Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1972 Jul;69(7):1723–1726. doi: 10.1073/pnas.69.7.1723

On the Theory of Ion Transport Across the Nerve Membrane, VI. Free Energy and Activation Free Energies of Conformational Change*

Terrell L Hill 1, Yi-Der Chen 1
PMCID: PMC426787  PMID: 4505649

Abstract

Empirical functions, such as n(V) and τn(V) (of the Hodgkin-Huxley type), can be recast in terms of more fundamental functions F(V) (related to a conformational free energy change) and θ(V) (related to the corresponding free energies of activation). Examples of F(V) and θ(V) are given, for squid and frog node. F(V) is essentially a quadratic function of V. The possible molecular origin, for protein-like subunits, of the linear (e.g., net charge) and quadratic (e.g., polarizability) terms in F(V) is discussed. The F(V), θ(V) kind of analysis leads rather automatically to a simple explanation of the well-known approximate coincidence in location (V value) of the maximum in τn(V) (time constant) and the steeply rising part of n(V) (also m, 1 - h).

Keywords: protein complex, electric field, net charge, polarizability, time constant maximum

Full text

PDF
1726

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FRANKENHAEUSER B. INACTIVATION OF THE SODIUM-CARRYING MECHANISM IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS. J Physiol. 1963 Nov;169:445–451. doi: 10.1113/jphysiol.1963.sp007271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FRANKENHAEUSER B. Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis. J Physiol. 1960 Jun;151:491–501. doi: 10.1113/jphysiol.1960.sp006455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRANKENHAEUSER B. Steady state inactivation of sodium permeability in myelinated nerve fibres of Xenopus laevis. J Physiol. 1959 Oct;148:671–676. doi: 10.1113/jphysiol.1959.sp006316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilbert D. L., Ehrenstein G. Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys J. 1969 Mar;9(3):447–463. doi: 10.1016/S0006-3495(69)86396-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hill T. L., Chen Y. D. Cooperative effects in models of steady-state transport across membranes. II. Oscillating phase transition. Proc Natl Acad Sci U S A. 1970 May;66(1):189–196. doi: 10.1073/pnas.66.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hill T. L., Chen Y. D. Cooperative effects in models of steady-state transport across membranes. IV. One-site, two-site, and multisite models. Biophys J. 1971 Sep;11(9):685–710. doi: 10.1016/S0006-3495(71)86248-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hill T. L., Chen Y. D. On the theory of ion transport across the nerve membrane. 3. Potassium ion kinetics and cooperativity (with x=4,6,9). Proc Natl Acad Sci U S A. 1971 Oct;68(10):2488–2492. doi: 10.1073/pnas.68.10.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hill T. L., Chen Y. D. On the theory of ion transport across the nerve membrane. II. Potassium ion kinetics and cooperativity (with x = 4). Proc Natl Acad Sci U S A. 1971 Aug;68(8):1711–1715. doi: 10.1073/pnas.68.8.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hill T. L., Chen Y. Cooperative effects in models of steady-state transport across membranes. 3. Simulation of potassium ion transport in nerve. Proc Natl Acad Sci U S A. 1970 Jul;66(3):607–614. doi: 10.1073/pnas.66.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hill T. L. Electric fields and the cooperativity of biological membranes. Proc Natl Acad Sci U S A. 1967 Jul;58(1):111–114. doi: 10.1073/pnas.58.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoyt R. C., Adelman W. J., Jr Sodium inactivation. Experimental test of two models. Biophys J. 1970 Jul;10(7):610–617. doi: 10.1016/S0006-3495(70)86323-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirkwood J. G., Shumaker J. B. The Influence of Dipole Moment Fluctuations on the Dielectric Increment of Proteins in Solution. Proc Natl Acad Sci U S A. 1952 Oct;38(10):855–862. doi: 10.1073/pnas.38.10.855. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES