Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3541–3545. doi: 10.1073/pnas.70.12.3541

Marker Discrimination in Transformation and Mutation of Pneumococcus

J-G Tiraby 1, M S Fox 1
PMCID: PMC427276  PMID: 4148702

Abstract

Earlier investigations of pneumococcal transformation revealed a function (hex+) responsible for severely reducing the transformation yield of certain markers. A mutational alteration (hex-) responsible for the loss of this function has been transferred into a hex+ strain to permit a comparison of the hex+ and hex- phenotypes in an isogenic background.

The loss of the hex+ function results both in a loss of the capacity to eliminate the low efficiency markers in transformation and a substantial increase in the spontaneous mutation rate. These properties of the hex- strain could result from the loss of a capacity to eliminate certain classes of mismatched base pairs that occur as intermediates in both transformation and mutagenesis.

Keywords: bacterial transformation, spontaneous mutation, mismatched base pairs

Full text

PDF
3543

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cato A., Jr, Guild W. R. Transformation and DNA size. I. Activity of fragments of defined size and a fit to a random double cross-over model. J Mol Biol. 1968 Oct 14;37(1):157–178. doi: 10.1016/0022-2836(68)90080-6. [DOI] [PubMed] [Google Scholar]
  2. Ephrussi-Taylor H., Gray T. C. Genetic studies of recombining DNA in pneumococcal transformation. J Gen Physiol. 1966 Jul;49(6):211–231. doi: 10.1085/jgp.49.6.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ephrussi-Taylor H., Sicard A. M., Kamen R. Genetic Recombination in DNA-Induced Transformation of Pneumococcus. I. the Problem of Relative Efficiency of Transforming Factors. Genetics. 1965 Mar;51(3):455–475. doi: 10.1093/genetics/51.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FOX M. S., ALLEN M. K. ON THE MECHANISM OF DEOXYRIBONUCLEATE INTEGRATION IN PNEUMOCOCCAL TRANSFORMATION. Proc Natl Acad Sci U S A. 1964 Aug;52:412–419. doi: 10.1073/pnas.52.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FOX M. S. Deoxyribonucleic acid incorporation by transformed bacteria. Biochim Biophys Acta. 1957 Oct;26(1):83–85. doi: 10.1016/0006-3002(57)90056-2. [DOI] [PubMed] [Google Scholar]
  6. Friedman L. R., Ravin A. W. Genetic and biochemical properties of thymidine-dependent mutants of pneumococcus. J Bacteriol. 1972 Jan;109(1):459–461. doi: 10.1128/jb.109.1.459-461.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guerrini F., Fox M. S. Effects of DNA repair in transformation-heterozygotes of pneumococcus. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1116–1123. doi: 10.1073/pnas.59.4.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gurney T., Jr, Fox M. S. Physical and genetic hybrids formed in bacterial transformation. J Mol Biol. 1968 Feb 28;32(1):83–100. doi: 10.1016/0022-2836(68)90147-2. [DOI] [PubMed] [Google Scholar]
  9. HOTCHKISS R. D., EVANS A. H. Analysis of the complex sulfonamide resistance locus of pneumococcus. Cold Spring Harb Symp Quant Biol. 1958;23:85–97. doi: 10.1101/sqb.1958.023.01.012. [DOI] [PubMed] [Google Scholar]
  10. LERMAN L. S., TOLMACH L. J. Genetic transformation. I. Cellular incorporation of DNA accompanying transformation in Pneumococcus. Biochim Biophys Acta. 1957 Oct;26(1):68–82. doi: 10.1016/0006-3002(57)90055-0. [DOI] [PubMed] [Google Scholar]
  11. Lacks S. Integration efficiency and genetic recombination in pneumococcal transformation. Genetics. 1966 Jan;53(1):207–235. doi: 10.1093/genetics/53.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lacks S. Mutants of Diplococcus pneumoniae that lack deoxyribonucleases and other activities possibly pertinent to genetic transformation. J Bacteriol. 1970 Feb;101(2):373–383. doi: 10.1128/jb.101.2.373-383.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RAVIN A. W. Reciprocal capsular transformations of pneumococci. J Bacteriol. 1959 Mar;77(3):296–309. doi: 10.1128/jb.77.3.296-309.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ROTHEIM M. B., RAVIN A. W. SITES OF BREAKAGE IN THE DNA MOLECULE AS DETERMINED BY RECOMBINATION ANALYSIS OF STREPTOMYCIN-RESISTANCE MUTATIONS IN PNEUMOCOCCUS. Proc Natl Acad Sci U S A. 1964 Jul;52:30–38. doi: 10.1073/pnas.52.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sicard A. M., Ephrussi-Taylor H. Recombinaison génétique dans la transformation chez le pneumocoque. Etude des réversions au locus amiA. C R Acad Sci Hebd Seances Acad Sci D. 1966 May 23;262(21):2305–2308. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES