Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1968 Sep;32(3):243–261. doi: 10.1128/br.32.3.243-261.1968

Photochemical and electron transport reactions of bacterial photosynthesis.

L P Vernon
PMCID: PMC408297  PMID: 4300916

Full text

PDF
247

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMESZ J. Kinetics, quantum requirement and action spectrum of light-induced phosphopyridine nucleotide reduction in Rhodospirillum rubrum and Rhodopseudomonas spheroides. Biochim Biophys Acta. 1963 Jan 15;66:22–36. doi: 10.1016/0006-3002(63)91164-8. [DOI] [PubMed] [Google Scholar]
  2. Arnold W., Clayton R. K. THE FIRST STEP IN PHOTOSYNTHESIS: EVIDENCE FOR ITS ELECTRONIC NATURE. Proc Natl Acad Sci U S A. 1960 Jun;46(6):769–776. doi: 10.1073/pnas.46.6.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BALTSCHEFFSKY H., ARWIDSSON B. Evidence for two phosphorylation sites in bacterial cyclic photophosphorylation. Biochim Biophys Acta. 1962 Dec 17;65:425–428. doi: 10.1016/0006-3002(62)90444-4. [DOI] [PubMed] [Google Scholar]
  4. BALTSCHEFFSKY H., BALTSCHEFFSKY M., OLSON J. M. The quantum efficiency of ATP production in bacterial light-in-duced phosphorylation. Biochim Biophys Acta. 1961 Jun 24;50:380–382. doi: 10.1016/0006-3002(61)90346-8. [DOI] [PubMed] [Google Scholar]
  5. BERGERON J. A., FULLER R. C. Influence of carotenoids on the infra-red spectrum of bacteriochlorophyll in Chromatium. Nature. 1959 Oct 24;184(Suppl 17):1340–1341. doi: 10.1038/1841340b0. [DOI] [PubMed] [Google Scholar]
  6. BOSE S. K., GEST H. Hydrogenase and light-stimulated electron transfer reactions in photosynthetic bacteria. Nature. 1962 Sep 22;195:1168–1171. doi: 10.1038/1951168a0. [DOI] [PubMed] [Google Scholar]
  7. BRIL C. Action of a non-ionic detergent on chromatophores of Rhodopseudomonas spheroides. Biochim Biophys Acta. 1958 Aug;29(2):458–458. doi: 10.1016/0006-3002(58)90223-3. [DOI] [PubMed] [Google Scholar]
  8. BRIL C. Studies on bacterial chromatophores. I. Reversible disturbance of transfer of electronic excitation energy between bacteriochlorophyll-types in Chromatium. Biochim Biophys Acta. 1960 Apr 8;39:296–303. doi: 10.1016/0006-3002(60)90166-9. [DOI] [PubMed] [Google Scholar]
  9. BRIL C. Studies on bacterial chromatophores. II. Energy transfer and photooxidative bleaching of bacteriochlorophyll in relation to structure in normal and carotenoid-depleted Chromatium. Biochim Biophys Acta. 1963 Jan 15;66:50–60. doi: 10.1016/0006-3002(63)91166-1. [DOI] [PubMed] [Google Scholar]
  10. Bachofen R., Arnon D. I. Crystalline ferredoxin from the photosynthetic bacterium Chromatium. Biochim Biophys Acta. 1966 Jun 8;120(2):259–265. doi: 10.1016/0926-6585(66)90345-1. [DOI] [PubMed] [Google Scholar]
  11. Baltscheffsky H., Von Stedingk L. V., Heldt H. W., Klingenberg M. Inorganic pyrophosphate: formation in bacterial photophosphorylation. Science. 1966 Sep 2;153(3740):1120–1122. doi: 10.1126/science.153.3740.1120. [DOI] [PubMed] [Google Scholar]
  12. Baltscheffsky M., Baltscheffsky H., von Stedingk L. V. Light-induced energy conversion and the inorganic pyrophosphatase reaction in chromatophores from Rhodospirillum rubrum . Brookhaven Symp Biol. 1966;19:246–257. [PubMed] [Google Scholar]
  13. Baltscheffsky M. Inorganic pyrophosphate and ATP as energy donors in chromatophores from Rhodospirillum rubrum. Nature. 1967 Oct 21;216(5112):241–243. doi: 10.1038/216241a0. [DOI] [PubMed] [Google Scholar]
  14. Beugeling T. Photochemical activities of K3Fe(CN)6-treated chromatophores from Rhodospirillum rubrum. Biochim Biophys Acta. 1968 Jan 15;153(1):143–153. doi: 10.1016/0005-2728(68)90155-2. [DOI] [PubMed] [Google Scholar]
  15. Black C. C., Jr Chloroplast reactions with dipyridyl salts. Biochim Biophys Acta. 1966 Jul 13;120(3):332–340. doi: 10.1016/0926-6585(66)90300-1. [DOI] [PubMed] [Google Scholar]
  16. CLAYTON R. K. Evidence for the photochemical reduction on coenzyme Q in chromatophores of photosynthetic bacteria. Biochem Biophys Res Commun. 1962 Sep 25;9:49–53. doi: 10.1016/0006-291x(62)90085-2. [DOI] [PubMed] [Google Scholar]
  17. Carr N. G., Exell G. Ubiquinone concentrations in athiorhodaceae grown under various environmental conditions. Biochem J. 1965 Sep;96(3):688–692. doi: 10.1042/bj0960688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Chance B., Nishimura M., Avron M., Baltscheffsky M. Light-induced intravesicular pH changes in Rhodospirillum rubrum chromatophores. Arch Biochem Biophys. 1966 Oct;117(1):158–166. doi: 10.1016/0003-9861(66)90139-1. [DOI] [PubMed] [Google Scholar]
  19. Chance B., Nishimura M. ON THE MECHANISM OF CHLOROPHYLL-CYTOCHROME INTERACTION: THE TEMPERATURE INSENSITIVITY OF LIGHT-INDUCED CYTOCHROME OXIDATION IN CHROMATIUM. Proc Natl Acad Sci U S A. 1960 Jan;46(1):19–24. doi: 10.1073/pnas.46.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Clayton R. K. The bacterial photosynthetic reaction center. Brookhaven Symp Biol. 1966;19:62–70. [PubMed] [Google Scholar]
  21. Clayton R. K. The biophysical problems of photosynthesis. Science. 1965 Sep 17;149(3690):1346–1354. doi: 10.1126/science.149.3690.1346. [DOI] [PubMed] [Google Scholar]
  22. Cost K., Frenkel A. W. Light-induced interactions of Rhodospirillum rubrum chromatophores with bromothymol blue. Biochemistry. 1967 Mar;6(3):663–667. doi: 10.1021/bi00855a004. [DOI] [PubMed] [Google Scholar]
  23. Cusanovich M. A., Bartsch R. G., Kamen M. D. Light-induced electron transport in Chromatium strain D. II. Light-induced absorbance changes in Chromatium chromatophores. Biochim Biophys Acta. 1968 Feb 12;153(2):397–417. doi: 10.1016/0005-2728(68)90083-2. [DOI] [PubMed] [Google Scholar]
  24. DUYSENS L. N., SWEEP G. Fluorescence spectrophotometry of pyridine nucleotide in photosynthesizing cells. Biochim Biophys Acta. 1957 Jul;25(1):13–16. doi: 10.1016/0006-3002(57)90409-2. [DOI] [PubMed] [Google Scholar]
  25. De Klerk H., Kamen M. D. A high-potential non-haem iron protein from the facultative photoheterotrophe Rhodopseudomonas gelatinosa. Biochim Biophys Acta. 1966 Jan 4;112(1):175–178. doi: 10.1016/s0926-6585(96)90022-9. [DOI] [PubMed] [Google Scholar]
  26. Dilley R. A., Vernon L. P. Quantum requirement of the light-induced proton uptake by spinach chloroplasts. Proc Natl Acad Sci U S A. 1967 Feb;57(2):395–400. doi: 10.1073/pnas.57.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dus K., De Klerk H., Sletten K., Bartsch R. G. Chemical characterization of high potential iron proteins from Chromatium and Rhodopseudomonas gelatinosa. Biochim Biophys Acta. 1967 Jun 27;140(2):291–311. doi: 10.1016/0005-2795(67)90470-9. [DOI] [PubMed] [Google Scholar]
  28. Duysens L. N., Amesz J. Quantum Requirement for Phosphopyridine Nucleotide Reduction in Photosynthesis. Plant Physiol. 1959 May;34(3):210–213. doi: 10.1104/pp.34.3.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Eimhjellen K. E., Steensland H., Traetteberg J. A Thiococcus sp. nov. gen., its pigments and internal membrane system. Arch Mikrobiol. 1967;59(1):82–92. doi: 10.1007/BF00406319. [DOI] [PubMed] [Google Scholar]
  30. Evans M. C., Buchanan B. B., Arnon D. I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci U S A. 1966 Apr;55(4):928–934. doi: 10.1073/pnas.55.4.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Evans M. C., Buchanan B. B. Photoreduction of ferredoxin and its use in carbon dioxide fixation by a subcellular system from a photosynthetic bacterium. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1420–1425. doi: 10.1073/pnas.53.6.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. FULLER R. C., SMILLIE R. M., RIGOPOULOS N., YOUNT V. Comparative studies of some quinones in photosynthetic systems. Arch Biochem Biophys. 1961 Nov;95:197–202. doi: 10.1016/0003-9861(61)90135-7. [DOI] [PubMed] [Google Scholar]
  33. GRIFFITHS M., SISTROM W. R., COHENBAZIRE G., STANIER R. Y., CALVIN M. Function of carotenoids in photosynthesis. Nature. 1955 Dec 24;176(4495):1211–1215. doi: 10.1038/1761211a0. [DOI] [PubMed] [Google Scholar]
  34. Garcia A., Vernon L. P., Ke B., Mollenhauer H. Some structural and photochemical properties of Rhodopseudomonas palustris subchromatophore particles obtained by treatment with Triton X-100. Biochemistry. 1968 Jan;7(1):319–325. doi: 10.1021/bi00841a040. [DOI] [PubMed] [Google Scholar]
  35. Garcia A., Vernon L. P., Ke B., Mollenhauer H. Some structural and photochemical properties of Rhodopseudomonas species NHTC 133 subchromatophore particles obtained by treatment with Triton X-100. Biochemistry. 1968 Jan;7(1):326–332. doi: 10.1021/bi00841a041. [DOI] [PubMed] [Google Scholar]
  36. Garcia A., Vernon L. P., Mollenhauer H. Properties of Chromatium subchromatophore particles obtained by treatment with Triton X-100. Biochemistry. 1966 Jul;5(7):2399–2407. doi: 10.1021/bi00871a033. [DOI] [PubMed] [Google Scholar]
  37. Garcia A., Vernon L. P., Mollenhauer H. Properties of Rhodospirillum rubrum subchromatophore particles obtained by treatment with Triton X-100. Biochemistry. 1966 Jul;5(7):2408–2416. doi: 10.1021/bi00871a034. [DOI] [PubMed] [Google Scholar]
  38. Gest H. Comparative biochemistry of photosynthetic processes. Nature. 1966 Feb 26;209(5026):879–882. doi: 10.1038/209879a0. [DOI] [PubMed] [Google Scholar]
  39. Gibson J. Aerobic metabolism of Chromatium sp. strain D. Arch Mikrobiol. 1967;59(1):104–112. doi: 10.1007/BF00406321. [DOI] [PubMed] [Google Scholar]
  40. HORIO T., YAMASHITA J. SITES OF PHOTOSYNTHETIC ELECTRON-TRANSPORT SYSTEMS COUPLING PHOSPHORYLATION WITH CHROMATOPHORES FROM RHODOSPIRILLUM RUBRUM. Biochim Biophys Acta. 1964 Sep 25;88:237–250. doi: 10.1016/0926-6577(64)90180-9. [DOI] [PubMed] [Google Scholar]
  41. Hinkson J. W. Nicotinamide adenine dinucleotide photoreduction with Chromatium and Rhodospirillum rubrum chromatophores. Arch Biochem Biophys. 1965 Dec;112(3):478–487. doi: 10.1016/0003-9861(65)90084-6. [DOI] [PubMed] [Google Scholar]
  42. JENSEN A., AASMUNDRUD O., EIMHJELLEN K. E. CHLOROPHYLLS OF PHOTOSYNTHETIC BACTERIA. Biochim Biophys Acta. 1964 Nov 29;88:466–479. doi: 10.1016/0926-6577(64)90089-0. [DOI] [PubMed] [Google Scholar]
  43. KOMEN J. G. Observations on the infrared absorption spectrum of bacteriochlorophyll. Biochim Biophys Acta. 1956 Oct;22(1):9–15. doi: 10.1016/0006-3002(56)90216-5. [DOI] [PubMed] [Google Scholar]
  44. Ke B., Vernon L. P., Garcia A., Ngo E. Coupled photooxidation of bacteriochlorophyll P890 and photoreduction of ubiquinone in a photochemically active subchromatophore particle derived from Chromatium. Biochemistry. 1968 Jan;7(1):311–318. doi: 10.1021/bi00841a039. [DOI] [PubMed] [Google Scholar]
  45. Keister D. L., Yike N. J. Energy-linked reactions in photosynthetic bacteria. I. Succinatelinked ATP-driven NAD reduction by Rhodospirillum rubrum chromatophores. Arch Biochem Biophys. 1967 Aug;121(2):415–422. doi: 10.1016/0003-9861(67)90095-1. [DOI] [PubMed] [Google Scholar]
  46. Keister D. L., Yike N. J. Studies on an energy-lined pyridine nucleotide transhydrogenase in photosynthetic bacteria. I. Demonstration of the reaction in Rhodospirillum rubrum. Biochem Biophys Res Commun. 1966 Aug 23;24(4):519–525. doi: 10.1016/0006-291x(66)90350-0. [DOI] [PubMed] [Google Scholar]
  47. Klemme J. H., Schlegel H. G. Photoreduktion von Pyridinnucleotid durch Chromatophoren aus Rhodopseudomonas capsulata mit molekularem Wasserstoff. Arch Mikrobiol. 1967;59(1):185–196. [PubMed] [Google Scholar]
  48. Kok B., Rurainski H. J., Owens O. V. The reducing power generated in photoact I of photosynthesis. Biochim Biophys Acta. 1965 Nov 29;109(2):347–356. doi: 10.1016/0926-6585(65)90162-7. [DOI] [PubMed] [Google Scholar]
  49. Lindstrom E. S. Photooxidase Activity of Heated Chromatophores of Rhodospirillum rubrum. Plant Physiol. 1962 Mar;37(2):127–129. doi: 10.1104/pp.37.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Maclean F. I., Forrest H. S., Hoare D. S. Pteridine content of some photosynthetic bacteria. Arch Biochem Biophys. 1966 Oct;117(1):54–58. doi: 10.1016/0003-9861(66)90124-x. [DOI] [PubMed] [Google Scholar]
  51. NEWTON J. W. A disulfide photoreduction system in chromatophores of Rhodospirillum rubrum. J Biol Chem. 1962 Oct;237:3282–3286. [PubMed] [Google Scholar]
  52. NISHIMURA M. Studies on bacterial photophosphorylation. IV. On the maximum amount of delayed photophosphorylation induced by a single flash. Biochim Biophys Acta. 1962 May 7;59:183–188. doi: 10.1016/0006-3002(62)90709-6. [DOI] [PubMed] [Google Scholar]
  53. NOZAKI M., TAGAWA K., ARNON D. I. Noncyclic photophosphorylation in photosynthetic bacteria. Proc Natl Acad Sci U S A. 1961 Sep 15;47:1334–1340. doi: 10.1073/pnas.47.9.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Nugent N. A., Fuller R. C. Carotenoid biosynthesis in Rhodospirillum rubrum: effect of pteridine inhibitor. Science. 1967 Nov 17;158(3803):922–924. doi: 10.1126/science.158.3803.922. [DOI] [PubMed] [Google Scholar]
  55. OLSON J. M., AMESZ J. Action spectra for fluorescence excitation of pyridine nucleotide in photosynthetic bacteria and algae. Biochim Biophys Acta. 1960 Jan 1;37:14–24. doi: 10.1016/0006-3002(60)90072-x. [DOI] [PubMed] [Google Scholar]
  56. OLSON J. M., CHANCE B. Oxidation-reduction reactions in the photosynthetic bacterium Chromatium. I. Absorption spectrum changes in whole cells. Arch Biochem Biophys. 1960 May;88:26–39. doi: 10.1016/0003-9861(60)90193-4. [DOI] [PubMed] [Google Scholar]
  57. OLSON J. M., DUYSENS L. N., KRONENBERG G. H. Spectrofluorometry of pyridine nucleotide reactions in chromatium. Biochim Biophys Acta. 1959 Nov;36:125–131. doi: 10.1016/0006-3002(59)90076-9. [DOI] [PubMed] [Google Scholar]
  58. ORMEROD J. G., GEST H. Symposium on metabolism of inorganic compounds. IV. Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bacteriol Rev. 1962 Mar;26:51–66. doi: 10.1128/br.26.1.51-66.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. OSNITSKAYA L. K., THRELFALL D. R., GOODWIN T. W. UBIQUINONE-40 AND VITAMIN K-2 (40) IN CHROMATIUM VINOSUM. Nature. 1964 Oct 3;204:80–81. doi: 10.1038/204080b0. [DOI] [PubMed] [Google Scholar]
  60. Olson J. M. Quantum Efficiency of Cytochrome Oxidation in a Photosynthetic Bacterium. Science. 1962 Jan 12;135(3498):101–102. doi: 10.1126/science.135.3498.101. [DOI] [PubMed] [Google Scholar]
  61. Orlando J. A., Sabo D., Curnyn C. Photoreduction of Pyridine Nucleotide by Subcellular Preparations from Rhodopseudomonas spheroides. Plant Physiol. 1966 Jun;41(6):937–945. doi: 10.1104/pp.41.6.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. PARSON W. W., RUDNEY H. THE BIOSYNTHESIS OF UBIQUINONE AND RHODOQUINONE FROM P-HYDROXYBENZOATE AND P-HYDROXYBENZALDEHYDE IN RHODOSPIRILLUM RUBRUM. J Biol Chem. 1965 Apr;240:1855–1863. [PubMed] [Google Scholar]
  63. Parson W. W. Observations on the changes in ultraviolet absorbance caused by succinate and light in Rhodospirillum rubrum. Biochim Biophys Acta. 1967 Jul 5;143(1):263–265. doi: 10.1016/0005-2728(67)90128-4. [DOI] [PubMed] [Google Scholar]
  64. Parson W. W. The role of P870 in bacterial photosynthesis. Biochim Biophys Acta. 1968 Jan 15;153(1):248–259. doi: 10.1016/0005-2728(68)90167-9. [DOI] [PubMed] [Google Scholar]
  65. Pfennig N. Photosynthetic bacteria. Annu Rev Microbiol. 1967;21:285–324. doi: 10.1146/annurev.mi.21.100167.001441. [DOI] [PubMed] [Google Scholar]
  66. Reed D. W., Clayton R. K. Isolation of a reaction center fraction from Rhodopseudomonas spheroides. Biochem Biophys Res Commun. 1968 Mar 12;30(5):471–475. doi: 10.1016/0006-291x(68)90075-2. [DOI] [PubMed] [Google Scholar]
  67. Schleyer H. Electron paramagnetic resonance studies on photosynthetic bacteria. I. Properties of photo-induced EPR-signals of Chromatium D. Biochim Biophys Acta. 1968 Feb 12;153(2):427–447. doi: 10.1016/0005-2728(68)90085-6. [DOI] [PubMed] [Google Scholar]
  68. Shavit N., Thore A., Keister D. L., San Pietro A. Inhibition by nigericin of the light-induced pH change in Rhodospirillum rubrum chromatophores. Proc Natl Acad Sci U S A. 1968 Mar;59(3):917–922. doi: 10.1073/pnas.59.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. TAGAWA K., ARNON D. I. Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature. 1962 Aug 11;195:537–543. doi: 10.1038/195537a0. [DOI] [PubMed] [Google Scholar]
  70. Trebst A., Pistorius E., Baltscheffsky H. p-Phenylenediamines as electron donors for photosynthetic pyridine nucleotide reduction in chromatophores from Rhodospirillum rubrum. Biochim Biophys Acta. 1967 Jul 5;143(1):257–260. doi: 10.1016/0005-2728(67)90126-0. [DOI] [PubMed] [Google Scholar]
  71. VERNON L. P., ASH O. K. The photo-reduction of pyridine nucleotides by illuminated chromatophores of Rhodospirillum rubrum in the presence of succinate. J Biol Chem. 1959 Jul;234(7):1878–1882. [PubMed] [Google Scholar]
  72. VERNON L. P. Cytochrome c content of Rhodosperillum rubrum. Arch Biochem Biophys. 1953 Apr;43(2):492–493. doi: 10.1016/0003-9861(53)90144-1. [DOI] [PubMed] [Google Scholar]
  73. VERNON L. P., KAMEN M. D. Hematin compounds in photosynthetic bacteria. J Biol Chem. 1954 Dec;211(2):643–662. [PubMed] [Google Scholar]
  74. VERNON L. P., KAMEN M. D. Studies on the metabolism of photosynthetic bacteria. XV. Photoautoxidation of ferrocytochrome c in extracts of Rhodospirillum rubrum. Arch Biochem Biophys. 1953 Jun;44(2):298–311. doi: 10.1016/0003-9861(53)90047-2. [DOI] [PubMed] [Google Scholar]
  75. VERNON L. P. Photoreduction of pyridine nucleotides by cell-free extracts and chromatophores of Rhodospirillum rubrum. J Biol Chem. 1958 Jul;233(1):212–216. [PubMed] [Google Scholar]
  76. VREDENBERG W. J., AMESZ J., DUYSENS L. N. LIGHT-INDUCED SPECTRAL SHIFTS IN BACTERIOCHLOROPHYLL AND CAROTENOID ABSORPTION IN PURPLE BACTERIA. Biochem Biophys Res Commun. 1965 Feb 3;18:435–439. doi: 10.1016/0006-291x(65)90727-8. [DOI] [PubMed] [Google Scholar]
  77. VREDENBERG W. J., DUYSENS L. N. Transfer of energy from bacteriochlorophyll to a reaction centre during bacterial photosynthesis. Nature. 1963 Jan 26;197:355–357. doi: 10.1038/197355a0. [DOI] [PubMed] [Google Scholar]
  78. Vernon L. P., Garcia A. F. Pigment-protein complexes derived from Rhondospirillum rubrum chromatophores by enzymatic digestion. Biochim Biophys Acta. 1967 Jul 5;143(1):144–153. doi: 10.1016/0005-2728(67)90117-x. [DOI] [PubMed] [Google Scholar]
  79. Vernon L. P., Ke B., Shaw E. R. Relationship of P700, electron spin resonance signal, and photochemical activity of a small chloroplast particle obtained by the action of Triton X-100. Biochemistry. 1967 Jul;6(7):2210–2220. doi: 10.1021/bi00859a044. [DOI] [PubMed] [Google Scholar]
  80. Yamanaka T., Kamen M. D. An NADP reductase, an NADH-dye reductase and a non-haem iron protein isolated from a facultative photoheterotroph, Rhodopseudomonas palustris. Biochim Biophys Acta. 1967 Mar 8;131(2):317–329. doi: 10.1016/0005-2728(67)90145-4. [DOI] [PubMed] [Google Scholar]
  81. ZAUGG W. S. Coupled photoreduction of ubiquinone and photooxidation of ferrocytochrome C catalyzed by chromatophores of Rhodospirillum rubrum. Proc Natl Acad Sci U S A. 1963 Jul;50:100–106. doi: 10.1073/pnas.50.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. ZAUGG W. S., VERNON L. P., TIRPACK A. PHOTOREDUCTION OF UBIQUINONE AND PHOTOOXIDIATION OF PHENAZINE METHOSULFATE BY CHROMATOPHORES OF PHOTOSYNTHETIC BACTERIA AND BACTERIOCHLOROPHYLL. Proc Natl Acad Sci U S A. 1964 Feb;51:232–238. doi: 10.1073/pnas.51.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Zaugg W. S., Vernon L. P., Helmer G. Light-induced electron transfer reactions and adenosine triphosphate formation by Rhodospirillum rubrum chromatophores. Arch Biochem Biophys. 1967 Mar;119(1):560–571. doi: 10.1016/0003-9861(67)90491-2. [DOI] [PubMed] [Google Scholar]
  84. von Stedingk L. V., Baltscheffsky H. The light-induced, reversible pH change in chromatophores from Rhodospirillum rubrum. Arch Biochem Biophys. 1966 Nov;117(2):400–404. doi: 10.1016/0003-9861(66)90428-0. [DOI] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES