Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Nov;81(21):6691–6695. doi: 10.1073/pnas.81.21.6691

Heat-labile alkaline phosphatase from Antarctic bacteria: Rapid 5′ end-labeling of nucleic acids

Hiromi Kobori *,, Cornelius W Sullivan , Hiroaki Shizuya *,§
PMCID: PMC391996  PMID: 16593525

Abstract

A heat-labile alkaline phosphatase has been purified to near homogeneity from HK47, a bacterial strain isolated from Antarctic seawater. The active form of the enzyme has a molecular weight of 68,000 and is uniquely monomeric. The optimal temperature for the enzymatic activity is 25°C. Complete and irreversible thermal inactivation of the enzyme occurs in 10 min at 55°C. By using this heat-labile enzyme for dephosphorylation followed by a 10-min heat treatment, rapid end-labeling of nucleic acids by T4 polynucleotide kinase has been achieved.

Keywords: radioactive labeling, polynucleotide kinase

Full text

PDF
6695

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Friedberg I., Avigad G. Some properties of alkaline phosphatase of Pseudomonas fluorescens. Eur J Biochem. 1967 Apr;1(2):193–198. doi: 10.1007/978-3-662-25813-2_30. [DOI] [PubMed] [Google Scholar]
  3. Heppel L. A. Selective release of enzymes from bacteria. Science. 1967 Jun 16;156(3781):1451–1455. doi: 10.1126/science.156.3781.1451. [DOI] [PubMed] [Google Scholar]
  4. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Morita R. Y. Psychrophilic bacteria. Bacteriol Rev. 1975 Jun;39(2):144–167. doi: 10.1128/br.39.2.144-167.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Richardson C. C. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected Escherichia coli. Proc Natl Acad Sci U S A. 1965 Jul;54(1):158–165. doi: 10.1073/pnas.54.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schlesinger M. J., Andersen L. Multiple molecular forms of the alkaline phosphatase of Escherichia coli. Ann N Y Acad Sci. 1968 Jun 14;151(1):159–170. doi: 10.1111/j.1749-6632.1968.tb11886.x. [DOI] [PubMed] [Google Scholar]
  8. Schlesinger M. J., Barrett K. The reversible dissociation of the alkaline phosphatase of Escherichia coli. I. Formation and reactivation of subunits. J Biol Chem. 1965 Nov;240(11):4284–4292. [PubMed] [Google Scholar]
  9. Schlesinger M. J. Formation of a defective alkaline phosphatase subunit by a mutant of Escherichia coli. J Biol Chem. 1967 Apr 10;242(7):1604–1611. [PubMed] [Google Scholar]
  10. Schlesinger M. J. The reversible dissociation of the alkaline phosphatase of Escherichia coli. II. Properties of the subunit. J Biol Chem. 1965 Nov;240(11):4293–4298. [PubMed] [Google Scholar]
  11. Simoncsits A., Brownlee G. G., Brown R. S., Rubin J. R., Guilley H. New rapid gel sequencing method for RNA. Nature. 1977 Oct 27;269(5631):833–836. doi: 10.1038/269833a0. [DOI] [PubMed] [Google Scholar]
  12. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
  13. Whitmore D. H., Goldberg E. Trout intestinal alkaline phosphatases. II. The effect of temperature upon enzymatic activity in vitro and in vivo. J Exp Zool. 1972 Oct;182(1):59–68. doi: 10.1002/jez.1401820107. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES