Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1982 Feb;69(2):465–468. doi: 10.1104/pp.69.2.465

l-Ascorbic Acid Biosynthesis in Ochromonas danica1

Johannes P Helsper 1, Lea Kagan 1, Coral L Hilby 1, Tracy M Maynard 1, Frank A Loewus 1,2
PMCID: PMC426231  PMID: 16662230

Abstract

Ochromonas danica Pringsheim, a freshwater chrysomonad, converts d-glucose into l-ascorbic acid over a metabolic pathway that `inverts' the carbon chain of the sugar. In this respect, l-ascorbic acid formation resembles that found in ascorbic acid-synthesizing animals. It differs from this process in that d-galacturonate and l-galactono-1,4-lactone, rather than d-glucuronate and l-gulono-1,4-lactone, enhance production of ascorbic acid and repress the incorporation of 14C from d-[1-14C]glucose into ascorbic acid.

Full text

PDF
466

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson S., Dhawale S. W., Patni N. J., DeAngelis B., Frank O., Baker H. The cell content and secretion of water-soluble vitamins by several freshwater algae. Arch Microbiol. 1977 Feb 4;112(1):57–59. doi: 10.1007/BF00446654. [DOI] [PubMed] [Google Scholar]
  2. BLOOM B. The simultaneous determination of C14 and H3 in the terminal groups of glucose. Anal Biochem. 1962 Jan;3:85–87. doi: 10.1016/0003-2697(62)90048-9. [DOI] [PubMed] [Google Scholar]
  3. Baig M. M., Kelly S., Loewus F. L-ascorbic acid biosynthesis in higher plants from L-gulono-1, 4-lactone and L-galactono-1, 4-lactone. Plant Physiol. 1970 Aug;46(2):277–280. doi: 10.1104/pp.46.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FINKLE B. J., KELLY S., LOEWUS F. A. Metabolism of d-[I-14C]- and d-[6-14C] glucuronolactone by the ripening strawberry. Biochim Biophys Acta. 1960 Feb 26;38:332–339. doi: 10.1016/0006-3002(60)91249-x. [DOI] [PubMed] [Google Scholar]
  5. Heick H. M., Graff G. L., Humpers J. E. The occurrence of ascorbic acid among the yeasts. Can J Microbiol. 1972 May;18(5):597–600. doi: 10.1139/m72-094. [DOI] [PubMed] [Google Scholar]
  6. ISHERWOOD F. A., CHEN Y. T., MAPSON L. W. Synthesis of L-ascorbic acid in plants and animals. Biochem J. 1954 Jan;56(1):1–15. doi: 10.1042/bj0560001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOEWUS F. A., KELLY S. Identity of L-ascorbic acid formed from D-glucose by the strawberry (Fragaria). Nature. 1961 Sep 9;191:1059–1061. doi: 10.1038/1911059a0. [DOI] [PubMed] [Google Scholar]
  8. LOEWUS F. A., KELLY S. The metabolism of p-galacturonic acid and its methyl ester in the detached ripening strawberry. Arch Biochem Biophys. 1961 Dec;95:483–493. doi: 10.1016/0003-9861(61)90180-1. [DOI] [PubMed] [Google Scholar]
  9. Shigeoka S., Nakano Y., Kitaoka S. The biosynthetic pathway of L-ascorbic acid in Euglena gracilis Z. J Nutr Sci Vitaminol (Tokyo) 1979;25(4):299–307. doi: 10.3177/jnsv.25.299. [DOI] [PubMed] [Google Scholar]
  10. Wagner G., Loewus F. The Biosynthesis of (+)-Tartaric Acid in Pelargonium crispum. Plant Physiol. 1973 Dec;52(6):651–654. doi: 10.1104/pp.52.6.651. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES