Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Oct;82(20):6899–6902. doi: 10.1073/pnas.82.20.6899

Identification of a high molecular weight polypeptide that may be part of the circadian clockwork in Acetabularia

R Hartwig *, M Schweiger , R Schweiger *, H G Schweiger *
PMCID: PMC390795  PMID: 16593618

Abstract

In the chloroplast fraction of the unicellular and uninucleate green alga Acetabularia, we have detected a Mr ≈230,000 protein (p230) whose synthesis exhibits a pronounced endogenous diurnal rhythm. As judged by scanning densitometry of fluorographs of NaDodSO4/polyacrylamide gels, the synthesis of other proteins in the same fraction was independent of the time in the cycle. The incorporation of [35S]methionine into p230 was completely inhibited by cycloheximide, whereas chloramphenicol had no effect. This strongly suggests that p230 is translated on 80S ribosomes. Eighthour periods of exposure to cycloheximide produced a shift in the phase of the oscillation of p230 synthesis. The results are consistent with the hypothesis that p230 is essential for expression of circadian rhythms in Acetabularia.

Keywords: biological clock, translation

Full text

PDF
6902

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apel K., Schweiger H. G. Sites of synthesis of chloroplast-membrane proteins. Evidence for three types of ribosomes engaged in chloroplast-protein synthesis. Eur J Biochem. 1973 Oct 5;38(2):373–383. doi: 10.1111/j.1432-1033.1973.tb03070.x. [DOI] [PubMed] [Google Scholar]
  2. Bargiello T. A., Jackson F. R., Young M. W. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature. 1984 Dec 20;312(5996):752–754. doi: 10.1038/312752a0. [DOI] [PubMed] [Google Scholar]
  3. Bargiello T. A., Young M. W. Molecular genetics of a biological clock in Drosophila. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2142–2146. doi: 10.1073/pnas.81.7.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  5. Edmunds L. N., Jr, Cirillo V. P. On the interplay among cell cycle, biological clock and membrane transport control systems. Int J Chronobiol. 1974;2(3):233–246. [PubMed] [Google Scholar]
  6. Edmunds L. N., Jr Physiology of circadian rhythms in micro-organisms. Adv Microb Physiol. 1984;25:61-148, 301-3. doi: 10.1016/s0065-2911(08)60291-x. [DOI] [PubMed] [Google Scholar]
  7. Ehret C. F., Trucco E. Molecular models for the circadian clock. I. The chronon concept. J Theor Biol. 1967 May;15(2):240–262. doi: 10.1016/0022-5193(67)90206-8. [DOI] [PubMed] [Google Scholar]
  8. Feldman J. F. Lengthening the period of a biological clock in Euglena by cycloheximide, an inhibitor of protein synthesis. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1080–1087. doi: 10.1073/pnas.57.4.1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacklet J. W. Neuronal circadian rhythm: phase shifting by a protein synthesis inhibitor. Science. 1977 Oct 7;198(4312):69–71. doi: 10.1126/science.897685. [DOI] [PubMed] [Google Scholar]
  10. Johnson C. H., Roeber J. F., Hastings J. W. Circadian changes in enzyme concentration account for rhythm of enzyme activity in gonyaulax. Science. 1984 Mar 30;223(4643):1428–1430. doi: 10.1126/science.223.4643.1428. [DOI] [PubMed] [Google Scholar]
  11. Karakashian M. W., Schweiger H. G. Evidence for a cycloheximide-sensitive component in the biological clock of Acetabularia. Exp Cell Res. 1976 Mar 15;98(2):303–312. doi: 10.1016/0014-4827(76)90442-0. [DOI] [PubMed] [Google Scholar]
  12. Karakashian M. W., Schweiger H. G. Temperature dependence of cycloheximide-sensitive phase of circadian cycle in Acetabularia mediterranea. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3216–3219. doi: 10.1073/pnas.73.9.3216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lane L. C. A simple method for stabilizing protein-sulfhydryl groups during SDS-gel electrophoresis. Anal Biochem. 1978 Jun 1;86(2):655–664. doi: 10.1016/0003-2697(78)90792-3. [DOI] [PubMed] [Google Scholar]
  14. Leong T. Y., Schweiger H. G. The role of chloroplast-membrane-protein synthesis in the circadian clock. Purification and partial characterization of a polypeptide which is suggested to be involved in the clock. Eur J Biochem. 1979 Jul;98(1):187–194. doi: 10.1111/j.1432-1033.1979.tb13176.x. [DOI] [PubMed] [Google Scholar]
  15. Nelson W., Tong Y. L., Lee J. K., Halberg F. Methods for cosinor-rhythmometry. Chronobiologia. 1979 Oct-Dec;6(4):305–323. [PubMed] [Google Scholar]
  16. Njus D., Sulzman F. M., Hastings J. W. Membrane model for the circadian clock. Nature. 1974 Mar 8;248(5444):116–120. doi: 10.1038/248116a0. [DOI] [PubMed] [Google Scholar]
  17. Reddy P., Zehring W. A., Wheeler D. A., Pirrotta V., Hadfield C., Hall J. C., Rosbash M. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell. 1984 Oct;38(3):701–710. doi: 10.1016/0092-8674(84)90265-4. [DOI] [PubMed] [Google Scholar]
  18. Schweiger H. G., Schweiger M. Circadian rhythms in unicellular organisms: an endeavor to explain the molecular mechanism. Int Rev Cytol. 1977;51:315–342. doi: 10.1016/s0074-7696(08)60230-2. [DOI] [PubMed] [Google Scholar]
  19. Shoeman R. L., Schweiger H. G. Gene expression in Acetabularia. I. Calibration of wheat germ cell-free translation system proteins as internal references for two-dimensional electrophoresis. J Cell Sci. 1982 Dec;58:23–33. doi: 10.1242/jcs.58.1.23. [DOI] [PubMed] [Google Scholar]
  20. Sweeney B. M. A physiological model for circadian rhythms derived from the acetabularia rhythm paradoxes. Int J Chronobiol. 1974;2(1):25–33. [PubMed] [Google Scholar]
  21. Zehring W. A., Wheeler D. A., Reddy P., Konopka R. J., Kyriacou C. P., Rosbash M., Hall J. C. P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell. 1984 Dec;39(2 Pt 1):369–376. doi: 10.1016/0092-8674(84)90015-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES