 80, EHNA (5.3) 116 | cilostamide (7.5) 131, milrinone (6.3) 131 | cilostamide (7.3) 131, milrinone (6.0) 131 |
Comment | EHNA is also an inhibitor of adenosine deaminase (E.C. 3.5.4.4) | – | – |
Comments
PDE2A is a membrane-bound homodimer. PDE3A and PDE3B are membrane-bound.
Nomenclature | PDE4A | PDE4B | PDE4C | PDE4D |
HGNC, UniProt | PDE4A, P27815 | PDE4B, Q07343 | PDE4C, Q08493 | PDE4D, Q08499 |
Activator | – | – | – | PKA-mediated phosphorylation 107 |
Rank order of affinity | cAMP >> cGMP | cAMP >> cGMP | cAMP >> cGMP | cAMP >> cGMP |
Selective inhibitors (pIC50) | rolipram (9.0) 138, YM976 (8.3) 79, RS-25344 (7.2) 123, Ro201724 (6.5) 138 | rolipram (9.0) 138, RS-25344 (6.5) 123, Ro201724 (6.4) 138 | RS-25344 (8.1) 123, rolipram (6.5) 138, Ro201724 (5.4) 138 | RS-25344 (8.4) 123, rolipram (7.2) 138, Ro201724 (6.2) 138 |
Comments
PDE4 isoforms are essentially cAMP specific. The potency of YM976 at other members of the PDE4 family has not been reported. PDE4B–D long forms are inhibited by extracellular signal-regulated kinase (ERK)-mediated phosphorylation 105,106. PDE4A–D splice variants can be membrane-bound or cytosolic 107. PDE4 isoforms may be labelled with [3H]rolipram.
Comments
PDE6 is a membrane-bound tetramer composed of two catalytic chains (PDE6A or PDE6C and PDE6B), an inhibitory chain (PDE6G or PDE6H) and the PDE6D chain. The enzyme is essentially cGMP specific and is activated by the α-subunit of transducin (Gαt) and inhibited by sildenafil, zaprinast and dipyridamole with potencies lower than those observed for PDE5A. Defects in PDE6B are a cause of retinitis pigmentosa and congenital stationary night blindness.
Nomenclature | PDE7A | PDE7B | PDE8A | PDE8B |
HGNC, UniProt | PDE7A, Q13946 | PDE7B, Q9NP56 | PDE8A, O60658 | PDE8B, O95263 |
EC number | 3.1.4.17 | 3.1.4.17 | 3.1.4.17 | 3.1.4.17 |
Rank order of affinity | cAMP >> cGMP 115 | cAMP >> cGMP 100 | cAMP >> cGMP 93 | cAMP >> cGMP 102 |
Selective inhibitors (pIC50) | BRL50481 (6.7 – 6.8) 78,128 | dipyridamole (5.7 – 6.0) 100,124, SCH51866 (5.8) 124, BRL50481 (4.9) 78 | dipyridamole (5.1) 93 | dipyridamole (4.3) 102 |
Comment | PDE7A appears to be membrane-bound or soluble for PDE7A1 and 7A2 splice variants, respectively | – | – | – |
Cytochrome P450
Overview
The cytochrome P450 enzyme family (CYP450), E.C. 1.14.-.-, were originally defined by their strong absorbance at 450 nm due to the reduced carbon monoxide-complexed haem component of the cytochromes. They are an extensive family of haem-containing monooxygenases with a huge range of both endogenous and exogenous substrates. Listed below are the human enzymes; their relationship with rodent CYP450 enzyme activities is obscure in that the species orthologue may not mediate metabolism of the same substrates. Although the majority of CYP450 enzyme activities are concentrated in the liver, the extrahepatic enzyme activities also contribute to patho/physiological processes. Genetic variation of CYP450 isoforms is widespread and likely underlies a significant proportion of the individual variation to drug administration.
CYP1 family
CYP2 family
Nomenclature | HGNC, UniProt | EC number | Comment |
CYP2A6 | CYP2A6, P11509 | 1.14.14.1 | Metabolises nicotine |
CYP2A7 | CYP2A7, P20853 | 1.14.14.1 | CYP2A7 does not incorporate haem and is functionally inactive 148 |
CYP2A13 | CYP2A13, Q16696 | 1.14.14.1 | – |
CYP2B6 | CYP2B6, P20813 | 1.14.14.1 | – |
CYP2C8 | CYP2C8, P10632 | 1.14.14.1 | Converts arachidonic acid to 11(R)-12(S)-epoxyeicosatrienoic acid or 14(R)-15(S)-epoxyeicosatrienoic acid 168 |
CYP2C9 | CYP2C9, P11712 | 1.14.13.80, 1.14.13.48, 1.14.13.49 | – |
CYP2C18 | CYP2C18, P33260 | 1.14.14.1 | – |
CYP2C19 | CYP2C19, P33261 | 1.14.13.80, 1.14.13.48, 1.14.13.49 | – |
CYP2D6 | CYP2D6, P10635 | 1.14.14.1 | – |
CYP2E1 | CYP2E1, P05181 | 1.14.14.1 | – |
CYP2F1 | CYP2F1, P24903 | 1.14.14.1 | – |
CYP2J2 | CYP2J2, P51589 | 1.14.14.1 | Converts arachidonic acid to 14(R)-15(S)-epoxyeicosatrienoic acid 167 |
CYP2R1 | CYP2R1, Q6VVX0 | 1.14.13.15 | Converts vitamin D3 to 25-hydroxyvitamin D3 146 |
CYP2S1 | CYP2S1, Q96SQ9 | 1.14.14.1 | – |
CYP2U1 | CYP2U1, Q7Z449 | 1.14.14.1 | – |
CYP2W1 | CYP2W1, Q8TAV3 | 1.14.14.- | – |
Comments
CYP2A7P1, CYP2D7P1, CYP2G1P and AC008537.5-2 (fragment) are uncharacterized potential pseudogenes from the same families.
CYP3 family
Nomenclature | HGNC, UniProt | EC number | Comment |
CYP3A4 | CYP3A4, P08684 | 1.14.13.67, 1.14.13.97, 1.14.13.32 | Metabolises a vast range of xenobiotics, including antidepressants, benzodiazepines, calcium channel blockers, and chemotherapeutic agents |
CYP3A5 | CYP3A5, P20815 | 1.14.14.1 | – |
CYP3A7 | CYP3A7, P24462 | 1.14.14.1 | – |
CYP3A43 | CYP3A43, Q9HB55 | 1.14.14.1 | – |
CYP4 family
Nomenclature | HGNC, UniProt | EC number | Comment |
CYP4A11 | CYP4A11, Q02928 | 1.14.15.3 | Converts lauric acid to 12-hydroxylauric acid |
CYP4A22 | CYP4A22, Q5TCH4 | 1.14.15.3 | – |
CYP4B1 | CYP4B1, P13584 | 1.14.14.1 | – |
CYP4F2 | CYP4F2, P78329 | 1.14.13.30 | Responsible for ω-hydroxylation of LTB4, LXB4 155, and tocopherols, including vitamin E 163 |
CYP4F3 | CYP4F3, Q08477 | 1.14.13.30 | Responsible for ω-hydroxylation of LTB4, LXB4 155, and polyunsaturated fatty acids 147,151 |
CYP4F8 | CYP4F8, P98187 | 1.14.14.1 | Converts PGH2 to 19-hydroxyPGH2 145 and 8,9-EET or 11,12-EET to 18-hydroxy-8,9-EET or 18-hydroxy-11,12-EET 157 |
CYP4F11 | CYP4F11, Q9HBI6 | 1.14.14.1 | – |
CYP4F12 | CYP4F12, Q9HCS2 | 1.14.14.1 | AC004597.1 (ENSG00000225607) is described as being highly similar to CYP4F12 |
CYP4F22 | CYP4F22, Q6NT55 | 1.14.14.- | Converts arachidonic acid to 16-HETE and 18-HETE 157 |
CYP4V2 | CYP4V2, Q6ZWL3 | 1.14.-.- | Converts myristic acid to 14-hydroxymyristic acid 156 |
CYP4X1 | CYP4X1, Q8N118 | 1.14.14.1 | Converts anandamide to 14,15-epoxyeicosatrienoic ethanolamide 164 |
CYP4Z1 | CYP4Z1, Q86W10 | 1.14.14.1 | Converts lauric acid to 12-hydroxylauric acid |
CYP5, CYP7 and CYP8 families
Nomenclature | Common name | HGNC, UniProt | EC number | Comment |
CYP5A1 | – | TBXAS1, P24557 | 5.3.99.5 | Converts PGH2 to thromboxane A2. Inhibited by dazoxiben 161 and camonagrel 150 |
CYP8A1 | Prostacyclin synthase | PTGIS, Q16647 | 5.3.99.4 | Converts prostaglandin H2 to prostaglandin I2 152. Inhibited by tranylcypromine 149 |
CYP7A1 | – | CYP7A1, P22680 | 1.14.13.17 | Converts cholesterol to 7α-hydroxycholesterol 158 |
CYP7B1 | – | CYP7B1, O75881 | 1.14.13.100 | Converts DHEA to 7α-DHEA 162 |
CYP8B1 | – | CYP8B1, Q9UNU6 | 1.14.13.95 | Converts 7α-hydroxycholest-4-en-3-one to 7-alpha,12α-dihydroxycholest-4-en-3-one (in rabbit) 153 in the biosynthesis of bile acids |
CYP11, CYP17, CYP19, CYP20 and CYP21 families
Nomenclature | Common name | HGNC, UniProt | EC number | Comment |
CYP11A1 | – | CYP11A1, P05108 | 1.14.15.6 | Converts cholesterol to pregnenolone plus 4-methylpentanal |
CYP11B1 | – | CYP11B1, P15538 | 1.14.15.4 | Converts deoxycortisone and 11-deoxycortisol to cortisone and cortisol, respectively Loss-of-function mutations are associated with familial adrenal hyperplasia and hypertension Inhibited by metyrapone 166 |
CYP11B2 | Aldosterone synthase | CYP11B2, P19099 | 1.14.15.4, 1.14.15.5 | Converts corticosterone to aldosterone |
CYP17A1 | – | CYP17A1, P05093 | 1.14.99.9 | Converts pregnenolone and progesterone to 17α-hydroxypregnenolone and 17α-hydroxyprogesterone, respectively. Converts 17α-hydroxypregnenolone and 17α-hydroxyprogesterone to dehydroepiandrosterone and androstenedione, respectively Converts corticosterone to cortisol. Inhibited by abiraterone (pIC50 8.4) 160 |
CYP19A1 | Aromatase | CYP19A1, P11511 | 1.14.14.1 | Converts androstenedione and testosterone to estrone and 17β-estradiol, respectively Inhibited by anastrazole 159, and letrozole 144 |
CYP20A1 | – | CYP20A1, Q6UW02 | 1.14.-.- | – |
CYP21A2 | – | CYP21A2, P08686 | 1.14.99.10 | Converts progesterone and 17α-hydroxyprogesterone to deoxycortisone and 11-deoxycortisol, respectively |
CYP24, CYP26 and CYP27 families
Nomenclature | Common name | HGNC, UniProt | EC number | Comment |
CYP24A1 | – | CYP24A1, Q07973 | 1.14.13.126 | Converts 1α,25-dihydroxyvitamin D3 (calcitriol) to 1α,24R,25-trihydroxyvitamin D3 |
CYP26A1 | – | CYP26A1, O43174 | 1.14.-.- | Converts retinoic acid to 4-hydroxyretinoic acid. Inhibited by liarozole |
CYP26B1 | – | CYP26B1, Q9NR63 | 1.14.-.- | Converts retinoic acid to 4-hydroxyretinoic acid |
CYP26C1 | – | CYP26C1, Q6V0L0 | 1.14.-.- | – |
CYP27A1 | Sterol 27-hydroxylase | CYP27A1, Q02318 | 1.14.13.15 | Converts cholesterol to 27-hydroxyxcholesterol |
CYP27B1 | – | CYP27B1, O15528 | 1.14.13.13 | Converts 25-hydroxyvitamin D3 to 1α,25-dihydroxyvitamin D3 (calcitriol) |
CYP27C1 | – | CYP27C1, Q4G0S4 | 1.14.-.- | – |
CYP39, CYP46 and CYP51 families
Nomenclature | Common name | HGNC, UniProt | EC number | Comment |
CYP39A1 | – | CYP39A1, Q9NYL5 | 1.14.13.99 | Converts 24-hydroxycholesterol to 7α,24-dihydroxycholesterol 154 |
CYP46A1 | Cholesterol 24-hydroxylase | CYP46A1, Q9Y6A2 | 1.14.13.98 | Converts cholesterol to 24(S)-hydroxycholesterol |
CYP51A1 | Lanosterol 14-α-demethylase | CYP51A1, Q16850 | – | Converts lanosterol to 4,4-dimethylcholesta-8.14.24-trienol |
Eicosanoid turnover
Overview
Eicosanoids are 20-carbon fatty acids, where the usual focus is the polyunsaturated analogue arachidonic acid and its metabolites. Arachidonic acid is thought primarily to derive from phospholipase A2 action on membrane phosphatidylcholine, and may be re-cycled to form phospholipid through conjugation with coenzyme A and subsequently glycerol derivatives. Oxidative metabolism of arachidonic acid is conducted through three major enzymatic routes: cyclooxygenases; lipoxygenases and cytochrome P450-like epoxygenases, particularly CYP2J2. Isoprostanes are structural analogues of the prostanoids (hence the nomenclature D-, E-, F-isoprostanes and isothromboxanes), which are produced in the presence of elevated free radicals in a non-enzymatic manner, leading to suggestions for their use as biomarkers of oxidative stress. Molecular targets for their action have yet to be defined.
Cyclooxygenase
Overview
Prostaglandin (PG) G/H synthase, most commonly referred to as cyclooxygenase (COX, (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate,hydrogen-donor: oxygen oxidoreductase) activity, catalyses the formation of PGG2 from arachidonic acid. Hydroperoxidase activity inherent in the enzyme catalyses the formation of PGH2 from PGG2. COX-1 and -2 can be nonselectively inhibited by ibuprofen, ketoprofen, naproxen, indomethacin and paracetamol (acetaminophen). PGH2 may then be metabolised to prostaglandins and thromboxanes by various prostaglandin synthases in an apparently tissue-dependent manner.
Nomenclature | COX-1 | COX-2 |
HGNC, UniProt | PTGS1, P23219 | PTGS2, P35354 |
EC number | 1.14.99.1 | 1.14.99.1 |
Reaction 1: | arachidonic acid => PGG2 => PGH2 | arachidonic acid => PGG2 => PGH2 |
Reaction 2: | – | docosahexaenoic acid => PGH3 |
Selective inhibitors (pIC50) | ketorolac (9.72) 190, FR122047 (7.5) 183, flurbiprofen (7.12) 190 | etoricoxib, lumiracoxib, valdecoxib (8.3) 189, rofecoxib (6.1 – 6.5) 190 |
Prostaglandin synthases
Overview
Subsequent to the formation of PGH2, the cytochrome P450 activities thromboxane synthase (CYP5A1, TBXAS1, P24557, EC 5.3.99.5) and prostacyclin synthase (CYP8A1, PTGIS, Q16647, EC 5.3.99.4) generate thromboxane A2 and prostacyclin (PGI2), respectively. Additionally, multiple enzyme activities are able to generate prostaglandin E2 (PGE2), prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α). PGD2 can be metabolised to 9α,11β-prostacyclin F2α through the multifunctional enzyme activity of AKR1C3. PGE2 can be metabolised to 9α,11β-prostacyclin F2α through the 9-ketoreductase activity of CBR1. Conversion of the 15-hydroxyecosanoids, including prostaglandins, lipoxins and leukotrienes to their keto derivatives by the NAD-dependent enzyme HPGD leads to a reduction in their biological activity.
Nomenclature | HGNC, UniProt | EC number | Reaction: | Cofactors | Selective inhibitors (pIC50) | Comment |
mPGES1 | PTGES, O14684 | 5.3.99.3 | PGH2 => PGE2 | glutathione 175 | – | – |
mPGES2 | PTGES2, Q9H7Z7 | 5.3.99.3 | PGH2 => PGE2 | Thiols, including dihydrolipoic acid 191 | – | – |
cPGES | PTGES3, Q15185 | 5.3.99.3 | PGH2 => PGE2 | – | – | Phosphorylated and activated by casein kinase 2 (CK2) 177. Appears to regulate steroid hormone function by interaction with dimeric hsp90 170,176. |
L-PGDS | PTGDS, P41222 | 5.3.99.2 | PGH2 => PGD2 | – | – | – |
H-PGDS | HPGDS, O60760 | 5.3.99.2 | PGH2 => PGD2 | – | HQL-79 (5.3 – 5.5) 169 | – |
Nomenclature | AKR1C3 | CBR1 | HPGD |
HGNC, UniProt | AKR1C3, P42330 | CBR1, P16152 | HPGD, P15428 |
EC number | 1.1.1.188, 1.3.1.20, 1.1.1.213, 1.1.1.63, 1.1.1.64 | 1.1.1.197, 1.1.1.184, 1.1.1.189 | 1.1.1.141 |
Inhibitors | flufenamic acid, indomethacin, flavonoids 182,188 | – | – |
Reaction 1: | PGD2 + NADP+ => PGF2α + NADPH + H+ | PGE2 + NADP+ => PGF2α + NADPH + H+ | 15-hydroxyprostaglandins => 15-ketoprostaglandins |
Reaction 2: | – | – | Lipoxin A4 => 15-keto-lipoxin A4 181 |
Cofactors | NADP | NADP | – |
Comment | Also acts as a hydroxysteroid dehydrogenase activity. | – | – |
Comments
YS121 has been reported to inhibit mPGES1 and 5-LOX with a pIC50 value of 5.5 178.
Lipoxygenases
Overview
The lipoxygenases (LOXs) are a structurally related family of non-heme iron dioxygenases that function in the production, and in some cases metabolism, of fatty acid hydroperoxides. For arachidonic acid as substrate, these products are hydroperoxyeicosatetraenoic acids (HPETEs). In humans there are five lipoxygenases, the 5S-(arachidonate: oxygen 5-oxidoreductase), 12R-(arachidonate 12-lipoxygenase, 12R-type), 12S-(arachidonate: oxygen 12-oxidoreductase), and two distinct 15S-(arachidonate: oxygen 15-oxidoreductase) LOXs that oxygenate arachidonic acid in different positions along the carbon chain and form the corresponding 5S-, 12S-, 12R-, or 15S-hydroperoxides, respectively.
Nomenclature | 5-LOX | 12R-LOX | 12S-LOX |
HGNC, UniProt | ALOX5, P09917 | ALOX12B, O75342 | ALOX12, P18054 |
EC number | 1.13.11.34 | 1.13.11.- | 1.13.11.31 |
Endogenous inhibitor | Protein kinase A-mediated phosphorylation 180 | – | – |
Reaction: | arachidonic acid + O2 => LTA4 + H22O | arachidonic acid + O2 => 12R-HPETE | arachidonic acid + O2 => 12S-HPETE |
Endogenous substrates | arachidonic acid | – | – |
Endogenous activators | FLAP (ALOX5AP, P20292) | – | – |
Selective inhibitors (pIC50) | CJ13610 172, zileuton | – | – |
Substrates | – | methyl arachidonate | – |
Comment | FLAP activity can be inhibited by MK-886 171 and BAY-X1005 174 leading to a selective inhibition of 5-LOX activity | – | – |
Nomenclature | 15-LOX-1 | 15-LOX-2 | E-LOX |
HGNC, UniProt | ALOX15, P16050 | ALOX15B, O15296 | ALOXE3, Q9BYJ1 |
EC number | 1.13.11.33 | 1.13.11.33 | 1.13.11.- |
Endogenous substrates | – | – | 12R-HPETE |
Reaction 1: | arachidonic acid + O2 => 15S-HPETE | arachidonic acid + O2 => 15S-HPETE | – |
Reaction 2: | linoleic acid + O2 => 13S-HPODE | – | – |
Comment | – | – | E-LOX metabolises the product from the 12R-lipoxygenase (12R-HPETE) to a specific epoxyalcohol compound 192 |
Comments
An 8-LOX (EC 1.13.11.40, arachidonate:oxygen 8-oxidoreductase) may be the mouse orthologue of 15-LOX-2 173. Some general LOX inhibitors are NDGA and esculetin. zileuton and caffeic acid are used as 5-lipoxygenase inhibitors, while baicalein and CDC are 12-lipoxygenase inhibitors. The specificity of these inhibitors has not been rigorously assessed with all LOX forms: baicalein, along with other flavonoids, such as fisetin and luteolin, also inhibits 15-LOX-1 187.
Leukotriene and lipoxin metabolism
Overview
Leukotriene A4 (LTA4), produced by 5-LOX activity, and lipoxins may be subject to further oxidative metabolism; ω-hydroxylation is mediated by CYP4F2 and CYP4F3, while β-oxidation in mitochondria and peroxisomes proceeds in a manner dependent on coenzyme A conjugation. Conjugation of LTA4 at the 6 position with reduced glutathione to generate LTC4 occurs under the influence of leukotriene C4 synthase, with the subsequent formation of LTD4 and LTE4, all three of which are agonists at CysLT receptors. LTD4 formation is catalysed by γ-glutamyltransferase, and subsequently dipeptidase 2 removes the terminal glycine from LTD4 to generate LTE4. Leukotriene A4 hydrolase converts the 5,6-epoxide LTA4 to the 5-hydroxylated LTB4, an agonist for BLT receptors. LTA4 is also acted upon by 12S-LOX to produce the trihydroxyeicosatetraenoic acids lipoxins LXA4 and LXB4. Treatment with a LTA4 hydrolase inhibitor in a murine model of allergic airway inflammation increased LXA4 levels, in addition to reducing LTB4, in lung lavage fluid 186.
LTA4 hydrolase is also involved in biosynthesis of resolvin Es. aspirin has been reported to increase endogenous formation of 18S-hydroxyeicosapentaenoate (18S-HEPE) compared with 18R-HEPE, a resolvin precursor. Both enantiomers may be metabolised by human recombinant 5-LOX; recombinant LTA4 hydrolase converted chiral 5S(6)-epoxide-containing intermediates to resolvin E1 and 18S-resolvin E1 184.
Nomenclature | Leukotriene C4 synthase | γ-Glutamyltransferase | Dipeptidase 1 | Dipeptidase 2 | Leukotriene A4 hydrolase |
HGNC, UniProt | LTC4S, Q16873 | GGCT, O75223 | DPEP1, P16444 | DPEP2, Q9H4A9 | LTA4H, P09960 |
EC number | 4.4.1.20 | 2.3.2.2 | 3.4.13.19 | 3.4.13.19 | 3.3.2.6 |
Reaction: | LTA4 +glutathione => LTC4 | LTC4 + H2O => LTD4 + L-glutamate | LTD4 + H2O = LTE4 + glycine | LTD4 + H2O = LTE4 + glycine | LTA4 + H2O = LTB4 |
Inhibitors | – | – | cilastatin 179 | – | bestatin 185 |
Comments
LTA4H is a member of a family of arginyl aminopeptidases (ENSFM00250000001675), which also includes aminopeptidase B (RNPEP, 9H4A4) and aminopeptidase B-like 1 (RNPEPL1, Q9HAU8). Dipeptidase 1 and 2 are members of a family of membrane dipeptidases (ENSFM00250000001170), which also includes (DPEP3, Q9H4B8) for which LTD4 appears not to be a substrate.
Further reading
- Aïd S. Bosetti F. Targeting cyclooxygenases-1 and -2 in neuroinflammation: Therapeutic implications. Biochimie. 2011;93:46–51. doi: 10.1016/j.biochi.2010.09.009. [PMID:20868723] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cathcart MC. O'Byrne KJ. Reynolds JV. O'Sullivan J. Pidgeon GP. COX-derived prostanoid pathways in gastrointestinal cancer development and progression: novel targets for prevention and intervention. Biochim Biophys Acta. 2012;1825:49–63. doi: 10.1016/j.bbcan.2011.09.004. [PMID:22015819] [DOI] [PubMed] [Google Scholar]
- Davidson J. Rotondo D. Rizzo MT. Leaver HA. Therapeutic implications of disorders of cell death signalling: membranes, micro-environment, and eicosanoid and docosanoid metabolism. Br J Pharmacol. 2012;166:1193–1210. doi: 10.1111/j.1476-5381.2012.01900.x. [PMID:22364602] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobrian AD. Lieb DC. Cole BK. Taylor-Fishwick DA. Chakrabarti SK. Nadler JL. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res. 2011;50:115–131. doi: 10.1016/j.plipres.2010.10.005. [PMID:20970452] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durand T. Bultel-Poncé V. Guy A. El Fangour S. Rossi JC. Galano JM. Isoprostanes and phytoprostanes: Bioactive lipids. Biochimie. 2011;93:52–60. doi: 10.1016/j.biochi.2010.05.014. [PMID:20594988] [DOI] [PubMed] [Google Scholar]
- Félétou M. Huang Y. Vanhoutte PM. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol. 2011;164:894–912. doi: 10.1111/j.1476-5381.2011.01276.x. [PMID:21323907] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haeggström JZ. Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev. 2011;111:5866–5898. doi: 10.1021/cr200246d. [PMID:21936577] [DOI] [PubMed] [Google Scholar]
- Majed BH. Khalil RA. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol Rev. 2012;64:540–582. doi: 10.1124/pr.111.004770. [PMID:22679221] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muñoz-Garcia A. Thomas CP. Keeney DS. Zheng Y. Brash AR. The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier. Biochim Biophys Acta. 2013 doi: 10.1016/j.bbalip.2013.08.020. [Epub ahead of print]. [PMID:24021977] [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Banion MK. Prostaglandin E2 synthases in neurologic homeostasis and disease. Prostaglandins Other Lipid Mediat. 2010;91:113–117. doi: 10.1016/j.prostaglandins.2009.04.008. [PMID:19393332] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouzer CA. Marnett LJ. Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes. Chem Rev. 2011;111:5899–5921. doi: 10.1021/cr2002799. P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways [PMID:21923193] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salvado MD. Alfranca A. Haeggström JZ. Redondo JM. Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2. Trends Mol Med. 2012;18:233–243. doi: 10.1016/j.molmed.2012.02.002. [PMID:22425675] [DOI] [PubMed] [Google Scholar]
- Saper CB. Romanovsky AA. Scammell TE. Neural circuitry engaged by prostaglandins during the sickness syndrome. Nat Neurosci. 2012;15:1088–1095. doi: 10.1038/nn.3159. [PMID:22837039] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith WL. Urade Y. Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev. 2011;111:5821–5865. doi: 10.1021/cr2002992. [PMID:21942677] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sostres C. Lanas A. Gastrointestinal effects of aspirin. Nat Rev Gastroenterol Hepatol. 2011;8:385–394. doi: 10.1038/nrgastro.2011.97. [PMID:21647198] [DOI] [PubMed] [Google Scholar]
- Tai HH. Chi X. Tong M. Regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) by non-steroidal anti-inflammatory drugs (NSAIDs) Prostaglandins Other Lipid Mediat. 2011;96:37–40. doi: 10.1016/j.prostaglandins.2011.06.005. [PMID:21763448] [DOI] [PubMed] [Google Scholar]
Endocannabinoid turnover
Overview
The principle endocannabinoids are 2-arachidonoylglycerol (2AG) and anandamide (N-arachidonoylethanolamine, AEA), thought to be generated on demand rather than stored. Mechanisms for release and re-uptake of endocannabinoids (and related entities) are unclear, although candidates for intracellular transport have been suggested. For the generation of 2-arachidonoylglycerol, the key enzyme involved is diacylglycerol lipase (DGL), whilst several routes for anandamide synthesis have been described, the best characterized of which involves N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD, 206). Inactivation of these endocannabinoids appears to occur predominantly through monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH) for 2-arachidonoylglycerol and anandamide, respectively. Note that these enzymes also contribute to the turnover of many endogenous ligands inactive at CB1 and CB2 cannabinoid receptors, such as N-oleoylethanolamide, N-palmitoylethanolamine and 2-oleoyl glycerol. In vitro experiments indicate that the endocannabinoids are also substrates for oxidative metabolism via cyclooxygenase, lipoxygenase and cytochrome P450 enzyme activities 195,198,207.
Nomenclature | Diacylglycerol lipase α | Diacylglycerol lipase β | N-Acylphosphatidylethanolamine-phospholipase D |
Common abbreviation | DGLα | DGLβ | NAPE-PLD |
HGNC, UniProt | DAGLA, Q9Y4D2 | DAGLB, Q8NCG7 | NAPEPLD, Q6IQ20 |
EC number | 3.1.1.- | 3.1.1.- | – |
Selective inhibitors (pIC50) | RHC80267, orlistat (7.2) 196 | RHC80267, orlistat (7.0) 196 | – |
Comment | – | – | NAPE-PLD activity appears to be enhanced by polyamines in the physiological range 202, but fails to transphosphatidylate with alcohols 205 unlike phosphatidylcholine-specific phospholipase D |
Nomenclature | Monoacylglycerol lipase | Fatty acid amide hydrolase | Fatty acid amide hydrolase-2 | N-Acylethanolamine acid amidase |
Common abbreviation | MGL | FAAH | FAAH2 | NAAA |
HGNC, UniProt | MGLL, Q99685 | FAAH, O00519 | FAAH2, Q6GMR7 | NAAA, Q02083 |
EC number | 3.1.1.23 | 3.5.1.- | 3.5.1.- | 3.5.1.- |
Rank order of affinity | 2-oleoyl glycerol = 2-arachidonoylglycerol >> anandamide 199 | anandamide > oleamide > N-oleoylethanolamide > N-palmitoylethanolamine 211 | oleamide > N-oleoylethanolamide > anandamide > N-palmitoylethanolamine 211 | N-palmitoylethanolamine > MEA > SEA ≥ N-oleoylethanolamide > anandamide 210 |
Selective inhibitors (pIC50) | JZL184 (8.1) 203 | JNJ1661010 (7.8) 200, OL135 (7.4) 211, PF750 (6.3 – 7.8) 193, URB597 (6.3 – 7.0) 211, PF3845 (6.6) 194 | OL135 (7.9) 211, URB597 (7.5 – 8.3) 211 | S-OOPP (6.4 - Rat) 208, CCP (5.3) 209 |
Comments
Many of the compounds described as inhibitors are irreversible and so potency estimates will vary with incubation time. FAAH2 is not found in rodents 211 and only a few of the inhibitors described have been assessed at this enzyme activity. 2-arachidonoylglycerol has been reported to be hydrolysed by multiple enzyme activities from neural preparations, including ABHD6 (Q9BV23) 197, ABHD12 (8N2K0) 197, neuropathy target esterase (PNPLA6, Q8IY17 204) and carboxylesterase 1 (CES1, P23141 212). Although these have been incompletely defined, WWL70 has been described to inhibit ABHD6 selectively with a pIC50 value of 7.2 201.
GABA turnover
Overview
The inhibitory neurotransmitter γ-aminobutyrate (GABA, 4-aminobutyrate) is generated in neurones by glutamic acid decarboxylase. GAD1 and GAD2 are differentially expressed during development, where GAD2 is thought to subserve a trophic role in early life and is distributed throughout the cytoplasm. GAD1 is expressed in later life and is more associated with nerve terminals 213 where GABA is principally accumulated in vesicles through the action of the vesicular inhibitory amino acid transporter SLC32A1. The role of γ-aminobutyraldehyde dehydrogenase (ALDH9A1) in neurotransmitter GABA synthesis is less clear. Following release from neurons, GABA may interact with either GABAA or GABAB receptors and may be accumulated in neurones and glia through the action of members of the SLC6 family of transporters. Successive metabolism through GABA transaminase and succinate semialdehyde dehydrogenase generates succinic acid, which may be further metabolized in the mitochondria in the tricarboxylic acid cycle.
Nomenclature | Glutamic acid decarboxylase 1 | Glutamic acid decarboxylase 2 |
Common abbreviation | GAD1 | GAD2 |
HGNC, UniProt | GAD1, Q99259 | GAD2, Q05329 |
EC number | 4.1.1.15: L-glutamic acid + H+ -> GABA + CO2 | |
Endogenous substrates | L-glutamic acid, L-aspartic acid | |
Products | GABA | |
Cofactors | pyridoxal phosphate | |
Selective inhibitors (pIC50) | s-allylglycine | |
Comment | L-aspartic acid is a less rapidly metabolised substrate of mouse brain glutamic acid decarboxylase generating β-alanine 215. Autoantibodies against GAD1 and GAD2 are elevated in type 1 diabetes mellitus and neurological disorders (see Further reading) |
Nomenclature | aldehyde dehydrogenase 9 family, member A1 (γ-aminobutyraldehyde dehydrogenase) |
HGNC, UniProt | ALDH9A1, P49189 |
EC number | 1.2.1.47: 4-trimethylammoniobutanal + NAD + H2O = 4-trimethylammoniobutanoate + NADPH + 2 H+, 1.2.1.3: an aldehyde + H2O + NAD = a carboxylate + 2 H+ + NADH, 1.2.1.19: 4-aminobutanal + NAD + H2O = GABA + NADH + H+ |
Cofactors | NAD |
Nomenclature | 4-aminobutyrate aminotransferase (GABA transaminase) |
Common abbreviation | GABA-T |
HGNC, UniProt | ABAT, P80404 |
EC number | 2.6.1.19: GABA + α-ketoglutaric acid = L-glutamic acid + 4-oxobutanoate, 2.6.1.22: (S)-3-amino-2-methylpropanoate + α-ketoglutaric acid = 2-methyl-3-oxopropanoate + L-glutamic acid |
Cofactors | pyridoxal phosphate |
Selective inhibitors (pIC50) | vigabatrin 214 |
Comment | vigabatrin is an irreversible inhibitor of GABA-T 214 |
Nomenclature | aldehyde dehydrogenase 5 family, member A1 (succinic semialdehyde dehydrogenase) |
Common abbreviation | SSADH |
HGNC, UniProt | ALDH5A1, P51649 |
EC number | 1.2.1.24: 4-oxobutanoate + NAD + H2O = succinic acid + NADH + 2 H+, 4-hydroxy-trans-2-nonenal + NAD + H2O = 4-hydroxy-trans-2-nonenoate + NADH + 2 H+ |
Cofactors | NAD |
Glycerophospholipid turnover
Overview
Phospholipids are the basic barrier components of membranes in eukaryotic cells divided into glycerophospholipids (phosphatidic acid, phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol and its phosphorylated derivatives) and sphingolipids (ceramide phosphorylcholine and ceramide phosphorylethanolamine).
Phosphoinositide-specific phospholipase C
Overview
Phosphoinositide-specific phospholipase C (PLC, EC 3.1.4.11) catalyses the hydrolysis of PIP2 to IP3 and 1,2-diacylglycerol, each of which have major second messenger functions. Two domains, X and Y, essential for catalytic activity, are conserved in the different forms of PLC. Isoforms of PLC-β are activated primarily by G protein-coupled receptors through members of the Gq/11 family of G proteins. The receptor-mediated activation of PLC-γ involves their phosphorylation by receptor tyrosine kinases (RTK) in response to activation of a variety of growth factor receptors and immune system receptors. PLC-ε1 may represent a point of convergence of signalling via both G protein-coupled and catalytic receptors. Ca2+ ions are required for catalytic activity of PLC isoforms and have been suggested to be the major physiological form of regulation of PLC-δ activity. PLC has been suggested to be activated non-selectively by the small molecule m3M3FBS 218, although this mechanism of action has been questioned 235. The aminosteroid U73122 has been described as an inhibitor of phosphoinositide-specific PLC 257, although its selectivity among the isoforms is untested and it has been reported to occupy the H1 histamine receptor 230.
Nomenclature | PLCγ1 | PLCγ2 | PLCδ1 | PLCδ3 | PLCδ4 |
HGNC, UniProt | PLCG1, P19174 | PLCG2, P16885 | PLCD1, P51178 | PLCD3, Q8N3E9 | PLCD4, Q9BRC7 |
Endogenous activators | PIP3 217 | PIP3, Rac1 (RAC1, P63000), Rac2 (RAC2, P15153), Rac3 (RAC3, P60763) 217,251,263 | Transglutaminase II, p122-RhoGAP, spermine, Gβγ 225,229,244,248 | – | – |
Endogenous inhibitors | – | – | Sphingomyelin 249 | – | – |
Comments
A series of PLC-like proteins (PLCL1, Q15111; PLCL2, Q9UPR0 and PLCH1, Q4KWH8) form a family with PLCδ and PLCζ1 isoforms, but appear to lack catalytic activity.
PLC-δ2 has been cloned from bovine sources 242.
Phospholipase A2
Overview
Phospholipase A2 (PLA2, EC 3.1.1.4) cleaves the sn-2 fatty acid of phospholipids, primarily phosphatidylcholine, to generate lysophosphatidylcholine and arachidonic acid. Most commonly-used inhibitors (e.g. BEL, ATFMK or MAFP) are either non-selective within the family of phospholipase A2 enzymes or have activity against other eicosanoid-metabolising enzymes.
Secreted or extracellular forms
Cytosolic, calcium-dependent forms
Other forms
Comments
The sequence of PLA2-2C suggests a lack of catalytic activity, while PLA2-12B (GXIIB, GXIII sPLA2-like) appears to be catalytically inactive 254. A further fragment has been identified with sequence similarities to Group II PLA2 members. Otoconin 90 (OC90) shows sequence homology to PLA2-G10.
A binding protein for secretory phospholipase A2 has been identified which shows modest selectivity for sPLA2-1B over sPLA2-2A, and also binds snake toxin phospholipase A2 216. The binding protein appears to have clearance function for circulating secretory phospholipase A2, as well as signalling functions, and is a candidate antigen for idiopathic membraneous nephropathy 219.
PLA2-G7 and PAFAH2 also express platelet-activating factor acetylhydrolase activity (EC 3.1.1.47).
Phosphatidylcholine-specific phospholipase D
Overview
Phosphatidylcholine-specific phospholipase D (PLD, EC 3.1.3.4) catalyses the formation of phosphatidic acid from phosphatidylcholine. In addition, the enzyme can make use of alcohols, such as butanol in a transphosphatidylation reaction 253.
Comments
A lysophospholipase D activity (ENPP2, Q13822, also known as ectonucleotide pyrophosphatase/phosphodiesterase 2, phosphodiesterase I, nucleotide pyrophosphatase 2, autotaxin) has been described, which not only catalyses the production of lysophosphatidic acid (LPA) from lysophosphatidylcholine, but also cleaves ATP (see Goding et al., 2003 224). Additionally, an N-acylethanolamine-specific phospholipase D (NAPEPLD, Q6IQ20) has been characterized, which appears to have a role in the generation of endocannabinoids/endovanilloids, including anandamide 246. This enzyme activity appears to be enhanced by polyamines in the physiological range 238 and fails to transphosphatidylate with alcohols 250.
Three further, less well-characterised isoforms are PLD3 (PLD3, Q8IV08, other names Choline phosphatase 3, HindIII K4L homolog, Hu-K4), PLD4 (PLD4, Q96BZ4, other names Choline phosphatase 4, Phosphatidylcholine-hydrolyzing phospholipase, D4C14orf175 UNQ2488/PRO5775) and PLD5 (PLD5, Q8N7P1). PLD3 has been reported to be involved in myogenesis 247. PLD4 is described not to have phospholipase D catalytic activity 265, but has been associated with inflammatory disorders 245,260,262. Sequence analysis suggests that PLD5 is catalytically inactive.
Lipid phosphate phosphatases
Overview
Lipid phosphate phosphatases, divided into phosphatidic acid phosphatases or lipins catalyse the dephosphorylation of phosphatidic acid (and other phosphorylated lipid derivatives) to generate inorganic PO34- and diacylglycerol. PTEN, a phosphatase and tensin homolog (BZS, MHAM, MMAC1, PTEN1, TEP1) is a phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase which acts as a tumour suppressor by reducing cellular levels of PI 3,4,5-P, thereby toning down activity of PDK1 and PKB. Loss-of-function mutations are frequently identified as somatic mutations in cancers.
Nomenclature | Lipin1 | Lipin2 | Lipin3 | PPA2A | PPA2B | PPA3A | phosphatase and tensin homolog |
HGNC, UniProt | LPIN1, Q14693 | LPIN2, Q92539 | LPIN3, Q9BQK8 | PPAP2A, O14494 | PPAP2B, O14495 | PPAP2C, O43688 | PTEN, P60484 |
EC number | 3.1.3.4 | 3.1.3.4 | 3.1.3.4 | 3.1.3.4 | 3.1.3.4 | 3.1.3.4 | 3.1.3.16, 3.1.3.48, 3.1.3.67 |
Substrates | – | phosphatidic acid | – | – | phosphatidic acid | – | phosphatidylinositol (3,4,5)-trisphosphate |
Phosphatidylinositol kinases
Overview
Phosphatidylinositol may be phosphorylated at either 3- or 4- positions on the inositol ring by PI 3-kinases or PI 4-kinases, respectively.
Phosphatidylinositol 3-kinases
Phosphatidylinositol 3-kinases (PI3K, provisional nomenclature) catalyse the introduction of a phosphate into the 3-position of phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) or phosphatidylinositol 4,5-bisphosphate (PIP2). There is evidence that PI3K can also phosphorylate serine/threonine residues on proteins. In addition to the classes described below, further serine/threonine protein kinases, including ATM (Q13315) and mTOR (P42345), have been described to phosphorylate phosphatidylinositol and have been termed PI3K-related kinases. Structurally, PI3K have common motifs of at least one C2, calcium-binding domain and helical domains, alongside structurally-conserved catalytic domains. wortmannin and LY294002 are widely-used inhibitors of PI3K activities. wortmannin is irreversible and shows modest selectivity between Class I and Class II PI3K, while LY294002 is reversible and selective for Class I compared to Class II PI3K.
Class I PI3Ks (EC 2.7.1.153) phosphorylate phosphatidylinositol 4,5-bisphosphate to generate phosphatidylinositol 3,4,5-trisphosphate and are heterodimeric, matching catalytic and regulatory subunits. Class IA PI3Ks include p110α, p110β and p110δ catalytic subunits, with predominantly p85 and p55 regulatory subunits. The single catalytic subunit that forms Class IB PI3K is p110γ. Class IA PI3Ks are more associated with receptor tyrosine kinase pathways, while the Class IB PI3K is linked more with GPCR signalling.
Subunits
Nomenclature | phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha | phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit beta | phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta | phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma |
Common abbreviation | p110α/PIK3CA | p110β/PIK3CB | p110δ/PIK3CD | p110γ/PIK3CG |
HGNC, UniProt | PIK3CA, P42336 | PIK3CB, P42338 | PIK3CD, O00329 | PIK3CG, P48736 |
EC number | 2.7.1.153, 2.7.11.1 | 2.7.1.153 | 2.7.1.153 | 2.7.1.153 |
Selective inhibitors (pIC50) | – | – | – | CZC 24832 (pKd 7.7) 220 |
Nomenclature | phosphoinositide-3-kinase, regulatory subunit 1 (alpha) | phosphoinositide-3-kinase, regulatory subunit 2 (beta) | phosphoinositide-3-kinase, regulatory subunit 3 (gamma) | phosphoinositide-3-kinase, regulatory subunit 4 | phosphoinositide-3-kinase, regulatory subunit 5 | phosphoinositide-3-kinase, regulatory subunit 6 |
Common abbreviation | p85α/PIK3R1 | p85β/PIK3R2 | p55γ/PIK3R3 | p150/VPS15/PIK3R4 | p101/PIK3R5 | p87/PIK3R6 |
HGNC, UniProt | PIK3R1, P27986 | PIK3R2, O00459 | PIK3R3, Q92569 | PIK3R4, Q99570 | PIK3R5, Q8WYR1 | PIK3R6, Q5UE93 |
EC number | – | – | – | 2.7.11.1 | – | – |
Class II PI3Ks (EC 2.7.1.154) phosphorylate phosphatidylinositol to generate phosphatidylinositol 3-phosphate (and possibly phosphatidylinositol 4-phosphate to generate phosphatidylinositol 3,4-bisphosphate). Three monomeric members exist, PI3K-C2α, β and γ, and include Ras-binding, Phox homology and two C2domains.
Nomenclature | phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 alpha | phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 beta | phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 gamma |
Common abbreviation | C2α/PIK3C2A | C2β/PIK3C2B | C2γ/PIK3C2G |
HGNC, UniProt | PIK3C2A, O00443 | PIK3C2B, O00750 | PIK3C2G, O75747 |
EC number | 2.7.1.154 | 2.7.1.154 | 2.7.1.154 |
The only class III PI3K isoform (EC 2.7.1.137) is a heterodimer formed of a catalytic subunit (VPS34) and regulatory subunit (VPS15).
Phosphatidylinositol 4-kinases Phosphatidylinositol 4-kinases (EC 2.7.1.67) generate phosphatidylinositol 4-phosphate and may be divided into higher molecular weight type III and lower molecular weight type II forms.
Nomenclature | phosphatidylinositol 4-kinase, catalytic, alpha | phosphatidylinositol 4-kinase, catalytic, beta | phosphatidylinositol 4-kinase type 2 alpha | phosphatidylinositol 4-kinase type 2 beta |
Common abbreviation | PI4KIIIα/PIK4CA | PI4KIIIβ/PIK4CB | PI4KIIα/PI4K2A | PI4KIIβ/PI4K2B |
HGNC, UniProt | PI4KA, P42356 | PI4KB, Q9UBF8 | PI4K2A, Q9BTU6 | PI4K2B, Q8TCG2 |
Endogenous activation | – | PKD-mediated phosphorylation 227 | – | – |
(Sub)family-selective inhibitors (pIC50) | wortmannin (6.7 – 6.8) 223,243 | wortmannin (6.7 – 6.8) 223,243 | adenosine (4.5 – 5.0) 261 | adenosine (4.5 – 5.0) 261 |
Selective inhibitors (pIC50) | – | PIK-93 234 | – | – |
Comments
wortmannin also inhibits type III phosphatidylinositol 4-kinases and polo-like kinase 239. PIK93 also inhibits PI 3-kinases 234. Adenosine activates adenosine receptors.
Phosphatidylinositol phosphate kinases
Overview
PIP2 is generated by phosphorylation of PI 4-phosphate or PI 5-phosphate by type I PI 4-phosphate 5-kinases or type II PI 5-phosphate 4-kinases.
Nomenclature | phosphatidylinositol-4-phosphate 5-kinase, type I, alpha | phosphatidylinositol-4-phosphate 5-kinase, type I, beta | phosphatidylinositol-4-phosphate 5-kinase, type I, gamma |
Common abbreviation | PIP5K1A | PIP5K1B | PIP5K1C |
HGNC, UniProt | PIP5K1A, Q99755 | PIP5K1B, O14986 | PIP5K1C, O60331 |
EC number | 2.7.1.68 | 2.7.1.68 | 2.7.1.68 |
Nomenclature | phosphatidylinositol-5-phosphate 4-kinase, type II, alpha | phosphatidylinositol-5-phosphate 4-kinase, type II, beta | phosphatidylinositol-5-phosphate 4-kinase, type II, gamma |
Common abbreviation | PIP4K2A | PIP4K2B | PIP4K2G |
HGNC, UniProt | PIP4K2A, P48426 | PIP4K2B, P78356 | PIP4K2C, Q8TBX8 |
EC number | 2.7.1.149 | 2.7.1.149 | 2.7.1.149 |
Haem oxygenase
Overview
Haem oxygenase (heme,hydrogen-donor:oxygen oxidoreductase (α-methene-oxidizing, hydroxylating)), E.C. 1.14.99.3, converts heme into biliverdin and carbon monoxide, utilizing NADPH as cofactor.
Comments
The existence of a third non-catalytic version of haem oxygenase, HO3, has been proposed, although this has been suggested to be a pseudogene 268. The chemical tin protoporphyrin IX acts as a haem oxygenase inhibitor in rat liver with an IC50 value of 11 nM 267.
Hydrogen sulfide synthesis
Overview
Hydrogen sulfide is a putative gasotransmitter, with similarities to NO and carbon monoxide. Although the enzymes indicated have multiple enzymatic activities, the focus here is the generation of hydrogen sulfide and the enzymatic characteristics are described accordingly. Cystathionine β-synthase and cystathionine γ-lyase are pyridoxal phosphate-dependent enzymes, while L-cysteine:2-oxoglutarate aminotransferase and 3-mercaptopyruvate sulfurtransferase function in combination as a pyridoxal phosphate-independent pathway.
Nomenclature | Cystathionine β-synthase | Cystathionine γ-lyase | L-Cysteine:2-oxoglutarate aminotransferase | 3-Mercaptopyruvate sulfurtransferase |
Common abbreviation | CBS | CSE | CAT | MPST |
HGNC, UniProt | CBS, P35520 | CTH, P32929 | CCBL1, Q16773 | MPST, P25325 |
EC number | 4.2.1.22 | 4.4.1.1 | 4.4.1.13 | 2.8.1.2 |
Endogenous substrates | L-homocysteine, L-cysteine (Km 6x10-3 M) 269 | L-cysteine | L-cysteine | 3-mercaptopyruvic acid (Km 1.2x10-3 M) 270 |
Products | cystathionine | NH3, pyruvic acid | NH3, pyruvic acid | pyruvic acid |
Cofactors | pyridoxal phosphate | pyridoxal phosphate | pyridoxal phosphate | Zn2+ |
Inhibitors (pIC50) | aminooxyacetic acid | propargylglycine | – | – |
Inositol phosphate turnover
Overview
The sugar alcohol D-myo-inositol is a component of the phosphatidylinositol signalling cycle, where the principal second messenger is inositol 1,4,5-trisphosphate, IP3, which acts at intracellular ligand-gated ion channels, IP3 receptors to elevate intracellular calcium. IP3 is recycled to inositol by phosphatases or phosphorylated to form other active inositol polyphosphates. Inositol produced from dephosphorylation of IP3 is recycled into membrane phospholipid under the influence of phosphatidyinositol synthase activity (CDP-diacylglycerol-inositol 3-phosphatidyltransferase [EC 2.7.8.11]).
Inositol 1,4,5-trisphosphate 3-kinases
Overview
Inositol 1,4,5-trisphosphate 3-kinases (E.C. 2.7.1.127, ENSFM00250000001260) catalyse the generation of inositol 1,3,4,5-tetrakisphosphate (IP4) from IP3. IP3 kinase activity is enhanced in the presence of calcium/calmodulin (CALM2, CALM3, CALM1, P62158) 271.
Inositol polyphosphate phosphatases
Overview
Members of this family exhibit phosphatase activity towards IP3, as well as towards other inositol derivatives, including the phospholipids PIP2 and PIP3. With IP3 as substrate, 1-phosphatase (EC 3.1.3.57) generates 4,5,-IP2, 4-phosphatases (EC 3.1.3.66, ENSFM00250000001432) generate 1,5,-IP2 and 5-phosphatases (E.C. 3.1.3.36 or 3.1.3.56) generate 1,4,-IP2.
Nomenclature | INPP1 | INPP4A, INPP4B | INPP5A, INPP5B, INPP5D, INPP5E, INPP5J, INPP5K, INPPL1, OCRL, SYNJ1, SYNJ2 |
HGNC, UniProt | INPP1, P49441 | INPP4A, Q96PE3; INPP4B, O15327 | INPP5A, Q14642; INPP5B, P32019; INPP5D, Q92835; INPP5E, Q9NRR6; INPP5J, Q15735; INPP5K, Q9BT40; INPPL1, O15357; OCRL, Q01968; SYNJ1, O43426; SYNJ2, O15056 |
EC number | 3.1.3.57 | 3.1.3.36, 3.1.3.36 | 3.1.3.56, 3.1.3.56, 3.1.3.86, 3.1.3.36, 3.1.3.56, 3.1.3.56, 3.1.3.86, 3.1.3.36, 3.1.3.36, 3.1.3.36 |
Comments
In vitro analysis suggested IP3 and IP4 were poor substrates for SKIP, synaptojanin 1 and synaptojanin 2, but suggested that PIP2 and PIP3 were more efficiently hydrolysed 276.
Inositol monophosphatase
Overview
Inositol monophosphatase (E.C. 3.1.3.25, IMPase, myo-inositol-1(or 4)-phosphate phosphohydrolase) is a magnesium-dependent homodimer which hydrolyses myo-inositol monophosphate to generate myo-inositol and PO34-. glycerol may be a physiological phosphate acceptor. lithium is a nonselective un-competitive inhibitor more potent at IMPase 1 (pKi ca. 3.5, 274; pIC50 3.2, 275) than IMPase 2 (pIC50 1.8–2.1, 275). IMPase activity may be inhibited competitively by L690330 (pKi 5.5, 274), although the enzyme selectivity is not yet established.
Comments
Polymorphisms in either of the genes encoding these enzymes have been linked with bipolar disorder 277–279. Disruption of the gene encoding IMPase 1, but not IMPase 2, appears to mimic the effects of lithium in mice 272,273.
Lanosterol biosynthesis pathway
Overview
Lanosterol is a precursor for cholesterol, which is synthesized primarily in the liver in a pathway often described as the mevalonate or HMG-CoA reductase pathway. The first two steps (formation of acetoacetyl CoA and the mitochondrial generation of HMG-CoA) are also associated with oxidation of fatty acids.
Nomenclature | hydroxymethylglutaryl-CoA synthase 1 | hydroxymethylglutaryl-CoA synthase 2 |
HGNC, UniProt | HMGCS1, Q01581 | HMGCS2, P54868 |
EC number | 2.3.3.10: acetyl CoA + H2O + acetoacetyl CoA -> (S)-3-hydroxy-3-methylglutaryl-CoA + coenzyme A | 2.3.3.10: acetyl CoA + H2O + acetoacetyl CoA -> (S)-3-hydroxy-3-methylglutaryl-CoA + coenzyme A |
Comment | HMGCoA synthase is found in cytosolic and mitochondrial versions; the former associated with (R)-mevalonate synthesis and the latter with ketogenesis. | – |
Nomenclature | hydroxymethylglutaryl-CoA reductase |
HGNC, UniProt | HMGCR, P04035 |
EC number | 1.1.1.34: (S)-3-hydroxy-3-methylglutaryl-CoA + NADPH -> (R)-mevalonate + coenzyme A + NADP+ |
Selective inhibitors (pIC50) | lovastatin (Competitive) (pKi 9.22) 280, rosuvastatin (Competitive) (8.3) 283, atorvastatin (Competitive) (8.1) 283, simvastatin (Competitive) (7.96) 283, fluvastatin (Competitive) (7.55) 283 |
Comment | HMGCoA reductase is associated with intracellular membranes; enzymatic activity is inhibited by phosphorylation by AMP-activated kinase. The enzymatic reaction is a three-step reaction involving the intermediate generation of mevaldehyde-CoA and mevaldehyde. |
Nomenclature | mevalonate kinase |
HGNC, UniProt | MVK, Q03426 |
EC number | 2.7.1.36: ATP + (R)-mevalonate -> ADP + (R)-5-phosphomevalonate |
Comment | Mevalonate kinase activity is regulated by the downstream products farnesyl diphosphate and geranyl diphosphate as an example of feedback inhibition. |
Nomenclature | phosphomevalonate kinase |
HGNC, UniProt | PMVK, Q15126 |
EC number | 2.7.4.2: ATP + (R)-5-phosphomevalonate = ADP + (R)-5-diphosphomevalonate |
Nomenclature | diphosphomevalonate decarboxylase |
HGNC, UniProt | MVD, P53602 |
EC number | 4.1.1.33: ATP + (R)-5-diphosphomevalonate -> ADP + isopentenyl diphosphate + PO34- + CO2 |
Nomenclature | geranylgeranyl diphosphate synthase |
HGNC, UniProt | GGPS1, O95749 |
EC number | 2.5.1.1: dimethylallyl diphosphate + isopentenyl diphosphate = geranyl diphosphate + diphosphate ion, 2.5.1.10: geranyl diphosphate + isopentenyl diphosphate -> trans,trans-farnesyl diphosphate + diphosphate ion, 2.5.1.29: trans,trans-farnesyl diphosphate + isopentenyl diphosphate -> geranylgeranyl diphosphate + diphosphate ion |
Nomenclature | farnesyl diphosphate synthase |
HGNC, UniProt | FDPS, P14324 |
EC number | 2.5.1.1: dimethylallyl diphosphate + isopentenyl diphosphate = geranyl diphosphate + diphosphate ion, 2.5.1.10: geranyl diphosphate + isopentenyl diphosphate -> trans,trans-farnesyl diphosphate + diphosphate ion |
Selective inhibitors (pIC50) | risedronate (8.4) 281, alendronate (6.34) 281 |
Nomenclature | squalene synthase |
HGNC, UniProt | FDFT1, P37268 |
EC number | 2.5.1.21: 2 trans,trans-farnesyl diphosphate -> presqualene diphosphate + diphosphate ion, presqualene diphosphate + NAD(P)H + H+ -> squalene + diphosphate + NAD(P)+ |
Cofactors | NADPH 285 |
Selective inhibitors (pIC50) | zaragozic acid A (pKi 10.1 - Rat) 282, FTI 276 (9.3) 284, zaragozic acid A (9.15) 286 |
Peptidases and proteinases
Overview
Peptidases and proteinases hydrolyse peptide bonds, and can be simply divided on the basis of whether terminal peptide bonds are cleaved (exopeptidases and exoproteinases) at the amino terminus (aminopeptidases) or carboxy terminus (carboxypeptidases). Non-terminal peptide bonds are cleaved by endopeptidases and endoproteinases, which are divided into serine endopeptidases (EC 3.4.21.-), cysteine endopeptidases (EC 3.4.22.-), aspartate endopeptidases (EC 3.4.23.-), metalloendopeptidases (EC 3.4.24.-) and threonine endopeptidases (EC 3.4.25.-).
It is beyond the scope of the Guide to list all peptidase and proteinase activities; this summary focuses on selected enzymes of significant pharmacological interest.
Cysteine (C) Peptidases: Caspases
Overview
Caspases, (E.C. 3.4.22.-) which derive their name from Cysteine ASPartate-specific proteASES, include at least two families; initiator caspases (caspases 2, 8, 9 and 10), which are able to hydrolyse and activate a second family of effector caspases (caspases 3, 6 and 7), which themselves are able to hydrolyse further cellular proteins to bring about programmed cell death. Caspases are heterotetrameric, being made up of two pairs of subunits, generated by a single gene product, which is proteolysed to form the mature protein. Members of the mammalian inhibitors of apoptosis proteins (IAP) are able to bind the procaspases, thereby preventing maturation to active proteinases.
Nomenclature | Caspase 1 | Caspase 2 | Caspase 3 | Caspase 4 |
HGNC, UniProt | CASP1, P29466 | CASP2, P42575 | CASP3, P42574 | CASP4, P49662 |
EC number | 3.4.22.36 | 3.4.22.55 | 3.4.22.56 | 3.4.22.57 |
Endogenous activators | – | – | Caspase 8, caspase 9, caspase 10, GrB | – |
Endogenous substrates | Rho GDP dissociation inhibitor beta, parkin, pro-caspase 4, pro-interleukin-1β | – | huntingtin, retinoblastoma-associated protein, caspase 3, ICAD, PARP, PKCδ, pro-caspase 7 | pro-caspase 1 |
Activators | – | – | PAC1 301, PETCM 295 | – |
Selective inhibitors (pIC50) | Z-YVAD-FMK 287 | Z-VDVAD-FMK 291 | AZ10417808 303, Z-DEVD-FMK 288, Z-DQMD-FMK 294 | – |
Comment | Consists of caspase-1 subunit p20 and caspase-1 subunit p10 (see Uniprot entry) | Consists of caspase-2 subunit p18, caspase-2 subunit p13, and caspase-2 subunit p12 (see Uniprot entry) | Consists of caspase-3 subunit p17 and caspase-3 subunit p12 (see Uniprot entry) | Consists of caspase-4 subunit 1 and caspase-4 subunit 2 (see Uniprot entry) |
Nomenclature | Caspase 5 | Caspase 6 | Caspase 7 | Caspase 8 |
HGNC, UniProt | CASP5, P51878 | CASP6, P55212 | CASP7, P55210 | CASP8, Q14790 |
EC number | 3.4.22.58 | 3.4.22.59 | 3.4.22.60 | 3.4.22.61 |
Endogenous activators | – | Caspase 8, caspase 9, caspase 10, GrB | Caspase 8, caspase 9, caspase 10, GrB | DISC |
Endogenous substrates | – | – | huntingtin, retinoblastoma-associated protein, caspase 3, ICAD, PARP, PKCδ, Pro-caspase 7 | BH3 interacting-domain death agonist, FLICE-like inhibitory protein, caspase 8, pro-caspase 3, pro-caspase 6, pro-caspase 7 |
Selective inhibitors (pIC50) | Z-WEHD-FMK 299 | Z-VEID-FMK 302 | – | Z-IETD-FMK 293 |
Comment | Consists of caspase-5 subunit p20 and caspase-5 subunit p10 (see Uniprot entry) | Consists of caspase-6 subunit p18 and caspase-6 subunit p11 (see Uniprot entry) | Consists of caspase-7 subunit p20 and caspase-7 subunit p11 (see Uniprot entry) | Consists of caspase-8 subunit p18 and caspase-8 subunit p10 (see Uniprot entry) |
Nomenclature | Caspase 9 | Caspase 10 | Caspase 14 |
HGNC, UniProt | CASP9, P55211 | CASP10, Q92851 | CASP14, P31944 |
EC number | 3.4.22.62 | 3.4.22.63 | 3.4.22.- |
Endogenous activators | – | DISC | – |
Endogenous substrates | caspase 9, PARP, pro-caspase 3, pro-caspase 6, pro-caspase 7 | caspase 10, pro-caspase 3, pro-caspase 6, pro-caspase 7 | – |
Selective inhibitors (pIC50) | Z-LEHD-FMK 298 | – | – |
Comment | Consists of caspase-9 subunit p35 and caspase-9 subunit p10 (see Uniprot entry) | Consists of caspase-10 subunit p23/17 and caspase-10 subunit p12 (see Uniprot entry) | Consists of caspase-14 subunit p19 and caspase-14 subunit p10 (see Uniprot entry) |
Comments
CARD16 (Caspase recruitment domain-containing protein 16, caspase-1 inhibitor COP, CARD only domain-containing protein 1, pseudo interleukin-1β converting enzyme, pseudo-ICE, ENSG00000204397) shares sequence similarity with some of the caspases.
Metallo (M) Peptidases
Nomenclature | Aminopeptidase A | Leucyl-cysteinyl aminopeptidase | Leukotriene A4 hydrolase | Neutral endopeptidase |
HGNC, UniProt | DNPEP, Q9ULA0 | LNPEP, Q9UIQ6 | LTA4H, P09960 | MME, P08473 |
EC number | 3.4.11.21 | 3.4.11.3 | 3.3.2.6 | 3.4.24.11 |
Endogenous substrates | – | – | LTA4 | enkephalins |
Selective inhibitors (pIC50) | – | – | – | thiorphan |
Inhibitors (pIC50) | – | – | bestatin 300 | – |
Comment | Hydrolyses CCK-8 (CCK, P06307) 297, angiotensin II (AGT, P01019) 307, neurokinin B (TAC3, Q9UHF0), chromogranin A (CHGA, P10645), kallidin (KNG1, P01042) 292 | Hydrolyses AVP (AVP, P01178), oxytocin (OXT, P01178), kallidin (KNG1, P01042), [Met]enkephalin (PENK, P01210), dynorphin A (PDYN, P01213) | – | – |
Nomenclature | Angiotensin-converting enzyme | Angiotensin-converting enzyme 2 | Endothelin-converting enzyme 1 | Endothelin-converting enzyme 2 |
Common abbreviation | ACE1 | ACE2 | ECE1 | ECE2 |
HGNC, UniProt | ACE, P12821 | ACE2, Q9BYF1 | ECE1, P42892 | ECE2, O60344 |
EC number | 3.4.15.1 | 3.4.15.1 | 3.4.24.71 | 3.4.24.71 |
Endogenous substrates | angiotensin I (AGT, P01019) > angiotensin II (AGT, P01019) | angiotensin I (AGT, P01019) > angiotensin-(1-9) (AGT, P01019) 290 | ET-1 (EDN1, P05305), ET-2 (EDN2, P20800), ET-3 (EDN3, P14138) | ET-1 (EDN1, P05305), ET-2 (EDN2, P20800), ET-3 (EDN3, P14138) |
Selective inhibitors (pIC50) | captopril | captopril | SM19712 305 | – |
Comment | Hip-His Leu has been used experimentally as a probe for ACE1. ACE1 appears to express a distinct GPI hydrolase activity 296. | Abz-Ser-Pro-Tyr(NO2)-OH has been used experimentally as a probe for ACE2 | – | – |
Nomenclature | Aminopeptidase N | Aminopeptidase O | Aminopeptidase Q | Arginyl aminopeptidase | Arginyl aminopeptidase-like 1 | Aminopeptidase-like 1 |
HGNC, UniProt | ANPEP, P15144 | C9orf3, Q8N6M6 | –, Q6Q4G3 | RNPEP, Q9H4A4 | RNPEPL1, Q9HAU8 | NPEPL1, Q8NDH3 |
EC number | 3.4.11.2 | 3.4.11.- | 3.4.11.- | 3.4.11.6 | 3.4.11.- | 3.4.11.- |
Nomenclature | Endoplasmic reticulum aminopeptidase 1 | Endoplasmic reticulum aminopeptidase 2 | Glutamyl aminopeptidase | Leucine aminopeptidase 3 | Methionyl aminopeptidase 1 | Methionyl aminopeptidase 2 |
HGNC, UniProt | ERAP1, Q9NZ08 | ERAP2, Q6P179 | ENPEP, Q07075 | LAP3, P28838 | METAP1, P53582 | METAP2, P50579 |
EC number | 3.4.11.- | 3.4.11.- | 3.4.11.7 | 3.4.11.1 | 3.4.11.3, 3.4.11.18 | 3.4.11.18 |
Nomenclature | Methionyl aminopeptidase type 1D (mitochondrial) | Puromycin-sensitive aminopeptidase | Puromycin-sensitive aminopeptidase-like protein | TRH-specific aminopeptidase | X-prolyl aminopeptidase 1 | X-prolyl aminopeptidase 2 |
HGNC, UniProt | METAP1D, Q6UB28 | NPEPPS, P55786 | – | TRHDE, Q9UKU6 | XPNPEP1, Q9NQW7 | XPNPEP2, O43895 |
EC number | 3.4.11.18 | 3.4.11.14 | – | 3.4.19.6 | 3.4.11.9 | 3.4.11.9 |
Nomenclature | X-prolyl aminopeptidase 3 | Carboxypeptidase D | AE binding protein 1 | Carboxypeptidase A1 (pancreatic) | Carboxypeptidase A2 (pancreatic) | Carboxypeptidase A3 (mast cell) |
HGNC, UniProt | XPNPEP3, Q9NQH7 | CPD, O75976 | AEBP1, Q8IUX7 | CPA1, P15085 | CPA2, P48052 | CPA3, P15088 |
EC number | 3.4.11.9 | 3.4.17.22 | – | 3.4.17.1 | 3.4.17.15 | 3.4.17.1 |
Nomenclature | Carboxypeptidase A4 | Carboxypeptidase A5 | Carboxypeptidase A6 | Carboxypeptidase B1 (tissue) | Carboxypeptidase B2 (plasma) | Carboxypeptidase E |
HGNC, UniProt | CPA4, Q9UI42 | CPA5, Q8WXQ8 | CPA6, Q8N4T0 | CPB1, P15086 | CPB2, Q96IY4 | CPE, P16870 |
EC number | 3.4.17.- | 3.4.17.1 | 3.4.17.1 | 3.4.17.2 | 3.4.17.20 | 3.4.17.10 |
Nomenclature | Carboxypeptidase M | Carboxypeptidase N, polypeptide 1 | Carboxypeptidase N, polypeptide 2 | Carboxypeptidase O | Carboxypeptidase Q | Carboxypeptidase X (M14 family), member 1 |
HGNC, UniProt | CPM, P14384 | CPN1, P15169 | CPN2, P22792 | CPO, Q8IVL8 | CPQ, – | CPXM1, Q96SM3 |
EC number | 3.4.17.12 | 3.4.17.3 | – | 3.4.17.- | – | 3.4.17.- |
Nomenclature | Carboxypeptidase X (M14 family), member 2 | Carboxypeptidase Z | Carnosine dipeptidase 1 (metallopeptidase M20 family) | Carnosine dipeptidase 2 | Folate hydrolase (prostate-specific membrane antigen) 1 | Folate hydrolase 1B |
HGNC, UniProt | CPXM2, Q8N436 | CPZ, Q66K79 | CNDP1, Q96KN2 | CNDP2, Q96KP4 | FOLH1, Q04609 | FOLH1B, Q9HBA9 |
EC number | – | 3.4.17.- | 3.4.13.20 | 3.4.13.18 | 3.4.17.21 | – |
Matrix metallopeptidases
Overview
Matrix metalloproteinases (MMP) are calcium- and zinc-dependent proteinases regulating the extracellular matrix and are often divided (e.g. 306) on functional and structural bases into gelatinases, collagenases, stromyelinases and matrilysins, as well as membrane type-MMP (MT-MMP).
Comments
A number of small molecule ‘broad spectrum’ inhibitors of MMP have been described, including marimastat and batimastat.
Tissue inhibitors of metalloproteinase (TIMP) proteins are endogenous inhibitors acting to chelate MMP proteins: TIMP1 (TIMP1, P01033), TIMP2 (TIMP2, P16035), TIMP3 (TIMP3, P35625), TIMP4 (TIMP4, Q99727)
ADAM metallopeptidases
Overview
ADAM (A Disintegrin And Metalloproteinase domain containing proteins) metalloproteinases cleave cell-surface or transmembrane proteins to generate soluble and membrane-limited products.
Nomenclature | ADAM18 | ADAM19 | ADAM20 | ADAM21 | ADAM22 | ADAM23 | ADAM28 | ADAM29 | ADAM30 | ADAM32 | ADAM33 |
HGNC, UniProt | ADAM18, Q9Y3Q7 | ADAM19, Q9H013 | ADAM20, O43506 | ADAM21, Q9UKJ8 | ADAM22, Q9P0K1 | ADAM23, O75077 | ADAM28, Q9UKQ2 | ADAM29, Q9UKF5 | ADAM30, Q9UKF2 | ADAM32, Q8TC27 | ADAM33, Q9BZ11 |
EC number | – | – | – | – | – | – | – | – | – | – | 3.4.24.- |
Comments
Additional family members include AC123767.2 (cDNA FLJ58962, moderately similar to mouse ADAM3, ENSG00000231168), AL160191.3 (ADAM21-like protein, ENSG00000235812), AC136428.3-2 (ENSG00000185520) and ADAMDEC1 (decysin 1, ENSG00000134028).
ADAMTS metallopeptidases
Overview
ADAMTS (with thrombospondin motifs) metalloproteinases cleave cell-surface or transmembrane proteins to generate soluble and membrane-limited products.
Nomenclature | ADAMTS1 | ADAMTS2 | ADAMTS3 | ADAMTS4 | ADAMTS5 | ADAMTS6 | ADAMTS7 | ADAMTS8 | ADAMTS9 | ADAMTS10 |
HGNC, UniProt | ADAMTS1, Q9UHI8 | ADAMTS2, O95450 | ADAMTS3, O15072 | ADAMTS4, O75173 | ADAMTS5, Q9UNA0 | ADAMTS6, Q9UKP5 | ADAMTS7, Q9UKP4 | ADAMTS8, Q9UP79 | ADAMTS9, Q9P2N4 | ADAMTS10, Q9H324 |
EC number | 3.4.24.- | 3.4.24.14 | – | 3.4.24.82 | 3.4.24.- | – | – | – | – | – |
Nomenclature | ADAMTS12 | ADAMTS13 | ADAMTS14 | ADAMTS15 | ADAMTS16 | ADAMTS17 | ADAMTS18 | ADAMTS19 | ADAMTS20 |
HGNC, UniProt | ADAMTS12, P58397 | ADAMTS13, Q76LX8 | ADAMTS14, Q8WXS8 | ADAMTS15, Q8TE58 | ADAMTS16, Q8TE57 | ADAMTS17, Q8TE56 | ADAMTS18, Q8TE60 | ADAMTS19, Q8TE59 | ADAMTS20, P59510 |
Comment | – | Loss-of-function mutations of autoimmune antibodies are associated with thrombotic thrombocytopenic purpura | – | – | – | – | – | – | – |
Comments
Other family members include AC104758.12-5 (FLJ00317 protein Fragment ENSG00000231463), AC139425.3-1 (ENSG00000225577), and AC126339.6-1 (ENSG00000225734).
Serine (S) Peptidases
Nomenclature | Cathepsin A | Vitellogenic carboxypeptidase-like protein | Prolylcarboxypeptidase | Serine carboxypeptidase 1 | Dipeptidyl peptidase 4 | Dipeptidyl-peptidase 7 |
HGNC, UniProt | CTSA, P10619 | CPVL, Q9H3G5 | PRCP, P42785 | SCPEP1, Q9HB40 | DPP4, P27487 | DPP7, Q9UHL4 |
EC number | 3.4.16.5 | 3.4.16.- | 3.4.16.2 | 3.4.16.- | 3.4.14.5 | 3.4.14.2 |
Endogenous substrates | – | – | – | – | glucagon-like peptide 1 | – |
Protein serine/threonine kinases
N.B. Further enzymes can be found on the GuidetoPHARMACOLOGY.org website.
Overview
Protein serine/threonine kinases (E.C. 2.7.11.-) use the co-substrate ATP to phosphorylate serine and/or threonine residues on target proteins. Analysis of the human genome suggests the presence of 518 protein kinases in man, with over 100 protein kinase-like pseudogenes 342. It is beyond the scope of the Guide to list all these protein kinase activities; this summary focuses on AGC protein kinases associated with GPCR signalling, which may be divided into 15 subfamilies in man.
Most inhibitors of these enzymes have been assessed in cell-free investigations and so may appear to ‘lose’ potency and selectivity in intact cell assays. In particular, ambient ATP concentrations may be influential in responses to inhibitors, since the majority are directed at the ATP binding site 319.
G protein-coupled receptor kinases
Overview
G protein-coupled receptor kinases, epitomized by βARK, are involved in the rapid phosphorylation and desensitization of GPCR. Classically, high concentrations of β2-adrenoceptor agonists binding to the receptor lead to the consequent activation and dissociation of the heterotrimeric G protein Gs. Gαs activates adenylyl cyclase activity, while Gβγ subunits perform other functions, one of which is to recruit βARK to phosphorylate serine/threonine residues in the cytoplasmic tail of the β2-adrenoceptor. The phosphorylated receptor binds, with high affinity, a member of the arrestin family (ENSFM00250000000572), which prevents further signalling through the G protein (uncoupling) and may allow interaction with scaffolding proteins, such as clathrin, with the possible consequence of internalization and/or degradation.
Nomenclature | Common abbreviation | HGNC, UniProt | EC number | Comment |
G protein-coupled receptor kinase 1 | GRK1 | GRK1, Q15835 | 2.7.11.14 | – |
beta adrenergic receptor kinase 1 | GRK2 | ADRBK1, P25098 | 2.7.11.15 | Protein kinase C-mediated phosphorylation increases membrane association 316,353 |
beta adrenergic receptor kinase 2 | GRK3 | ADRBK2, P35626 | 2.7.11.15 | – |
G protein-coupled receptor kinase 4 | GRK4 | GRK4, P32298 | 2.7.11.16 | Inhibited by Ca2+/calmodulin (CALM2, CALM3, CALM1, P62158) 345 |
G protein-coupled receptor kinase 5 | GRK5 | GRK5, P34947 | 2.7.11.16 | Phosphorylated and inhibited by protein kinase C 344 |
G protein-coupled receptor kinase 6 | GRK6 | GRK6, P43250 | 2.7.11.16 | – |
G protein-coupled receptor kinase 7 | GRK7 | GRK7, Q8WTQ7 | 2.7.11.14, 2.7.11.16 | – |
Comments
Loss-of-function mutations in GRK1 or retinal and pineal gland arrestin (SAG, P10523) are associated with Oguchi disease (OMIM: 181301), a form of congenital stationary night blindness.
Protein kinase A
Overview
Cyclic AMP-mediated signalling involves regulation of cyclic nucleotide-gated ion channels, members of the Rap guanine nucleotide exchange family (Epac, ENSFM00250000000899) and activation of protein kinase A (PKA, also known as cyclic AMP-dependent protein kinase). PKA is a heterotetrameric enzyme composed of two regulatory and two catalytic subunits, which can be distinguished from Epac (exchange protein directly activated by cAMP, 320) by differential activation by N6 benzyl-cAMP (see Table) and 8-pCPT-2′-O-Me-cAMP, respectively 337.
Nomenclature | protein kinase A |
UniProtKB AC | – |
EC number | 2.7.11.11 |
Activators | N6 benzyl-cAMP 315 |
Inhibitors (pIC50) | Rp-cAMPS |
Radioligands (Kd) | [3H]cAMP (Activator) |
Comments
Other members of the PKA family are PRKX (X-linked protein kinase, PKX1, P51817) and PRKY (Y-linked protein kinase, PRKY, O43930). PRKX and PRKY are expressed on X and Y chromosomes, respectively, and appear to interchange in some XX males and XY females 347.
Akt (Protein kinase B)
Overview
The action of phosphatidylinositol 3-kinase (PI3K), a downstream kinase activated by receptor tyrosine kinases, produces a series of phosphorylated phosphoinositides, which recruit 3-phosphoinositide-dependent kinase (PDPK1, O15530) activity to the plasma membrane, leading to activation of Akt (EC 2.7.11.11). Akt may be activated by PIP3, PDK1-mediated phosphorylation 309 and mTORC2-mediated phosphorylation 331,346.
Protein kinase C (PKC)
Overview
Protein kinase C (EC 2.7.11.13) is the target for the tumour-promoting phorbol esters, such as tetradecanoyl-β-phorbol acetate (TPA, also known as phorbol 12-myristate 13-acetate).
Classical protein kinase C isoforms: PKCα, PKCβ, PKCγ. Members of the classical protein kinase C family are activated by Ca2+ and diacylglycerol, and may be inhibited by GF109203X, calphostin C, Gö6983, chelerythrine and Ro318220.
Novel protein kinase C isoforms: PKCδ, PKCε, PKCη, PKCθ and PKCμ. Members of the novel protein kinase C family are activated by diacylglycerol and may be inhibited by calphostin C, Gö6983 and chelerythrine.
Atypical protein kinase C isoforms
Protein kinase G (PKG)
Overview
Cyclic GMP-dependent protein kinase (EC 2.7.11.12) is a dimeric enzyme activated by cGMP generated by particulate guanylyl cyclases or soluble guanylyl cyclases.
Mitogen-activated protein kinases (MAP kinases)
Overview
MAP kinases (CMGC kinases, ENSF00000000137, EC 2.7.11.24) may be divided into three major families: ERK, JNK and p38 MAP kinases.
ERK may be activated by phosphorylation by the dual specificity mitogen-activated kinase kinases, MAP2K1 (Q02750, also known as MEK1) and MAP2K2 (P36507, also known as MEK2). The inhibitors PD98059 308,322 and U0126 323,325 act to inhibit these enzymes 319, and are used to inhibit ERK1 and ERK2.
JNK may be activated by phosphorylation by the dual specificity mitogen-activated kinase kinases, MAP2K4 (P45985, also known as JNKK1) and MAP2K7 (O14733, also known as JNKK2).
p38 may be activated by phosphorylation by the dual specificity mitogen-activated kinase kinases, MAP2K3 (P46734, also known as MEK3) and MAP2K6 (P52564, also known as SAPKK3).
Nomenclature | mitogen-activated protein kinase 11 | mitogen-activated protein kinase 12 | mitogen-activated protein kinase 13 | mitogen-activated protein kinase 14 |
Common abbreviation | p38β | p38γ | p38δ | p38α |
HGNC, UniProt | MAPK11, Q15759 | MAPK12, P53778 | MAPK13, O15264 | MAPK14, Q16539 |
Selective inhibitors (pIC50) | SB202190 341, SB203580 (pKi 7.0) 324 | – | – | SB203580 (pKi 8.0) 324 |
Rho kinase
Overview
Rho kinase (also known as P160ROCK, Rho-activated kinase) is activated by members of the Rho small G protein family (ENSFM00500000269651), which are activated by GTP exchange factors, such as ARHGEF1 (Q92888, p115-RhoGEF), which in turn may be activated by Gα12/13 subunits 339.
Nomenclature | Systematic nomenclature | Common abbreviation | HGNC, UniProt | EC number | Selective inhibitors (pIC50) |
Rho-associated, coiled-coil containing protein kinase 1 | ROCK1 | Rho kinase 1 | ROCK1, Q13464 | 2.7.11.1 | fasudil (Rabbit) 310, Y27632 (pKi 6.9) 351 |
Rho-associated, coiled-coil containing protein kinase 2 | ROCK2 | Rho kinase 2 | ROCK2, O75116 | 2.7.11.1 | fasudil (Rabbit) 310, Y27632 (pKi 6.9) 351 |
Other AGC kinases
Overview
For many of these remaining protein kinases, there is less information about the regulation and substrate specificity, as well as a paucity of pharmacological data
Nomenclature | Common abbreviation | HGNC, UniProt | EC number | Comment |
dystrophia myotonica-protein kinase | DMPK1 | DMPK, Q09013 | 2.7.11.1 | Reduced expression of DMPK is associated with myotonic dystrophy 1 336 |
CDC42 binding protein kinase gamma (DMPK-like) | DMPK2 | CDC42BPG, Q6DT37 | 2.7.11.1 | – |
CDC42 binding protein kinase alpha (DMPK-like) | MRCKα | CDC42BPA, Q5VT25 | 2.7.11.1 | Reported to have a role in cellular iron regulation 317 |
CDC42 binding protein kinase beta (DMPK-like) | MRCKβ | CDC42BPB, Q9Y5S2 | 2.7.11.1 | Reported to be involved in cell migration 332 |
citron (rho-interacting, serine/threonine kinase 21) | CRIK | CIT, O14578 | 2.7.11.1 | Shares structural homology with the Rho kinases |
Microtubule associated serine/threonine kinase 1 | MAST1 | MAST1, Q9Y2H9 | 2.7.11.1 | Members of the microtubule-associated serine/threonine kinase family appear to have a role in platelet production 335 and inflammatory bowel disease 340 |
Microtubule associated serine/threonine kinase 2 | MAST2 | MAST2, Q6P0Q8 | 2.7.11.1 | See comment for MAST1 |
Microtubule associated serine/threonine kinase 3 | MAST3 | MAST3, O60307 | 2.7.11.1 | See comment for MAST1 |
Microtubule associated serine/threonine kinase 4 | MAST4 | MAST4, O15021 | 2.7.11.1 | See comment for MAST1 |
Microtubule associated serine/threonine kinase-like | MASTL | MASTL, Q96GX5 | 2.7.11.1 | See comment for MAST1 |
large tumor suppressor kinase 1 | LATS1 | LATS1, O95835 | 2.7.11.1 | The large tumour suppressor protein kinases are phosphorylated and activated by MST2 kinase (serine/threonine kinase 3, STK3, Q13188, 314) |
large tumor suppressor kinase 2 | LATS2 | LATS2, Q9NRM7 | 2.7.11.1 | See comment for LATS1 |
Serine/threonine kinase 38 | NDR1 | STK38, Q15208 | 2.7.11.1 | – |
Serine/threonine kinase 38 like | NDR2 | STK38L, Q9Y2H1 | 2.7.11.1 | – |
3-phosphoinositide dependent protein kinase-1 | PDK1 | PDPK1, O15530 | 2.7.11.1 | – |
protein kinase N1 | PKN1 | PKN1, Q16512 | 2.7.11.13 | PKN family members are activated by Rho, PIP3 and PDK1 321 |
protein kinase N2 | PKN2 | PKN2, Q16513 | 2.7.11.13 | See comment for PKN1 |
protein kinase N3 | PKN3 | PKN3, Q6P5Z2 | 2.7.11.13 | See comment for PKN1 |
ribosomal protein S6 kinase, 90kDa, polypeptide 5 | MSK1 | RPS6KA5, O75582 | 2.7.11.1 | The mitogen- and stress-acted protein kinases are activated by phosphorylation evoked by MAP kinases and appear to be central to that pathway of cAMP response element-binding protein phosphorylation 352 |
ribosomal protein S6 kinase, 90kDa, polypeptide 4 | MSK2 | RPS6KA4, O75676 | 2.7.11.1 | See comment for MSK1 |
ribosomal protein S6 kinase, 70kDa, polypeptide 1 | p70S6K | RPS6KB1, P23443 | 2.7.11.1 | Ribosomal S6 kinases 70 kDa, also known as p70rsk, are activated by MAP kinase-mediated phosphorylation |
ribosomal protein S6 kinase, 70kDa, polypeptide 2 | p70S6Kβ | RPS6KB2, Q9UBS0 | 2.7.11.1 | See comment for p70S6K |
ribosomal protein S6 kinase, 90kDa, polypeptide 1 | p90RSK | RPS6KA1, Q15418 | 2.7.11.1 | Ribosomal S6 kinase 90 kDa serine/threonine kinases, also known as p90rsk or MAPK-activated protein kinase-1 (MAPKAP-K1), are activated by MAP kinase -mediated phosphorylation. RSK protein kinases are also activated by phosphorylation by TORC1 327,338 and PDK1 333. Substrates include ribosomal S6 protein (RPS6, P62753), GS3β (P49841) 349) and the 5HT2A receptor 348 |
ribosomal protein S6 kinase, 90kDa, polypeptide 3 | RSK2 | RPS6KA3, P51812 | 2.7.11.1 | see comment for p90RSK |
ribosomal protein S6 kinase, 90kDa, polypeptide 2 | RSK3 | RPS6KA2, Q15349 | 2.7.11.1 | see comment for p90RSK |
ribosomal protein S6 kinase, 90kDa, polypeptide 6 | RSK4 | RPS6KA6, Q9UK32 | 2.7.11.1 | see comment for p90RSK |
SGK494 | – | SGK494, Q96LW2 | 2.7.11.1 | see comment for p90RSK |
ribosomal protein S6 kinase, 52kDa, polypeptide 1 | RSKL1 | RPS6KC1, Q96S38 | 2.7.11.1 | – |
ribosomal protein S6 kinase-like 1 | RSKL2 | RPS6KL1, Q9Y6S9 | 2.7.11.1 | – |
serum/glucocorticoid regulated kinase 1 | SGK1 | SGK1, O00141 | 2.7.11.1 | Serum- and glucocorticoid-inducible kinases are regulated at the transcriptional level by serum and glucocorticoids. SGK1 has been reported to be phosphorylated and activated by mouse TORC2 (Q3U182) 326 |
serum/glucocorticoid regulated kinase 2 | SGK2 | SGK2, Q9HBY8 | 2.7.11.1 | see comment for SGK1 |
serum/glucocorticoid regulated kinase family, member 3 | SGK3 | SGK3, Q96BR1 | 2.7.11.1 | see comment for SGK1 |
serine/threonine kinase 32A | YANK1 | STK32A, Q8WU08 | 2.7.11.1 | – |
serine/threonine kinase 32B | YANK2 | STK32B, Q9NY57 | 2.7.11.1 | – |
serine/threonine kinase 32C | YANK3 | STK32C, Q86UX6 | 2.7.11.1 | – |
Selected non-AGC protein kinase activities
Nomenclature | AMP kinase | Casein kinase 2 | myosin light chain kinase | myosin light chain kinase 2 | Calmodulin-dependent kinase II |
Common abbreviation | AMPK | CK2 | smMLCK | skMLCK | CaMKII |
HGNC, UniProt | – | – | MYLK, Q15746 | MYLK2, Q9H1R3 | – |
EC number | 2.7.11.1 | 2.7.11.1 | 2.7.11.18 | 2.7.11.18 | 2.7.11.17 |
Endogenous activators | AMP | – | calmodulin (CALM2, CALM3, CALM1, P62158) 329 | calmodulin (CALM2, CALM3, CALM1, P62158) 329 | calmodulin (CALM2, CALM3, CALM1, P62158) |
Selective activators | AICA-riboside 318 | – | – | – | – |
Selective inhibitors (pIC50) | dorsomorphin 355 | DRB 354 | – | – | K-252a 328 |
Comments
AMP-activated protein kinase is a heterotrimeric protein kinase, made up of α, β and γ subunits, while casein kinase 2 is a heterotetrameric protein kinase, made up of 2 β subunits with two other subunits of α and/or α’ composition. STO609 is an inhibitor of calmodulin kinase kinase (ENSFM00250000001201, 350), an upstream activator of calmodulin-dependent kinase.
Sphingosine 1-phosphate turnover
Overview
S1P (sphingosine 1-phosphate) is a pro-survival signal, in contrast to ceramide. It is formed by the sphingosine kinase-catalysed phosphorylation of sphingosine. S1P can be released from cells to act as an agonist at a family of five G protein-coupled receptors (S1P1-5) but also has intracellular targets. S1P can be dephosphorylated back to sphingosine or hydrolysed to form hexadecanal and phosphoethanolamine. Sphingosine choline phosphotransferase (EC 2.7.8.10) generates sphingosylphosphocholine from sphingosine and CDP-choline. Sphingosine β-galactosyltransferase (EC 2.4.1.23) generates psychosine from sphingosine in the presence of UDP-α-D-galactose. The molecular identities of these enzymes have not been confirmed.
Sphingosine kinase
Nomenclature | sphingosine kinase 1 | sphingosine kinase 2 |
Common abbreviation | SPHK1 | SPHK2 |
HGNC, UniProt | SPHK1, Q9NYA1 | SPHK2, Q9NRA0 |
EC number | 2.7.1.91: sphingosine + ATP = sphingosine 1-phosphate + ADP, sphinganine + ATP = sphinganine 1-phosphate + ADP | |
Cofactors | Mg2+ | |
(Sub)family-selective inhibitors | sphingosine kinase inhibitor 356 | |
Selective inhibitors | PF-543 361, SK1-I 360 | ABC294640 357, ROMe 358 |
Sphingosine 1-phosphate phosphatase
Nomenclature | sphingosine-1-phosphate phosphatase 1 | sphingosine-1-phosphate phosphatase 2 |
Common abbreviation | SGPP1 | SGPP2 |
HGNC, UniProt | SGPP1, Q9BX95 | SGPP2, Q8IWX5 |
EC number | 3.1.3.-: sphingosine 1-phosphate -> sphingosine + inorganic phosphate | |
Comment | Depletion of S1P phosphohydrolase-1 (SPP1), which degrades intracellular S1P, induces the unfolded protein response and endoplasmic reticulum stress-induced autophagy 359 | – |
Sphingosine 1-phosphate lyase
Thyroid hormone turnover
Overview
The thyroid hormones triiodothyronine and thyroxine, usually abbreviated as T3 and T4, respectively, are synthesized in the thyroid gland by sequential metabolism of tyrosine residues in the glycosylated homodimeric protein thyroglobulin (TG, P01266) under the influence of the haem-containing protein iodide peroxidase. Iodide peroxidase/TPO is a haem-containing enzyme, from the same structural family as eosinophil peroxidase (EPX, P11678), lactoperoxidase (LPO, P22079) and myeloperoxidase (MPO, P05164). Circulating thyroid hormone is bound to thyroxine-binding globulin (SERPINA7, P05543).
Nomenclature | thyroid peroxidase |
Common abbreviation | TPO |
HGNC, UniProt | TPO, P07202 |
EC number | 1.11.1.8: [Thyroglobulin]-L-tyrosine + I- + H2O2 + H+ -> [Thyroglobulin]-3,5,3′-triiodo-L-thyronine + [thyroglobulin]-aminoacrylate + H2O |
Cofactors | Ca2+ |
Selective inhibitors (pIC50) | methimazole 363, propylthiouracil 363 |
Comment | Carbimazole is a pro-drug for methimazole |
Tissue deiodinases
These are 1 TM selenoproteins that remove an iodine from T4 (3,3′,5,5′-tetraiodothyronine) to generate T3 (3,3′,5-triiodothyronine, a more potent agonist at thyroid hormone receptors) or rT3 (rT3, 3,3′,5′-triiodothyronine, a relatively inactive analogue). DIO1 is also able to deiodinate RT3 to form 3,3′-diiodothyronine (T2). Iodotyrosine deiodinase is a 1TM homodimeric enzyme.
Nomenclature | deiodinase, iodothyronine, type I | deiodinase, iodothyronine, type II | deiodinase, iodothyronine, type III |
Common abbreviation | DIO1 | DIO2 | DIO3 |
HGNC, UniProt | DIO1, P49895 | DIO2, Q92813 | DIO3, P55073 |
EC number | 1.97.1.10: T4 -> T3, rT3 -> T2 | 1.97.1.10: T4 -> T3, rT3 -> T2 | 1.97.1.11: T4 -> T3, rT3 -> T2 |
Nomenclature | iodotyrosine deiodinase |
Common abbreviation | IYD |
HGNC, UniProt | IYD, Q6PHW0 |
EC number | 1.22.1.1: 3-iodotyrosine -> L-tyrosine + I-, 3,5-diiodo-L-tyrosine -> 3-iodotyrosine + I- |
Cofactors | NADPH, flavin adenine dinucleotide |
Further reading
Further reading
- Abreu-Villaça Y. Filgueiras CC. Manhães AC. Developmental aspects of the cholinergic system. Behav Brain Res. 2011;221:367–378. doi: 10.1016/j.bbr.2009.12.049. [PMID:20060019] [DOI] [PubMed] [Google Scholar]
- Bellier JP. Kimura H. Peripheral type of choline acetyltransferase: biological and evolutionary implications for novel mechanisms in cholinergic system. J Chem Neuroanat. 2011;42:225–235. doi: 10.1016/j.jchemneu.2011.02.005. [PMID:21382474] [DOI] [PubMed] [Google Scholar]
- Deiana S. Platt B. Riedel G. The cholinergic system and spatial learning. Behav Brain Res. 2011;221:389–411. doi: 10.1016/j.bbr.2010.11.036. [PMID:21108971] [DOI] [PubMed] [Google Scholar]
- Giacobini E. Cholinesterases: new roles in brain function and in Alzheimer's disease. Neurochem Res. 2003;28:515–522. doi: 10.1023/a:1022869222652. [PMID:12675140] [DOI] [PubMed] [Google Scholar]
- Kawashima K. Fujii T. Moriwaki Y. Misawa H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci. 2012;91:1027–1032. doi: 10.1016/j.lfs.2012.05.006. [PMID:22659391] [DOI] [PubMed] [Google Scholar]
- Schliebs R. Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res. 2011;221:555–563. doi: 10.1016/j.bbr.2010.11.058. [PMID:21145918] [DOI] [PubMed] [Google Scholar]
Further reading
- Blackburn MR. Kellems RE. Adenosine deaminase deficiency: metabolic basis of immune deficiency and pulmonary inflammation. Adv Immunol. 2005;86:1–41. doi: 10.1016/S0065-2776(04)86001-2. [PMID:15705418] [DOI] [PubMed] [Google Scholar]
- Boison D. Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev. 2013;65:906–943. doi: 10.1124/pr.112.006361. [PMID:23592612] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orlandi C. Barbon A. Barlati S. Activity regulation of adenosine deaminases acting on RNA (ADARs) Mol Neurobiol. 2012;45:61–75. doi: 10.1007/s12035-011-8220-2. [PMID:22113393] [DOI] [PubMed] [Google Scholar]
- Zimmermann H. Zebisch M. Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 2012;8:437–502. doi: 10.1007/s11302-012-9309-4. [PMID:22555564] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Amireault P. Sibon D. Côté F. Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks. ACS Chem Neurosci. 2013;4:64–71. doi: 10.1021/cn300154j. [PMID:23336045] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daubner SC. Le T. Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011;508:1–12. doi: 10.1016/j.abb.2010.12.017. [PMID:21176768] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzpatrick PF. Allosteric regulation of phenylalanine hydroxylase. Arch Biochem Biophys. 2012;519:194–201. doi: 10.1016/j.abb.2011.09.012. [PMID:22005392] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehmann IT. Bobrovskaya L. Gordon SL. Dunkley PR. Dickson PW. Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. J Biol Chem. 2006;281:17644–17651. doi: 10.1074/jbc.M512194200. [PMID:16644734] [DOI] [PubMed] [Google Scholar]
- Matthes S. Mosienko V. Bashammakh S. Alenina N. Bader M. Tryptophan hydroxylase as novel target for the treatment of depressive disorders. Pharmacology. 2010;85:95–109. doi: 10.1159/000279322. [PMID:20130443] [DOI] [PubMed] [Google Scholar]
- Waider J. Araragi N. Gutknecht L. Lesch KP. Tryptophan hydroxylase-2 (TPH2) in disorders of cognitive control and emotion regulation: a perspective. Psychoneuroendocrinology. 2011;36:393–405. doi: 10.1016/j.psyneuen.2010.12.012. [PMID:21257271] [DOI] [PubMed] [Google Scholar]
Further reading
- Ataya B. Tzeng E. Zuckerbraun BS. Nitrite-generated nitric oxide to protect against intimal hyperplasia formation. Trends Cardiovasc Med. 2011;21:157–162. doi: 10.1016/j.tcm.2012.05.002. [PMID:22814422] [DOI] [PubMed] [Google Scholar]
- Di Lorenzo A. Bedford MT. Histone arginine methylation. FEBS Lett. 2011;585:2024–2031. doi: 10.1016/j.febslet.2010.11.010. [PMID:21074527] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Förstermann U. Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol. 2011;164:213–223. doi: 10.1111/j.1476-5381.2010.01196.x. [PMID:21198553] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Förstermann U. Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–837. doi: 10.1093/eurheartj/ehr304. , 837a–837d. [PMID:21890489] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinrich TA. Silva RS. Miranda KM. Switzer CH. Wink DA. Fukuto JM. Biological nitric oxide signalling: chemistry and terminology. Br J Pharmacol. 2013;169:1417–1429. doi: 10.1111/bph.12217. [PMID:23617570] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karkhanis V. Hu YJ. Baiocchi RA. Imbalzano AN. Sif S. Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci. 2011;36:633–641. doi: 10.1016/j.tibs.2011.09.001. [PMID:21975038] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leiper J. Nandi M. The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis. Nat Rev Drug Discov. 2011;10:277–291. doi: 10.1038/nrd3358. [PMID:21455237] [DOI] [PubMed] [Google Scholar]
- Moncada S. Higgs A. Furchgott R. International Union of Pharmacology Nomenclature in Nitric Oxide Research. Pharmacol Rev. 1997;49:137–142. [PMID:9228663] [PubMed] [Google Scholar]
- Yang Y. Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13:37–50. doi: 10.1038/nrc3409. [PMID:23235912] [DOI] [PubMed] [Google Scholar]
Further reading
- Adina-Zada A. Zeczycki TN. Attwood PV. Regulation of the structure and activity of pyruvate carboxylase by acetyl CoA. Arch Biochem Biophys. 2012;519:118–130. doi: 10.1016/j.abb.2011.11.015. [PMID:22120519] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bale S. Ealick SE. Structural biology of S-adenosylmethionine decarboxylase. Amino Acids. 2010;38:451–460. doi: 10.1007/s00726-009-0404-y. [PMID:19997761] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brownsey RW. Boone AN. Elliott JE. Kulpa JE. Lee WM. Regulation of acetyl-CoA carboxylase. Biochem Soc Trans. 2006;34:223–227. doi: 10.1042/BST20060223. (Pt 2): [PMID:16545081] [DOI] [PubMed] [Google Scholar]
- Jitrapakdee S. St Maurice M. Rayment I. Cleland WW. Wallace JC. Attwood PV. Structure, mechanism and regulation of pyruvate carboxylase. Biochem J. 2008;413:369–387. doi: 10.1042/BJ20080709. [PMID:18613815] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molderings GJ. Haenisch B. Agmatine (decarboxylated L-arginine): physiological role and therapeutic potential. Pharmacol Ther. 2012;133:351–365. doi: 10.1016/j.pharmthera.2011.12.005. [PMID:22212617] [DOI] [PubMed] [Google Scholar]
- Moya-García AA. Pino-Angeles A. Gil-Redondo R. Morreale A. Sánchez-Jiménez F. Structural features of mammalian histidine decarboxylase reveal the basis for specific inhibition. Br J Pharmacol. 2009;157:4–13. doi: 10.1111/j.1476-5381.2009.00219.x. [PMID:19413567] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez-Leal O. Merali S. Regulation of polyamine metabolism by translational control. Amino Acids. 2012;42:611–617. doi: 10.1007/s00726-011-1036-6. [PMID:21811825] [DOI] [PubMed] [Google Scholar]
- Sánchez-Jiménez F. Ruiz-Pérez MV. Urdiales JL. Medina MA. Pharmacological potential of biogenic amine-polyamine interactions beyond neurotransmission. Br J Pharmacol. 2013;170:4–16. doi: 10.1111/bph.12109. [PMID:23347064] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tong L. Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci. 2013;70:863–891. doi: 10.1007/s00018-012-1096-0. [PMID:22869039] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu F. Christen P. Gehring H. A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase. FASEB J. 2011;25:2109–2122. doi: 10.1096/fj.10-174383. [PMID:21454364] [DOI] [PubMed] [Google Scholar]
Further reading
- Al-Nuaimi SK. Mackenzie EM. Baker GB. Monoamine oxidase inhibitors and neuroprotection: a review. Am J Ther. 2012;19:436–448. doi: 10.1097/MJT.0b013e31825b9eb5. [PMID:22960850] [DOI] [PubMed] [Google Scholar]
- Daubner SC. Le T. Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011;508:1–12. doi: 10.1016/j.abb.2010.12.017. [PMID:21176768] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dixon Clarke SE. Ramsay RR. Dietary inhibitors of monoamine oxidase A. J Neural Transm. 2011;118:1031–1041. doi: 10.1007/s00702-010-0537-x. [PMID:21190052] [DOI] [PubMed] [Google Scholar]
- Fitzpatrick PF. Oxidation of amines by flavoproteins. Arch Biochem Biophys. 2010;493:13–25. doi: 10.1016/j.abb.2009.07.019. [PMID:19651103] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzpatrick PF. Allosteric regulation of phenylalanine hydroxylase. Arch Biochem Biophys. 2012;519:194–201. doi: 10.1016/j.abb.2011.09.012. [PMID:22005392] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaludercic N. Carpi A. Menabò R. Di Lisa F. Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011;1813:1323–1332. doi: 10.1016/j.bbamcr.2010.09.010. [PMID:20869994] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma Z. Liu H. Wu B. Structure-based drug design of catechol-O-methyltransferase inhibitors for CNS disorders. Br J Clin Pharmacol. 2013 doi: 10.1111/bcp.12169. [Epub ahead of print]. [PMID:23713800] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shih JC. Wu JB. Chen K. Transcriptional regulation and multiple functions of MAO genes. J Neural Transm. 2011;118:979–986. doi: 10.1007/s00702-010-0562-9. [PMID:21359973] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang CC. Billett E. Borchert A. Kuhn H. Ufer C. Monoamine oxidases in development. Cell Mol Life Sci. 2013;70:599–630. doi: 10.1007/s00018-012-1065-7. [PMID:22782111] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witte AV. Flöel A. Effects of COMT polymorphisms on brain function and behavior in health and disease. Brain Res Bull. 2012;88:418–428. doi: 10.1016/j.brainresbull.2011.11.012. [PMID:22138198] [DOI] [PubMed] [Google Scholar]
Further reading
- Bornancin F. Ceramide kinase: the first decade. Cell Signal. 2011;23:999–1008. doi: 10.1016/j.cellsig.2010.11.012. [PMID:21111813] [DOI] [PubMed] [Google Scholar]
- Fabrias G. Muñoz-Olaya J. Cingolani F. Signorelli P. Casas J. Gagliostro V. Ghidoni R. Dihydroceramide desaturase and dihydrosphingolipids: debutant players in the sphingolipid arena. Prog Lipid Res. 2012;51:82–94. doi: 10.1016/j.plipres.2011.12.002. [PMID:22200621] [DOI] [PubMed] [Google Scholar]
- Hirabayashi Y. Furuya S. Roles of l-serine and sphingolipid synthesis in brain development and neuronal survival. Prog Lipid Res. 2008;47:188–203. doi: 10.1016/j.plipres.2008.01.003. [PMID:18319065] [DOI] [PubMed] [Google Scholar]
- Ikushiro H. Hayashi H. Mechanistic enzymology of serine palmitoyltransferase. Biochim Biophys Acta. 2011;1814:1474–1480. doi: 10.1016/j.bbapap.2011.02.005. [PMID:21315853] [DOI] [PubMed] [Google Scholar]
- Levy M. Futerman AH. Mammalian ceramide synthases. IUBMB Life. 2010;62:347–356. doi: 10.1002/iub.319. [PMID:20222015] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowther J. Naismith JH. Dunn TM. Campopiano DJ. Structural, mechanistic and regulatory studies of serine palmitoyltransferase. Biochem Soc Trans. 2012;40:547–554. doi: 10.1042/BST20110769. [PMID:22616865] [DOI] [PubMed] [Google Scholar]
- Mao C. Obeid LM. Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta. 2008;1781:424–434. doi: 10.1016/j.bbalip.2008.06.002. [PMID:18619555] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mullen TD. Hannun YA. Obeid LM. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J. 2012;441:789–802. doi: 10.1042/BJ20111626. [PMID:22248339] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orr Gandy KA. Obeid LM. Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors. Biochim Biophys Acta. 2013;1831:157–166. doi: 10.1016/j.bbalip.2012.07.002. [PMID:22801037] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park JW. Park WJ. Futerman AH. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta. 2013 doi: 10.1016/j.bbalip.2013.08.019. [Epub ahead of print]. [PMID:24021978] [DOI] [PubMed] [Google Scholar]
- Tidhar R. Futerman AH. The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim Biophys Acta. 2013;1833:2511–2518. doi: 10.1016/j.bbamcr.2013.04.010. [PMID:23611790] [DOI] [PubMed] [Google Scholar]
Further reading
- Antoni FA. New paradigms in cAMP signalling. Mol Cell Endocrinol. 2012;353:3–9. doi: 10.1016/j.mce.2011.10.034. [PMID:22085559] [DOI] [PubMed] [Google Scholar]
- Armani A. Marzolla V. Rosano GM. Fabbri A. Caprio M. Phosphodiesterase type 5 (PDE5) in the adipocyte: a novel player in fat metabolism? Trends Endocrinol Metab. 2011;22:404–411. doi: 10.1016/j.tem.2011.05.004. [PMID:21741267] [DOI] [PubMed] [Google Scholar]
- Billington CK. Hall IP. Novel cAMP signalling paradigms: therapeutic implications for airway disease. Br J Pharmacol. 2012;166:401–410. doi: 10.1111/j.1476-5381.2011.01719.x. [PMID:22013890] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheepala S. Hulot JS. Morgan JA. Sassi Y. Zhang W. Naren AP. Schuetz JD. Cyclic nucleotide compartmentalization: contributions of phosphodiesterases and ATP-binding cassette transporters. Annu Rev Pharmacol Toxicol. 2013;53:231–253. doi: 10.1146/annurev-pharmtox-010611-134609. [PMID:23072381] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J. Levin LR. Buck J. Role of soluble adenylyl cyclase in the heart. Am J Physiol Heart Circ Physiol. 2012;302:H538–H543. doi: 10.1152/ajpheart.00701.2011. [PMID:22058150] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dekkers BG. Racké K. Schmidt M. Distinct PKA and Epac compartmentalization in airway function and plasticity. Pharmacol Ther. 2013;137:248–265. doi: 10.1016/j.pharmthera.2012.10.006. [PMID:23089371] [DOI] [PubMed] [Google Scholar]
- Derbyshire ER. Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem. 2012;81:533–559. doi: 10.1146/annurev-biochem-050410-100030. [PMID:22404633] [DOI] [PubMed] [Google Scholar]
- Efendiev R. Dessauer CW. A kinase-anchoring proteins and adenylyl cyclase in cardiovascular physiology and pathology. J Cardiovasc Pharmacol. 2011;58:339–344. doi: 10.1097/FJC.0b013e31821bc3f0. [PMID:21978991] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Francis SH. Blount MA. Corbin JD. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev. 2011;91:651–690. doi: 10.1152/physrev.00030.2010. [PMID:21527734] [DOI] [PubMed] [Google Scholar]
- García-Osta A. Cuadrado-Tejedor M. García-Barroso C. Oyarzábal J. Franco R. Phosphodiesterases as therapeutic targets for Alzheimer's disease. ACS Chem Neurosci. 2012;3:832–844. doi: 10.1021/cn3000907. [PMID:23173065] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Insel PA. Murray F. Yokoyama U. Romano S. Yun H. Brown L. Snead A. Lu D. Aroonsakool N. cAMP and Epac in the regulation of tissue fibrosis. Br J Pharmacol. 2012;166:447–456. doi: 10.1111/j.1476-5381.2012.01847.x. [PMID:22233238] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keravis T. Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol. 2012;165:1288–1305. doi: 10.1111/j.1476-5381.2011.01729.x. [PMID:22014080] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potter LR. Guanylyl cyclase structure, function and regulation. Cell Signal. 2011;23:1921–1926. doi: 10.1016/j.cellsig.2011.09.001. [PMID:21914472] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt M. Dekker FJ. Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev. 2013;65:670–709. doi: 10.1124/pr.110.003707. [PMID:23447132] [DOI] [PubMed] [Google Scholar]
- Seifert R. Lushington GH. Mou TC. Gille A. Sprang SR. Inhibitors of membranous adenylyl cyclases. Trends Pharmacol Sci. 2012;33:64–78. doi: 10.1016/j.tips.2011.10.006. [PMID:22100304] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma S. Kumar K. Deshmukh R. Sharma PL. Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders. Eur J Pharmacol. 2013 doi: 10.1016/j.ejphar.2013.06.038. [Epub ahead of print]. [PMID:23850946] [DOI] [PubMed] [Google Scholar]
- Zhang M. Kass DA. Phosphodiesterases and cardiac cGMP: evolving roles and controversies. Trends Pharmacol Sci. 2011;32:360–365. doi: 10.1016/j.tips.2011.02.019. [PMID:21477871] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Ferguson CS. Tyndale RF. Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. Trends Pharmacol Sci. 2011;32:708–714. doi: 10.1016/j.tips.2011.08.005. [PMID:21975165] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guengerich FP. Cheng Q. Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharmacol Rev. 2011;63:684–699. doi: 10.1124/pr.110.003525. [PMID:21737533] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones G. Prosser DE. Kaufmann M. Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res. 2013 doi: 10.1194/jlr.R031534. [Epub ahead of print]. [PMID:23564710] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorbek G. Lewinska M. Rozman D. Cytochrome P450s in the synthesis of cholesterol and bile acids–from mouse models to human diseases. FEBS J. 2012;279:1516–1533. doi: 10.1111/j.1742-4658.2011.08432.x. [PMID:22111624] [DOI] [PubMed] [Google Scholar]
- Miller WL. Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. [PMID:21051590] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Omura T. Structural diversity of cytochrome P450 enzyme system. J Biochem. 2010;147:297–306. doi: 10.1093/jb/mvq001. [PMID:20068028] [DOI] [PubMed] [Google Scholar]
- Orr ST. Ripp SL. Ballard TE. Henderson JL. Scott DO. Obach RS. Sun H. Kalgutkar AS. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks. J Med Chem. 2012;55:4896–4933. doi: 10.1021/jm300065h. [PMID:22409598] [DOI] [PubMed] [Google Scholar]
- Ross AC. Zolfaghari R. Cytochrome P450s in the regulation of cellular retinoic acid metabolism. Annu Rev Nutr. 2011;31:65–87. doi: 10.1146/annurev-nutr-072610-145127. [PMID:21529158] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell DW. Halford RW. Ramirez DM. Shah R. Kotti T. Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. Annu Rev Biochem. 2009;78:1017–1040. doi: 10.1146/annurev.biochem.78.072407.103859. [PMID:19489738] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Blankman JL. Cravatt BF. Chemical probes of endocannabinoid metabolism. Pharmacol Rev. 2013;65:849–871. doi: 10.1124/pr.112.006387. [PMID:23512546] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowler CJ. Monoacylglycerol lipase - a target for drug development? Br J Pharmacol. 2012;166:1568–1585. doi: 10.1111/j.1476-5381.2012.01950.x. [PMID:22428756] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulvihill MM. Nomura DK. Therapeutic potential of monoacylglycerol lipase inhibitors. Life Sci. 2013;92:492–497. doi: 10.1016/j.lfs.2012.10.025. [PMID:23142242] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roques BP. Fournié-Zaluski MC. Wurm M. Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat Rev Drug Discov. 2012;11:292–310. doi: 10.1038/nrd3673. [PMID:22460123] [DOI] [PubMed] [Google Scholar]
- Savinainen JR. Saario SM. Laitinen JT. The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol (Oxf) 2012;204:267–276. doi: 10.1111/j.1748-1716.2011.02280.x. [PMID:21418147] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueda N. Tsuboi K. Uyama T. Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J. 2013;280:1874–1894. doi: 10.1111/febs.12152. [PMID:23425575] [DOI] [PubMed] [Google Scholar]
- Wellner N. Diep TA. Janfelt C. Hansen HS. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim Biophys Acta. 2013;1831:652–662. doi: 10.1016/j.bbalip.2012.08.019. [PMID:23000428] [DOI] [PubMed] [Google Scholar]
Further reading
- Bien CG. Scheffer IE. Autoantibodies and epilepsy. Epilepsia. 2011;52:18–22. doi: 10.1111/j.1528-1167.2011.03031.x. [PMID:21542841] [DOI] [PubMed] [Google Scholar]
- Errichiello L. Striano S. Zara F. Striano P. Temporal lobe epilepsy and anti glutamic acid decarboxylase autoimmunity. Neurol Sci. 2011;32:547–550. doi: 10.1007/s10072-011-0566-8. [PMID:21468678] [DOI] [PubMed] [Google Scholar]
- Kim KJ. Pearl PL. Jensen K. Snead OC. Malaspina P. Jakobs C. Gibson KM. Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid Redox Signal. 2011;15:691–718. doi: 10.1089/ars.2010.3470. [PMID:20973619] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan ZZ. Transcriptional control of Gad2. Transcription. 2012;3:68–72. doi: 10.4161/trns.19511. [PMID:22414751] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verrotti A. Scaparrotta A. Olivieri C. Chiarelli F. Seizures and type 1 diabetes mellitus: current state of knowledge. Eur J Endocrinol. 2012;167:749–758. doi: 10.1530/EJE-12-0699. [PMID:22956556] [DOI] [PubMed] [Google Scholar]
Further reading
- Altan-Bonnet N. Balla T. Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms. Trends Biochem Sci. 2012;37:293–302. doi: 10.1016/j.tibs.2012.03.004. [PMID:22633842] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Astudillo AM. Balgoma D. Balboa MA. Balsinde J. Dynamics of arachidonic acid mobilization by inflammatory cells. Biochim Biophys Acta. 2012;1821:249–256. doi: 10.1016/j.bbalip.2011.11.006. [PMID:22155285] [DOI] [PubMed] [Google Scholar]
- Balla T. Regulation of Ca2+ entry by inositol lipids in mammalian cells by multiple mechanisms. Cell Calcium. 2009;45:527–534. doi: 10.1016/j.ceca.2009.03.013. [PMID:19395084] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bechler ME. Figueiredo P. Brown WJ. A PLA1-2 punch regulates the Golgi complex. Trends Cell Biol. 2012;22:116–124. doi: 10.1016/j.tcb.2011.10.003. [PMID:22130221] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge MJ. Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta. 2009;1793:933–940. doi: 10.1016/j.bbamcr.2008.10.005. [PMID:19010359] [DOI] [PubMed] [Google Scholar]
- Brown HA. Marnett LJ. Introduction to lipid biochemistry, metabolism, and signaling. Chem Rev. 2011;111:5817–5820. doi: 10.1021/cr200363s. [PMID:21951202] [DOI] [PubMed] [Google Scholar]
- Bunney TD. Katan M. Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer. 2010;10:342–352. doi: 10.1038/nrc2842. [PMID:20414202] [DOI] [PubMed] [Google Scholar]
- Bunney TD. Katan M. PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci. 2011;36:88–96. doi: 10.1016/j.tibs.2010.08.003. [PMID:20870410] [DOI] [PubMed] [Google Scholar]
- Cao J. Burke JE. Dennis EA. Using hydrogen/deuterium exchange mass spectrometry to define the specific interactions of the phospholipase A2 superfamily with lipid substrates, inhibitors, and membranes. J Biol Chem. 2013;288:1806–1813. doi: 10.1074/jbc.R112.421909. [PMID:23209293] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Y. Wang BC. Xiao Y. PI3K: a potential therapeutic target for cancer. J Cell Physiol. 2012;227:2818–2821. doi: 10.1002/jcp.23038. [PMID:21938729] [DOI] [PubMed] [Google Scholar]
- Cocco L. Follo MY. Faenza I. Fiume R. Ramazzotti G. Weber G. Martelli AM. Manzoli FA. Physiology and pathology of nuclear phospholipase C β1. Adv Enzyme Regul. 2011;51:2–12. doi: 10.1016/j.advenzreg.2010.09.015. [PMID:21035488] [DOI] [PubMed] [Google Scholar]
- Cushing TD. Metz DP. Whittington DA. McGee LR. PI3Kδ and PI3Kγ as targets for autoimmune and inflammatory diseases. J Med Chem. 2012;55:8559–8581. doi: 10.1021/jm300847w. [PMID:22924688] [DOI] [PubMed] [Google Scholar]
- Dan P. Rosenblat G. Yedgar S. Phospholipase A2 activities in skin physiology and pathology. Eur J Pharmacol. 2012;691:1–8. doi: 10.1016/j.ejphar.2012.07.023. [PMID:22819703] [DOI] [PubMed] [Google Scholar]
- Falkenburger BH. Jensen JB. Dickson EJ. Suh BC. Hille B. Phosphoinositides: lipid regulators of membrane proteins. J Physiol (Lond) (Pt 17): 2010;588:3179–3185. doi: 10.1113/jphysiol.2010.192153. [PMID:20519312] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frisardi V. Panza F. Seripa D. Farooqui T. Farooqui AA. Glycerophospholipids and glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer's disease pathology. Prog Lipid Res. 2011;50:313–330. doi: 10.1016/j.plipres.2011.06.001. [PMID:21703303] [DOI] [PubMed] [Google Scholar]
- Funakoshi Y. Hasegawa H. Kanaho Y. Regulation of PIP5K activity by Arf6 and its physiological significance. J Cell Physiol. 2011;226:888–895. doi: 10.1002/jcp.22482. [PMID:20945365] [DOI] [PubMed] [Google Scholar]
- Fung-Leung WP. Phosphoinositide 3-kinase delta (PI3Kδ) in leukocyte signaling and function. Cell Signal. 2011;23:603–608. doi: 10.1016/j.cellsig.2010.10.002. [PMID:20940048] [DOI] [PubMed] [Google Scholar]
- Gomez-Cambronero J. The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF) Cell Signal. 2011;23:1885–1895. doi: 10.1016/j.cellsig.2011.06.017. [PMID:21740967] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomez-Cambronero J. Biochemical and cellular implications of a dual lipase-GEF function of phospholipase D2 (PLD2) J Leukoc Biol. 2012;92:461–467. doi: 10.1189/jlb.0212073. [PMID:22750546] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham TR. Burd CG. Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends Cell Biol. 2011;21:113–121. doi: 10.1016/j.tcb.2010.10.002. [PMID:21282087] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harden TK. Waldo GL. Hicks SN. Sondek J. Mechanism of activation and inactivation of Gq/phospholipase C-β signaling nodes. Chem Rev. 2011;111:6120–6129. doi: 10.1021/cr200209p. [PMID:21988240] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris TE. Finck BN. Dual function lipin proteins and glycerolipid metabolism. Trends Endocrinol Metab. 2011;22:226–233. doi: 10.1016/j.tem.2011.02.006. [PMID:21470873] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermansson M. Hokynar K. Somerharju P. Mechanisms of glycerophospholipid homeostasis in mammalian cells. Prog Lipid Res. 2011;50:240–257. doi: 10.1016/j.plipres.2011.02.004. [PMID:21382416] [DOI] [PubMed] [Google Scholar]
- Hollander MC. Blumenthal GM. Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer. 2011;11:289–301. doi: 10.1038/nrc3037. [PMID:21430697] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui DY. Phospholipase A(2) enzymes in metabolic and cardiovascular diseases. Curr Opin Lipidol. 2012;23:235–240. doi: 10.1097/MOL.0b013e328351b439. [PMID:22327613] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito J. Parrington J. Fissore RA. PLCζ and its role as a trigger of development in vertebrates. Mol Reprod Dev. 2011;78:846–853. doi: 10.1002/mrd.21359. [PMID:21823187] [DOI] [PubMed] [Google Scholar]
- Jang JH. Lee CS. Hwang D. Ryu SH. Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res. 2012;51:71–81. doi: 10.1016/j.plipres.2011.12.003. [PMID:22212660] [DOI] [PubMed] [Google Scholar]
- Kim JK. Lim S. Kim J. Kim S. Kim JH. Ryu SH. Suh PG. Subtype-specific roles of phospholipase C-β via differential interactions with PDZ domain proteins. Adv Enzyme Regul. 2011;51:138–151. doi: 10.1016/j.advenzreg.2010.10.004. [PMID:21035486] [DOI] [PubMed] [Google Scholar]
- Kok BP. Venkatraman G. Capatos D. Brindley DN. Unlike two peas in a pod: lipid phosphate phosphatases and phosphatidate phosphatases. Chem Rev. 2012;112:5121–5146. doi: 10.1021/cr200433m. [PMID:22742522] [DOI] [PubMed] [Google Scholar]
- Kolesnikov YS. Nokhrina KP. Kretynin SV. Volotovski ID. Martinec J. Romanov GA. Kravets VS. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. Biochemistry Mosc. 2012;77:1–14. doi: 10.1134/S0006297912010014. [PMID:22339628] [DOI] [PubMed] [Google Scholar]
- Kwiatkowska K. One lipid, multiple functions: how various pools of PI(4,5)P(2) are created in the plasma membrane. Cell Mol Life Sci. 2010;67:3927–3946. doi: 10.1007/s00018-010-0432-5. [PMID:20559679] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leslie NR. Foti M. Non-genomic loss of PTEN function in cancer: not in my genes. Trends Pharmacol Sci. 2011;32:131–140. doi: 10.1016/j.tips.2010.12.005. [PMID:21236500] [DOI] [PubMed] [Google Scholar]
- Liu Y. Bankaitis VA. Phosphoinositide phosphatases in cell biology and disease. Prog Lipid Res. 2010;49:201–217. doi: 10.1016/j.plipres.2009.12.001. [PMID:20043944] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami M. Taketomi Y. Miki Y. Sato H. Hirabayashi T. Yamamoto K. Recent progress in phospholipase A2 research: from cells to animals to humans. Prog Lipid Res. 2011;50:152–192. doi: 10.1016/j.plipres.2010.12.001. [PMID:21185866] [DOI] [PubMed] [Google Scholar]
- Murakami M. Taketomi Y. Sato H. Yamamoto K. Secreted phospholipase A2 revisited. J Biochem. 2011;150:233–255. doi: 10.1093/jb/mvr088. [PMID:21746768] [DOI] [PubMed] [Google Scholar]
- Oude Weernink PA. Han L. Jakobs KH. Schmidt M. Dynamic phospholipid signaling by G protein-coupled receptors. Biochim Biophys Acta. 2007;1768:888–900. doi: 10.1016/j.bbamem.2006.09.012. [PMID:17054901] [DOI] [PubMed] [Google Scholar]
- Oude Weernink PA. Schmidt M. Jakobs KH. Regulation and cellular roles of phosphoinositide 5-kinases. Eur J Pharmacol. 2004;500:87–99. doi: 10.1016/j.ejphar.2004.07.014. [PMID:15464023] [DOI] [PubMed] [Google Scholar]
- Pascual F. Carman GM. Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim Biophys Acta. 2013;1831:514–522. doi: 10.1016/j.bbalip.2012.08.006. [PMID:22910056] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng X. Frohman MA. Mammalian phospholipase D physiological and pathological roles. Acta Physiol (Oxf) 2012;204:219–226. doi: 10.1111/j.1748-1716.2011.02298.x. [PMID:21447092] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sabatel H. Pirlot C. Piette J. Habraken Y. Importance of PIKKs in NF-κB activation by genotoxic stress. Biochem Pharmacol. 2011;82:1371–1383. doi: 10.1016/j.bcp.2011.07.105. [PMID:21872579] [DOI] [PubMed] [Google Scholar]
- Samadi N. Bekele R. Capatos D. Venkatraman G. Sariahmetoglu M. Brindley DN. Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie. 2011;93:61–70. doi: 10.1016/j.biochi.2010.08.002. [PMID:20709140] [DOI] [PubMed] [Google Scholar]
- Selvy PE. Lavieri RR. Lindsley CW. Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev. 2011;111:6064–6119. doi: 10.1021/cr200296t. [PMID:21936578] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siniossoglou S. Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases. Biochim Biophys Acta. 2013;1831:575–581. doi: 10.1016/j.bbalip.2012.09.014. [PMID:23026159] [DOI] [PubMed] [Google Scholar]
- Smrcka AV. Brown JH. Holz GG. Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cell Signal. 2012;24:1333–1343. doi: 10.1016/j.cellsig.2012.01.009. [PMID:22286105] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song MS. Salmena L. Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–296. doi: 10.1038/nrm3330. [PMID:22473468] [DOI] [PubMed] [Google Scholar]
- Subramaniam S. Fahy E. Gupta S. Sud M. Byrnes RW. Cotter D. Dinasarapu AR. Maurya MR. Bioinformatics and systems biology of the lipidome. Chem Rev. 2011;111:6452–6490. doi: 10.1021/cr200295k. [PMID:21939287] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bout I. Divecha N. PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci. 2009;122:3837–3850. doi: 10.1242/jcs.056127. (Pt 21): [PMID:19889969] [DOI] [PubMed] [Google Scholar]
- Vanhaesebroeck B. Guillermet-Guibert J. Graupera M. Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010;11:329–341. doi: 10.1038/nrm2882. [PMID:20379207] [DOI] [PubMed] [Google Scholar]
- Vanhaesebroeck B. Stephens L. Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13:195–203. doi: 10.1038/nrm3290. [PMID:22358332] [DOI] [PubMed] [Google Scholar]
- Waugh MG. Phosphatidylinositol 4-kinases, phosphatidylinositol 4-phosphate and cancer. Cancer Lett. 2012;325:125–131. doi: 10.1016/j.canlet.2012.06.009. [PMID:22750097] [DOI] [PubMed] [Google Scholar]
- Weinstein H. Scarlata S. The correlation between multidomain enzymes and multiple activation mechanisms–the case of phospholipase Cβ and its membrane interactions. Biochim Biophys Acta. 2011;1808:2940–2947. doi: 10.1016/j.bbamem.2011.08.028. [PMID:21906583] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Abraham NG. Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 2008;60:79–127. doi: 10.1124/pr.107.07104. [PMID:18323402] [DOI] [PubMed] [Google Scholar]
- Bilban M. Haschemi A. Wegiel B. Chin BY. Wagner O. Otterbein LE. Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med. 2008;86:267–279. doi: 10.1007/s00109-007-0276-0. [PMID:18034222] [DOI] [PubMed] [Google Scholar]
- Bucolo C. Drago F. Carbon monoxide and the eye: Implications for glaucoma therapy. Pharmacol Ther. 2011;130:191–201. doi: 10.1016/j.pharmthera.2011.01.013. [PMID:21295073] [DOI] [PubMed] [Google Scholar]
- Chan KH. Ng MK. Stocker R. Haem oxygenase-1 and cardiovascular disease: mechanisms and therapeutic potential. Clin Sci. 2011;120:493–504. doi: 10.1042/CS20100508. [PMID:21355854] [DOI] [PubMed] [Google Scholar]
- Gozzelino R. Jeney V. Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010;50:323–354. doi: 10.1146/annurev.pharmtox.010909.105600. [PMID:20055707] [DOI] [PubMed] [Google Scholar]
- Khan AA. Quigley JG. Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim Biophys Acta. 2011;1813:668–682. doi: 10.1016/j.bbamcr.2011.01.008. [PMID:21238504] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Kashfi K. Olson KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol. 2013;85:689–703. doi: 10.1016/j.bcp.2012.10.019. [PMID:23103569] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids. 2011;41:113–121. doi: 10.1007/s00726-010-0510-x. [PMID:20191298] [DOI] [PubMed] [Google Scholar]
- Li L. Rose P. Moore PK. Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol. 2011;51:169–187. doi: 10.1146/annurev-pharmtox-010510-100505. [PMID:21210746] [DOI] [PubMed] [Google Scholar]
- Olson KR. The therapeutic potential of hydrogen sulfide: separating hype from hope. Am J Physiol Regul Integr Comp Physiol. 2011;301:R297–R312. doi: 10.1152/ajpregu.00045.2011. [PMID:21543637] [DOI] [PubMed] [Google Scholar]
- Singh S. Banerjee R. PLP-dependent H(2)S biogenesis. Biochim Biophys Acta. 2011;1814:1518–1527. doi: 10.1016/j.bbapap.2011.02.004. [PMID:21315854] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92:791–896. doi: 10.1152/physrev.00017.2011. [PMID:22535897] [DOI] [PubMed] [Google Scholar]
Further reading
- Barker CJ. Berggren PO. New horizons in cellular regulation by inositol polyphosphates: insights from the pancreatic β-cell. Pharmacol Rev. 2013;65:641–669. doi: 10.1124/pr.112.006775. [PMID:23429059] [DOI] [PubMed] [Google Scholar]
- Chiu CT. Chuang DM. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther. 2010;128:281–304. doi: 10.1016/j.pharmthera.2010.07.006. [PMID:20705090] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ooms LM. Horan KA. Rahman P. Seaton G. Gurung R. Kethesparan DS. Mitchell CA. The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J. 2009;419:29–49. doi: 10.1042/BJ20081673. [PMID:19272022] [DOI] [PubMed] [Google Scholar]
- Pasquali L. Busceti CL. Fulceri F. Paparelli A. Fornai F. Intracellular pathways underlying the effects of lithium. Behav Pharmacol. 2010;21:473–492. doi: 10.1097/FBP.0b013e32833da5da. [PMID:20700048] [DOI] [PubMed] [Google Scholar]
- Pirruccello M. De Camilli P. Inositol 5-phosphatases: insights from the Lowe syndrome protein OCRL. Trends Biochem Sci. 2012;37:134–143. doi: 10.1016/j.tibs.2012.01.002. [PMID:22381590] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schell MJ. Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling. Cell Mol Life Sci. 2010;67:1755–1778. doi: 10.1007/s00018-009-0238-5. [PMID:20066467] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Miziorko HM. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys. 2011;505:131–143. doi: 10.1016/j.abb.2010.09.028. [PMID:20932952] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rozman D. Monostory K. Perspectives of the non-statin hypolipidemic agents. Pharmacol Ther. 2010;127:19–40. doi: 10.1016/j.pharmthera.2010.03.007. [PMID:20420853] [DOI] [PubMed] [Google Scholar]
- Seiki S. Frishman WH. Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia. Cardiol Rev. 2009;17:70–76. doi: 10.1097/CRD.0b013e3181885905. [PMID:19367148] [DOI] [PubMed] [Google Scholar]
Further reading
- Aiken A. Khokha R. Unraveling metalloproteinase function in skeletal biology and disease using genetically altered mice. Biochim Biophys Acta. 2010;1803:121–132. doi: 10.1016/j.bbamcr.2009.07.002. [PMID:19616584] [DOI] [PubMed] [Google Scholar]
- Bindom SM. Lazartigues E. The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol Cell Endocrinol. 2009;302:193–202. doi: 10.1016/j.mce.2008.09.020. [PMID:18948167] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catania JM. Chen G. Parrish AR. Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol. 2007;292:F905–F911. doi: 10.1152/ajprenal.00421.2006. [PMID:17190907] [DOI] [PubMed] [Google Scholar]
- Charrier-Hisamuddin L. Laboisse CL. Merlin D. ADAM-15: a metalloprotease that mediates inflammation. FASEB J. 2008;22:641–653. doi: 10.1096/fj.07-8876rev. [PMID:17905725] [DOI] [PubMed] [Google Scholar]
- Clark IM. Swingler TE. Sampieri CL. Edwards DR. The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol. 2008;40:1362–1378. doi: 10.1016/j.biocel.2007.12.006. [PMID:18258475] [DOI] [PubMed] [Google Scholar]
- Danser AH. Batenburg WW. Meiracker AH. Danilov SM. ACE phenotyping as a first step toward personalized medicine for ACE inhibitors. Why does ACE genotyping not predict the therapeutic efficacy of ACE inhibition? Pharmacol Ther. 2007;113:607–618. doi: 10.1016/j.pharmthera.2006.12.001. [PMID:17257685] [DOI] [PubMed] [Google Scholar]
- DasGupta S. Murumkar PR. Giridhar R. Yadav MR. Current perspective of TACE inhibitors: a review. Bioorg Med Chem. 2009;17:444–459. doi: 10.1016/j.bmc.2008.11.067. [PMID:19095454] [DOI] [PubMed] [Google Scholar]
- Datta B. Roles of P67/MetAP2 as a tumor suppressor. Biochim Biophys Acta. 2009;1796:281–292. doi: 10.1016/j.bbcan.2009.08.002. [PMID:19716858] [DOI] [PubMed] [Google Scholar]
- Deiteren K. Hendriks D. Scharpé S. Lambeir AM. Carboxypeptidase M: Multiple alliances and unknown partners. Clin Chim Acta. 2009;399:24–39. doi: 10.1016/j.cca.2008.10.003. [PMID:18957287] [DOI] [PubMed] [Google Scholar]
- Demon D. Van Damme P. Vanden Berghe T. Vandekerckhove J. Declercq W. Gevaert K. Vandenabeele P. Caspase substrates: easily caught in deep waters? Trends Biotechnol. 2009;27:680–688. doi: 10.1016/j.tibtech.2009.09.007. [PMID:19879007] [DOI] [PubMed] [Google Scholar]
- Devel L. Czarny B. Beau F. Georgiadis D. Stura E. Dive V. Third generation of matrix metalloprotease inhibitors: Gain in selectivity by targeting the depth of the S1′ cavity. Biochimie. 2010;92:1501–1508. doi: 10.1016/j.biochi.2010.07.017. [PMID:20696203] [DOI] [PubMed] [Google Scholar]
- Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest. 2007;117:24–32. doi: 10.1172/JCI30076. [PMID:17200703] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrario CM. ACE2: more of Ang-(1–7) or less Ang II? Curr Opin Nephrol Hypertens. 2011;20:1–6. doi: 10.1097/MNH.0b013e3283406f57. [PMID:21045683] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrario CM. Varagic J. The ANG-(1–7)/ACE2/mas axis in the regulation of nephron function. Am J Physiol Renal Physiol. 2010;298:F1297–F1305. doi: 10.1152/ajprenal.00110.2010. [PMID:20375118] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franchi L. Eigenbrod T. Muñoz-Planillo R. Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10:241–247. doi: 10.1038/ni.1703. [PMID:19221555] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gingras D. Béliveau R. Emerging concepts in the regulation of membrane-type 1 matrix metalloproteinase activity. Biochim Biophys Acta. 2010;1803:142–150. doi: 10.1016/j.bbamcr.2009.04.011. [PMID:19409422] [DOI] [PubMed] [Google Scholar]
- Greenlee KJ. Werb Z. Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev. 2007;87:69–98. doi: 10.1152/physrev.00022.2006. [PMID:17237343] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta SP. Quantitative structure-activity relationship studies on zinc-containing metalloproteinase inhibitors. Chem Rev. 2007;107:3042–3087. doi: 10.1021/cr030448t. [PMID:17622180] [DOI] [PubMed] [Google Scholar]
- Gyrd-Hansen M. Meier P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 2010;10:561–574. doi: 10.1038/nrc2889. [PMID:20651737] [DOI] [PubMed] [Google Scholar]
- Hadler-Olsen E. Fadnes B. Sylte I. Uhlin-Hansen L. Winberg JO. Regulation of matrix metalloproteinase activity in health and disease. FEBS J. 2011;278:28–45. doi: 10.1111/j.1742-4658.2010.07920.x. [PMID:21087458] [DOI] [PubMed] [Google Scholar]
- Haroon N. Inman RD. Endoplasmic reticulum aminopeptidases: Biology and pathogenic potential. Nat Rev Rheumatol. 2010;6:461–467. doi: 10.1038/nrrheum.2010.85. [PMID:20531381] [DOI] [PubMed] [Google Scholar]
- Hu J. Van den Steen PE. Sang QX. Opdenakker G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov. 2007;6:480–498. doi: 10.1038/nrd2308. [PMID:17541420] [DOI] [PubMed] [Google Scholar]
- Hui KS. Brain-specific aminopeptidase: from enkephalinase to protector against neurodegeneration. Neurochem Res. 2007;32:2062–2071. doi: 10.1007/s11064-007-9356-3. [PMID:17476590] [DOI] [PubMed] [Google Scholar]
- Imai Y. Kuba K. Penninger JM. Angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Cell Mol Life Sci. 2007;64:2006–2012. doi: 10.1007/s00018-007-6228-6. [PMID:17558469] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janecka A. Staniszewska R. Gach K. Fichna J. Enzymatic degradation of endomorphins. Peptides. 2008;29:2066–2073. doi: 10.1016/j.peptides.2008.07.015. [PMID:18718496] [DOI] [PubMed] [Google Scholar]
- Kantari C. Walczak H. Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta. 2011;1813:558–563. doi: 10.1016/j.bbamcr.2011.01.026. [PMID:21295084] [DOI] [PubMed] [Google Scholar]
- Kawanabe Y. Nauli SM. Endothelin. Cell Mol Life Sci. 2011;68:195–203. doi: 10.1007/s00018-010-0518-0. [PMID:20848158] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirby M. Yu DM. O'Connor S. Gorrell MD. Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clin Sci. 2010;118:31–41. doi: 10.1042/CS20090047. [PMID:19780719] [DOI] [PubMed] [Google Scholar]
- Kirkby NS. Hadoke PW. Bagnall AJ. Webb DJ. The endothelin system as a therapeutic target in cardiovascular disease: great expectations or bleak house? Br J Pharmacol. 2008;153:1105–1119. doi: 10.1038/sj.bjp.0707516. [PMID:17965745] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuba K. Imai Y. Ohto-Nakanishi T. Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther. 2010;128:119–128. doi: 10.1016/j.pharmthera.2010.06.003. [PMID:20599443] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lambert DW. Clarke NE. Turner AJ. Not just angiotensinases: new roles for the angiotensin-converting enzymes. Cell Mol Life Sci. 2010;67:89–98. doi: 10.1007/s00018-009-0152-x. [PMID:19763395] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lambert DW. Hooper NM. Turner AJ. Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system. Biochem Pharmacol. 2008;75:781–786. doi: 10.1016/j.bcp.2007.08.012. [PMID:17897633] [DOI] [PMC free article] [PubMed] [Google Scholar]
- López-Otín C. Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7:800–808. doi: 10.1038/nrc2228. [PMID:17851543] [DOI] [PubMed] [Google Scholar]
- MacFadyen RJ. Can matrix metalloproteinase inhibitors provide a realistic therapy in cardiovascular medicine? Curr Opin Pharmacol. 2007;7:171–178. doi: 10.1016/j.coph.2007.02.003. [PMID:17317319] [DOI] [PubMed] [Google Scholar]
- Mastroianni CM. Liuzzi GM. Matrix metalloproteinase dysregulation in HIV infection: implications for therapeutic strategies. Trends Mol Med. 2007;13:449–459. doi: 10.1016/j.molmed.2007.09.001. [PMID:18029231] [DOI] [PubMed] [Google Scholar]
- Mogk A. Schmidt R. Bukau B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 2007;17:165–172. doi: 10.1016/j.tcb.2007.02.001. [PMID:17306546] [DOI] [PubMed] [Google Scholar]
- Mucha A. Drag M. Dalton JP. Kafarski P. Metallo-aminopeptidase inhibitors. Biochimie. 2010;92:1509–1529. doi: 10.1016/j.biochi.2010.04.026. [PMID:20457213] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy G. The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer. 2008;8:929–941. doi: 10.1038/nrc2459. [PMID:19005493] [DOI] [PubMed] [Google Scholar]
- Murphy G. Nagase H. Localizing matrix metalloproteinase activities in the pericellular environment. FEBS J. 2011;278:2–15. doi: 10.1111/j.1742-4658.2010.07918.x. [PMID:21087456] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norton GR. Brooksbank R. Woodiwiss AJ. Gene variants of the renin-angiotensin system and hypertension: from a trough of disillusionment to a welcome phase of enlightenment? Clin Sci. 2010;118:487–506. doi: 10.1042/CS20090498. [PMID:20088829] [DOI] [PubMed] [Google Scholar]
- O'Brien P. O'Connor BF. Seprase: an overview of an important matrix serine protease. Biochim Biophys Acta. 2008;1784:1130–1145. doi: 10.1016/j.bbapap.2008.01.006. [PMID:18262497] [DOI] [PubMed] [Google Scholar]
- Ohnuma K. Dang NH. Morimoto C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol. 2008;29:295–301. doi: 10.1016/j.it.2008.02.010. [PMID:18456553] [DOI] [PubMed] [Google Scholar]
- Okun I. Balakin KV. Tkachenko SE. Ivachtchenko AV. Caspase activity modulators as anticancer agents. Anticancer Agents Med Chem. 2008;8:322–341. doi: 10.2174/187152008783961914. [PMID:18393791] [DOI] [PubMed] [Google Scholar]
- Page-McCaw A. Ewald AJ. Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–233. doi: 10.1038/nrm2125. [PMID:17318226] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pejler G. Knight SD. Henningsson F. Wernersson S. Novel insights into the biological function of mast cell carboxypeptidase A. Trends Immunol. 2009;30:401–408. doi: 10.1016/j.it.2009.04.008. [PMID:19643669] [DOI] [PubMed] [Google Scholar]
- Pirard B. Insight into the structural determinants for selective inhibition of matrix metalloproteinases. Drug Discov Today. 2007;12:640–646. doi: 10.1016/j.drudis.2007.06.003. [PMID:17706545] [DOI] [PubMed] [Google Scholar]
- Pradelli LA. Bénéteau M. Ricci JE. Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci. 2010;67:1589–1597. doi: 10.1007/s00018-010-0285-y. [PMID:20151314] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raizada MK. Ferreira AJ. ACE2: a new target for cardiovascular disease therapeutics. J Cardiovasc Pharmacol. 2007;50:112–119. doi: 10.1097/FJC.0b013e3180986219. [PMID:17703127] [DOI] [PubMed] [Google Scholar]
- Ramos-Fernandez M. Bellolio MF. Stead LG. Matrix metalloproteinase-9 as a marker for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis. 2011;20:47–54. doi: 10.1016/j.jstrokecerebrovasdis.2009.10.008. [PMID:21044610] [DOI] [PubMed] [Google Scholar]
- Rengel Y. Ospelt C. Gay S. Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthritis Res Ther. 2007;9:221. doi: 10.1186/ar2304. [PMID:18001502] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rocks N. Paulissen G. El Hour M. Quesada F. Crahay C. Gueders M. Foidart JM. Noel A. Cataldo D. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 2008;90:369–379. doi: 10.1016/j.biochi.2007.08.008. [PMID:17920749] [DOI] [PubMed] [Google Scholar]
- Rosell A. Lo EH. Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol. 2008;8:82–89. doi: 10.1016/j.coph.2007.12.001. [PMID:18226583] [DOI] [PubMed] [Google Scholar]
- Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009;8:205–216. doi: 10.1016/S1474-4422(09)70016-X. [PMID:19161911] [DOI] [PubMed] [Google Scholar]
- Rudnicki M. Mayer G. Significance of genetic polymorphisms of the renin-angiotensin-aldosterone system in cardiovascular and renal disease. Pharmacogenomics. 2009;10:463–476. doi: 10.2217/14622416.10.3.463. [PMID:19290794] [DOI] [PubMed] [Google Scholar]
- Schrader K. Huai J. Jöckel L. Oberle C. Borner C. Non-caspase proteases: triggers or amplifiers of apoptosis? Cell Mol Life Sci. 2010;67:1607–1618. doi: 10.1007/s00018-010-0287-9. [PMID:20169397] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz R. Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu Rev Pharmacol Toxicol. 2007;47:211–242. doi: 10.1146/annurev.pharmtox.47.120505.105230. [PMID:17129183] [DOI] [PubMed] [Google Scholar]
- Shi L. Mao C. Xu Z. Zhang L. Angiotensin-converting enzymes and drug discovery in cardiovascular diseases. Drug Discov Today. 2010;15:332–341. doi: 10.1016/j.drudis.2010.02.003. [PMID:20170743] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi YB. Fu L. Hasebe T. Ishizuya-Oka A. Regulation of extracellular matrix remodeling and cell fate determination by matrix metalloproteinase stromelysin-3 during thyroid hormone-dependent post-embryonic development. Pharmacol Ther. 2007;116:391–400. doi: 10.1016/j.pharmthera.2007.07.005. [PMID:17919732] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor RC. Cullen SP. Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–241. doi: 10.1038/nrm2312. [PMID:18073771] [DOI] [PubMed] [Google Scholar]
- Tsukamoto T. Wozniak KM. Slusher BS. Progress in the discovery and development of glutamate carboxypeptidase II inhibitors. Drug Discov Today. 2007;12:767–776. doi: 10.1016/j.drudis.2007.07.010. [PMID:17826690] [DOI] [PubMed] [Google Scholar]
- Tveita A. Rekvig OP. Zykova SN. Glomerular matrix metalloproteinases and their regulators in the pathogenesis of lupus nephritis. Arthritis Res Ther. 2008;10:229. doi: 10.1186/ar2532. [PMID:19090960] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vakifahmetoglu-Norberg H. Zhivotovsky B. The unpredictable caspase-2: what can it do? Trends Cell Biol. 2010;20:150–159. doi: 10.1016/j.tcb.2009.12.006. [PMID:20061149] [DOI] [PubMed] [Google Scholar]
- Endert P. Post-proteasomal and proteasome-independent generation of MHC class I ligands. Cell Mol Life Sci. 2011;68:1553–1567. doi: 10.1007/s00018-011-0662-1. [PMID:21390545] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma RP. Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem. 2007;15:2223–2268. doi: 10.1016/j.bmc.2007.01.011. [PMID:17275314] [DOI] [PubMed] [Google Scholar]
- Vincenti MP. Brinckerhoff CE. Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you? J Cell Physiol. 2007;213:355–364. doi: 10.1002/jcp.21208. [PMID:17654499] [DOI] [PubMed] [Google Scholar]
- Wilson TJ. Singh RK. Proteases as modulators of tumor-stromal interaction: primary tumors to bone metastases. Biochim Biophys Acta. 2008;1785:85–95. doi: 10.1016/j.bbcan.2007.11.001. [PMID:18082147] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfe MS. Intramembrane proteolysis. Chem Rev. 2009;109:1599–1612. doi: 10.1021/cr8004197. [PMID:19226105] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu P. Sriramula S. Lazartigues E. ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol. 2011;300:R804–R817. doi: 10.1152/ajpregu.00222.2010. [PMID:21178125] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yan C. Boyd DD. Regulation of matrix metalloproteinase gene expression. J Cell Physiol. 2007;211:19–26. doi: 10.1002/jcp.20948. [PMID:17167774] [DOI] [PubMed] [Google Scholar]
- Yazbeck R. Howarth GS. Abbott CA. Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease? Trends Pharmacol Sci. 2009;30:600–607. doi: 10.1016/j.tips.2009.08.003. [PMID:19837468] [DOI] [PubMed] [Google Scholar]
- Zolkiewska A. ADAM proteases: ligand processing and modulation of the Notch pathway. Cell Mol Life Sci. 2008;65:2056–2068. doi: 10.1007/s00018-008-7586-4. [PMID:18344021] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Arencibia JM. Pastor-Flores D. Bauer AF. Schulze JO. Biondi RM. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochim Biophys Acta. 2013;1834:1302–1321. doi: 10.1016/j.bbapap.2013.03.010. [PMID:23524293] [DOI] [PubMed] [Google Scholar]
- Breckler M. Berthouze M. Laurent AC. Crozatier B. Morel E. Lezoualc'h F. Rap-linked cAMP signaling Epac proteins: compartmentation, functioning and disease implications. Cell Signal. 2011;23:1257–1266. doi: 10.1016/j.cellsig.2011.03.007. [PMID:21402149] [DOI] [PubMed] [Google Scholar]
- Carling D. Thornton C. Woods A. Sanders MJ. AMP-activated protein kinase: new regulation, new roles? Biochem J. 2012;445:11–27. doi: 10.1042/BJ20120546. [PMID:22702974] [DOI] [PubMed] [Google Scholar]
- Caunt CJ. Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J. 2013;280:489–504. doi: 10.1111/j.1742-4658.2012.08716.x. [PMID:22812510] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diviani D. Maric D. Pérez López I. Cavin S. Del Vescovo CD. A-kinase anchoring proteins: molecular regulators of the cardiac stress response. Biochim Biophys Acta. 2013;1833:901–908. doi: 10.1016/j.bbamcr.2012.07.014. [PMID:22889610] [DOI] [PubMed] [Google Scholar]
- Eglen R. Reisine T. Drug discovery and the human kinome: recent trends. Pharmacol Ther. 2011;130:144–156. doi: 10.1016/j.pharmthera.2011.01.007. [PMID:21256157] [DOI] [PubMed] [Google Scholar]
- Graves LM. Duncan JS. Whittle MC. Johnson GL. The dynamic nature of the kinome. Biochem J. 2013;450:1–8. doi: 10.1042/BJ20121456. [PMID:23343193] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurevich EV. Tesmer JJ. Mushegian A. Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther. 2012;133:40–69. doi: 10.1016/j.pharmthera.2011.08.001. [PMID:21903131] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardie DG. Ross FA. Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–262. doi: 10.1038/nrm3311. [PMID:22436748] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardie DG. Ross FA. Hawley SA. AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol. 2012;19:1222–1236. doi: 10.1016/j.chembiol.2012.08.019. [PMID:23102217] [DOI] [PMC free article] [PubMed] [Google Scholar]
- LaFave LM. Levine RL. JAK2 the future: therapeutic strategies for JAK-dependent malignancies. Trends Pharmacol Sci. 2012;33:574–582. doi: 10.1016/j.tips.2012.08.005. [PMID:22995223] [DOI] [PubMed] [Google Scholar]
- Lawan A. Shi H. Gatzke F. Bennett AM. Diversity and specificity of the mitogen-activated protein kinase phosphatase-1 functions. Cell Mol Life Sci. 2013;70:223–237. doi: 10.1007/s00018-012-1041-2. [PMID:22695679] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Q. Sabnis Y. Zhao Z. Zhang T. Buhrlage SJ. Jones LH. Gray NS. Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol. 2013;20:146–159. doi: 10.1016/j.chembiol.2012.12.006. [PMID:23438744] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ljubicic V. Jasmin BJ. AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. Trends Mol Med. 2013 doi: 10.1016/j.molmed.2013.07.002. [Epub ahead of print]. [PMID:23891277] [DOI] [PubMed] [Google Scholar]
- Martin KJ. Arthur JS. Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology. 2012;63:1227–1237. doi: 10.1016/j.neuropharm.2012.07.024. [PMID:22846224] [DOI] [PubMed] [Google Scholar]
- Menet CJ. Rompaey LV. Geney R. Advances in the discovery of selective JAK inhibitors. Prog Med Chem. 2013;52:153–223. doi: 10.1016/B978-0-444-62652-3.00004-1. [PMID:23384668] [DOI] [PubMed] [Google Scholar]
- Mochly-Rosen D. Das K. Grimes KV. Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov. 2012;11:937–957. doi: 10.1038/nrd3871. [PMID:23197040] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nithianandarajah-Jones GN. Wilm B. Goldring CE. Müller J. Cross MJ. ERK5: structure, regulation and function. Cell Signal. 2012;24:2187–2196. doi: 10.1016/j.cellsig.2012.07.007. [PMID:22800864] [DOI] [PubMed] [Google Scholar]
- Pearce LR. Komander D. Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 2010;11:9–22. doi: 10.1038/nrm2822. [PMID:20027184] [DOI] [PubMed] [Google Scholar]
- Roskoski R., Jr MEK1/2 dual-specificity protein kinases: structure and regulation. Biochem Biophys Res Commun. 2012;417:5–10. doi: 10.1016/j.bbrc.2011.11.145. [PMID:22177953] [DOI] [PubMed] [Google Scholar]
- Russo GL. Russo M. Ungaro P. AMP-activated protein kinase: a target for old drugs against diabetes and cancer. Biochem Pharmacol. 2013;86:339–350. doi: 10.1016/j.bcp.2013.05.023. [PMID:23747347] [DOI] [PubMed] [Google Scholar]
- Scott JD. Dessauer CW. Taskén K. Creating order from chaos: cellular regulation by kinase anchoring. Annu Rev Pharmacol Toxicol. 2013;53:187–210. doi: 10.1146/annurev-pharmtox-011112-140204. [PMID:23043438] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg SF. Regulation of protein kinase D1 activity. Mol Pharmacol. 2012;81:284–291. doi: 10.1124/mol.111.075986. [PMID:22188925] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarrant MK. Cole PA. The chemical biology of protein phosphorylation. Annu Rev Biochem. 2009;78:797–825. doi: 10.1146/annurev.biochem.78.070907.103047. [PMID:19489734] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor SS. Zhang P. Steichen JM. Keshwani MM. Kornev AP. PKA: lessons learned after twenty years. Biochim Biophys Acta. 2013;1834:1271–1278. doi: 10.1016/j.bbapap.2013.03.007. [PMID:23535202] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vandamme J. Castermans D. Thevelein JM. Molecular mechanisms of feedback inhibition of protein kinase A on intracellular cAMP accumulation. Cell Signal. 2012;24:1610–1618. doi: 10.1016/j.cellsig.2012.04.001. [PMID:22522182] [DOI] [PubMed] [Google Scholar]
- Wu-Zhang AX. Newton AC. Protein kinase C pharmacology: refining the toolbox. Biochem J. 2013;452:195–209. doi: 10.1042/BJ20130220. [PMID:23662807] [DOI] [PMC free article] [PubMed] [Google Scholar]
Further reading
- Baker DL. Pham TC. Sparks MA. Structure and catalytic function of sphingosine kinases: analysis by site-directed mutagenesis and enzyme kinetics. Biochim Biophys Acta. 2013;1831:139–146. doi: 10.1016/j.bbalip.2012.09.006. [PMID:23000541] [DOI] [PubMed] [Google Scholar]
- Chan H. Pitson SM. Post-translational regulation of sphingosine kinases. Biochim Biophys Acta. 2013;1831:147–156. doi: 10.1016/j.bbalip.2012.07.005. [PMID:22801036] [DOI] [PubMed] [Google Scholar]
- Kunkel GT. Maceyka M. Milstien S. Spiegel S. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov. 2013;12:688–702. doi: 10.1038/nrd4099. [PMID:23954895] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Stunff H. Peterson C. Thornton R. Milstien S. Mandala SM. Spiegel S. Characterization of murine sphingosine-1-phosphate phosphohydrolase. J Biol Chem. 2002;277:8920–8927. doi: 10.1074/jbc.M109968200. [PMID:11756451] [DOI] [PubMed] [Google Scholar]
- Ogawa C. Kihara A. Gokoh M. Igarashi Y. Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. J Biol Chem. 2003;278:1268–1272. doi: 10.1074/jbc.M209514200. [PMID:12411432] [DOI] [PubMed] [Google Scholar]
- Pyne NJ. Pyne S. Sphingosine 1-phosphate and cancer. Nat Rev Cancer. 2010;10:489–503. doi: 10.1038/nrc2875. [PMID:20555359] [DOI] [PubMed] [Google Scholar]
- Pyne S. Pyne NJ. Translational aspects of sphingosine 1-phosphate biology. Trends Mol Med. 2011;17:463–472. doi: 10.1016/j.molmed.2011.03.002. [PMID:21514226] [DOI] [PubMed] [Google Scholar]
- Saba JD. Garza-Rodea AS. S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase. Biochim Biophys Acta. 2013;1831:167–175. doi: 10.1016/j.bbalip.2012.06.009. [PMID:22750505] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwalm S. Pfeilschifter J. Huwiler A. Sphingosine-1-phosphate: a Janus-faced mediator of fibrotic diseases. Biochim Biophys Acta. 2013;1831:239–250. doi: 10.1016/j.bbalip.2012.07.022. [PMID:22889995] [DOI] [PubMed] [Google Scholar]
Further reading
- Bianco AC. Minireview: cracking the metabolic code for thyroid hormone signaling. Endocrinology. 2011;152:3306–3311. doi: 10.1210/en.2011-1104. [PMID:21712363] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boelen A. Kwakkel J. Fliers E. Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev. 2011;32:670–693. doi: 10.1210/er.2011-0007. [PMID:21791567] [DOI] [PubMed] [Google Scholar]
- Darras VM. Van Herck SL. Iodothyronine deiodinase structure and function: from ascidians to humans. J Endocrinol. 2012;215:189–206. doi: 10.1530/JOE-12-0204. [PMID:22825922] [DOI] [PubMed] [Google Scholar]
- Dentice M. Salvatore D. Deiodinases: the balance of thyroid hormone: local impact of thyroid hormone inactivation. J Endocrinol. 2011;209:273–282. doi: 10.1530/JOE-11-0002. [PMID:21398344] [DOI] [PubMed] [Google Scholar]
- Gereben B. Zavacki AM. Ribich S. Kim BW. Huang SA. Simonides WS. Zeöld A. Bianco AC. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29:898–938. doi: 10.1210/er.2008-0019. [PMID:18815314] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gereben B. Zeöld A. Dentice M. Salvatore D. Bianco AC. Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci. 2008;65:570–590. doi: 10.1007/s00018-007-7396-0. [PMID:17989921] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maia AL. Goemann IM. Meyer EL. Wajner SM. Deiodinases: the balance of thyroid hormone: type 1 iodothyronine deiodinase in human physiology and disease. J Endocrinol. 2011;209:283–297. doi: 10.1530/JOE-10-0481. [PMID:21415143] [DOI] [PubMed] [Google Scholar]
- Orozco A. Valverde-R C. Olvera A. García-G C. Iodothyronine deiodinases: a functional and evolutionary perspective. J Endocrinol. 2012;215:207–219. doi: 10.1530/JOE-12-0258. [PMID:22872760] [DOI] [PubMed] [Google Scholar]
- Rokita SE. Adler JM. McTamney PM. Watson JA., Jr Efficient use and recycling of the micronutrient iodide in mammals. Biochimie. 2010;92:1227–1235. doi: 10.1016/j.biochi.2010.02.013. [PMID:20167242] [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waung JA. Bassett JH. Williams GR. Thyroid hormone metabolism in skeletal development and adult bone maintenance. Trends Endocrinol Metab. 2012;23:155–162. doi: 10.1016/j.tem.2011.11.002. [PMID:22169753] [DOI] [PubMed] [Google Scholar]
- Williams GR. Bassett JH. Deiodinases: the balance of thyroid hormone: local control of thyroid hormone action: role of type 2 deiodinase. J Endocrinol. 2011;209:261–272. doi: 10.1530/JOE-10-0448. [PMID:21292729] [DOI] [PubMed] [Google Scholar]
References
- 1.Overington JP, et al. Nat Rev Drug Discovery. 2006;5:993–996. doi: 10.1038/nrd2199. [DOI] [PubMed] [Google Scholar]
- 2.Rask-Andersen M, et al. Annu Rev Pharmacol Toxicol. 2013 doi: 10.1146/annurev-pharmtox-011613-135943. in press. PM: 24016212. [DOI] [PubMed] [Google Scholar]
- 3.Bellier JP, Kimura H. J Chem Neuroanat. 2011;42:225–235. doi: 10.1016/j.jchemneu.2011.02.005. [PMID: 21382474 ] [DOI] [PubMed] [Google Scholar]
- 4.Galli A, et al. Eur J Pharmacol. 1994;270:189–193. doi: 10.1016/0926-6917(94)90062-0. [PMID: 8039548 ] [DOI] [PubMed] [Google Scholar]
- 5.Giacobini E. Neurochem Res. 2003;28:515–522. doi: 10.1023/a:1022869222652. [PMID: 12675140 ] [DOI] [PubMed] [Google Scholar]
- 6.Luo W, et al. J Med Chem. 2006;49:2174–2185. doi: 10.1021/jm050578p. [PMID: 16570913 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Wilson IB, Harrison MA. J Biol Chem. 1961;236:2292–2295. [PMID: 13785664 ] [PubMed] [Google Scholar]
- 8.Agarwal RP, et al. Biochem Pharmacol. 1977;26:359–367. doi: 10.1016/0006-2952(77)90192-7. [PMID: 849330 ] [DOI] [PubMed] [Google Scholar]
- 9.Burger RM, Lowenstein JM. Biochemistry. 1975;14:2362–2366. doi: 10.1021/bi00682a014. [PMID: 1169962 ] [DOI] [PubMed] [Google Scholar]
- 10.Guranowski A, et al. Biochemistry. 1981;20:110–115. doi: 10.1021/bi00504a019. [PMID: 7470463 ] [DOI] [PubMed] [Google Scholar]
- 11.Jarvis MF, et al. J Pharmacol Exp Ther. 2000;295:1156–1164. [PMID: 11082453 ] [PubMed] [Google Scholar]
- 12.Kameoka J, et al. Science. 1993;261:466–469. doi: 10.1126/science.8101391. [PMID: 8101391 ] [DOI] [PubMed] [Google Scholar]
- 13.Maier SA, et al. J Mol Evol. 2005;61:776–794. doi: 10.1007/s00239-005-0046-y. [PMID: 16245011 ] [DOI] [PubMed] [Google Scholar]
- 14.McGaraughty S, et al. J Pharmacol Exp Ther. 2001;296:501–509. [PMID: 11160637 ] [PubMed] [Google Scholar]
- 15.Zavialov AV, et al. J Biol Chem. 2010;285:12367–12377. doi: 10.1074/jbc.M109.083527. [PMID: 20147294 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Abita JP, et al. J Biol Chem. 1976;251:5310–5314. [PMID: 182695 ] [PubMed] [Google Scholar]
- 17.Daubner SC, et al. Arch Biochem Biophys. 2011;508:1–12. doi: 10.1016/j.abb.2010.12.017. [PMID: 21176768 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Greengard O, et al. Science. 1976;192:1007–1008. doi: 10.1126/science.944951. [PMID: 944951 ] [DOI] [PubMed] [Google Scholar]
- 19.Joh TH, et al. Proc Natl Acad Sci USA. 1978;75:4744–4748. doi: 10.1073/pnas.75.10.4744. [PMID: 33381 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Johansen PA, et al. J Neurochem. 1996;66:817–823. doi: 10.1046/j.1471-4159.1996.66020817.x. [PMID: 8592157 ] [DOI] [PubMed] [Google Scholar]
- 21.Nicholson AN, Wright CM. Neuropharmacology. 1981;20:335–339. doi: 10.1016/0028-3908(81)90005-8. [PMID: 6457252 ] [DOI] [PubMed] [Google Scholar]
- 22.Babbedge RC, et al. Br J Pharmacol. 1993;110:225–228. doi: 10.1111/j.1476-5381.1993.tb13796.x. [PMID: 7693279 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Baggio R, et al. J Pharmacol Exp Ther. 1999;290:1409–1416. [PMID: 10454520 ] [PubMed] [Google Scholar]
- 24.Bland-Ward PA, Moore PK. Life Sci. 1995;57:PL131–PL135. doi: 10.1016/0024-3205(95)02046-l. [PMID: 7544863 ] [DOI] [PubMed] [Google Scholar]
- 25.Colleluori DM, Ash DE. Biochemistry. 2001;40:9356–9362. doi: 10.1021/bi010783g. [PMID: 11478904 ] [DOI] [PubMed] [Google Scholar]
- 26.Corbett JA, McDaniel ML. Diabetes. 1992;41:897–903. doi: 10.2337/diab.41.8.897. [PMID: 1378415 ] [DOI] [PubMed] [Google Scholar]
- 27.Faraci WS, et al. Br J Pharmacol. 1996;119:1101–1108. doi: 10.1111/j.1476-5381.1996.tb16010.x. [PMID: 8937711 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Garvey EP, et al. J Biol Chem. 1997;272:4959–4963. doi: 10.1074/jbc.272.8.4959. [PMID: 9030556 ] [DOI] [PubMed] [Google Scholar]
- 29.Garvey EP, et al. J Biol Chem. 1994;269:26669–26676. [PMID: 7523409 ] [PubMed] [Google Scholar]
- 30.Kim NN, et al. Biochemistry. 2001;40:2678–2688. doi: 10.1021/bi002317h. [PMID: 11258879 ] [DOI] [PubMed] [Google Scholar]
- 31.Mayer B, Hemmens B. Trends Biochem Sci. 1997;22:477–481. doi: 10.1016/s0968-0004(97)01147-x. [PMID: 9433128 ] [DOI] [PubMed] [Google Scholar]
- 32.Moncada S, et al. Pharmacol Rev. 1997;49:137–142. [PMID: 9228663 ] [PubMed] [Google Scholar]
- 33.Moore WM, et al. J Med Chem. 1994;37:3886–3888. doi: 10.1021/jm00049a007. [PMID: 7525961 ] [DOI] [PubMed] [Google Scholar]
- 34.Tenu JP, et al. Nitric Oxide. 1999;3:427–438. doi: 10.1006/niox.1999.0255. [PMID: 10637120 ] [DOI] [PubMed] [Google Scholar]
- 35.Zhang HQ, et al. J Med Chem. 1997;40:3869–3870. doi: 10.1021/jm970550g. [PMID: 9397167 ] [DOI] [PubMed] [Google Scholar]
- 36.Coleman CS, et al. Biochem J. 2004;379:849–855. doi: 10.1042/BJ20040035. (Pt 3):. [PMID: 14763899 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Garbarg M, et al. J Neurochem. 1980;35:1045–1052. doi: 10.1111/j.1471-4159.1980.tb07858.x. [PMID: 7452304 ] [DOI] [PubMed] [Google Scholar]
- 38.Loftus TM, et al. Science. 2000;288:2379–2381. doi: 10.1126/science.288.5475.2379. [PMID: 10875926 ] [DOI] [PubMed] [Google Scholar]
- 39.Pajunen AE, et al. J Neurochem. 1979;32:1401–1408. doi: 10.1111/j.1471-4159.1979.tb11077.x. [PMID: 438812 ] [DOI] [PubMed] [Google Scholar]
- 40.Saha AK, et al. J Biol Chem. 2000;275:24279–24283. doi: 10.1074/jbc.C000291200. [PMID: 10854420 ] [DOI] [PubMed] [Google Scholar]
- 41.Stanek J, et al. J Med Chem. 1993;36:2168–2171. doi: 10.1021/jm00067a014. [PMID: 8340919 ] [DOI] [PubMed] [Google Scholar]
- 42.Wu JY, et al. J Biol Chem. 1973;248:3029–3034. [PMID: 4700449 ] [PubMed] [Google Scholar]
- 43.Zhu MY, et al. Biochim Biophys Acta. 2004;1670:156–164. doi: 10.1016/j.bbagen.2003.11.006. [PMID: 14738999 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Abita JP, et al. J Biol Chem. 1976;251:5310–5314. [PMID: 182695 ] [PubMed] [Google Scholar]
- 45.Chambers KJ, et al. Gene. 1998;218:111–120. doi: 10.1016/s0378-1119(98)00344-8. [PMID: 9751809 ] [DOI] [PubMed] [Google Scholar]
- 46.Curet O, et al. J Affect Disord. 1998;51:287–303. doi: 10.1016/s0165-0327(98)00225-0. [PMID: 10333983 ] [DOI] [PubMed] [Google Scholar]
- 47.Daubner SC, et al. Arch Biochem Biophys. 2011;508:1–12. doi: 10.1016/j.abb.2010.12.017. [PMID: 21176768 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Fuller RW, et al. Biochem Pharmacol. 1981;30:1345–1352. doi: 10.1016/0006-2952(81)90319-1. [PMID: 6268095 ] [DOI] [PubMed] [Google Scholar]
- 49.Greengard O, et al. Science. 1976;192:1007–1008. doi: 10.1126/science.944951. [PMID: 944951 ] [DOI] [PubMed] [Google Scholar]
- 50.Haefely WE, et al. Adv Neurol. 1990;53:505–512. [PMID: 2122653 ] [PubMed] [Google Scholar]
- 51.Joh TH, et al. Proc Natl Acad Sci USA. 1978;75:4744–4748. doi: 10.1073/pnas.75.10.4744. [PMID: 33381 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Lotta T, et al. Biochemistry. 1995;34:4202–4210. doi: 10.1021/bi00013a008. [PMID: 7703232 ] [DOI] [PubMed] [Google Scholar]
- 53.Medvedev AE, et al. J Neural Transm Suppl. 1998;52:337–342. doi: 10.1007/978-3-7091-6499-0_36. [PMID: 9564636 ] [DOI] [PubMed] [Google Scholar]
- 54.Männistö PT, et al. Br J Pharmacol. 1992;105:569–574. doi: 10.1111/j.1476-5381.1992.tb09020.x. [PMID: 1628144 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Stanley WC, et al. Br J Pharmacol. 1997;121:1803–1809. doi: 10.1038/sj.bjp.0701315. [PMID: 9283721 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Youdim MB, et al. Br J Pharmacol. 2001;132:500–506. doi: 10.1038/sj.bjp.0703826. [PMID: 11159700 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Butters TD, et al. Tetrahedron-Asymmetry. 2000;11:113–124. [Google Scholar]
- 58.Adam-Klages S, et al. Cell. 1996;86:937–947. doi: 10.1016/s0092-8674(00)80169-5. [PMID: 8808629 ] [DOI] [PubMed] [Google Scholar]
- 59.Beauchamp E, et al. Biochimie. 2009;91:1411–1419. doi: 10.1016/j.biochi.2009.07.014. [PMID: 19647031 ] [DOI] [PubMed] [Google Scholar]
- 60.Fabrias G, et al. Prog Lipid Res. 2012;51:82–94. doi: 10.1016/j.plipres.2011.12.002. [PMID: 22200621 ] [DOI] [PubMed] [Google Scholar]
- 61.Graf C, et al. Mol Pharmacol. 2008;74:925–932. doi: 10.1124/mol.108.048652. [PMID: 18612076 ] [DOI] [PubMed] [Google Scholar]
- 62.Han G, et al. Proc Natl Acad Sci USA. 2009;106:8186–8191. doi: 10.1073/pnas.0811269106. [PMID: 19416851 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Koch J, et al. J Biol Chem. 1996;271:33110–33115. doi: 10.1074/jbc.271.51.33110. [PMID: 8955159 ] [DOI] [PubMed] [Google Scholar]
- 64.Lahiri S, Futerman AH. J Biol Chem. 2005;280:33735–33738. doi: 10.1074/jbc.M506485200. [PMID: 16100120 ] [DOI] [PubMed] [Google Scholar]
- 65.Laviad EL, et al. J Biol Chem. 2008;283:5677–5684. doi: 10.1074/jbc.M707386200. [PMID: 18165233 ] [DOI] [PubMed] [Google Scholar]
- 66.Mao C, et al. J Biol Chem. 2001;276:26577–26588. doi: 10.1074/jbc.M102818200. [PMID: 11356846 ] [DOI] [PubMed] [Google Scholar]
- 67.Miyake Y, et al. Biochem Biophys Res Commun. 1995;211:396–403. doi: 10.1006/bbrc.1995.1827. [PMID: 7794249 ] [DOI] [PubMed] [Google Scholar]
- 68.Mizutani Y, et al. Biochem J. 2005;390:263–271. doi: 10.1042/BJ20050291. (Pt 1):. [PMID: 15823095 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Mlinar B, Corradetti R. Eur J Neurosci. 2003;18:1559–1571. doi: 10.1046/j.1460-9568.2003.02884.x. [PMID: 14511335 ] [DOI] [PubMed] [Google Scholar]
- 70.Philipp S, et al. Proc Natl Acad Sci USA. 2010;107:1112–1117. doi: 10.1073/pnas.0908486107. [PMID: 20080539 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Rabionet M, et al. J Biol Chem. 2008;283:13357–13369. doi: 10.1074/jbc.M800870200. [PMID: 18308723 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Riebeling C, et al. J Biol Chem. 2003;278:43452–43459. doi: 10.1074/jbc.M307104200. [PMID: 12912983 ] [DOI] [PubMed] [Google Scholar]
- 73.Sun W, et al. J Invest Dermatol. 2008;128:389–397. doi: 10.1038/sj.jid.5701025. [PMID: 17713573 ] [DOI] [PubMed] [Google Scholar]
- 74.Tani M, et al. J Biol Chem. 2003;278:10523–10530. doi: 10.1074/jbc.M207932200. [PMID: 12499379 ] [DOI] [PubMed] [Google Scholar]
- 75.Tani M, Kuge O. Biochem Biophys Res Commun. 2009;381:328–332. doi: 10.1016/j.bbrc.2009.02.063. [PMID: 19233134 ] [DOI] [PubMed] [Google Scholar]
- 76.Venkataraman K, et al. J Biol Chem. 2002;277:35642–35649. doi: 10.1074/jbc.M205211200. [PMID: 12105227 ] [DOI] [PubMed] [Google Scholar]
- 77.Xu R, et al. FASEB J. 2006;20:1813–1825. doi: 10.1096/fj.05-5689com. [PMID: 16940153 ] [DOI] [PubMed] [Google Scholar]
- 78.Alaamery MA, et al. J Biomol Screen. 2010;15:359–367. doi: 10.1177/1087057110362100. [PMID: 20228279 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Aoki M, et al. J Pharmacol Exp Ther. 2000;295:255–260. [PMID: 10991987 ] [PubMed] [Google Scholar]
- 80.Boess FG, et al. Neuropharmacology. 2004;47:1081–1092. doi: 10.1016/j.neuropharm.2004.07.040. [PMID: 15555642 ] [DOI] [PubMed] [Google Scholar]
- 81.Buck J, et al. Proc Natl Acad Sci USA. 1999;96:79–84. doi: 10.1073/pnas.96.1.79. [PMID: 9874775 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Cali JJ, et al. J Biol Chem. 1994;269:12190–12195. [PMID: 8163524 ] [PubMed] [Google Scholar]
- 83.Ceyhan O, et al. Chem Biol. 2012;19:155–163. doi: 10.1016/j.chembiol.2011.12.010. [PMID: 22284362 ] [DOI] [PubMed] [Google Scholar]
- 84.Chen H, et al. J Med Chem. 2013;56:952–962. doi: 10.1021/jm3014162. [PMID: 23286832 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Chen J, Iyengar R. J Biol Chem. 1993;268:12253–12256. [PMID: 8389756 ] [PubMed] [Google Scholar]
- 86.Chen Y, et al. Science. 2000;289:625–628. doi: 10.1126/science.289.5479.625. [PMID: 10915626 ] [DOI] [PubMed] [Google Scholar]
- 87.Chen Y, et al. Proc Natl Acad Sci USA. 1997;94:14100–14104. doi: 10.1073/pnas.94.25.14100. [PMID: 9391159 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Choi EJ, et al. Biochemistry. 1992;31:6492–6498. doi: 10.1021/bi00143a019. [PMID: 1633161 ] [DOI] [PubMed] [Google Scholar]
- 89.Corbin JD, et al. Eur J Biochem. 2000;267:2760–2767. doi: 10.1046/j.1432-1327.2000.01297.x. [PMID: 10785399 ] [DOI] [PubMed] [Google Scholar]
- 90.Enserink JM, et al. Nat Cell Biol. 2002;4:901–906. doi: 10.1038/ncb874. [PMID: 12402047 ] [DOI] [PubMed] [Google Scholar]
- 91.Fawcett L, et al. Proc Natl Acad Sci USA. 2000;97:3702–3707. doi: 10.1073/pnas.050585197. [PMID: 10725373 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Feelisch M, et al. Mol Pharmacol. 1999;56:243–253. doi: 10.1124/mol.56.2.243. [PMID: 10419542 ] [DOI] [PubMed] [Google Scholar]
- 93.Fisher DA, et al. Biochem Biophys Res Commun. 1998;246:570–577. doi: 10.1006/bbrc.1998.8684. [PMID: 9618252 ] [DOI] [PubMed] [Google Scholar]
- 94.Fisher DA, et al. J Biol Chem. 1998;273:15559–15564. doi: 10.1074/jbc.273.25.15559. [PMID: 9624146 ] [DOI] [PubMed] [Google Scholar]
- 95.Friebe A, et al. Mol Pharmacol. 1998;54:962–967. doi: 10.1124/mol.54.6.962. [PMID: 9855623 ] [DOI] [PubMed] [Google Scholar]
- 96.Friebe A, et al. EMBO J. 1996;15:6863–6868. [PMID: 9003762 ] [PMC free article] [PubMed] [Google Scholar]
- 97.Fujishige K, et al. J Biol Chem. 1999;274:18438–18445. doi: 10.1074/jbc.274.26.18438. [PMID: 10373451 ] [DOI] [PubMed] [Google Scholar]
- 98.Galle J, et al. Br J Pharmacol. 1999;127:195–203. doi: 10.1038/sj.bjp.0702495. [PMID: 10369473 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Gao BN, Gilman AG. Proc Natl Acad Sci USA. 1991;88:10178–10182. doi: 10.1073/pnas.88.22.10178. [PMID: 1946437 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Gardner C, et al. Biochem Biophys Res Commun. 2000;272:186–192. doi: 10.1006/bbrc.2000.2743. [PMID: 10872825 ] [DOI] [PubMed] [Google Scholar]
- 101.Garthwaite J, et al. Mol Pharmacol. 1995;48:184–188. [PMID: 7544433 ] [PubMed] [Google Scholar]
- 102.Hayashi M, et al. Biochem Biophys Res Commun. 1998;250:751–756. doi: 10.1006/bbrc.1998.9379. [PMID: 9784418 ] [DOI] [PubMed] [Google Scholar]
- 103.Hess KC, et al. Dev Cell. 2005;9:249–259. doi: 10.1016/j.devcel.2005.06.007. [PMID: 16054031 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Hill J, et al. Cell Signal. 2000;12:233–237. doi: 10.1016/s0898-6568(99)00082-0. [PMID: 10781930 ] [DOI] [PubMed] [Google Scholar]
- 105.Hoffmann R, et al. EMBO J. 1999;18:893–903. doi: 10.1093/emboj/18.4.893. [PMID: 10022832 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Hoffmann R, et al. Biochem J. 1998;333:139–149. doi: 10.1042/bj3330139. (Pt 1):. [PMID: 9639573 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Houslay MD, Adams DR. Biochem J. 2003;370:1–18. doi: 10.1042/BJ20021698. (Pt 1):. [PMID: 12444918 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Ishikawa Y, et al. J Biol Chem. 1992;267:13553–13557. [PMID: 1618857 ] [PubMed] [Google Scholar]
- 109.Iwami G, et al. J Biol Chem. 1995;270:12481–12484. doi: 10.1074/jbc.270.21.12481. [PMID: 7759492 ] [DOI] [PubMed] [Google Scholar]
- 110.Jacobowitz O, et al. J Biol Chem. 1993;268:3829–3832. [PMID: 8440678 ] [PubMed] [Google Scholar]
- 111.Kawabe J, et al. J Biol Chem. 1994;269:16554–16558. [PMID: 8206971 ] [PubMed] [Google Scholar]
- 112.Lai HL, et al. Mol Pharmacol. 1999;56:644–650. doi: 10.1124/mol.56.3.644. [PMID: 10462552 ] [DOI] [PubMed] [Google Scholar]
- 113.Loughney K, et al. J Biol Chem. 1996;271:796–806. doi: 10.1074/jbc.271.2.796. [PMID: 8557689 ] [DOI] [PubMed] [Google Scholar]
- 114.Lustig KD, et al. J Biol Chem. 1993;268:13900–13905. [PMID: 8390980 ] [PubMed] [Google Scholar]
- 115.Michaeli T, et al. J Biol Chem. 1993;268:12925–12932. [PMID: 8389765 ] [PubMed] [Google Scholar]
- 116.Michie AM, et al. Cell Signal. 1996;8:97–110. doi: 10.1016/0898-6568(95)02032-2. [PMID: 8730511 ] [DOI] [PubMed] [Google Scholar]
- 117.Mochida H, et al. Eur J Pharmacol. 2002;456:91–98. doi: 10.1016/s0014-2999(02)02590-6. [PMID: 12450574 ] [DOI] [PubMed] [Google Scholar]
- 118.Olesen SP, et al. Br J Pharmacol. 1998;123:299–309. doi: 10.1038/sj.bjp.0701603. [PMID: 9489619 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Onda T, et al. J Biol Chem. 2001;276:47785–47793. doi: 10.1074/jbc.M107233200. [PMID: 11602596 ] [DOI] [PubMed] [Google Scholar]
- 120.Paterson JM, et al. J Neurochem. 2000;75:1358–1367. doi: 10.1046/j.1471-4159.2000.0751358.x. [PMID: 10987815 ] [DOI] [PubMed] [Google Scholar]
- 121.Premont RT, et al. J Biol Chem. 1996;271:13900–13907. doi: 10.1074/jbc.271.23.13900. [PMID: 8662814 ] [DOI] [PubMed] [Google Scholar]
- 122.Rawson DJ, et al. Bioorg Med Chem. 2012;20:498–509. doi: 10.1016/j.bmc.2011.10.022. [PMID: 22100260 ] [DOI] [PubMed] [Google Scholar]
- 123.Saldou N, et al. Cell Signal. 1998;10:427–440. doi: 10.1016/s0898-6568(97)00169-1. [PMID: 9720765 ] [DOI] [PubMed] [Google Scholar]
- 124.Sasaki T, et al. Biochem Biophys Res Commun. 2000;271:575–583. doi: 10.1006/bbrc.2000.2661. [PMID: 10814504 ] [DOI] [PubMed] [Google Scholar]
- 125.Schindler U, et al. Mol Pharmacol. 2006;69:1260–1268. doi: 10.1124/mol.105.018747. [PMID: 16332991 ] [DOI] [PubMed] [Google Scholar]
- 126.Schmidt M, et al. Nat Cell Biol. 2001;3:1020–1024. doi: 10.1038/ncb1101-1020. [PMID: 11715024 ] [DOI] [PubMed] [Google Scholar]
- 127.Sinnarajah S, et al. Nature. 2001;409:1051–1055. doi: 10.1038/35059104. [PMID: 11234015 ] [DOI] [PubMed] [Google Scholar]
- 128.Smith SJ, et al. Mol Pharmacol. 2004;66:1679–1689. doi: 10.1124/mol.104.002246. [PMID: 15371556 ] [DOI] [PubMed] [Google Scholar]
- 129.Stasch JP, et al. Nature. 2001;410:212–215. doi: 10.1038/35065611. [PMID: 11242081 ] [DOI] [PubMed] [Google Scholar]
- 130.Stasch JP, et al. Br J Pharmacol. 2002;136:773–783. doi: 10.1038/sj.bjp.0704778. [PMID: 12086987 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Sudo T, et al. Biochem Pharmacol. 2000;59:347–356. doi: 10.1016/s0006-2952(99)00346-9. [PMID: 10644042 ] [DOI] [PubMed] [Google Scholar]
- 132.Tang WJ, et al. J Biol Chem. 1991;266:8595–8603. [PMID: 2022671 ] [PubMed] [Google Scholar]
- 133.Taussig R, et al. J Biol Chem. 1993;268:9–12. [PMID: 8416978 ] [PubMed] [Google Scholar]
- 134.Taussig R, et al. J Biol Chem. 1994;269:6093–6100. [PMID: 8119955 ] [PubMed] [Google Scholar]
- 135.Tesmer JJ, et al. Biochemistry. 2000;39:14464–14471. doi: 10.1021/bi0015562. [PMID: 11087399 ] [DOI] [PubMed] [Google Scholar]
- 136.Turko IV, et al. Mol Pharmacol. 1999;56:124–130. doi: 10.1124/mol.56.1.124. [PMID: 10385692 ] [DOI] [PubMed] [Google Scholar]
- 137.Vemulapalli S, et al. J Cardiovasc Pharmacol. 1996;28:862–869. doi: 10.1097/00005344-199612000-00018. [PMID: 8961086 ] [DOI] [PubMed] [Google Scholar]
- 138.Wang P, et al. Biochem Biophys Res Commun. 1997;234:320–324. doi: 10.1006/bbrc.1997.6636. [PMID: 9177268 ] [DOI] [PubMed] [Google Scholar]
- 139.Watson PA, et al. J Biol Chem. 1994;269:28893–28898. [PMID: 7961850 ] [PubMed] [Google Scholar]
- 140.Wayman GA, et al. J Biol Chem. 1995;270:21480–21486. doi: 10.1074/jbc.270.37.21480. [PMID: 7665559 ] [DOI] [PubMed] [Google Scholar]
- 141.Yoshimura M, Cooper DM. Proc Natl Acad Sci USA. 1992;89:6716–6720. doi: 10.1073/pnas.89.15.6716. [PMID: 1379717 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Zabel U, et al. Biochem J. 1998;335:51–57. doi: 10.1042/bj3350051. (Pt 1):. [PMID: 9742212 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Zimmermann G, Taussig R. J Biol Chem. 1996;271:27161–27166. doi: 10.1074/jbc.271.43.27161. [PMID: 8900209 ] [DOI] [PubMed] [Google Scholar]
- 144.Bhatnagar AS, et al. J Steroid Biochem Mol Biol. 1990;37:1021–1027. doi: 10.1016/0960-0760(90)90460-3. [PMID: 2149502 ] [DOI] [PubMed] [Google Scholar]
- 145.Bylund J, et al. J Biol Chem. 2000;275:21844–21849. doi: 10.1074/jbc.M001712200. [PMID: 10791960 ] [DOI] [PubMed] [Google Scholar]
- 146.Cheng JB, et al. J Biol Chem. 2003;278:38084–38093. doi: 10.1074/jbc.M307028200. [PMID: 12867411 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Fer M, et al. J Lipid Res. 2008;49:2379–2389. doi: 10.1194/jlr.M800199-JLR200. [PMID: 18577768 ] [DOI] [PubMed] [Google Scholar]
- 148.Fukami T, et al. Pharmacogenomics J. 2006;6:401–412. doi: 10.1038/sj.tpj.6500390. [PMID: 16636685 ] [DOI] [PubMed] [Google Scholar]
- 149.Gryglewski RJ, et al. Prostaglandins. 1976;12:685–713. doi: 10.1016/0090-6980(76)90047-2. [PMID: 824685 ] [DOI] [PubMed] [Google Scholar]
- 150.Gryglewski RJ, et al. Wien Klin Wochenschr. 1995;107:283–289. [PMID: 7778318 ] [PubMed] [Google Scholar]
- 151.Harmon SD, et al. Prostaglandins Leukot Essent Fatty Acids. 2006;75:169–177. doi: 10.1016/j.plefa.2006.05.005. [PMID: 16820285 ] [DOI] [PubMed] [Google Scholar]
- 152.Hatae T, et al. FEBS Lett. 1996;389:268–272. doi: 10.1016/0014-5793(96)00600-x. [PMID: 8766713 ] [DOI] [PubMed] [Google Scholar]
- 153.Ishida H, et al. J Biol Chem. 1992;267:21319–21323. [PMID: 1400444 ] [PubMed] [Google Scholar]
- 154.Li-Hawkins J, et al. J Biol Chem. 2000;275:16543–16549. doi: 10.1074/jbc.M001810200. [PMID: 10748047 ] [DOI] [PubMed] [Google Scholar]
- 155.Mizukami Y, et al. Biochim Biophys Acta. 1993;1168:87–93. [PMID: 8389204 ] [PubMed] [Google Scholar]
- 156.Nakano M, et al. Drug Metab Dispos. 2009;37:2119–2122. doi: 10.1124/dmd.109.028530. [PMID: 19661213 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Nilsson T, et al. Arch Biochem Biophys. 2010;494:64–71. doi: 10.1016/j.abb.2009.11.013. [PMID: 19919823 ] [DOI] [PubMed] [Google Scholar]
- 158.Noshiro M, Okuda K. FEBS Lett. 1990;268:137–140. doi: 10.1016/0014-5793(90)80992-r. [PMID: 2384150 ] [DOI] [PubMed] [Google Scholar]
- 159.Plourde PV, et al. Breast Cancer Res Treat. 1994;30:103–111. doi: 10.1007/BF00682745. [PMID: 7949201 ] [DOI] [PubMed] [Google Scholar]
- 160.Potter GA, et al. J Med Chem. 1995;38:2463–2471. doi: 10.1021/jm00013a022. [PMID: 7608911 ] [DOI] [PubMed] [Google Scholar]
- 161.Randall MJ, et al. Thromb Res. 1981;23:145–162. doi: 10.1016/0049-3848(81)90247-4. [PMID: 6795753 ] [DOI] [PubMed] [Google Scholar]
- 162.Rose KA, et al. Proc Natl Acad Sci USA. 1997;94:4925–4930. doi: 10.1073/pnas.94.10.4925. [PMID: 9144166 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Sontag TJ, Parker RS. J Biol Chem. 2002;277:25290–25296. doi: 10.1074/jbc.M201466200. [PMID: 11997390 ] [DOI] [PubMed] [Google Scholar]
- 164.Stark K, et al. FEBS J. 2008;275:3706–3717. doi: 10.1111/j.1742-4658.2008.06518.x. [PMID: 18549450 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Stoilov I, et al. Hum Mol Genet. 1997;6:641–647. doi: 10.1093/hmg/6.4.641. [PMID: 9097971 ] [DOI] [PubMed] [Google Scholar]
- 166.Watanuki M, et al. Biochemistry. 1978;17:127–130. doi: 10.1021/bi00594a018. [PMID: 412519 ] [DOI] [PubMed] [Google Scholar]
- 167.Wu S, et al. J Biol Chem. 1996;271:3460–3468. doi: 10.1074/jbc.271.7.3460. [PMID: 8631948 ] [DOI] [PubMed] [Google Scholar]
- 168.Zeldin DC, et al. Arch Biochem Biophys. 1995;322:76–86. doi: 10.1006/abbi.1995.1438. [PMID: 7574697 ] [DOI] [PubMed] [Google Scholar]
- 169.Aritake K, et al. J Biol Chem. 2006;281:15277–15286. doi: 10.1074/jbc.M506431200. [PMID: 16547010 ] [DOI] [PubMed] [Google Scholar]
- 170.Chadli A, et al. Proc Natl Acad Sci USA. 2000;97:12524–12529. doi: 10.1073/pnas.220430297. [PMID: 11050175 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Dixon RA, et al. Nature. 1990;343:282–284. doi: 10.1038/343282a0. [PMID: 2300173 ] [DOI] [PubMed] [Google Scholar]
- 172.Fischer L, et al. Br J Pharmacol. 2004;142:861–868. doi: 10.1038/sj.bjp.0705860. [PMID: 15197110 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 173.Fürstenberger G, et al. Prostaglandins Other Lipid Mediat. 2002;68–69:235–243. doi: 10.1016/s0090-6980(02)00033-3. [PMID: 12432921 ] [DOI] [PubMed] [Google Scholar]
- 174.Hatzelmann A, et al. Biochem Pharmacol. 1993;45:101–111. doi: 10.1016/0006-2952(93)90382-7. [PMID: 8381000 ] [DOI] [PubMed] [Google Scholar]
- 175.Jegerschöld C, et al. Proc Natl Acad Sci USA. 2008;105:11110–11115. doi: 10.1073/pnas.0802894105. [PMID: 18682561 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176.Johnson J, et al. J Steroid Biochem Mol Biol. 1996;56:1–6 Spec No. doi: 10.1016/0960-0760(95)00221-9. ): 31–37. [PMID: 8603045 ] [DOI] [PubMed] [Google Scholar]
- 177.Kobayashi T, et al. Biochem J. 2004;381:59–69. doi: 10.1042/BJ20040118. (Pt 1):. [PMID: 15040786 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178.Koeberle A, et al. J Med Chem. 2008;51:8068–8076. doi: 10.1021/jm801085s. [PMID: 19053751 ] [DOI] [PubMed] [Google Scholar]
- 179.Köller M, et al. Biochem Biophys Res Commun. 1985;131:974–979. doi: 10.1016/0006-291x(85)91335-x. [PMID: 3863619 ] [DOI] [PubMed] [Google Scholar]
- 180.Luo M, et al. J Biol Chem. 2004;279:41512–41520. doi: 10.1074/jbc.M312568200. [PMID: 15280375 ] [DOI] [PubMed] [Google Scholar]
- 181.Maddox JF, Serhan CN. J Exp Med. 1996;183:137–146. doi: 10.1084/jem.183.1.137. [PMID: 8551217 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182.Matsuura K, et al. J Biochem. 1998;124:940–946. doi: 10.1093/oxfordjournals.jbchem.a022211. [PMID: 9792917 ] [DOI] [PubMed] [Google Scholar]
- 183.Ochi T, et al. Eur J Pharmacol. 2000;391:49–54. doi: 10.1016/s0014-2999(00)00051-0. [PMID: 10720634 ] [DOI] [PubMed] [Google Scholar]
- 184.Oh SF, et al. J Clin Invest. 2011;121:569–581. doi: 10.1172/JCI42545. [PMID: 21206090 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.Orning L, et al. J Biol Chem. 1991;266:1375–1378. [PMID: 1846352 ] [PubMed] [Google Scholar]
- 186.Rao NL, et al. Am J Respir Crit Care Med. 2010;181:899–907. doi: 10.1164/rccm.200807-1158OC. [PMID: 20110560 ] [DOI] [PubMed] [Google Scholar]
- 187.Sadik CD, et al. Biochem Pharmacol. 2003;65:773–781. doi: 10.1016/s0006-2952(02)01621-0. [PMID: 12628491 ] [DOI] [PubMed] [Google Scholar]
- 188.Skarydová L, et al. Chem Biol Interact. 2009;178:138–144. doi: 10.1016/j.cbi.2008.10.015. [PMID: 19007764 ] [DOI] [PubMed] [Google Scholar]
- 189.Talley JJ, et al. J Med Chem. 2000;43:1661–1663. doi: 10.1021/jm000069h. [PMID: 10794682 ] [DOI] [PubMed] [Google Scholar]
- 190.Warner TD, et al. Proc Natl Acad Sci USA. 1999;96:7563–7568. doi: 10.1073/pnas.96.13.7563. [PMID: 10377455 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 191.Watanabe K, et al. Biochem Biophys Res Commun. 2003;306:577–581. doi: 10.1016/s0006-291x(03)01025-8. [PMID: 12804604 ] [DOI] [PubMed] [Google Scholar]
- 192.Yu Z, et al. Proc Natl Acad Sci USA. 2003;100:9162–9167. doi: 10.1073/pnas.1633612100. [PMID: 12881489 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 193.Ahn K, et al. Biochemistry. 2007;46:13019–13030. doi: 10.1021/bi701378g. [PMID: 17949010 ] [DOI] [PubMed] [Google Scholar]
- 194.Ahn K, et al. Chem Biol. 2009;16:411–420. doi: 10.1016/j.chembiol.2009.02.013. [PMID: 19389627 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 195.Alexander SP, Kendall DA. Br J Pharmacol. 2007;152:602–623. doi: 10.1038/sj.bjp.0707456. [PMID: 17876303 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 196.Bisogno T, et al. J Cell Biol. 2003;163:463–468. doi: 10.1083/jcb.200305129. [PMID: 14610053 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 197.Blankman JL, et al. Chem Biol. 2007;14:1347–1356. doi: 10.1016/j.chembiol.2007.11.006. [PMID: 18096503 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Fowler CJ. Br J Pharmacol. 2007;152:594–601. doi: 10.1038/sj.bjp.0707379. [PMID: 17618306 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 199.Ghafouri N, et al. Br J Pharmacol. 2004;143:774–784. doi: 10.1038/sj.bjp.0705948. [PMID: 15492019 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 200.Keith JM, et al. Bioorg Med Chem Lett. 2008;18:4838–4843. doi: 10.1016/j.bmcl.2008.07.081. [PMID: 18693015 ] [DOI] [PubMed] [Google Scholar]
- 201.Li W, et al. J Am Chem Soc. 2007;129:9594–9595. doi: 10.1021/ja073650c. [PMID: 17629278 ] [DOI] [PubMed] [Google Scholar]
- 202.Liu Q, et al. Chem Phys Lipids. 2002;115:77–84. doi: 10.1016/s0009-3084(02)00015-4. [PMID: 12047899 ] [DOI] [PubMed] [Google Scholar]
- 203.Long JZ, et al. Nat Chem Biol. 2009;5:37–44. doi: 10.1038/nchembio.129. [PMID: 19029917 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 204.Marrs WR, et al. Nat Neurosci. 2010;13:951–957. doi: 10.1038/nn.2601. [PMID: 20657592 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 205.Petersen G, Hansen HS. FEBS Lett. 1999;455:41–44. doi: 10.1016/s0014-5793(99)00861-3. [PMID: 10428468 ] [DOI] [PubMed] [Google Scholar]
- 206.Simon GM, Cravatt BF. Mol Biosyst. 2010;6:1411–1418. doi: 10.1039/c000237b. [PMID: 20393650 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 207.Snider NT, et al. Pharmacol Rev. 2010;62:136–154. doi: 10.1124/pr.109.001081. [PMID: 20133390 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 208.Solorzano C, et al. Proc Natl Acad Sci USA. 2009;106:20966–20971. doi: 10.1073/pnas.0907417106. [PMID: 19926854 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 209.Tsuboi K, et al. Biochem J. 2004;379:99–106. doi: 10.1042/BJ20031695. (Pt 1):. [PMID: 14686878 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 210.Ueda N, et al. J Biol Chem. 2001;276:35552–35557. doi: 10.1074/jbc.M106261200. [PMID: 11463796 ] [DOI] [PubMed] [Google Scholar]
- 211.Wei BQ, et al. J Biol Chem. 2006;281:36569–36578. doi: 10.1074/jbc.M606646200. [PMID: 17015445 ] [DOI] [PubMed] [Google Scholar]
- 212.Xie S, et al. Chem Res Toxicol. 2010;23:1890–1904. doi: 10.1021/tx1002194. [PMID: 21049984 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 213.Esclapez M, et al. J Neurosci. 1994;14(3):1834–1855. doi: 10.1523/JNEUROSCI.14-03-01834.1994. Pt 2):. [PMID: 8126575 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 214.Lippert B, et al. Eur J Biochem. 1977;74:441–445. doi: 10.1111/j.1432-1033.1977.tb11410.x. [PMID: 856582 ] [DOI] [PubMed] [Google Scholar]
- 215.Wu JY, et al. J Biol Chem. 1973;248:3029–3034. [PMID: 4700449 ] [PubMed] [Google Scholar]
- 216.Ancian P, et al. Biochemistry. 1995;34:13146–13151. doi: 10.1021/bi00040a028. [PMID: 7548076 ] [DOI] [PubMed] [Google Scholar]
- 217.Bae YS, et al. J Biol Chem. 1998;273:4465–4469. doi: 10.1074/jbc.273.8.4465. [PMID: 9468499 ] [DOI] [PubMed] [Google Scholar]
- 218.Bae YS, et al. Mol Pharmacol. 2003;63:1043–1050. doi: 10.1124/mol.63.5.1043. [PMID: 12695532 ] [DOI] [PubMed] [Google Scholar]
- 219.Beck LH, et al. N Engl J Med. 2009;361:11–21. [PMID: 19571279 ] [Google Scholar]
- 220.Bergamini G, et al. Nat Chem Biol. 2012;8:576–582. doi: 10.1038/nchembio.957. [PMID: 22544264 ] [DOI] [PubMed] [Google Scholar]
- 221.Camps M, et al. Nature. 1992;360:684–686. doi: 10.1038/360684a0. [PMID: 1465133 ] [DOI] [PubMed] [Google Scholar]
- 222.Carozzi A, et al. FEBS Lett. 1993;315:340–342. doi: 10.1016/0014-5793(93)81190-b. [PMID: 8380773 ] [DOI] [PubMed] [Google Scholar]
- 223.Gehrmann T, et al. Biochim Biophys Acta. 1999;1437:341–356. doi: 10.1016/s1388-1981(99)00029-3. [PMID: 10101268 ] [DOI] [PubMed] [Google Scholar]
- 224.Goding JW, et al. Biochim Biophys Acta. 2003;1638:1–19. doi: 10.1016/s0925-4439(03)00058-9. [PMID: 12757929 ] [DOI] [PubMed] [Google Scholar]
- 225.Haber MT, et al. Arch Biochem Biophys. 1991;288:243–249. doi: 10.1016/0003-9861(91)90191-k. [PMID: 1654825 ] [DOI] [PubMed] [Google Scholar]
- 226.Hammond SM, et al. J Biol Chem. 1997;272:3860–3868. doi: 10.1074/jbc.272.6.3860. [PMID: 9013646 ] [DOI] [PubMed] [Google Scholar]
- 227.Hausser A, et al. Nat Cell Biol. 2005;7:880–886. doi: 10.1038/ncb1289. [PMID: 16100512 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 228.Hepler JR, et al. J Biol Chem. 1993;268:14367–14375. [PMID: 8314796 ] [PubMed] [Google Scholar]
- 229.Homma Y, Emori Y. EMBO J. 1995;14:286–291. doi: 10.1002/j.1460-2075.1995.tb07002.x. [PMID: 7835339 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 230.Hughes SA, et al. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:555–558. doi: 10.1007/s002100000326. [PMID: 11138848 ] [DOI] [PubMed] [Google Scholar]
- 231.Illenberger D, et al. J Biol Chem. 2003;278:3006–3014. doi: 10.1074/jbc.M208282200. [PMID: 12441352 ] [DOI] [PubMed] [Google Scholar]
- 232.Illenberger D, et al. J Biol Chem. 2003;278:8645–8652. doi: 10.1074/jbc.M211971200. [PMID: 12509427 ] [DOI] [PubMed] [Google Scholar]
- 233.Jhon DY, et al. J Biol Chem. 1993;268:6654–6661. [PMID: 8454637 ] [PubMed] [Google Scholar]
- 234.Knight ZA, et al. Cell. 2006;125:733–747. doi: 10.1016/j.cell.2006.03.035. [PMID: 16647110 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 235.Krjukova J, et al. Br J Pharmacol. 2004;143:3–7. doi: 10.1038/sj.bjp.0705911. [PMID: 15302681 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 236.Lavieri RR, et al. J Med Chem. 2010;53:6706–6719. doi: 10.1021/jm100814g. [PMID: 20735042 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 237.Lee CH, et al. J Biol Chem. 1992;267:16044–16047. [PMID: 1322889 ] [PubMed] [Google Scholar]
- 238.Liu Q, et al. Chem Phys Lipids. 2002;115:77–84. doi: 10.1016/s0009-3084(02)00015-4. [PMID: 12047899 ] [DOI] [PubMed] [Google Scholar]
- 239.Liu Y, et al. Chem Biol. 2005;12:99–107. doi: 10.1016/j.chembiol.2004.11.009. [PMID: 15664519 ] [DOI] [PubMed] [Google Scholar]
- 240.Lopez I, et al. J Biol Chem. 1998;273:12846–12852. doi: 10.1074/jbc.273.21.12846. [PMID: 9582313 ] [DOI] [PubMed] [Google Scholar]
- 241.Luo JQ, et al. Biochem Biophys Res Commun. 1997;235:854–859. doi: 10.1006/bbrc.1997.6793. [PMID: 9207251 ] [DOI] [PubMed] [Google Scholar]
- 242.Meldrum E, et al. Eur J Biochem. 1991;196:159–165. doi: 10.1111/j.1432-1033.1991.tb15799.x. [PMID: 1848183 ] [DOI] [PubMed] [Google Scholar]
- 243.Meyers R, Cantley LC. J Biol Chem. 1997;272:4384–4390. doi: 10.1074/jbc.272.7.4384. [PMID: 9020160 ] [DOI] [PubMed] [Google Scholar]
- 244.Murthy SN, et al. Proc Natl Acad Sci USA. 1999;96:11815–11819. doi: 10.1073/pnas.96.21.11815. [PMID: 10518533 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 245.Okada Y, et al. Nat Genet. 2012;44:511–516. doi: 10.1038/ng.2231. [PMID: 22446963 ] [DOI] [PubMed] [Google Scholar]
- 246.Okamoto Y, et al. J Biol Chem. 2004;279:5298–5305. doi: 10.1074/jbc.M306642200. [PMID: 14634025 ] [DOI] [PubMed] [Google Scholar]
- 247.Osisami M, et al. PLoS ONE. 2012;7:e33341–PMID. doi: 10.1371/journal.pone.0033341. 22428023 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 248.Park D, et al. J Biol Chem. 1993;268:4573–4576. [PMID: 8383116 ] [PubMed] [Google Scholar]
- 249.Pawelczyk T, Lowenstein JM. Arch Biochem Biophys. 1992;297:328–333. doi: 10.1016/0003-9861(92)90680-u. [PMID: 1497353 ] [DOI] [PubMed] [Google Scholar]
- 250.Petersen G, Hansen HS. FEBS Lett. 1999;455:41–44. doi: 10.1016/s0014-5793(99)00861-3. [PMID: 10428468 ] [DOI] [PubMed] [Google Scholar]
- 251.Piechulek T, et al. J Biol Chem. 2005;280:38923–38931. doi: 10.1074/jbc.M509396200. [PMID: 16172125 ] [DOI] [PubMed] [Google Scholar]
- 252.Preininger AM, et al. Mol Pharmacol. 2006;70:311–318. doi: 10.1124/mol.105.021451. [PMID: 16638972 ] [DOI] [PubMed] [Google Scholar]
- 253.Randall RW, et al. FEBS Lett. 1990;264:87–90. doi: 10.1016/0014-5793(90)80772-b. [PMID: 2186929 ] [DOI] [PubMed] [Google Scholar]
- 254.Rouault M, et al. Biochemistry. 2003;42:11494–11503. doi: 10.1021/bi0349930. [PMID: 14516201 ] [DOI] [PubMed] [Google Scholar]
- 255.Sarri E, et al. Biochem J. 2003;369:319–329. doi: 10.1042/BJ20021347. (Pt 2):. [PMID: 12374567 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 256.Sharp JD, et al. J Biol Chem. 1994;269:23250–23254. [PMID: 8083230 ] [PubMed] [Google Scholar]
- 257.Smith RJ, et al. J Pharmacol Exp Ther. 1990;253:688–697. [PMID: 2338654 ] [PubMed] [Google Scholar]
- 258.Smrcka AV, et al. Science. 1991;251:804–807. doi: 10.1126/science.1846707. [PMID: 1846707 ] [DOI] [PubMed] [Google Scholar]
- 259.Song C, et al. J Biol Chem. 2001;276:2752–2757. doi: 10.1074/jbc.M008324200. [PMID: 11022048 ] [DOI] [PubMed] [Google Scholar]
- 260.Suzuki T, et al. PLoS ONE. 2013;8:e61045–PMID. doi: 10.1371/journal.pone.0061045. 23577190 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 261.Tai AW, et al. Anal Biochem. 2011;417:97–102. doi: 10.1016/j.ab.2011.05.046. [PMID: 21704602 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 262.Terao C, et al. Arthritis Rheum. 2013;65:472–480. doi: 10.1002/art.37777. [PMID: 23124809 ] [DOI] [PubMed] [Google Scholar]
- 263.Walliser C, et al. J Biol Chem. 2008;283:30351–30362. doi: 10.1074/jbc.M803316200. [PMID: 18728011 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 264.Wing MR, et al. Mol Interv. 2003;3:273–280. doi: 10.1124/mi.3.5.273. [PMID: 14993441 ] [DOI] [PubMed] [Google Scholar]
- 265.Yoshikawa F, et al. PLoS ONE. 2010;5:e13932–PMID. doi: 10.1371/journal.pone.0013932. 21085684 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 266.Zhou Y, et al. Biochem J. 2005;391:667–676. doi: 10.1042/BJ20050839. (Pt 3):. [PMID: 16107206 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 267.Drummond GS, Kappas A. Proc Natl Acad Sci USA. 1981;78:6466–6470. doi: 10.1073/pnas.78.10.6466. [PMID: 6947237 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 268.Hayashi S, et al. Gene. 2004;336:241–250. doi: 10.1016/j.gene.2004.04.002. [PMID: 15246535 ] [DOI] [PubMed] [Google Scholar]
- 269.Chen X, et al. J Biol Chem. 2004;279:52082–52086. doi: 10.1074/jbc.C400481200. [PMID: 15520012 ] [DOI] [PubMed] [Google Scholar]
- 270.Nagahara N, et al. J Biol Chem. 1995;270:16230–16235. doi: 10.1074/jbc.270.27.16230. [PMID: 7608189 ] [DOI] [PubMed] [Google Scholar]
- 271.Conigrave AD, Roufogalis BD. Cell Calcium. 1989;10:543–550. doi: 10.1016/0143-4160(89)90016-x. [PMID: 2559811 ] [DOI] [PubMed] [Google Scholar]
- 272.Cryns K, et al. Neuropsychopharmacology. 2007;32:881–891. doi: 10.1038/sj.npp.1301154. [PMID: 16841073 ] [DOI] [PubMed] [Google Scholar]
- 273.Cryns K, et al. Neuropsychopharmacology. 2008;33:674–684. doi: 10.1038/sj.npp.1301431. [PMID: 17460611 ] [DOI] [PubMed] [Google Scholar]
- 274.McAllister G, et al. Biochem J. 1992;284:749–754. doi: 10.1042/bj2840749. (Pt 3)[PMID: 1377913 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 275.Ohnishi T, et al. J Biol Chem. 2007;282:637–646. doi: 10.1074/jbc.M604474200. [PMID: 17068342 ] [DOI] [PubMed] [Google Scholar]
- 276.Schmid AC, et al. FEBS Lett. 2004;576:9–13. doi: 10.1016/j.febslet.2004.08.052. [PMID: 15474001 ] [DOI] [PubMed] [Google Scholar]
- 277.Sjøholt G, et al. Mol Psychiatry. 2000;5:172–180. doi: 10.1038/sj.mp.4000681. [PMID: 10822345 ] [DOI] [PubMed] [Google Scholar]
- 278.Sjøholt G, et al. Genomics. 1997;45:113–122. [PMID: 9339367 ] [Google Scholar]
- 279.Yoshikawa T, et al. Mol Psychiatry. 1997;2:393–397. doi: 10.1038/sj.mp.4000325. [PMID: 9322233 ] [DOI] [PubMed] [Google Scholar]
- 280.Alberts AW, et al. Proc Natl Acad Sci USA. 1980;77:3957–3961. doi: 10.1073/pnas.77.7.3957. [PMID: 6933445 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 281.Bergstrom JD, et al. Arch Biochem Biophys. 2000;373:231–241. doi: 10.1006/abbi.1999.1502. [PMID: 10620343 ] [DOI] [PubMed] [Google Scholar]
- 282.Bergstrom JD, et al. Proc Natl Acad Sci USA. 1993;90:80–84. doi: 10.1073/pnas.90.1.80. [PMID: 8419946 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 283.Istvan ES, Deisenhofer J. Science. 2001;292:1160–1164. doi: 10.1126/science.1059344. [PMID: 11349148 ] [DOI] [PubMed] [Google Scholar]
- 284.Lerner EC, et al. J Biol Chem. 1995;270:26802–26806. doi: 10.1074/jbc.270.45.26802. [PMID: 7592920 ] [DOI] [PubMed] [Google Scholar]
- 285.Seiki S, Frishman WH. Cardiol Rev. 2009;17:70–76. doi: 10.1097/CRD.0b013e3181885905. [PMID: 19367148 ] [DOI] [PubMed] [Google Scholar]
- 286.Thompson JF, et al. Arch Biochem Biophys. 1998;350:283–290. doi: 10.1006/abbi.1997.0502. [PMID: 9473303 ] [DOI] [PubMed] [Google Scholar]
- 287.Avivi-Green C, et al. J Nutr. 2002;132:1812–1818. doi: 10.1093/jn/132.7.1812. [PMID: 12097652 ] [DOI] [PubMed] [Google Scholar]
- 288.Brockstedt E, et al. J Biol Chem. 1998;273:28057–28064. doi: 10.1074/jbc.273.43.28057. [PMID: 9774422 ] [DOI] [PubMed] [Google Scholar]
- 289.Chen JM, et al. Journal of the American Chemical Society. 2000;122:9648–9654. [Google Scholar]
- 290.Donoghue M, et al. Circ Res. 2000;87:E1–E9. doi: 10.1161/01.res.87.5.e1. [PMID: 10969042 ] [DOI] [PubMed] [Google Scholar]
- 291.Gamen S, et al. Exp Cell Res. 2000;258:223–235. doi: 10.1006/excr.2000.4924. [PMID: 10912804 ] [DOI] [PubMed] [Google Scholar]
- 292.Goto Y, et al. J Biol Chem. 2006;281:23503–23513. doi: 10.1074/jbc.M603191200. [PMID: 16790432 ] [DOI] [PubMed] [Google Scholar]
- 293.Gregoli PA, Bondurant MC. J Cell Physiol. 1999;178:133–143. doi: 10.1002/(SICI)1097-4652(199902)178:2<133::AID-JCP2>3.0.CO;2-5. [PMID: 10048577 ] [DOI] [PubMed] [Google Scholar]
- 294.Izban KF, et al. Mod Pathol. 2001;14:297–310. doi: 10.1038/modpathol.3880306. [PMID: 11301346 ] [DOI] [PubMed] [Google Scholar]
- 295.Jiang X, et al. Science. 2003;299:223–226. doi: 10.1126/science.1076807. [PMID: 12522243 ] [DOI] [PubMed] [Google Scholar]
- 296.Kondoh G, et al. Nat Med. 2005;11:160–166. doi: 10.1038/nm1179. [PMID: 15665832 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 297.Migaud M, et al. Peptides. 1996;17:601–607. doi: 10.1016/0196-9781(96)00036-8. [PMID: 8804068 ] [DOI] [PubMed] [Google Scholar]
- 298.Mocanu MM, et al. Br J Pharmacol. 2000;130:197–200. doi: 10.1038/sj.bjp.0703336. [PMID: 10807653 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 299.Naito T, et al. Nucleic Acids Res Suppl. 2002;2:241–242. [PMID: 12903195 ] [PubMed] [Google Scholar]
- 300.Orning L, et al. J Biol Chem. 1991;266:1375–1378. [PMID: 1846352 ] [PubMed] [Google Scholar]
- 301.Putt KS, et al. Nat Chem Biol. 2006;2:543–550. doi: 10.1038/nchembio814. [PMID: 16936720 ] [DOI] [PubMed] [Google Scholar]
- 302.Ruchaud S, et al. EMBO J. 2002;21:1967–1977. doi: 10.1093/emboj/21.8.1967. [PMID: 11953316 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 303.Scott CW, et al. J Pharmacol Exp Ther. 2003;304:433–440. doi: 10.1124/jpet.102.039651. [PMID: 12490620 ] [DOI] [PubMed] [Google Scholar]
- 304.Tuccinardi T, et al. Bioorg Med Chem. 2006;14:4260–4276. doi: 10.1016/j.bmc.2006.01.056. [PMID: 16483784 ] [DOI] [PubMed] [Google Scholar]
- 305.Umekawa K, et al. Jpn J Pharmacol. 2000;84:7–15. doi: 10.1254/jjp.84.7. [PMID: 11043447 ] [DOI] [PubMed] [Google Scholar]
- 306.Verma RP, Hansch C. Bioorg Med Chem. 2007;15:2223–2268. doi: 10.1016/j.bmc.2007.01.011. [PMID: 17275314 ] [DOI] [PubMed] [Google Scholar]
- 307.Zini S, et al. Proc Natl Acad Sci USA. 1996;93:11968–11973. doi: 10.1073/pnas.93.21.11968. [PMID: 8876246 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 308.Alessi DR, et al. J Biol Chem. 1995;270:27489–27494. doi: 10.1074/jbc.270.46.27489. [PMID: 7499206 ] [DOI] [PubMed] [Google Scholar]
- 309.Alessi DR, et al. Curr Biol. 1997;7:261–269. doi: 10.1016/s0960-9822(06)00122-9. [PMID: 9094314 ] [DOI] [PubMed] [Google Scholar]
- 310.Asano T, et al. Br J Pharmacol. 1989;98:1091–1100. doi: 10.1111/j.1476-5381.1989.tb12652.x. [PMID: 2611484 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 311.Bennett BL, et al. Proc Natl Acad Sci USA. 2001;98:13681–13686. doi: 10.1073/pnas.251194298. [PMID: 11717429 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 312.Butt E, et al. Eur J Pharmacol. 1994;269:265–268. doi: 10.1016/0922-4106(94)90095-7. [PMID: 7851503 ] [DOI] [PubMed] [Google Scholar]
- 313.Chalfant CE, et al. Mol Endocrinol. 1996;10:1273–1281. doi: 10.1210/mend.10.10.9121494. [PMID: 9121494 ] [DOI] [PubMed] [Google Scholar]
- 314.Chan EH, et al. Oncogene. 2005;24:2076–2086. doi: 10.1038/sj.onc.1208445. [PMID: 15688006 ] [DOI] [PubMed] [Google Scholar]
- 315.Christensen AE, et al. J Biol Chem. 2003;278:35394–35402. doi: 10.1074/jbc.M302179200. [PMID: 12819211 ] [DOI] [PubMed] [Google Scholar]
- 316.Chuang TT, et al. J Biol Chem. 1995;270:18660–18665. doi: 10.1074/jbc.270.31.18660. [PMID: 7629197 ] [DOI] [PubMed] [Google Scholar]
- 317.Cmejla R, et al. Biochem Biophys Res Commun. 2010;395:163–167. doi: 10.1016/j.bbrc.2010.02.148. [PMID: 20188707 ] [DOI] [PubMed] [Google Scholar]
- 318.Corton JM, et al. Eur J Biochem. 1995;229:558–565. doi: 10.1111/j.1432-1033.1995.tb20498.x. [PMID: 7744080 ] [DOI] [PubMed] [Google Scholar]
- 319.Davies SP, et al. Biochem J. 2000;351:95–105. doi: 10.1042/0264-6021:3510095. (Pt 1):. [PMID: 10998351 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 320.de Rooij J, et al. Nature. 1998;396:474–477. doi: 10.1038/24884. [PMID: 9853756 ] [DOI] [PubMed] [Google Scholar]
- 321.Dong LQ, et al. Proc Natl Acad Sci USA. 2000;97:5089–5094. doi: 10.1073/pnas.090491897. [PMID: 10792047 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 322.Dudley DT, et al. Proc Natl Acad Sci USA. 1995;92:7686–7689. doi: 10.1073/pnas.92.17.7686. [PMID: 7644477 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 323.Duncia JV, et al. Bioorg Med Chem Lett. 1998;8:2839–2844. doi: 10.1016/s0960-894x(98)00522-8. [PMID: 9873633 ] [DOI] [PubMed] [Google Scholar]
- 324.Eyers PA, et al. Chem Biol. 1998;5:321–328. doi: 10.1016/s1074-5521(98)90170-3. [PMID: 9653550 ] [DOI] [PubMed] [Google Scholar]
- 325.Favata MF, et al. J Biol Chem. 1998;273:18623–18632. doi: 10.1074/jbc.273.29.18623. [PMID: 9660836 ] [DOI] [PubMed] [Google Scholar]
- 326.García-Martínez JM, Alessi DR. Biochem J. 2008;416:375–385. doi: 10.1042/BJ20081668. [PMID: 18925875 ] [DOI] [PubMed] [Google Scholar]
- 327.Hara K, et al. Cell. 2002;110:177–189. doi: 10.1016/s0092-8674(02)00833-4. [PMID: 12150926 ] [DOI] [PubMed] [Google Scholar]
- 328.Hashimoto Y, et al. Biochem Biophys Res Commun. 1991;181:423–429. doi: 10.1016/s0006-291x(05)81436-6. [PMID: 1659814 ] [DOI] [PubMed] [Google Scholar]
- 329.Hathaway DR, Adelstein RS. Proc Natl Acad Sci USA. 1979;76:1653–1657. doi: 10.1073/pnas.76.4.1653. [PMID: 156362 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 330.Heerding DA, et al. J Med Chem. 2008;51:5663–5679. doi: 10.1021/jm8004527. [PMID: 18800763 ] [DOI] [PubMed] [Google Scholar]
- 331.Hresko RC, Mueckler M. J Biol Chem. 2005;280:40406–40416. doi: 10.1074/jbc.M508361200. [PMID: 16221682 ] [DOI] [PubMed] [Google Scholar]
- 332.Huo L, et al. EMBO J. 2011;30:665–678. doi: 10.1038/emboj.2010.353. [PMID: 21240187 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 333.Jensen CJ, et al. J Biol Chem. 1999;274:27168–27176. doi: 10.1074/jbc.274.38.27168. [PMID: 10480933 ] [DOI] [PubMed] [Google Scholar]
- 334.Jirousek MR, et al. J Med Chem. 1996;39:2664–2671. doi: 10.1021/jm950588y. [PMID: 8709095 ] [DOI] [PubMed] [Google Scholar]
- 335.Johnson HJ, et al. Exp Hematol. 2009;37:901–908. doi: 10.1016/j.exphem.2009.05.005. [PMID: 19460416 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 336.Kaliman P, Llagostera E. Cell Signal. 2008;20:1935–1941. doi: 10.1016/j.cellsig.2008.05.005. [PMID: 18583094 ] [DOI] [PubMed] [Google Scholar]
- 337.Kang G, et al. J Physiol (Lond) 2005;566:173–188. doi: 10.1113/jphysiol.2005.087510. (Pt 1):. [PMID: 15860526 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 338.Kim DH, et al. Cell. 2002;110:163–175. doi: 10.1016/s0092-8674(02)00808-5. [PMID: 12150925 ] [DOI] [PubMed] [Google Scholar]
- 339.Kozasa T, et al. Science. 1998;280:2109–2111. doi: 10.1126/science.280.5372.2109. [PMID: 9641915 ] [DOI] [PubMed] [Google Scholar]
- 340.Labbé C, et al. Genes Immun. 2008;9:602–612. doi: 10.1038/gene.2008.57. [PMID: 18650832 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 341.Lee JC, et al. Nature. 1994;372:739–746. doi: 10.1038/372739a0. [PMID: 7997261 ] [DOI] [PubMed] [Google Scholar]
- 342.Manning G, et al. Science. 2002;298:1912–1934. doi: 10.1126/science.1075762. [PMID: 12471243 ] [DOI] [PubMed] [Google Scholar]
- 343.Müller G, et al. EMBO J. 1995;14:1961–1969. doi: 10.1002/j.1460-2075.1995.tb07188.x. [PMID: 7744003 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 344.Pronin AN, Benovic JL. J Biol Chem. 1997;272:3806–3812. doi: 10.1074/jbc.272.6.3806. [PMID: 9013639 ] [DOI] [PubMed] [Google Scholar]
- 345.Sallese M, et al. J Biol Chem. 1997;272:10188–10195. doi: 10.1074/jbc.272.15.10188. [PMID: 9092566 ] [DOI] [PubMed] [Google Scholar]
- 346.Sarbassov DD, et al. Science. 2005;307:1098–1101. doi: 10.1126/science.1106148. [PMID: 15718470 ] [DOI] [PubMed] [Google Scholar]
- 347.Schiebel K, et al. Hum Mol Genet. 1997;6:1985–1989. doi: 10.1093/hmg/6.11.1985. [PMID: 9302280 ] [DOI] [PubMed] [Google Scholar]
- 348.Strachan RT, et al. J Biol Chem. 2009;284:5557–5573. doi: 10.1074/jbc.M805705200. [PMID: 19103592 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 349.Sutherland C, et al. Biochem J. 1993;296:15–19. doi: 10.1042/bj2960015. (Pt 1)[PMID: 8250835 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 350.Tokumitsu H, et al. J Biol Chem. 2002;277:15813–15818. doi: 10.1074/jbc.M201075200. [PMID: 11867640 ] [DOI] [PubMed] [Google Scholar]
- 351.Uehata M, et al. Nature. 1997;389:990–994. doi: 10.1038/40187. [PMID: 9353125 ] [DOI] [PubMed] [Google Scholar]
- 352.Wiggin GR, et al. Mol Cell Biol. 2002;22:2871–2881. doi: 10.1128/MCB.22.8.2871-2881.2002. [PMID: 11909979 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 353.Winstel R, et al. Proc Natl Acad Sci USA. 1996;93:2105–2109. doi: 10.1073/pnas.93.5.2105. [PMID: 8700892 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 354.Zandomeni R, et al. J Biol Chem. 1986;261:3414–3419. [PMID: 3456346 ] [PubMed] [Google Scholar]
- 355.Zhou G, et al. J Clin Invest. 2001;108:1167–1174. doi: 10.1172/JCI13505. [PMID: 11602624 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 356.French KJ, et al. J Pharmacol Exp Ther. 2006;318:596–603. doi: 10.1124/jpet.106.101345. [PMID: 16632640 ] [DOI] [PubMed] [Google Scholar]
- 357.French KJ, et al. J Pharmacol Exp Ther. 2010;333:129–139. doi: 10.1124/jpet.109.163444. [PMID: 20061445 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 358.Lim KG, et al. Cell Signal. 2011;23:1590–1595. doi: 10.1016/j.cellsig.2011.05.010. [PMID: 21620961 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 359.Lépine S, et al. J Biol Chem. 2011;286:44380–44390. doi: 10.1074/jbc.M111.257519. [PMID: 22052905 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 360.Paugh SW, et al. Blood. 2008;112:1382–1391. doi: 10.1182/blood-2008-02-138958. [PMID: 18511810 ] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 361.Schnute ME, et al. Biochem J. 2012;444:79–88. doi: 10.1042/BJ20111929. [PMID: 22397330 ] [DOI] [PubMed] [Google Scholar]
- 362.Schwab SR, et al. Science. 2005;309:1735–1739. doi: 10.1126/science.1113640. [PMID: 16151014 ] [DOI] [PubMed] [Google Scholar]
- 363.Nakashima T, et al. Endocrinology. 1978;103:2187–2197. doi: 10.1210/endo-103-6-2187. [PMID: 748042 ] [DOI] [PubMed] [Google Scholar]