Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2015 Jan 10.
Published in final edited form as: Microbiol Spectr. 2014 Oct 24;2(2):10.1128/microbiolspec.PLAS-0006-2013. doi: 10.1128/microbiolspec.PLAS-0006-2013

Plasmid-mediated quinolone resistance

George A Jacoby 1, Jacob Strahilevitz 2, David C Hooper 3
PMCID: PMC4288778  NIHMSID: NIHMS639356  PMID: 25584197

Summary

Three mechanisms for plasmid-mediated quinolone resistance (PMQR) have been discovered since 1998. Plasmid genes qnrA, qnrB, qnrC, qnrD, qnrS, and qnrVC code for proteins of the pentapeptide repeat family that protects DNA gyrase and topoisomerase IV from quinolone inhibition. The qnr genes appear to have been acquired from chromosomal genes in aquatic bacteria, are usually associated with mobilizing or transposable elements on plasmids, and are often incorporated into sul1-type integrons. The second plasmid-mediated mechanism involves acetylation of quinolones with an appropriate amino nitrogen target by a variant of the common aminoglycoside acetyltransferase AAC(6′)-Ib. The third mechanism is enhanced efflux produced by plasmid genes for pumps QepAB and OqxAB. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. The plasmid-mediated mechanisms provide only low-level resistance that by itself does not exceed the clinical breakpoint for susceptibility but nonetheless facilitates selection of higher-level resistance and makes infection by pathogens containing PMQR harder to treat.

Introduction

Plasmid-mediated quinolone resistance (PMQR) was late in being discovered. Nalidixic acid, the first quinolone to be used clinically, was introduced in 1967 for urinary tract infections. Resistance was soon observed and could also be readily selected in the laboratory. It was produced by amino acid substitutions in the cellular targets of quinolone action: DNA gyrase and topoisomerase IV (13). Later, decreased quinolone accumulation due to pump activation and porin loss were added as additional resistance mechanisms. Search for transferable nalidixic acid resistance in over 500 gram-negative strains in the 1970s was unrevealing (4). In the 1980’s fluoroquinolones became available that were more potent and broader in spectrum. Quinolone usage increased with subsequent parallel increases in quinolone resistance (5, 6). In 1987 PMQR was reported to be present in a nalidixic acid resistant isolate of Shigella dysenteriae from Bangladesh (7), but this claim was later withdrawn (8). True PMQR was reported in 1998 in a multiresistant urinary Klebsiella pneumoniae isolate at the University of Alabama that could transfer low level resistance to nalidixic acid, ciprofloxacin, and other quinolones to a variety of gram-negative recipients (9). The responsible gene was termed qnr, later amended to qnrA, as additional qnr alleles were discovered. Investigation of a qnrA plasmid from Shanghai that provided more than the expected level of ciprofloxacin resistance led to the discovery in 2006 of a second mechanism for PMQR: modification of certain quinolones by a particular aminoglycoside acetyltransferase, AAC(6′)-Ib-cr (10). A third mechanism for PMQR was added in 2007 with the discovery of plasmid-mediated quinolone efflux pumps QepA (11, 12) and OqxAB (13). A multiplex PCR assay for eight PMQR genes (lacking only qnrVC) has recently been perfected (14). In the past decade these genes have been found in bacterial isolates from around the world. They reduce the susceptibility of bacteria to quinolones, usually not to the level of non-susceptibility, but facilitating the selection of more quinolone resistant mutants and treatment failure. PMQR has been frequently reviewed (1520).

Qnr Structure and Function

Cloning and sequencing qnrA revealed that it encoded a 218 residue protein with a tandemly repeating unit of five amino acids that indicated membership in the large (more than 1000 members) pentapeptide repeat family of proteins (21). Knowledge of the sequence allowed search for qnrA by PCR, and it was soon discovered in a growing number of organisms, including other K. pneumoniae strains in the United States (22, 23), Escherichia coli isolates in Shanghai (24), and Salmonella enterica strains in Hong Kong (25). qnrA was subsequently followed by discovery of plasmid-mediated qnrS (26), qnrB (27), qnrC (28), and qnrD (29). The qnrVC gene from Vibrio cholerae can also be located in a plasmid (3033) or in transmissible form as part of an integrating conjugative element (34). These qnr genes generally differ in sequence by 35 % or more from qnrA and each other. Allelic variants have also been described in each family differing by 10% or less: 5 alleles for qnrVC, 7 alleles for qnrA, 9 for qnrS, and 71 for qnrB (35)(http://www.lahey.org/qnrstudies/, accessed 12/09/13). qnr genes are also found on the chromosome of both gram negative and gram positive bacteria from both clinical and environmental sources (3638).

The sequence of pentapeptide repeat proteins can be represented as [S,T,A,V][D,N][L,F][S,T,R][G] (39). The first such protein to have its structure determined by x-ray crystallography was MfpA, encoded on the chromosome of mycobacterial species including M. smegmatis where its deletion increased fluoroquinolone susceptibility (40). MfpA is a dimer linked C-terminus to C-terminus and folded into a right-handed quadrilateral β helix with size, shape, and charge mimicking the β form of DNA (41). The middle, usually hydrophobic, amino acid (i) of the pentapeptide repeat and the first polar or hydrophobic residue (i−2) point inward while the remaining (i−1, i+1. i+2) amino acids are oriented outward presenting a generally anionic surface. Extensive hydrogen bonding between backbone atoms of neighboring coils stabilizes the helix. The structures of three Qnr proteins are known: EfsQnr from Enterococcus faecalis (42), AhQnr from Aeromonas hydrophila (43), and plasmid-mediated QnrB1 (44). All are rod-like dimers (Fig. 1). The monomers of QnrB1 and AhQnr have projecting loops of 8 and 12 amino acids that are important for their activity (Fig. 1). Deletion of the smaller A loop reduces quinolone protection while deletion of the larger B loop or both loops destroys protective activity (43, 44). Deletion of even a single amino acid in the larger loop compromises protective activity (45). MfpA and EfsQnr lack loops, but EfsQnr differs from MfpA in having an additional β-helical rung, a caping peptide, and a 25-amino acid flexible extension required for full protective activity.

Fig. 1.

Fig. 1

The rod-like structure of the QnrB1 dimer is shown above with the sequence of the monomer below. The sequence is divided into four columns representing the four faces of the right-handed quadrilateral β-helix. Face names and color are shown at the top along with the naming convention for the five residues of the pentapeptide repeats. Loops A and B are indicated by one and two asterisks, respectively, with their sequences indicated below and the loops shown as black traces on the diagram. The N-terminal α-helix is colored salmon. The molecular 2-fold symmetry is indicated with a black diamond. Type II turn (235) containing faces are shown as spheres and type IV-containing faces as strands. Adapted from reference (44). © the American Society for Biochemistry and Molecular Biology.

Topoisomerases twist and untwist the DNA helix by binding to it and introducing a pair of staggered, single-strand breaks in one segment through which a second DNA segment is passed (46). Quinolones bind to the complex of enzyme and DNA stabilizing the cleavage or cleaved complex, blocking religation, and leading ultimately to lethal double stranded breaks (47). In cell-free systems QnrA (21, 48), QnrB (27, 45, 49), QnrS (50), AhQnr (43), and EfsQnr (42) have been shown to protect E. coli DNA gyrase from quinolone inhibition (Fig. 2). Protection of topoisomerase IV by QnrA has been demonstrated as well (51). Protection occurs at low concentrations of Qnr relative to quinolone. Fig. 2 shows that for DNA gyrase inhibited by 6 μM (2 μg/ml) ciprofloxacin, half protection required only 0.5 nM QnrB1 and some protective effect was seen with as little as 5 pM (27). At high QnrB concentrations (25–30 μM in the same system) gyrase inhibition occurs (27, 49). In contrast MfpA inhibits M. tuberculosis or E. coli gyrase with an IC50 of 1.75 to 3 μM and lacks any protective effect against ciprofloxacin. EfsQnr is intermediate. It partially protect E. coli gyrase against ciprofloxacin inhibition but also inhibits ATP-dependent supercoiling activity of gyrase with an IC50 of 1.2 μM (42). In a gel displacement assay QnrA binds to DNA gyrase and its GyrA and GyrB subunits and also to topoisomerase IV and its ParC and ParE subunits (48, 51). Competition between MfpA and substrate DNA for binding to gyrase has been proposed as the mechanism for its inhibitory effect (41). Qnr proteins with their additional structural features (loops, N-terminal extension) are proposed to bind to gyrase and topoisomerase IV targets in such a way as to destabilize the cleavage complex between enzyme, DNA, and quinolone causing its release, religation of DNA, and regeneration of active topoisomerase (43, 44).

Fig. 2.

Fig. 2

QnrB1 protection of DNA gyrase from ciprofloxacin inhibition of supercoiling. Reaction mixtures of 30 μl were analyzed by agarose gel electrophoresis. Reaction mixtures contained 0.2 μg relaxed pBR322 DNA (lanes 1 to 14), 6.7 nM gyrase (lanes 2 to 14), 2 μg/ml ciprofloxacin (lanes 3 to 14), and QnrB-His6 fusion protein at 25 μM (lane 4), 5 μM (lane 5), 2.5 μM (lane 6), 0.5 μM (lane 7), 50 nM (lane 8), 5 nM (lane 9), 0.5 nM (lane 10), 50 pM (lane 11), 5 pM (lane 12), or 0.5 pM (lane 13). Reprinted from (27)

Qnr Origin

Qnr homologs can be found on the chromosome of many γ-Proteobacteria, Firmicutes, and Actinomycetales, including species of Bacillus, Enterococcus, Listeria, and Mycobacteria, as well as anaerobes such as Clostridium difficile and C. perfringens (36, 38, 52, 53). Nearly 50 allelic variants have been found on the chromosome of Stenotrophomonas maltophilia (36, 5457). Aquatic bacteria are especially well represented including species of Aeromonas, Photobacterium, Shewanella, and Vibrio (17, 58, 59). QnrA1 is 98% identical to the chromosomally determined Qnr of Shewanella algae (58), QnrS1 is 83% identical to Qnr from Vibrio splendidus (60), and QnrC is 72% identical to chromosomal Qnr in Vibrio orientalis or V. cholerae. (28). QnrB homologs, on the other hand, are found on the chromosome of members of the Citrobacter freundii complex, including Citrobacter braakii, Citrobacter werkmanii and Citrobacter youngae of both clinical (61) and environmental origin. The small, non-conjugative plasmids that carry qnrD can be found in other Enterobacteriaceae but are especially likely to be found in Proteeae, such as Proteus mirabilis, P. vulgaris, and Providencia rettgeri (62) and may have originated there (63, 64)

The wide distribution of qnr suggests an origin well before quinolones were discovered. Indeed, qnrB genes and pseudogenes have been discovered on the chromosome of Citrobacter freundii strains collected in the 1930s (65)

Qnr Plasmids

Genes for PMQR have been found on plasmids varying in size and incompatibility specificity (Table 1), indicating that the spread of multiple plasmids has been responsible for the dissemination of this resistance around the world. Such plasmid heterogeneity may also have contributed to the variety of bacterial hosts for PMQR and indicates that plasmid acquisition of qnr and other quinolone resistance determinants occurred independently multiple times.

Table 1.

Representative plasmids and transmissible PMQR genes

Plasmid PMQR gene Host Year of isolation Size (kb) Inc group Country Linked bla genesa Reference
pMG252 qnrA1 K. pneumoniae 1994 ~180 USA FOX-5 (9)
pHSH2 qnrA1 E. coli 2000–2001 85 China (24)
pQR1 qnrA1 E. coli 2003 180 A/C2 France VEB-1 (126, 128)
b qnrA1 E. cloacae 2002–2005 75 H12 France SHV-12 (119, 126)
b qnrA1 E. aerogenes 2002–2005 150 FII France SHV-12 (119, 126)
pSZ50 qnrA1 E. coli 2004 ~50 N Mexico (71)
pHE96 qnrA3 K. pneumoniae 2004 70 N France (236)
b qnrA6 P. stuartii 2011 100 A/C Tunisia OXA-48, PER-1, CMY-4 (237)
pMG298 qnrB1 K. pneumoniae 2002–2003 340 India CTX-M-15 (27)
pJIBE401 qnrB2 K. pneumoniae 2003 >150 L/M Australia IMP-4 (74)
b qnrB2 S. enterica 2000 Senegal SHV-12 (77)
pMG319 qnrB4 E. cloacae 1999–2004 200 USA DHA-1 (238)
pPMDHA qnrB4 K. oxytoca 2002 (Tra) France DHA-1 (134)
b qnrB4 E. cloacae b 119 China DHA-1 (108)
pHND2 qnrB6 K. pneumoniae 2006 China CTX-M-9Gc (75)
pARCF702 qnrB10 C. freundii 2005 Argentina (239)
pR4525 qnrB19 E. coli 2002 40 Columbia SHV-12 CTX-M-12 (78)
pLRM24 qnrB19 K. pneumoniae 2007 80 USA KPC-3 (83, 117)
pPAB19-1 qnrB19 S. enterica 2006 2.7 ColE1 Argentina (82)
pQAR2078 qnrB19 E. coli 2005 42.4 N Germany (81)
pAH0376 qnrS1 S. flexneri 2003 ~50 Japan (26)
pINF5 qnrS1 S. enterica 2004 58 Europe (84)
TPqnrS-2a qnrS1 S. enterica 2004 44 N UK (240)
pK245 qnrS1 K. pneumoniae 2002 98 Taiwan SHV-2 (87)
b qnrS1 S. enterica 1999–2006 >250 HI2 Netherlands LAP-2 (120)
b qnrS2 d 2004 8.5 Q Germany (241)
p37 qnrS2 A. punctata 2006 55 U France (242)
pHS10 qnrC P. mirabilis 2006 ~120 China (28)
p2007057 qnrD1 S. enterica 2006–2007 4.3 China (29)
e qnrVC1 V. cholerae 2002–2008 Bangladesh (34)
b qnrVC4 A. punctata 2008 China PER-1 (30)
pBD146 qnrVC5 V. fluvialis 1998–2002 7.5 India (243)
pHSH10-2 aac(6′)-Ib-cr E. coli 2000–2001 China (10)
pC15-1a aac(6′)-Ib-cr E. coli 2000–2002 92 FII Canada CTX-M-15 (244)
pHPA qepA1 E. coli 2002 FII Japan CTX-M-12 (11)
pIP1206 qepA1 E. coli 2000–2005 168 FI Belgium (197)
pQep qepA2 E. coli 2007 90 FI France (199)
pOLA52 oqxAB E. coli b 52 X1 Denmark (200, 202)
pHXY0908 oqxAB S. typhimurium 2009 HI2 China (207)
a

Only unusual bla genes are shown.

b

Not specified.

c

CTX-M-9 group. See reference for details.

d

Unidentified bacteria in activated sludge

e

Transmitted as part of an integrating conjugative element

A mobile or transposable element is almost invariably associated with qnr genes, (Table 2 and Fig. 3). qnrA1 has usually been associated with ISCR1 (66), although 63% of qnrA1-positive K. pneumoniae strains in a study from South Korea were negative for ISCR1 by PCR (67). The ISCR1 element is not only involved in gene mobilization. It also provides an active promoter for resistance gene expression (68). Often a single copy of ISCR1 is found upstream from qnrA1, but in pMG252 and related plasmids, the qnrA1 gene is bracketed by two copies of ISCR1 (69, 70). The qnrA1 ISCR1 complex is inserted in turn into a sul1-type integron containing several other resistance gene cassettes (24). In pSZ50 from Mexico the integron containing ISCR1 and qnrA1 is duplicated in tandem (71). The qnrA3 and qnrA6 alleles are also linked to ISCR1. The gene for qnrB1, however, is often associated not with ISCR1 but with orf1005, encoding a putative transposase (27). qnrB1 has also been found linked to an upstream truncated orf1005 and a downstream IS26 (72, 73), while the qnrB20 allele is sandwiched between an upstream IS26 and a downstream orf1005 (72). Alleles qnrB2, qnrB4, qnrB6, and qnrB10 are associated with ISCR1, usually as a single copy (7375), but in some plasmids two copies of ISCR1surround qnrB2 (76, 77). qnrB19 has been found in three genetic environments: within large plasmids associated with ISEcp1C-based transposons, in large plasmids bracketed by IS26, and in small ColE1-type plasmids (~3-kb) lacking insertion sequences in which a flanking oriT locus and Xer recombination site have been proposed to be involved in site-specific recombination (73, 7882). In all three settings qnrB19 is linked to a fragment of pspF implying that the putative mobilization pathways may be related. In plasmid pLRM24 qnrB19 linked to ISEcp1 has inserted into a Tn3-like element also containing a mobile element encoding KPC-3 carbapenemase (83). The qnrS1 gene is not linked to ISCR1 but is associated with an upstream Tn3-like transposon, in several plasmids containing an active TEM-1 gene (26, 73, 8486). In other plasmids qnrS1 is associated with IS26 (87), IS2 (88), or ISEcl2, a novel insertion element belonging to the IS3 family (89). On the other hand qnrS2 has been found as part of a mobile insertion cassette, an element with bracketing inverted repeats but lacking a transposase (90). The qnrC gene is found downstream from ISPmi1, an insertion sequence also belonging to the IS3 family (28). qnrD has typically been found on small, nonconjugative plasmids and is also located inside a mobile insertion cassette (29, 6264, 91). qnrVC is so far the only qnr gene located in a cassette with a linked attC site (92). qnrVC genes have been found on plasmids in A. punctata (30), and V. fluvialis (32), within integrons in A. baumannii (93) and P. aeruginosa (94), and within the transmissible SXT integrating element of V. cholerae (34, 95).

Table 2.

Distribution of PMQR genes

PMQR gene Source Country Organism Mobilizing element Reference
qnrA1 Algeria, Australia, Belgium, Brazil, Central African Republic, China, Denmark. Egypt, France, Germany, Hungary, India, Israel, Ivory Coast, Japan, Kenya, Mexico, Morocco, Netherlands, Nigeria, Portugal, Romania, Saudi Arabia, Singapore, South Korea, Spain, Sweden, Taiwan, Thailand, Turkey, UK, Uruguay, USA, Vietnam A. baumannii, C. freundii, E. aerogenes, E. cloacae, E. sakazakii, E. coli, H. parasuis, K. oxytoca, K. pneumoniae, P. mirabilis, P. aeruginosa, P. oryzihabitans, P. putida, S. enterica, S. marcescens, S. sonnei, S. maltophilia, V. fluvialis ISCR1 (9, 2224, 67, 98, 104108, 113, 115, 119, 122125, 127130, 138141, 143, 144, 147, 155, 226, 227, 238, 245290)
qnrA3 China, France, Hong Kong K. pneumoniae, K. ascorbata, Kluyvera spp., S. enterica, S. algae ISCR1, IS26 (25, 153, 156, 236, 291)
qnrA6 France, Tunisia C. freundii, K. pneumoniae, P. mirabilis, P. stuartii ISCR1 (237, 292, 293)
qnrB1 Algeria, Argentina, Brazil, China, Czech Republic, Denmark, France, Egypt, India, Italy, Ivory Coast, Malaysia, Mexico, Morocco, Netherlands, Nigeria, Norway, Saudi Arabia, Singapore, Scotland, Singapore, South Korea, Spain, Sweden, Thailand, Tunisia, Turkey, UK C. freundii, C. koseri, E. cloacae, E. gergoviae, E. coli, K. ornithinolytica, K. pneumoniae, S. enterica, S. marcescens Orf1005, IS26 (27, 67, 72, 73, 98, 102, 105, 109, 110, 113, 162, 186, 251, 259, 263, 268, 269, 271, 279, 281, 284, 285, 287, 288, 292, 294302)
qnrB2 Argentina, Australia, Bolivia, Brazil, Czech Republic, China, France, Germany, Hungary, Ireland, Israel, Kuwait, Mexico, Morocco, Netherlands, Portugal, Peru, Scotland, Senegal, South Korea, Spain, Sweden, Switzerland, Taiwan, Tunisia, UK, USA C. freundii, E. cloacae, E. coli, K. oxytoca, K. pneumoniae, S. enterica, S. typhi ISCR1 (27, 61, 67, 73, 77, 96, 98, 108, 115, 116, 120, 125, 132, 139, 145, 155, 157, 161, 227, 238, 251, 257, 259, 265, 268, 271, 273, 274, 276, 279, 281, 290, 292, 299, 301, 303316)
qnrB3 USA E. coli (238)
qnrB4 Algeria, Australia, China, France, Germany, Ivory Coast, Japan, Morocco, Netherlands, Saudi Arabia, Singapore, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, UK, USA C. freundii, C. koseri, E. aerogenes, E. cloacae, E. gergoviae, E. coli, K. ornithinolytica, K. oxytoca, K. pneumoniae, S. enterica, S. marcescens, Shigella sp. ISCR1 (61, 67, 72, 75, 96, 98, 104, 105, 108, 109, 113, 121, 127, 132, 133, 145, 155, 186, 192, 196, 220, 238, 251, 256, 257, 266, 268, 271, 276, 280, 281, 285, 287, 290, 299, 309, 310, 316319)
qnrB5 Denmark, France, Mexico, South Korea, UK, USA E. coli, K. pneumoniae, S. enterica (96, 97, 145, 259, 265, 279, 288, 295, 299, 303, 305, 320)
qnrB6 China, France, Germany, Japan, Malaysia, Mexico, Netherlands, Poland, Singapore, South Korea, Spain, Sweden, Thailand, USA C. freundii, E. aerogenes, E. cloacae, E. coli, H. parasuis, K. oxytoca, K. pneumoniae, S. enterica, S. fonticola, S. marcescens, S. flexneri ISCR1 (67, 72, 75, 98, 100, 104, 108, 127, 139, 141, 148, 153, 155, 167, 169, 192, 196, 204, 227, 251, 257, 266268, 273, 279, 285, 287, 288, 290, 302, 309, 321, 322)
qnrB7 Kuwait, Netherlands, Norway, South Korea C. freundii, E. cloacae, K. pneumoniae, S. enterica (98, 155, 296, 313)
qnrB8 Brazil, China, France, Kuwait, South Korea, UK C. freundii, E. aerogenes (98, 104, 269, 299, 306, 313)
qnrB9 China, South Korea C. freundii (98, 290, 323)
qnrB10 Argentina, Bolivia, China, Malaysia, Nigeria, Peru, South Korea C. braakii, C. freundii, E. amnigenus, E. cloacae, E. coli, K. pneumoniae, S. Choleraesuis, S. marcescens ISCR1 (73, 127, 145, 153, 281, 302, 314, 324)
qnrB12 Netherlands, South Korea C. freundii, S. enterica (98, 155)
qnrB16 South Korea K. pneumoniae (281)
qnrB19 Argentina, Bolivia, Brazil, Columbia, Czech Republic, Finland, Denmark, Germany, Italy, Mexico, Netherlands, Nigeria, Peru, Poland, South Korea, UK, USA, Venezuela E. aerogenes, E. fergusonii, E. coli, K. oxytoca, K. pneumoniae, K. ascorbata, S. enterica, S. sonnei ISEcp1, IS26 (73, 7883, 86, 120, 148, 155, 158, 166, 169, 288, 289, 301, 314, 315, 322, 324329)
qnrB20 Mexico, Singapore K. pneumoniae Orf1005, IS26 (72, 288)
qnrB22 South Korea C. werkmaniia (330)
qnrB23 South Korea C. freundiia (330)
qnrB26 China P. vulgaris (290)
qnrB31 China K. pneumoniae (331)
qnrB32 China K. pneumoniae (331, 332)
qnrS1 Algeria, Argentina, Belgium, Bolivia, Brazil, Canada, China, Czech Republic, Denmark, Egypt, France, Germany, Greece, Hungary, Israel, Italy, Ivory Coast, Japan, Malaysia, Mexico, Morocco, Netherlands, Nigeria, Norway, Poland, Peru, Romania, Serbia, South Africa, South Korea, Slovakia, Spain, Sweden, Switzerland, Taiwan, Thailand, Tunisia, Turkey, UK, USA, Vietnam C. freundii, C. koseri, E. aerogenes, E. cloacae, E. coli, K. oxytoca, K. pneumoniae, M. morganii, P. mirabilis, S. enterica, S. typhi, S. boydii, S. flexneri, S. dysenteriae (26, 67, 73, 75, 84, 86, 98, 104, 105, 107109, 115, 119121, 125, 127, 131, 132, 143, 145, 148, 150, 151, 153156, 158, 166, 167, 169, 172, 184, 186, 192, 196, 204, 220, 227, 240, 251, 255257, 259, 261, 262, 264, 265, 268273, 276, 279, 281, 284, 285, 287, 290, 292, 294296, 299, 301303, 305, 307, 308, 314316, 318322, 324, 333341)
qnrS2 China, Czech Republic, Denmark, France, Germany, India, South Korea, Spain, Switzerland, USA A. allosaccharophila, A. caviae, A. hydrophila, A. media, A. puctata, A. veronii, E. cloacae, Pseudoalteromonas spp., Pseudomonas spp., S. enterica, S. marcescens, Shigella sp. (90, 100, 127, 148, 156, 167, 241, 242, 266, 272, 295, 299, 303, 319, 323, 342345)
qnrS3 China E. coli (162)
qnrS4 Denmark S. enterica (295)
qnrS5 South Korea Aeromonas spp. (345)
qnrC China P. mirabilis ISPmi1 (28)
qnrD1 China, Czech Republic, France, India, Italy, Netherlands, Nigeria, Poland, Spain E. coli, C. freundii, K. pneumoniae, M. morganii, P. mirabilis, P. vulgaris, P. rettgeri, P. aeruginosa, S. enterica (29, 62, 63, 91, 138, 148, 155, 204, 323, 340, 346, 347)
qnrVC1 Bangladesh, Brazil, India, Tunisia P. aeruginosa, V. cholerae (33, 34, 92, 94, 95)
qmrVC3 India V. cholerae (95)
qnrVC4 China, Haiti, Portugal A. hydrophila, A. punctata, Aeromonas sp., Pseudomonas sp., V. cholera ISCR1 (30, 33)
qnrVC5 China, Haiti, India V. parahaemolyticus, V. cholera, V. fluvialis (3133)
qnrVC6 China A. baumannii (93)
aac(6′)-Ib-cr Algeria, Argentina, Australia, Bolivia, Brazil, Bulgaria, Canada, China, Croatia, Czech Republic, Denmark, Egypt, France, Germany, Hungary, India, Israel, Italy, Japan, Kenya, Mexico, Netherlands, Nigeria, Norway, Portugal, Peru, Saudi Arabia, Serbia, Singapore, Slovenia, South Korea, Spain, Switzerland, Taiwan, Thailand, UK, Uruguay, USA, Vietnam C. braakii, C. freundii, C. koseri, E. aerogenes, E. cloacae, E. coli, H. parasuis, K. pneumoniae, Kluyvera spp., L. hongkongensis, M. morganii, P. aeruginosa, P. luteola, P. oryzihabitans, P. mirabilis, Raoultella spp., S. enterica, S. marcescens, S. odorifera, S. flexneri, S. sonnei, Shigella sp., V. fluvialis IS26 (10, 14, 67, 73, 75, 100102, 104, 110, 113, 116, 125, 127, 133, 138, 141, 145, 148, 150, 153, 155157, 161, 167, 169, 172, 182, 184187, 189, 190, 192, 194196, 220, 226, 256, 261, 263, 266, 267, 270, 272, 275, 278, 284, 287, 288, 290, 296, 297, 301, 315, 316, 318, 319, 322, 336, 348362)
oqxAB Argentina, Czech Republic, China, Denmark, Hong Kong, Italy, Japan, Poland, Serbia, South Korea, Spain E. coli, K. oxytoca, K. pneumoniae, S. enterica IS26 (73, 101, 148, 156, 168, 202206, 208, 339, 360, 363, 364)
qepA1 Belgium, Bolivia, Canada, China, Egypt, India, Japan, Mexico, Nigeria, South Korea, Spain, UK, USA, Vietnam E. cloacae, E. coli, K. pneumoniae, M. morgnaii, P. oryzihabitans, S. enterica, S. flexneri IS26, ISCR3C (11, 12, 75, 114, 138, 145, 150, 153, 156, 167, 187, 192, 196198, 220, 261, 270, 272, 284, 285, 290, 321, 324, 361, 365367)
qepA2 France E. coli ISCR3C (199)
a

Citrobacter spp. contain both plasmid-mediated and chromosomal qnr genes. Genes for qnrB22 and qnrB23 were transferred by conjugation to E. coli and hence proved to be plasmid determined.

Fig. 3.

Fig. 3

Genetic environment of qnr alleles.

qnr genes are usually found in multiresistance plasmids linked to other resistance determinants. β-lactamase genes have been conspicuously common, including genes for AmpC β-lactamases (22, 96101), CTX-M enzymes (96, 97, 99, 100, 102114), IMP enzymes (74, 115), KPC enzymes (116118), LAP-1 or LAP-2 (88, 89, 119121), SHV-12 (96, 99, 104, 105, 107, 109, 115, 119, 121127), VEB-1 (126, 128130), and VIM-1 (111, 131). qnrB4 and blaDHA-1 have been found near each other on similar plasmids from around the world (96, 108, 127, 132135). qnrB alleles are also frequently found in plasmids linked to variable portions of the operons for psp (phage shock protein) and sap (peptide ABC transporter, ATP-binding protein) genes. These genes flank qnrB on the chromosome of several Citrobacter spp. and their co-acquisition with qnrB is one of the arguments for Citrobacter as the source of qnrB alleles (61). Molecular studies with I-CeuI and S1 nuclease followed by double hybridization for qnr and 23s rRNA genes have identified alleles for qnrB6 (136), qnrB12 (137), and qnrB16 (136) on the chromosome of several Citrobacter spp. Note that these same alleles have also been reported on plasmids in species other than Citrobacter (Table 2).

Spread of qnr plasmids

PMQR genes have been found in a variety of Enterobacteriaceae, especially Escherichia coli and species of Enterobacter, Klebsiella, and Salmonella (Table 2). They have been conspicuously rare in non-fermenters but have occasionally been reported in Pseudomonas aeruginosa, other Pseudomonas spp.(138, 139), Acinetobacter baumannii (139, 140), and Stenotrophomonas maltophilia (139). Genes for qnrA1 and qnrB6 have also been found in Haemophilus parasuis from pigs in South China (141). qnr genes are found in a variety of gram-positive organisms but are chromosomal and not plasmid-mediated (38, 53). Of the various qnr varieties, qnrB seems somewhat more common than qnrA or qnrS, which are more common than qnrD. Only a single isolate of qnrC is known (28). The relative frequency of various alleles can be judged by the number of references in Table 2: i.e. for qnrB the most frequently detected alleles are qnrB1, qnrB2, qnrB4, qnrB6, qnrB10, and qnrB19. The earliest known qnr outside of Citrobacter spp, dates from 1988 (142). Studies in the last decade suggest that qnr detection is increasing, but is still less than 10% in unselected clinical isolates, with usually greatest prevalence in E. cloacae, less in K. pneumoniae, and least in E. coli (127, 143146). Higher frequencies result if samples are preselected for ESBL or other resistance phenotypes (127, 147), but the prevalence of qnr genes has reached as high as 39% in an unselected sample of E. cloacae isolates at one hospital in China (127).

Although most prevalence studies have surveyed hospital isolates, animals have not been neglected. PMQR genes have been found in samples from domestic or wild birds (75, 86, 148, 149), cats (75, 81, 112, 150), cattle (151, 152), chickens (75, 86, 153160), dogs (75, 81, 112, 150, 156, 161), ducks (101, 156, 160, 162), fish (163165), geese (101, 156, 160, 162), horses (81, 86, 166), pigs (75, 101, 155, 156, 160, 162, 167), rabbits (168), reptiles (155, 169), sheep (155), turkeys (155), and zoo animals (170172).

Regulation of qnr

Not surprisingly, qnrA expression is influenced by the strength of its promoter. A qnrA1 plasmid from Shanghai was found to give 8-fold higher ciprofloxacin MICs than other qnrA1 plasmids and had a 12-fold stronger promoter attributed to a 7-bp deletion between the +1 transcription initiation site and the start of the qnrA1 gene (144). Environmental conditions have also been found to affect expression of qnr genes and may offer clues concerning the native function of these genes. Expression of the qnrA gene of S algae, an organism adapted to growth at low temperature, is stimulated up to 8-fold by cold shock but not by other conditions such as DNA damage, oxidative or osmotic stress, starvation, or heat shock (173) Expression of qnrB alleles, on the other hand, is augmented up to 9-fold by exposure to DNA damaging agents such as ciprofloxacin or mitomycin C via an upstream LexA binding site and the classical SOS system (174, 175). qnrD and the chromosomal qnr of S. marcescens are similarly regulated (176). Expression of plasmid-mediated qnrS1 or the related chromosomal qnrVS1 of V. splendidus is also stimulated by ciprofloxacin up to 30-fold, but by a mechanism independent of the SOS system. No LexA binding site is found upstream from these qnr genes, but upstream sequence is required for quinolone stimulation to occur (177). Some naturally occurring quinolone-like compounds such as quinine, 2-hydroxyquinoline, 4-hydroxyquinoline, or the Pseudomonas quinolone signal for quorum sensing also induce qnrS1, but not qnrVS1 (178).

AAC(6′)-Ib-cr

AAC(6′)-Ib-cr is a bifunctional variant of a common acetyltransferase active on such aminoglycosides as amikacin, kanamycin, and tobramycin but also able to acetylate those fluoroquinolones with an amino nitrogen on the piperazinyl ring, such as ciprofloxacin and norfloxacin (10). Compared to other AAC(6′)-Ib enzymes, the –cr variant has two unique amino acid substitutions: Trp102Arg and Asp179Tyr, both of which are required for quinolone acetylating activity. Models of enzyme action suggest that the Asp179Tyr replacement is particularly important in permitting π-stacking interactions with the quinolone ring to facilitate quinolone binding. The role of Trp102Arg is to position the Tyr face for optimal interaction (179) or to hydrogen bond to keto or carboxyl groups of the quinolone to fix it in place (180). Both AGG and CGG have been found as the Arg codon at 102 allowing variants of the aac(6′)-Ib-cr gene to be distinguished (73). A lower level of aac(6′)-Ib-cr expression has been found in a strain with an upstream 12-bp deletion displacing the promoter -10 box (181). A 26 amino acid larger AAC(6′)-Ib-cr4 enzyme with consequent Trp128Arg and Asp205Tyr substitutions (182) and non-functional truncated aac(6′)-Ib-cr genes (183) have also been reported.

The aac(6′)-Ib-cr gene is usually found in a cassette as part of an integron in a multiresistance plasmid, which may contain other PMQR genes. Association with ESBL CTX-M-15 is particularly common (110, 184190). A mobile genetic element, especially IS26, is often associated (191). aac(6′)-Ib-cr may also be chromosomal (192, 193). The gene has been found world-wide (Table 2) in a variety of Enterobacteriaceae and even in P. aeruginosa (138). It is more prevalent in E. coli than other Enterobacteriaceae (145, 184, 194, 195), and has often been more common than qnr alleles (14, 75, 184, 192, 194, 196).

QepA and OqxAB

QepA is a plasmid-mediated efflux pump in the major facilitator (MFS) family that decreases susceptibility to hydrophilic fluoroquinolones, especially ciprofloxacin and norfloxacin (11, 197). qepA has often been found on plasmids also encoding aminoglycoside ribosomal methylase rmtB (12, 167, 198). Substantial differences in quinolone resistance produced by different qepA transconjugants suggest variability in the level of qepA expression, by mechanisms as yet to be defined (167). IS26 elements and ISCR3C have been implicated in mobilizing the qepA gene to plasmids (199). A variant differing in two amino acids (QepA2) has also been described (199).

OqxAB is an efflux pump in the resistance-nodulation-division (RND) family that was initially recognized on transmissible plasmids responsible for resistance to olaquindox used for growth enhancement in pigs (200, 201). It has a wide substrate specificity including chloramphenicol, trimethoprim, and quinolones such as ciprofloxacin, flumequin, norfloxacin, and nalidixic acid (13). oqxAB has been found on plasmids in clinical isolates of E. coli and K. pneumoniae and in the chromosome and on plasmids of S. enteritis flanked in both locations by IS26-like elements (202207). In E. coli isolates from farms in China where olaquindox was in use, oqxAB was found on transmissible plasmids in 39% of isolates from animals and 30% of isolates from farm workers (204). Linkage of oqxAB with genes for CTX-M-14 and other plasmid-mediated CTX-M alleles has been noted (160). It is common (usually 75% or more) on the chromosome of K. pneumoniae isolates, where up to 20-fold variation in expression implies the presence of regulatory control (73, 203, 206, 208, 209). In K. pneumoniae overexpression of the nearby rarA gene is associated with increased oqxAB expression, while increased expression of adjacent oqxR gene downregulates OqxAB production (210, 211). Sequence variants oqxA2, oqxB2 and oqxB3 have been described (208).

Other plasmid-mediated efflux pumps active on quinolones have been reported but as yet little studied. Plasmid pRSB101 isolated from an uncultivated organism in activated sludge at a wastewater treatment plant contained a MDR transport system with an RND-type membrane fusion protein conferring resistance to nalidixic acid and norfloxacin (212). It differs in sequence from QepA and OqxAB. Plasmids in S. aureus (especially MRSA) encoding the QacBIII variant belonging to the MFS family confer decreased susceptibility to norfloxacin and ciprofloxacin (213).

Resistance produced by PMQR determinants

Table 3 shows the minimum inhibitory concentration (MIC) produced in a common E. coli strain by PMQR genes. qnr genes produce about the same resistance to ciprofloxacin and levofloxacin as single mutations in gyrA, but have less affect on susceptibility to nalidixic acid. aac(6′)-Ib-cr and qepA give lower levels, which is confined to ciprofloxacin in the case of aac(6′)-Ib-cr because of its substrate specificity. All provide a decrease in susceptibility that does not reach the CLSI breakpoint for even intermediate resistance. How then can PMQR genes be clinically important?

Table 3.

Effect of different quinolone resistance mechanisms on quinolone susceptibility of E. coli.

E. coli Strain MIC μg/ml
Ciprofloxacin Levofloxacin Nalidixic acid
J53 0.008 0.015 4
J53 gyrA (S83L) 0.25 0.5 ≥256
J53 pMG252 (qnrA1) 0.25 0.5 16
J53 pMG298 (qnrB1) 0.25 0.5 16
J53 pMG306 (qnrS1) 0.25 0.38 16
J53 pMG320 (aac(6′)-Ib-cr) 0.06 0.015 4
J53 pAT851 (qepA) 0.064 0.032 4
CLSI susceptibility breakpoint ≤1.0 ≤2.0 ≤16

The answer is that PMQR genes facilitate the selection of higher levels of quinolone resistance. Fig. 4 shows the effect of plasmid pMG252 encoding QnrA on survival of E. coli J53 at increasing concentrations of ciprofloxacin. Survivors occur until a concentration of more than 1 μg/ml ciprofloxacin is reached. This limiting concentration has been termed the mutant prevention concentration (MPC), and the concentration between the MIC and MPC at which mutants are selected is the mutant selection window (214). PMQR genes exert their influence by widening the mutant selection window and elevating the MPC, as shown for both qnr (215, 216) and aac(6′)-Ib-cr (10). The same augmentation of resistance selection has been found in clinical isolates of E. cloacae (147). Surprisingly, in qnr-harboring E. coli gyrA resistance mutants are rarely selected (217), although resistance produced by qnr and gyrA is additive (218220), clinical isolates with qnr alleles or aac(6′)-Ib-cr and gyrA, parC, and other resistance mutations are common (221), and gyrA mutants have developed in qnr positive isolates from patients treated with quinolone for E. coli (222) or S. enterica (223) infections.

Fig. 4.

Fig. 4

Survival at increasing fluoroquinolone concentrations for Escherichia coli J53 and J53 pMG252. A large inoculum (1010 colony forming units) and appropriate dilutions were applied to Mueller-Hinton agar plates containing the indicated concentration of ciprofloxacin, and surviving colonies were counted after incubation for 72 h at 37°C [from (215)] with permission.

It should be noted that higher levels of quinolone resistance are seen if a plasmid or strain carries two or more genes for quinolone resistance, such as both qnr and aac(6′)-Ib-cr, and that ciprofloxacin MICs of 2 μg/ml can be reached with qnrA in E. coli overexpressing the AcrAB multi-drug efflux pump (224) A fully resistant E. coli with a ciprofloxacin MIC of 4 μg/ml has been reported with plasmid-mediated qnrS1 and oqxAB as well as overexpression of AcrAB and other efflux pumps (225).

While the frequency of quinolone resistance in clinical isolates has paralleled quinolone usage, the appearance of PMQR has also played a role. At Hadassah hospitals in Israel ciprofloxacin resistance was uncommon in E, coli, K. pneumoniae, and Enterobacter spp. until the mid-1990s, just when qnr and aac(6′)-Ib-cr genes became prevalent in these strains (143, 226). Similarly, in Korea the increasing frequency of ciprofloxacin resistance in Enterobacteriaceae since 2000 has been associated with an increasing prevalence of PMQR genes (145). In Spain also the prevalence of PMQR in clinical isolates of E. coli and K. pneumoniae increased between 2000 and 2006 (227). In Canada as well the prevalence of aac(6′)-Ib-cr increased in the Calgary Health Region between 2004 and 2007 (184).

Clinical importance

In animal model infections the presence of a qnr gene makes an infecting agent harder to treat with quinolones. This detrimental effect has been shown in mice with pneumonia produced by K. pneumoniae or E. coli (228, 229) and in E. coli UTI models (230, 231).

Patients treated with levofloxacin for bloodstream infections caused by gram-negative organisms with elevated quinolone MICs that were still within the susceptible category had worse outcomes than similar patients infected with more susceptible organisms (232), but a specific effect of PMQR carriage on outcome has been harder to document. Chong et al. evaluated 351 blood culture isolates of Enterobacter or Klebsiella at a health center in Korea and found 26 positive for qnrA, qnrB, or qnrS genes. The qnr positive patients were hospitalized longer, but there was no difference in in-hospital or 30-day mortality between the qnr positive or negative patient groups (233). Liao et al. studied 227 blood culture isolates of Klebsiella from a hospital in Taiwan and found nine positive for qnrB or qnrS. 14-day mortality was similar in patients infected with or without qnr-containing isolates, but there was a trend for increased in-hospital mortality (234). Further studies are needed to distinguish a specific effect of qnr from the effect of other resistance genes so often linked to it.

Coda

The varieties of PMQR that eventually emerged exemplify the three general mechanism of bacterial resistance to any antimicrobial agents: target alteration (Qnr), drug modification (AAC(6′)-Ib-cr), and efflux pump activation (QepA and OqxAB). AAC(6′)-Ib-cr arose by mutations altering two amino acid encoded by a common aminoglycoside resistance gene. Acquisition of the other PMQR genes illustrates the variety of genetic elements now available on plasmids for resistance gene mobilization and the frequent obscurity of the ultimate gene donors. Who would have guessed that aquatic bacteria harbored qnr genes without evident selective advantage thus encoding a protein that blocked the action of a synthetic antimicrobial agent that they would never be expected to encounter? Unfortunately, knowledge of resistance mechanisms has not led to new therapeutic strategies. Acetylation of ciprofloxacin is inhibited competitively by aminoglycoside substrates of AAC(6′)-Ib-cr (179), but other inhibitors of the enzyme are not yet known and no efflux pump inhibitors are commercially available. Overcoming Qnr blockage of quinolone inhibition will require deeper knowledge of how this DNA mimic interacts with topoisomerase as well as the development of other bacterial topoisomerase poisons that escape the action of Qnr.

Acknowledgments

This work was supported by grant R01 AI057576 from the US Public Health Service, National Institutes of Health to D.C.H. and G.A.J.

References

  • 1.Gellert M, Mizuuchi K, O’Dea MH, Itoh T, Tomizawa JI. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci USA. 1977;74:4772–4776. doi: 10.1073/pnas.74.11.4772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Yoshida H, Kojima T, Yamagishi J, Nakamura S. Quinolone-resistant mutations of the gyrA gene of Escherichia coli. Mol Gen Genet. 1988;211:1–7. doi: 10.1007/BF00338386. [DOI] [PubMed] [Google Scholar]
  • 3.Hooper DC. Mechanisms of quinolone resistance. In: Hooper DC, Rubinstein E, editors. Quinolone antimicrobial agents. 3. ASM Press; Washington, D.C: 2003. pp. 41–67. [Google Scholar]
  • 4.Burman LG. Apparent absence of transferable resistance to nalidixic acid in pathogenic Gram-negative bacteria. J Antimicrob Chemother. 1977;3:509–516. doi: 10.1093/jac/3.5.509. [DOI] [PubMed] [Google Scholar]
  • 5.Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP. Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA. 2003;289:885–888. doi: 10.1001/jama.289.7.885. [DOI] [PubMed] [Google Scholar]
  • 6.Linder JA, Huang ES, Steinman MA, Gonzales R, Stafford RS. Fluoroquinolone prescribing in the United States: 1995 to 2002. Am J Med. 2005;118:259–268. doi: 10.1016/j.amjmed.2004.09.015. [DOI] [PubMed] [Google Scholar]
  • 7.Munshi MH, Sack DA, Haider K, Ahmed ZU, Rahaman MM, Morshed MG. Plasmid-mediated resistance to nalidixic acid in Shigella dysenteriae type 1. Lancet. 1987;2:419–421. doi: 10.1016/s0140-6736(87)90957-3. [DOI] [PubMed] [Google Scholar]
  • 8.Ashraf MM, Ahmed ZU, Sack DA. Unusual association of a plasmid with nalidixic acid resistance in an epidemic strain of Shigella dysenteriae type 1 from Asia. Can J Microbiol. 1991;37:59–63. doi: 10.1139/m91-009. [DOI] [PubMed] [Google Scholar]
  • 9.Martínez-Martínez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet. 1998;351:797–799. doi: 10.1016/S0140-6736(97)07322-4. [DOI] [PubMed] [Google Scholar]
  • 10.Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12:83–88. doi: 10.1038/nm1347. [DOI] [PubMed] [Google Scholar]
  • 11.Yamane K, Wachino J, Suzuki S, Kimura K, Shibata N, Kato H, Shibayama K, Konda T, Arakawa Y. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother. 2007;51:3354–3360. doi: 10.1128/AAC.00339-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Périchon B, Courvalin P, Galimand M. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob Agents Chemother. 2007;51:2464–2469. doi: 10.1128/AAC.00143-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Hansen LH, Jensen LB, Sorensen HI, Sorensen SJ. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother. 2007;60:145–147. doi: 10.1093/jac/dkm167. [DOI] [PubMed] [Google Scholar]
  • 14.Ciesielczuk H, Hornsey M, Choi V, Woodford N, Wareham DW. Development and evaluation of a multiplex PCR for eight plasmid-mediated quinolone-resistance determinants. J Med Microbiol. 2013;62:1823–1827. doi: 10.1099/jmm.0.064428-0. [DOI] [PubMed] [Google Scholar]
  • 15.Guan X, Xue X, Liu Y, Wang J, Wang Y, Wang J, Wang K, Jiang H, Zhang L, Yang B, Wang N, Pan L. Plasmid-mediated quinolone resistance–current knowledge and future perspectives. J Int Med Res. 2013;41:20–30. doi: 10.1177/0300060513475965. [DOI] [PubMed] [Google Scholar]
  • 16.Ruiz J, Pons MJ, Gomes C. Transferable mechanisms of quinolone resistance. Int J Antimicrob Agents. 2012;40:196–203. doi: 10.1016/j.ijantimicag.2012.02.011. [DOI] [PubMed] [Google Scholar]
  • 17.Poirel L, Cattoir V, Nordmann P. Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front Microbiol. 2012;3:24. doi: 10.3389/fmicb.2012.00024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Rodriguez-Martinez JM, Cano ME, Velasco C, Martinez-Martinez L, Pascual A. Plasmid-mediated quinolone resistance: an update. J Infect Chemother. 2011;17:149–182. doi: 10.1007/s10156-010-0120-2. [DOI] [PubMed] [Google Scholar]
  • 19.Hernandez A, Sanchez MB, Martinez JL. Quinolone resistance: much more than predicted. Front Microbiol. 2011;2 doi: 10.3389/fmicb.2011.00022. article 22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 2009;22:664–689. doi: 10.1128/CMR.00016-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A. 2002;99:5638–5642. doi: 10.1073/pnas.082092899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Rodríguez-Martínez JM, Pascual A, García I, Martínez-Martínez L. Detection of the plasmid-mediated quinolone resistance determinant qnr among clinical isolates of Klebsiella pneumoniae producing AmpC-type ß-lactamase. J Antimicrob Chemother. 2003;52:703–706. doi: 10.1093/jac/dkg388. [DOI] [PubMed] [Google Scholar]
  • 23.Wang M, Sahm DF, Jacoby GA, Hooper DC. Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrob Agents Chemother. 2004;48:1295–1299. doi: 10.1128/AAC.48.4.1295-1299.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Wang M, Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Chemother. 2003;47:2242–2248. doi: 10.1128/AAC.47.7.2242-2248.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Cheung TK, Chu YW, Chu MY, Ma CH, Yung RW, Kam KM. Plasmid-mediated resistance to ciprofloxacin and cefotaxime in clinical isolates of Salmonella enterica serotype Enteritidis in Hong Kong. J Antimicrob Chemother. 2005;56:586–589. doi: 10.1093/jac/dki250. [DOI] [PubMed] [Google Scholar]
  • 26.Hata M, Suzuki M, Matsumoto M, Takahashi M, Sato K, Ibe S, Sakae K. Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob Agents Chemother. 2005;49:801–803. doi: 10.1128/AAC.49.2.801-803.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, Hooper DC. qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother. 2006;50:1178–1182. doi: 10.1128/AAC.50.4.1178-1182.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Wang M, Guo Q, Xu X, Wang X, Ye X, Wu S, Hooper DC, Wang M. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob Agents Chemother. 2009;53:1892–1897. doi: 10.1128/AAC.01400-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Cavaco LM, Hasman H, Xia S, Aarestrup FM. qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother. 2009;53:603–608. doi: 10.1128/AAC.00997-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Xia R, Guo X, Zhang Y, Xu H. qnrVC-like gene located in a novel complex class 1 integron harboring the ISCR1 element in an Aeromonas punctata strain from an aquatic environment in Shandong Province, China. Antimicrob Agents Chemother. 2010;54:3471–3474. doi: 10.1128/AAC.01668-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Ming L. Mechanisms of fluoroquinolone resistance in Vibrio parahaemolyticus. 2013 doi: 10.1016/j.ijantimicag.2013.04.024. GenBank KC540630. [DOI] [PubMed] [Google Scholar]
  • 32.Singh R, Rajpara N, Tak J, Patel A, Mohanty P, Vinothkumar K, Chowdhury G, Ramamurthy T, Ghosh A, Bhardwaj AK. Clinical isolates of Vibrio fluvialis from Kolkata, India, obtained during 2006: plasmids, the qnr gene and a mutation in gyrase A as mechanisms of multidrug resistance. J Med Microbiol. 2012;61:369–374. doi: 10.1099/jmm.0.037226-0. [DOI] [PubMed] [Google Scholar]
  • 33.Fonseca EL, Vicente AC. Epidemiology of qnrVC alleles and emergence out of the Vibrionaceae family. J Med Microbiol. 2013;62:1628–1630. doi: 10.1099/jmm.0.062661-0. [DOI] [PubMed] [Google Scholar]
  • 34.Kim HB, Wang M, Ahmed S, Park CH, LaRocque RC, Faruque AS, Salam MA, Khan WA, Qadri F, Calderwood SB, Jacoby GA, Hooper DC. Transferable quinolone resistance in Vibrio cholerae. Antimicrob Agents Chemother. 2010;54:799–803. doi: 10.1128/AAC.01045-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Jacoby G, Cattoir V, Hooper D, Martínez-Martínez L, Nordmann P, Pascual A, Poirel L, Wang M. qnr gene nomenclature. Antimicrob Agents Chemother. 2008;52:2297–2299. doi: 10.1128/AAC.00147-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Sánchez MB, Hernández A, Rodríguez-Martínez JM, Martínez-Martínez L, Martínez JL. Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BMC Microbiol. 2008;8:148–161. doi: 10.1186/1471-2180-8-148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Boulund F, Johnning A, Pereira MB, Larsson DG, Kristiansson E. A novel method to discover fluoroquinolone antibiotic resistance (qnr) genes in fragmented nucleotide sequences. BMC Genomics. 2012;13:695. doi: 10.1186/1471-2164-13-695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Jacoby GA, Hooper DC. Phylogenetic analysis of chromosomally determined Qnr and related proteins. Antimicrob Agents Chemother. 2013;57:1930–1934. doi: 10.1128/AAC.02080-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Vetting MW, Hegde SS, Fajardo JE, Fiser A, Roderick SL, Takiff HE, Blanchard JS. Pentapeptide repeat proteins. Biochemistry. 2006;45:1–10. doi: 10.1021/bi052130w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Montero C, Mateu G, Rodriguez R, Takiff H. Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA. Antimicrob Agents Chemother. 2001;45:3387–3392. doi: 10.1128/AAC.45.12.3387-3392.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Hegde SS, Vetting MW, Roderick SL, Mitchenall LA, Maxwell A, Takiff HE, Blanchard JS. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science. 2005;308:1480–1483. doi: 10.1126/science.1110699. [DOI] [PubMed] [Google Scholar]
  • 42.Hegde SS, Vetting MW, Mitchenall LA, Maxwell A, Blanchard JS. Structural and biochemical analysis of the pentapeptide repeat protein EfsQnr, a potent DNA gyrase inhibitor. Antimicrob Agents Chemother. 2011;55:110–117. doi: 10.1128/AAC.01158-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Xiong X, Bromley EH, Oelschlaeger P, Woolfson DN, Spencer J. Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a gram-negative bacterium. Nucleic Acids Res. 2011;39:3917–3927. doi: 10.1093/nar/gkq1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Vetting MW, Hegde SS, Wang M, Jacoby GA, Hooper DC, Blanchard JS. Structure of QnrB1, a plasmid-mediated fluoroquinolone resistance factor. J Biol Chem. 2011;286:25265–25273. doi: 10.1074/jbc.M111.226936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Jacoby GA, Corcoran MA, Mills DM, Griffin CM, Hooper DC. Mutational analysis of quinolone resistance protein QnrB1. Antimicrob Agents Chemother. 2013;57:5733–5736. doi: 10.1128/AAC.01533-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Kampranis SC, Bates AD, Maxwell A. A model for the mechanism of strand passage by DNA gyrase. Proc Natl Acad Sci U S A. 1999;96:8414–8419. doi: 10.1073/pnas.96.15.8414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Drlica K, Malik M, Kerns RJ, Zhao X. Quinolone-mediated bacterial death. Antimicrob Agents Chemother. 2008;52:385–392. doi: 10.1128/AAC.01617-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother. 2005;49:118–125. doi: 10.1128/AAC.49.1.118-125.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Mérens A, Matrat S, Aubry A, Lascols C, Jarlier V, Soussy CJ, Cavallo JD, Cambau E. The pentapeptide repeat proteins MfpAMt and QnrB4 exhibit opposite effects on DNA gyrase catalytic reactions and on the ternary gyrase-DNA-quinolone complex. J Bacteriol. 2009;191:1587–1594. doi: 10.1128/JB.01205-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Tavio MM, Jacoby GA, Hooper DC. Structural determinants of QnrS1 resistance. 52nd Intersci Conf Antimicrob Agents Chemother C1-683a 2012 [Google Scholar]
  • 51.Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. Antimicrob Agents Chemother. 2005;49:3050–3052. doi: 10.1128/AAC.49.7.3050-3052.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Arsène S, Leclercq R. Role of a qnr-like gene in the intrinsic resistance of Enterococcus faecalis to fluoroquinolones. Antimicrob Agents Chemother. 2007;51:3254–3258. doi: 10.1128/AAC.00274-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Rodríguez-Martínez JM, Velasco C, Briales A, García I, Conejo MC, Pascual A. Qnr-like pentapeptide repeat proteins in gram-positive bacteria. J Antimicrob Chemother. 2008;61:1240–1243. doi: 10.1093/jac/dkn115. [DOI] [PubMed] [Google Scholar]
  • 54.Shimizu K, Kikuchi K, Sasaki T, Takahashi N, Ohtsuka M, Ono Y, Hiramatsu K. Smqnr, a new chromosome-carried quinolone resistance gene in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2008;52:3823–3825. doi: 10.1128/AAC.00026-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Sánchez MB, Martínez JL. SmQnr contributes to intrinsic resistance to quinolones in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2010;54:580–581. doi: 10.1128/AAC.00496-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Gordon NC, Wareham DW. Novel variants of the Smqnr family of quinolone resistance genes in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother. 2010;65:483–489. doi: 10.1093/jac/dkp476. [DOI] [PubMed] [Google Scholar]
  • 57.Zhang R, Sun Q, Hu YJ, Yu H, Li Y, Shen Q, Li GX, Cao JM, Yang W, Wang Q, Zhou HW, Hu YY, Chen GX. Detection of the Smqnr quinolone protection gene and its prevalence in clinical isolates of Stenotrophomonas maltophilia in China. J Med Microbiol. 2012;61:535–539. doi: 10.1099/jmm.0.037309-0. [DOI] [PubMed] [Google Scholar]
  • 58.Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother. 2005;49:3523–3525. doi: 10.1128/AAC.49.8.3523-3525.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Poirel L, Liard A, Rodriguez-Martinez JM, Nordmann P. Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. J Antimicrob Chemother. 2005;56:1118–1121. doi: 10.1093/jac/dki371. [DOI] [PubMed] [Google Scholar]
  • 60.Cattoir V, Poirel L, Mazel D, Soussy CJ, Nordmann P. Vibrio splendidus as the source of plasmid-mediated QnrS-like quinolone resistance determinants. Antimicrob Agents Chemother. 2007;51:2650–2651. doi: 10.1128/AAC.00070-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Jacoby GA, Griffin CM, Hooper DC. Citrobacter spp. as a source of qnrB alleles. Antimicrob Agents Chemother. 2011;55:4979–4984. doi: 10.1128/AAC.05187-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Zhang S, Sun J, Liao XP, Hu QJ, Liu BT, Fang LX, Deng H, Ma J, Xiao X, Zhu HQ, Liu YH. Prevalence and plasmid characterization of the qnrD determinant in Enterobacteriaceae isolated from animals, retail meat products, and humans. Microb Drug Resist. 2013;19:331–335. doi: 10.1089/mdr.2012.0146. [DOI] [PubMed] [Google Scholar]
  • 63.Guillard T, Cambau E, Neuwirth C, Nenninger T, Mbadi A, Brasme L, Vernet-Garnier V, Bajolet O, de Champs C. Description of a 2,683-base-pair plasmid containing qnrD in two Providencia rettgeri isolates. Antimicrob Agents Chemother. 2012;56:565–568. doi: 10.1128/AAC.00081-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Guillard T, Grillon A, de Champs C, Cartier C, Madoux J, Lozniewski A, Berçot B, Riahi J, Vernet-Garnier V, Cambau E. Mobile insertion cassetts as a source of qnrD mobilization onto small non-transmissible plasmids in. Proteeae PLoS One. doi: 10.1371/journal.pone.0087801. (in press) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Saga T, Sabtcheva S, Mitsutake K, Ishii Y, Tateda K, Yamaguchi K, Kaku M. Characterization of qnrB-like genes in Citrobacter species of the American Type Culture Collection. Antimicrob Agents Chemother. 2013;57:2863–2866. doi: 10.1128/AAC.02396-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70:296–316. doi: 10.1128/MMBR.00048-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Park YJ, Yu JK, Kim SY, Lee S, Jeong SH. Prevalence and characteristics of qnr determinants and aac(6′)-Ib-cr among ciprofloxacin-susceptible isolates of Klebsiella pneumoniae in Korea. J Antimicrob Chemother. 2010;65:2041–2043. doi: 10.1093/jac/dkq258. [DOI] [PubMed] [Google Scholar]
  • 68.Rodriguez-Martinez JM, Poirel L, Canton R, Nordmann P. Common region CR1 for expression of antibiotic resistance genes. Antimicrob Agents Chemother. 2006;50:2544–2546. doi: 10.1128/AAC.00609-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006;6:629–640. doi: 10.1016/S1473-3099(06)70599-0. [DOI] [PubMed] [Google Scholar]
  • 70.Rodriguez-Martinez JM, Velasco C, Garcia I, Cano ME, Martinez-Martinez L, Pascual A. Characterisation of integrons containing the plasmid-mediated quinolone resistance gene qnrA1 in Klebsiella pneumoniae. Int J Antimicrob Agents. 2007;29:705–709. doi: 10.1016/j.ijantimicag.2007.02.003. [DOI] [PubMed] [Google Scholar]
  • 71.Garza-Ramos U, Barrios H, Hernandez-Vargas MJ, Rojas-Moreno T, Reyna-Flores F, Tinoco P, Othon V, Poirel L, Nordmann P, Cattoir V, Ruiz-Palacios G, Fernandez JL, Santamaria RI, Bustos P, Castro N, Silva-Sanchez J. Transfer of quinolone resistance gene qnrA1 to Escherichia coli through a 50 kb conjugative plasmid resulting from the splitting of a 300 kb plasmid. J Antimicrob Chemother. 2012;67:1627–1634. doi: 10.1093/jac/dks123. [DOI] [PubMed] [Google Scholar]
  • 72.Teo JW, Ng KY, Lin RT. Detection and genetic characterisation of qnrB in hospital isolates of Klebsiella pneumoniae in Singapore. Int J Antimicrob Agents. 2009;33:177–180. doi: 10.1016/j.ijantimicag.2008.08.019. [DOI] [PubMed] [Google Scholar]
  • 73.Andres P, Lucero C, Soler-Bistue A, Guerriero L, Albornoz E, Tran T, Zorreguieta A, Group P, Galas M, Corso A, Tolmasky ME, Petroni A. Differential distribution of plasmid-mediated quinolone resistance genes in clinical enterobacteria with unusual phenotypes of quinolone susceptibility from Argentina. Antimicrob Agents Chemother. 2013;57:2467–2675. doi: 10.1128/AAC.01615-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Espedido BA, Partridge SR, Iredell JR. blaIMP-4 in different genetic contexts in Enterobacteriaceae isolates from Australia. Antimicrob Agents Chemother. 2008;52:2984–2987. doi: 10.1128/AAC.01634-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Ma J, Zeng Z, Chen Z, Xu X, Wang X, Deng Y, Lu D, Huang L, Zhang Y, Liu J, Wang M. High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6′)-Ib-cr and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob Agents Chemother. 2009;53:519–524. doi: 10.1128/AAC.00886-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Chen YT, Liao TL, Liu YM, Lauderdale TL, Yan JJ, Tsai SF. Mobilization of qnrB2 and ISCR1 in plasmids. Antimicrob Agents Chemother. 2009;53:1235–1237. doi: 10.1128/AAC.00970-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Garnier F, Raked N, Gassama A, Denis F, Ploy MC. Genetic environment of quinolone resistance gene qnrB2 in a complex sul1-type integron in the newly described Salmonella enterica serovar Keurmassar. Antimicrob Agents Chemother. 2006;50:3200–3202. doi: 10.1128/AAC.00293-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Cattoir V, Nordmann P, Silva-Sanchez J, Espinal P, Poirel L. ISEcp1-mediated transposition of qnrB-like gene in Escherichia coli. Antimicrob Agents Chemother. 2008;52:2929–2932. doi: 10.1128/AAC.00349-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Dionisi AM, Lucarelli C, Owczarek S, Luzzi I, Villa L. Characterization of the plasmid-borne quinolone resistance gene qnrB19 in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother. 2009;53:4019–4021. doi: 10.1128/AAC.00294-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Hordijk J, Bosman AB, van Essen-Zandbergen A, Veldman K, Dierikx C, Wagenaar JA, Mevius D. qnrB19 gene bracketed by IS26 on a 40-kilobase IncR plasmid from an Escherichia coli isolate from a veal calf. Antimicrob Agents Chemother. 2011;55:453–454. doi: 10.1128/AAC.00866-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Schink AK, Kadlec K, Schwarz S. Detection of qnr genes among Escherichia coli isolates of animal origin and complete sequence of the conjugative qnrB19-carrying plasmid pQNR2078. J Antimicrob Chemother. 2012;67:1099–1102. doi: 10.1093/jac/dks024. [DOI] [PubMed] [Google Scholar]
  • 82.Tran T, Andres P, Petroni A, Soler-Bistue A, Albornoz E, Zorreguieta A, Reyes-Lamothe R, Sherratt DJ, Corso A, Tolmasky ME. Small plasmids harboring qnrB19: a model for plasmid evolution mediated by site-specific recombination at oriT and Xer sites. Antimicrob Agents Chemother. 2012;56:1821–1827. doi: 10.1128/AAC.06036-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Rice LB, Carias LL, Hutton RA, Rudin SD, Endimiani A, Bonomo RA. The KQ element, a complex genetic region conferring transferable resistance to carbapenems, aminoglycosides, and fluoroquinolones in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2008;52:3427–3429. doi: 10.1128/AAC.00493-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Kehrenberg C, Friederichs S, de Jong A, Michael GB, Schwarz S. Identification of the plasmid-borne quinolone resistance gene qnrS in Salmonella enterica serovar Infantis. J Antimicrob Chemother. 2006;58:18–22. doi: 10.1093/jac/dkl213. [DOI] [PubMed] [Google Scholar]
  • 85.Kehrenberg C, Hopkins KL, Threlfall EJ, Schwarz S. Complete nucleotide sequence of a small qnrS1-carrying plasmid from Salmonella enterica subsp. enterica Typhimurium DT193. J Antimicrob Chemother. 2007;60:903–905. doi: 10.1093/jac/dkm283. [DOI] [PubMed] [Google Scholar]
  • 86.Dolejska M, Villa L, Hasman H, Hansen L, Carattoli A. Characterization of IncN plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans. J Antimicrob Chemother. 2013;68:333–339. doi: 10.1093/jac/dks387. [DOI] [PubMed] [Google Scholar]
  • 87.Chen YT, Shu HY, Li LH, Liao TL, Wu KM, Shiau YR, Yan JJ, Su IJ, Tsai SF, Lauderdale TL. Complete nucleotide sequence of pK245, a 98-kilobase plasmid conferring quinolone resistance and extended-spectrum-beta-lactamase activity in a clinical Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2006;50:3861–3866. doi: 10.1128/AAC.00456-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Hu FP, Xu XG, Zhu DM, Wang MG. Coexistence of qnrB4 and qnrS1 in a clinical strain of Klebsiella pneumoniae. Acta pharmacologica Sinica. 2008;29:320–324. doi: 10.1111/j.1745-7254.2008.00757.x. [DOI] [PubMed] [Google Scholar]
  • 89.Poirel L, Cattoir V, Soares A, Soussy CJ, Nordmann P. Novel Ambler class A ß-lactamase LAP-1 and its association with the plasmid-mediated quinolone resistance determinant QnrS1. Antimicrob Agents Chemother. 2007;51:631–637. doi: 10.1128/AAC.01082-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Picão RC, Poirel L, Demarta A, Silva CS, Corvaglia AR, Petrini O, Nordmann P. Plasmid-mediated quinolone resistance in Aeromonas allosaccharophila recovered from a Swiss lake. J Antimicrob Chemother. 2008;62:948–950. doi: 10.1093/jac/dkn341. [DOI] [PubMed] [Google Scholar]
  • 91.Mazzariol A, Kocsis B, Koncan R, Kocsis E, Lanzafame P, Cornaglia G. Description and plasmid characterization of qnrD determinants in Proteus mirabilis and Morganella morganii. Clin Microbiol Infect. 2012;18:E46–48. doi: 10.1111/j.1469-0691.2011.03728.x. [DOI] [PubMed] [Google Scholar]
  • 92.Fonseca EL, Dos Santos Freitas F, Vieira VV, Vicente AC. New qnr gene cassettes associated with superintegron repeats in Vibrio cholerae O1. Emerg Infect Dis. 2008;14:1129–1131. doi: 10.3201/eid1407.080132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Wu K, Wang F, Sun J, Wang Q, Chen Q, Yu S, Rui Y. Class 1 integron gene cassettes in multidrug-resistant Gram-negative bacteria in southern China. Int J Antimicrob Agents. 2012;40:264–267. doi: 10.1016/j.ijantimicag.2012.05.017. [DOI] [PubMed] [Google Scholar]
  • 94.Overlapping outbreaks of imipenem resistant Pseudomonas aeruginosa in a Tunisian burn unit – emergence of new integrons encompassing blaVIM-2 [Internet]. 2012.
  • 95.Kumar P, Thomas S. Presence of qnrVC3 gene cassette in SXT and class 1 integrons of Vibrio cholerae. Int J Antimicrob Agents. 2011;37:280–281. doi: 10.1016/j.ijantimicag.2010.12.006. [DOI] [PubMed] [Google Scholar]
  • 96.Pai H, Seo MR, Choi TY. Association of QnrB determinants and production of extended-spectrum ß-lactamases or plasmid-mediated AmpC ß-lactamases in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2007;51:366–368. doi: 10.1128/AAC.00841-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Castanheira M, Mendes RE, Rhomberg PR, Jones RN. Rapid emergence of blaCTX-M among Enterobacteriaceae in U.S. Medical Centers: molecular evaluation from the MYSTIC Program (2007) Microb Drug Resist. 2008;14:211–216. doi: 10.1089/mdr.2008.0827. [DOI] [PubMed] [Google Scholar]
  • 98.Jeong HS, Bae IK, Shin JH, Jung HJ, Kim SH, Lee JY, Oh SH, Kim HR, Chang CL, Kho WG, Lee JN. Prevalence of plasmid-mediated quinolone resistance and its association with extended-spectrum beta-lactamase and AmpC beta-lactamase in Enterobacteriaceae. Korean J Lab Med. 2011;31:257–264. doi: 10.3343/kjlm.2011.31.4.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Luo Y, Yang J, Zhang Y, Ye L, Wang L, Guo L. Prevalence of ß-lactamases and 16S rRNA methylase genes amongst clinical Klebsiella pneumoniae isolates carrying plasmid-mediated quinolone resistance determinants. Int J Antimicrob Agents. 2011;37:352–355. doi: 10.1016/j.ijantimicag.2010.12.018. [DOI] [PubMed] [Google Scholar]
  • 100.Yang HF, Cheng J, Hu LF, Ye Y, Li JB. Plasmid-mediated quinolone resistance in extended-spectrum-ß-lactamase- and AmpC ß-lactamase-producing Serratia marcescens in China. Antimicrob Agents Chemother. 2012;56:4529–4531. doi: 10.1128/AAC.00493-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Liu BT, Liao XP, Yue L, Chen XY, Li L, Yang SS, Sun J, Zhang S, Liao SD, Liu YH. Prevalence of ß-lactamase and 16S rRNA methylase genes among clinical Escherichia coli isolates carrying plasmid-mediated quinolone resistance genes from animals. Microb Drug Resist. 2013;19:237–245. doi: 10.1089/mdr.2012.0179. [DOI] [PubMed] [Google Scholar]
  • 102.Soge OO, Adeniyi BA, Roberts MC. New antibiotic resistance genes associated with CTX-M plasmids from uropathogenic Nigerian Klebsiella pneumoniae. J Antimicrob Chemother. 2006;58:1048–1053. doi: 10.1093/jac/dkl370. [DOI] [PubMed] [Google Scholar]
  • 103.Cattoir V, Weill FX, Poirel L, Fabre L, Soussy CJ, Nordmann P. Prevalence of qnr genes in Salmonella in France. J Antimicrob Chemother. 2007;59:751–754. doi: 10.1093/jac/dkl547. [DOI] [PubMed] [Google Scholar]
  • 104.Jiang Y, Zhou Z, Qian Y, Wei Z, Yu Y, Hu S, Li L. Plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in extended-spectrum ß-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J Antimicrob Chemother. 2008;61:1003–1006. doi: 10.1093/jac/dkn063. [DOI] [PubMed] [Google Scholar]
  • 105.Guessennd N, Bremont S, Gbonon V, Kacou-Ndouba A, Ekaza E, Lambert T, Dosso M, Courvalin P. Résistance aux quinolones de type qnr chez les entérobactéries productrices de bêta-lactamases à spectre élargi à Abidjan en Côte d’Ivoire. Pathol Biol (Paris) 2008;56:439–446. doi: 10.1016/j.patbio.2008.07.025. [DOI] [PubMed] [Google Scholar]
  • 106.Lavigne JP, Marchandin H, Delmas J, Bouziges N, Lecaillon E, Cavalie L, Jean-Pierre H, Bonnet R, Sotto A. qnrA in CTX-M-producing Escherichia coli isolates from France. Antimicrob Agents Chemother. 2006;50:4224–4228. doi: 10.1128/AAC.00904-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Lavilla S, Gonzalez-Lopez JJ, Sabate M, Garcia-Fernandez A, Larrosa MN, Bartolome RM, Carattoli A, Prats G. Prevalence of qnr genes among extended-spectrum ß-lactamase-producing enterobacterial isolates in Barcelona, Spain. J Antimicrob Chemother. 2008;61:291–295. doi: 10.1093/jac/dkm448. [DOI] [PubMed] [Google Scholar]
  • 108.Yang H, Chen H, Yang Q, Chen M, Wang H. High prevalence of plasmid-mediated quinolone resistance genes qnr and aac(6′)-Ib-cr in clinical isolates of Enterobacteriaceae from nine teaching hospitals in China. Antimicrob Agents Chemother. 2008;52:4268–4273. doi: 10.1128/AAC.00830-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Iabadene H, Messai Y, Ammari H, Ramdani-Bouguessa N, Lounes S, Bakour R, Arlet G. Dissemination of ESBL and Qnr determinants in Enterobacter cloacae in Algeria. J Antimicrob Chemother. 2008;62:133–136. doi: 10.1093/jac/dkn145. [DOI] [PubMed] [Google Scholar]
  • 110.Perilli M, Forcella C, Celenza G, Frascaria P, Segatore B, Pellegrini C, Amicosante G. Evidence for qnrB1 and aac(6′)-Ib-cr in CTX-M-15-producing uropathogenic Enterobacteriaceae in an Italian teaching hospital. Diagn Microbiol Infect Dis. 2009;64:90–93. doi: 10.1016/j.diagmicrobio.2009.01.009. [DOI] [PubMed] [Google Scholar]
  • 111.Miró E, Segura C, Navarro F, Sorlí L, Coll P, Horcajada JP, Álvarez-Lerma F, Salvadó M. Spread of plasmids containing the blaVIM-1 and blaCTX-M genes and the qnr determinant in Enterobacter cloacae, Klebsiella pneumoniae and Klebsiella oxytoca isolates. J Antimicrob Chemother. 2010;65:661–665. doi: 10.1093/jac/dkp504. [DOI] [PubMed] [Google Scholar]
  • 112.Albrechtova K, Dolejska M, Cizek A, Tausova D, Klimes J, Bebora L, Literak I. Dogs of nomadic pastoralists in northern Kenya are reservoirs of plasmid-mediated cephalosporin- and quinolone-resistant Escherichia coli, including pandemic clone B2-O25-ST131. Antimicrob Agents Chemother. 2012;56:4013–4017. doi: 10.1128/AAC.05859-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Shibl AM, Al-Agamy MH, Khubnani H, Senok AC, Tawfik AF, Livermore DM. High prevalence of acquired quinolone-resistance genes among Enterobacteriaceae from Saudi Arabia with CTX-M-15 ß-lactamase. Diagn Microbiol Infect Dis. 2012;73:350–353. doi: 10.1016/j.diagmicrobio.2012.04.005. [DOI] [PubMed] [Google Scholar]
  • 114.Li DX, Zhang SM, Hu GZ, Wang Y, Liu HB, Wu CM, Shang YH, Chen YX, Du XD. Tn3-associated rmtB together with qnrS1, aac(6′)-Ib-cr and bla CTX-M-15 are co-located on an F49:A-:B- plasmid in an Escherichia coli ST10 strain in China. J Antimicrob Chemother. 2012;67:236–238. doi: 10.1093/jac/dkr428. [DOI] [PubMed] [Google Scholar]
  • 115.Wu JJ, Ko WC, Tsai SH, Yan JJ. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrob Agents Chemother. 2007;51:1223–1227. doi: 10.1128/AAC.01195-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Chmelnitsky I, Navon-Venezia S, Strahilevitz J, Carmeli Y. Plasmid-mediated qnrB2 and carbapenemase gene blaKPC-2 carried on the same plasmid in carbapenem-resistant ciprofloxacin-susceptible Enterobacter cloacae isolates. Antimicrob Agents Chemother. 2008;52:2962–2965. doi: 10.1128/AAC.01341-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Endimiani A, Carias LL, Hujer AM, Bethel CR, Hujer KM, Perez F, Hutton RA, Fox WR, Hall GS, Jacobs MR, Paterson DL, Rice LB, Jenkins SG, Tenover FC, Bonomo RA. Presence of plasmid-mediated quinolone resistance in Klebsiella pneumoniae isolates possessing blaKPC in the United States. Antimicrob Agents Chemother. 2008;52:2680–2682. doi: 10.1128/AAC.00158-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Mendes RE, Bell JM, Turnidge JD, Yang Q, Yu Y, Sun Z, Jones RN. Carbapenem-resistant isolates of Klebsiella pneumoniae in China and detection of a conjugative plasmid (blaKPC-2 plus qnrB4) and a blaIMP-4 gene. Antimicrob Agents Chemother. 2008;52:798–799. doi: 10.1128/AAC.01185-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Poirel L, Leviandier C, Nordmann P. Prevalence and genetic analysis of plasmid-mediated quinolone resistance determinants QnrA and QnrS in Enterobacteriaceae isolates from a French university hospital. Antimicrob Agents Chemother. 2006;50:3992–3997. doi: 10.1128/AAC.00597-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.García-Fernández A, Fortini D, Veldman K, Mevius D, Carattoli A. Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. J Antimicrob Chemother. 2009;63:274–281. doi: 10.1093/jac/dkn470. [DOI] [PubMed] [Google Scholar]
  • 121.Potron A, Poirel L, Bernabeu S, Monnet X, Richard C, Nordmann P. Nosocomial spread of ESBL-positive Enterobacter cloacae co-expressing plasmid-mediated quinolone resistance Qnr determinants in one hospital in France. J Antimicrob Chemother. 2009;64:653–654. doi: 10.1093/jac/dkp222. [DOI] [PubMed] [Google Scholar]
  • 122.Cambau E, Lascols C, Sougakoff W, Bebear C, Bonnet R, Cavallo JD, Gutmann L, Ploy MC, Jarlier V, Soussy CJ, Robert J. Occurrence of qnrA-positive clinical isolates in French teaching hospitals during 2002–2005. Clin Microbiol Infect. 2006;12:1013–1020. doi: 10.1111/j.1469-0691.2006.01529.x. [DOI] [PubMed] [Google Scholar]
  • 123.Corkill JE, Anson JJ, Hart CA. High prevalence of the plasmid-mediated quinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae from blood cultures in Liverpool, UK. J Antimicrob Chemother. 2005;56:1115–1117. doi: 10.1093/jac/dki388. [DOI] [PubMed] [Google Scholar]
  • 124.Rodriguez-Martinez JM, Poirel L, Pascual A, Nordmann P. Plasmid-mediated quinolone resistance in Australia. Microb Drug Resist. 2006;12:99–102. doi: 10.1089/mdr.2006.12.99. [DOI] [PubMed] [Google Scholar]
  • 125.Szabó D, Kocsis B, Rókusz L, Szentandrássy J, Katona K, Kristóf K, Nagy K. First detection of plasmid-mediated, quinolone resistance determinants qnrA, qnrB, qnrS and aac(6′)-Ib-cr in extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae in Budapest, Hungary. J Antimicrob Chemother. 2008;62:630–632. doi: 10.1093/jac/dkn206. [DOI] [PubMed] [Google Scholar]
  • 126.Poirel L, Villa L, Bertini A, Pitout JD, Nordmann P, Carattoli A. Expanded-spectrum ß-lactamase and plasmid-mediated quinolone resistance. Emerg Infect Dis. 2007;13:803–805. doi: 10.3201/eid1305.061293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Zhao X, Xu X, Zhu D, Ye X, Wang M. Decreased quinolone susceptibility in high percentage of Enterobacter cloacae clinical isolates caused only by Qnr determinants. Diagn Microbiol Infect Dis. 2010;67:110–113. doi: 10.1016/j.diagmicrobio.2009.12.018. [DOI] [PubMed] [Google Scholar]
  • 128.Mammeri H, Van De Loo M, Poirel L, Martinez-Martinez L, Nordmann P. Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob Agents Chemother. 2005;49:71–76. doi: 10.1128/AAC.49.1.71-76.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Nazic H, Poirel L, Nordmann P. Further identification of plasmid-mediated quinolone resistance determinant in Enterobacteriaceae in Turkey. Antimicrob Agents Chemother. 2005;49:2146–2147. doi: 10.1128/AAC.49.5.2146-2147.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Poirel L, Van De Loo M, Mammeri H, Nordmann P. Association of plasmid-mediated quinolone resistance with extended-spectrum ß-lactamase VEB-1. Antimicrob Agents Chemother. 2005;49:3091–3094. doi: 10.1128/AAC.49.7.3091-3094.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Aschbacher R, Doumith M, Livermore DM, Larcher C, Woodford N. Linkage of acquired quinolone resistance (qnrS1) and metallo-beta-lactamase (blaVIM-1) genes in multiple species of Enterobacteriaceae from Bolzano, Italy. J Antimicrob Chemother. 2008;61:515–523. doi: 10.1093/jac/dkm508. [DOI] [PubMed] [Google Scholar]
  • 132.Wu JJ, Ko WC, Wu HM, Yan JJ. Prevalence of Qnr determinants among bloodstream isolates of Escherichia coli and Klebsiella pneumoniae in a Taiwanese hospital, 1999–2005. J Antimicrob Chemother. 2008;61:1234–1239. doi: 10.1093/jac/dkn111. [DOI] [PubMed] [Google Scholar]
  • 133.Lee CH, Liu JW, Li CC, Chien CC, Tang YF, Su LH. Spread of ISCR1 elements containing blaDHA-1 and multiple antimicrobial resistance genes leading to increase of flomoxef resistance in extended-spectrum-ß-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2011;55:4058–4063. doi: 10.1128/AAC.00259-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Verdet C, Benzerara Y, Gautier V, Adam O, Ould-Hocine Z, Arlet G. Emergence of DHA-1-producing Klebsiella spp. in the Parisian region: genetic organization of the ampC and ampR genes originating from Morganella morganii. Antimicrob Agents Chemother. 2006;50:607–617. doi: 10.1128/AAC.50.2.607-617.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Hidalgo L, Gutierrez B, Ovejero CM, Carrilero L, Matrat S, Saba CK, Santos-Lopez A, Thomas-Lopez D, Hoefer A, Suarez M, Santurde G, Martin-Espada C, Gonzalez-Zorn B. Klebsiella pneumoniae sequence type 11 from companion animals bearing ArmA methyltransferase, DHA-1 ß-lactamase, and QnrB4. Antimicrob Agents Chemother. 2013;57:4532–4534. doi: 10.1128/AAC.00491-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Sanchez-Cespedes J, Marti S, Soto SM, Alba V, Melción C, Almela M, Marco F, Vila J. Two chromosomally located qnrB variants, qnrB6 and the new qnrB16, in Citrobacter spp. isolates causing bacteraemia. Clin Microbiol Infect. 2009;15:1132–1138. doi: 10.1111/j.1469-0691.2009.02744.x. [DOI] [PubMed] [Google Scholar]
  • 137.Kehrenberg C, Friederichs S, de Jong A, Schwarz S. Novel variant of the qnrB Gene, qnrB12, in Citrobacter werkmanii. Antimicrob Agents Chemother. 2008;52:1206–1207. doi: 10.1128/AAC.01042-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Ogbolu DO, Daini OA, Ogunledun A, Alli AO, Webber MA. High levels of multidrug resistance in clinical isolates of Gram-negative pathogens from Nigeria. Int J Antimicrob Agents. 2011;37:62–66. doi: 10.1016/j.ijantimicag.2010.08.019. [DOI] [PubMed] [Google Scholar]
  • 139.Wang F, Wu K, Sun J, Wang Q, Chen Q, Yu S, Rui Y. Novel ISCR1-linked resistance genes found in multidrug-resistant Gram-negative bacteria in southern China. Int J Antimicrob Agents. 2012;40:404–408. doi: 10.1016/j.ijantimicag.2012.06.016. [DOI] [PubMed] [Google Scholar]
  • 140.Touati A, Brasme L, Benallaoua S, Gharout A, Madoux J, De Champs C. First report of qnrB-producing Enterobacter cloacae and qnrA-producing Acinetobacter baumannii recovered from Algerian hospitals. Diagn Microbiol Infect Dis. 2008;60:287–290. doi: 10.1016/j.diagmicrobio.2007.10.002. [DOI] [PubMed] [Google Scholar]
  • 141.Guo L, Zhang J, Xu C, Zhao Y, Ren T, Zhang B, Fan H, Liao M. Molecular characterization of fluoroquinolone resistance in Haemophilus parasuis isolated from pigs in South China. J Antimicrob Chemother. 2011;66:539–542. doi: 10.1093/jac/dkq497. [DOI] [PubMed] [Google Scholar]
  • 142.Jacoby GA, Gacharna N, Black TA, Miller GH, Hooper DC. Temporal appearance of plasmid-mediated quinolone resistance genes. Antimicrob Agents Chemother. 2009;53:1665–1666. doi: 10.1128/AAC.01447-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Strahilevitz J, Engelstein D, Adler A, Temper V, Moses AE, Block C, Robicsek A. Changes in qnr prevalence and fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae and Enterobacter spp. collected from 1990 to 2005. Antimicrob Agents Chemother. 2007;51:3001–3003. doi: 10.1128/AAC.00256-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Xu X, Wu S, Ye X, Liu Y, Shi W, Zhang Y, Wang M. Prevalence and expression of the plasmid-mediated quinolone resistance determinant qnrA1. Antimicrob Agents Chemother. 2007;51:4105–4110. doi: 10.1128/AAC.00616-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC. Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother. 2009;53:639–645. doi: 10.1128/AAC.01051-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Kim NH, Choi EH, Sung JY, Oh CE, Kim HB, Kim EC, Lee HJ. Prevalence of plasmid-mediated quinolone resistance genes and ciprofloxacin resistance in pediatric bloodstream isolates of Enterobacteriaceae over a 9-year period. Jpn J Infect Dis. 2013;66:151–154. doi: 10.7883/yoken.66.151. [DOI] [PubMed] [Google Scholar]
  • 147.Robicsek A, Sahm DF, Strahilevitz J, Jacoby GA, Hooper DC. Broader distribution of plasmid-mediated quinolone resistance in the United States. Antimicrob Agents Chemother. 2005;49:3001–3003. doi: 10.1128/AAC.49.7.3001-3003.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Literak I, Micudova M, Tausova D, Cizek A, Dolejska M, Papousek I, Prochazka J, Vojtech J, Borleis F, Guardone L, Guenther S, Hordowski J, Lejas C, Meissner W, Marcos BF, Tucakov M. Plasmid-mediated quinolone resistance genes in fecal bacteria from rooks commonly wintering throughout europe. Microb Drug Resist. 2012;18:567–573. doi: 10.1089/mdr.2012.0075. [DOI] [PubMed] [Google Scholar]
  • 149.Tausova D, Dolejska M, Cizek A, Hanusova L, Hrusakova J, Svoboda O, Camlik G, Literak I. Escherichia coli with extended-spectrum ß-lactamase and plasmid-mediated quinolone resistance genes in great cormorants and mallards in Central Europe. J Antimicrob Chemother. 2012;67:1103–1107. doi: 10.1093/jac/dks017. [DOI] [PubMed] [Google Scholar]
  • 150.Shaheen BW, Nayak R, Foley SL, Boothe DM. Chromosomal and plasmid-mediated fluoroquinolone resistance mechanisms among broad-spectrum-cephalosporin-resistant Escherichia coli isolates recovered from companion animals in the USA. J Antimicrob Chemother. 2013;68:1019–1024. doi: 10.1093/jac/dks514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Kirchner M, Wearing H, Teale C. Plasmid-mediated quinolone resistance gene detected in Escherichia coli from cattle. Vet Microbiol. 2011;148:434–435. doi: 10.1016/j.vetmic.2010.08.033. [DOI] [PubMed] [Google Scholar]
  • 152.Madec JY, Poirel L, Saras E, Gourguechon A, Girlich D, Nordmann P, Haenni M. Non-ST131 Escherichia coli from cattle harbouring human-like blaCTX-M-15-carrying plasmids. J Antimicrob Chemother. 2012;67:578–581. doi: 10.1093/jac/dkr542. [DOI] [PubMed] [Google Scholar]
  • 153.Wu CM, Wang Y, Cao XY, Lin JC, Qin SS, Mi TJ, Huang SY, Shen JZ. Emergence of plasmid-mediated quinolone resistance genes in Enterobacteriaceae isolated from chickens in China. J Antimicrob Chemother. 2009;63:408–411. doi: 10.1093/jac/dkn487. [DOI] [PubMed] [Google Scholar]
  • 154.Cerquetti M, Garcia-Fernandez A, Giufre M, Fortini D, Accogli M, Graziani C, Luzzi I, Caprioli A, Carattoli A. First report of plasmid-mediated quinolone resistance determinant qnrS1 in an Escherichia coli strain of animal origin in Italy. Antimicrob Agents Chemother. 2009;53:3112–3114. doi: 10.1128/AAC.00239-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Veldman K, Cavaco LM, Mevius D, Battisti A, Franco A, Botteldoorn N, Bruneau M, Perrin-Guyomard A, Cerny T, De Frutos Escobar C, Guerra B, Schroeter A, Gutierrez M, Hopkins K, Myllyniemi AL, Sunde M, Wasyl D, Aarestrup FM. International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J Antimicrob Chemother. 2011;66:1278–1286. doi: 10.1093/jac/dkr084. [DOI] [PubMed] [Google Scholar]
  • 156.Chen X, Zhang W, Pan W, Yin J, Pan Z, Gao S, Jiao X. Prevalence of qnr, aac(6′)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the environment. Antimicrob Agents Chemother. 2012;56:3423–3427. doi: 10.1128/AAC.06191-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Du XD, Li DX, Hu GZ, Wang Y, Shang YH, Wu CM, Liu HB, Li XS. Tn1548-associated armA is co-located with qnrB2, aac(6′)-Ib-cr and blaCTX-M-3 on an IncFII plasmid in a Salmonella enterica subsp. enterica serovar Paratyphi B strain isolated from chickens in China. J Antimicrob Chemother. 2012;67:246–248. doi: 10.1093/jac/dkr407. [DOI] [PubMed] [Google Scholar]
  • 158.Literak I, Reitschmied T, Bujnakova D, Dolejska M, Cizek A, Bardon J, Pokludova L, Alexa P, Halova D, Jamborova I. Broilers as a source of quinolone-resistant and extraintestinal pathogenic Escherichia coli in the Czech Republic. Microb Drug Resist. 2013;19:57–63. doi: 10.1089/mdr.2012.0124. [DOI] [PubMed] [Google Scholar]
  • 159.Kim JH, Cho JK, Kim KS. Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. Avian pathology : journal of the WVPA. 2013;42:221–229. doi: 10.1080/03079457.2013.779636. [DOI] [PubMed] [Google Scholar]
  • 160.Liu BT, Yang QE, Li L, Sun J, Liao XP, Fang LX, Yang SS, Deng H, Liu YH. Dissemination and characterization of plasmids carrying oqxAB-bla CTX-M genes in Escherichia coli isolates from food-producing animals. PLoS One. 2013;8:e73947. doi: 10.1371/journal.pone.0073947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Pomba C, da Fonseca JD, Baptista BC, Correia JD, Martinez-Martinez L. Detection of the pandemic O25-ST131 human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2 and aac(6′)-Ib-cr genes in a dog. Antimicrob Agents Chemother. 2009;53:327–328. doi: 10.1128/AAC.00896-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Yue L, Jiang HX, Liao XP, Liu JH, Li SJ, Chen XY, Chen CX, Lu DH, Liu YH. Prevalence of plasmid-mediated quinolone resistance qnr genes in poultry and swine clinical isolates of Escherichia coli. Vet Microbiol. 2008;132:414–420. doi: 10.1016/j.vetmic.2008.05.009. [DOI] [PubMed] [Google Scholar]
  • 163.Verner-Jeffreys DW, Welch TJ, Schwarz T, Pond MJ, Woodward MJ, Haig SJ, Rimmer GS, Roberts E, Morrison V, Baker-Austin C. High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS One. 2009;4:e8388. doi: 10.1371/journal.pone.0008388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Jiang HX, Tang D, Liu YH, Zhang XH, Zeng ZL, Xu L, Hawkey PM. Prevalence and characteristics of ß-lactamase and plasmid-mediated quinolone resistance genes in Escherichia coli isolated from farmed fish in China. J Antimicrob Chemother. 2012;67:2350–2353. doi: 10.1093/jac/dks250. [DOI] [PubMed] [Google Scholar]
  • 165.Han JE, Kim JH, Choresca CH, Jr, Shin SP, Jun JW, Chai JY, Park SC. First description of ColE-type plasmid in Aeromonas spp. carrying quinolone resistance (qnrS2) gene. Letters in applied microbiology. 2012;55:290–294. doi: 10.1111/j.1472-765X.2012.03293.x. [DOI] [PubMed] [Google Scholar]
  • 166.Dolejska M, Duskova E, Rybarikova J, Janoszowska D, Roubalova E, Dibdakova K, Maceckova G, Kohoutova L, Literak I, Smola J, Cizek A. Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J Antimicrob Chemother. 2011;66:757–764. doi: 10.1093/jac/dkq500. [DOI] [PubMed] [Google Scholar]
  • 167.Liu JH, Deng YT, Zeng ZL, Gao JH, Chen L, Arakawa Y, Chen ZL. Coprevalence of plasmid-mediated quinolone resistance determinants QepA, Qnr, and AAC(6′)-Ib-cr among 16S rRNA methylase RmtB-producing Escherichia coli isolates from pigs. Antimicrob Agents Chemother. 2008;52:2992–2993. doi: 10.1128/AAC.01686-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Dotto G, Giacomelli M, Grilli G, Ferrazzi V, Carattoli A, Fortini D, Piccirillo A. High Prevalence of oqxAB in Escherichia coli isolates from domestic and wild lagomorphs in Italy. Microb Drug Resist. 2013 doi: 10.1089/mdr.2013.0141. [DOI] [PubMed] [Google Scholar]
  • 169.Guerra B, Helmuth R, Thomas K, Beutlich J, Jahn S, Schroeter A. Plasmid-mediated quinolone resistance determinants in Salmonella spp. isolates from reptiles in Germany. J Antimicrob Chemother. 2010;65:2043–2045. doi: 10.1093/jac/dkq242. [DOI] [PubMed] [Google Scholar]
  • 170.Ahmed AM, Motoi Y, Sato M, Maruyama A, Watanabe H, Fukumoto Y, Shimamoto T. Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes. Appl Environ Microbiol. 2007;73:6686–6690. doi: 10.1128/AEM.01054-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Wang Y, He T, Han J, Wang J, Foley SL, Yang G, Wan S, Shen J, Wu C. Prevalence of ESBLs and PMQR genes in fecal Escherichia coli isolated from the non-human primates in six zoos in China. Vet Microbiol. 2012;159:53–59. doi: 10.1016/j.vetmic.2012.03.009. [DOI] [PubMed] [Google Scholar]
  • 172.Dobiasova H, Dolejska M, Jamborova I, Brhelova E, Blazkova L, Papousek I, Kozlova M, Klimes J, Cizek A, Literak I. Extended spectrum beta-lactamase and fluoroquinolone resistance genes and plasmids among Escherichia coli isolates from zoo animals, Czech Republic. FEMS microbiology ecology. 2013;85:604–611. doi: 10.1111/1574-6941.12149. [DOI] [PubMed] [Google Scholar]
  • 173.Kim HB, Park CH, Gavin M, Jacoby GA, Hooper DC. Cold shock induces qnrA expression in Shewanella algae. Antimicrob Agents Chemother. 2011;55:414–416. doi: 10.1128/AAC.00991-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Wang M, Jacoby GA, Mills DM, Hooper DC. SOS regulation of qnrB expression. Antimicrob Agents Chemother. 2009;53:821–823. doi: 10.1128/AAC.00132-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Da Re S, Garnier F, Guerin E, Campoy S, Denis F, Ploy MC. The SOS response promotes qnrB quinolone-resistance determinant expression. EMBO Rep. 2009;10:929–933. doi: 10.1038/embor.2009.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Briales A, Rodriguez-Martinez JM, Velasco C, Machuca J, Diaz de Alba P, Blazquez J, Pascual A. Exposure to diverse antimicrobials induces the expression of qnrB1, qnrD and smaqnr genes by SOS-dependent regulation. J Antimicrob Chemother. 2012;67:2854–2859. doi: 10.1093/jac/dks326. [DOI] [PubMed] [Google Scholar]
  • 177.Okumura R, Liao CH, Gavin M, Jacoby GA, Hooper DC. Quinolone Induction of qnrVS1 in Vibrio splendidus and plasmid-carried qnrS1 in Escherichia coli, a mechanism independent of the SOS system. Antimicrob Agents Chemother. 2011;55:5942–5945. doi: 10.1128/AAC.05142-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Kwak YG, Jacoby GA, Hooper DC. Induction of plasmid-carried qnrS1 in Escherichia coli by naturally occurring quinolones and quorum-sensing signal molecules. Antimicrob Agents Chemother. 2013;57:4031–4034. doi: 10.1128/AAC.00337-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Vetting MW, Park CH, Hegde SS, Jacoby GA, Hooper DC, Blanchard JS. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6′)-Ib and its bifunctional fluoroquinolone-active AAC(6′)-Ib-cr variant. Biochemistry. 2008;47:9825–9835. doi: 10.1021/bi800664x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Maurice F, Broutin I, Podglajen I, Benas P, Collatz E, Dardel F. Enzyme structural plasticity and the emergence of broad-spectrum antibiotic resistance. EMBO Rep. 2008;9:344–349. doi: 10.1038/embor.2008.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Ruiz E, Ocampo-Sosa AA, Alcoba-Florez J, Roman E, Arlet G, Torres C, Martinez-Martinez L. Changes in ciprofloxacin resistance levels in Enterobacter aerogenes isolates associated with variable expression of the aac(6′)-Ib-cr gene. Antimicrob Agents Chemother. 2012;56:1097–1100. doi: 10.1128/AAC.05074-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.de Toro M, Rodriguez I, Rojo-Bezares B, Helmuth R, Torres C, Guerra B, Saenz Y. pMdT1, a small ColE1-like plasmid mobilizing a new variant of the aac(6′)-Ib-cr gene in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother. 2013;68:1277–1280. doi: 10.1093/jac/dkt001. [DOI] [PubMed] [Google Scholar]
  • 183.Guillard T, Duval V, Moret H, Brasme L, Vernet-Garnier V, de Champs C. Rapid detection of aac(6′)-Ib-cr quinolone resistance gene by pyrosequencing. J Clin Microbiol. 2010;48:286–289. doi: 10.1128/JCM.01498-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Pitout JD, Wei Y, Church DL, Gregson DB. Surveillance for plasmid-mediated quinolone resistance determinants in Enterobacteriaceae within the Calgary Health Region, Canada: the emergence of aac(6′)-Ib-cr. J Antimicrob Chemother. 2008;61:999–1002. doi: 10.1093/jac/dkn068. [DOI] [PubMed] [Google Scholar]
  • 185.Jones GL, Warren RE, Skidmore SJ, Davies VA, Gibreel T, Upton M. Prevalence and distribution of plasmid-mediated quinolone resistance genes in clinical isolates of Escherichia coli lacking extended-spectrum ß-lactamases. J Antimicrob Chemother. 2008;62:1245–1251. doi: 10.1093/jac/dkn406. [DOI] [PubMed] [Google Scholar]
  • 186.Oteo J, Cuevas O, López-Rodríguez I, Banderas-Florido A, Vindel A, Pérez-Vázquez M, Bautista V, Arroyo M, García-Caballero J, Marin-Casanova P, González-Sanz R, Fuentes-Gómez V, Oña-Compán S, García-Cobos S, Campos J. Emergence of CTX-M-15-producing Klebsiella pneumoniae of multilocus sequence types 1, 11, 14, 17, 20, 35 and 36 as pathogens and colonizers in newborns and adults. J Antimicrob Chemother. 2009;64:524–528. doi: 10.1093/jac/dkp211. [DOI] [PubMed] [Google Scholar]
  • 187.Baudry PJ, Nichol K, DeCorby M, Lagace-Wiens P, Olivier E, Boyd D, Mulvey MR, Hoban DJ, Zhanel GG. Mechanisms of resistance and mobility among multidrug-resistant CTX-M-producing Escherichia coli from Canadian intensive care units: the 1st report of QepA in North America. Diagn Microbiol Infect Dis. 2009;63:319–326. doi: 10.1016/j.diagmicrobio.2008.12.001. [DOI] [PubMed] [Google Scholar]
  • 188.Coelho A, Mirelis B, Alonso-Tarrés C, Nieves Larrosa M, Miró E, Clivillé Abad R, Bartolomé RM, Castañer M, Prats G, Johnson JR, Navarro F, González-López JJ. Detection of three stable genetic clones of CTX-M-15-producing Klebsiella pneumoniae in the Barcelona metropolitan area, Spain. J Antimicrob Chemother. 2009;64:862–864. doi: 10.1093/jac/dkp264. [DOI] [PubMed] [Google Scholar]
  • 189.Literacka E, Bedenic B, Baraniak A, Fiett J, Tonkic M, Jajic-Bencic I, Gniadkowski M. blaCTX-M genes in Escherichia coli strains from Croatian hospitals are located in new (blaCTX-M-3a) and widely spread (blaCTX-M-3a and blaCTX-M-15) genetic structures. Antimicrob Agents Chemother. 2009;53:1630–1635. doi: 10.1128/AAC.01431-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Sabtcheva S, Kaku M, Saga T, Ishii Y, Kantardjiev T. High prevalence of the aac(6′)-Ib-cr gene and its dissemination among Enterobacteriaceae isolates by CTX-M-15 plasmids in Bulgaria. Antimicrob Agents Chemother. 2009;53:335–336. doi: 10.1128/AAC.00584-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Ruiz E, Rezusta A, Saenz Y, Rocha-Gracia R, Vinue L, Vindel A, Villuendas C, Azanedo ML, Monforte ML, Revillo MJ, Torres C. New genetic environments of aac(6′)-Ib-cr gene in a multiresistant Klebsiella oxytoca strain causing an outbreak in a pediatric intensive care unit. Diagn Microbiol Infect Dis. 2011;69:236–238. doi: 10.1016/j.diagmicrobio.2010.09.004. [DOI] [PubMed] [Google Scholar]
  • 192.Ruiz E, Saenz Y, Zarazaga M, Rocha-Gracia R, Martinez-Martinez L, Arlet G, Torres C. qnr, aac(6′)-Ib-cr and qepA genes in Escherichia coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. J Antimicrob Chemother. 2012;67:886–897. doi: 10.1093/jac/dkr548. [DOI] [PubMed] [Google Scholar]
  • 193.Musumeci R, Rausa M, Giovannoni R, Cialdella A, Bramati S, Sibra B, Giltri G, Vigano F, Cocuzza CE. Prevalence of plasmid-mediated quinolone resistance genes in uropathogenic Escherichia coli isolated in a teaching hospital of northern Italy. Microb Drug Resist. 2012;18:33–41. doi: 10.1089/mdr.2010.0146. [DOI] [PubMed] [Google Scholar]
  • 194.Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac(6′)Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother. 2006;50:3953–3955. doi: 10.1128/AAC.00915-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Kim ES, Jeong JY, Jun JB, Choi SH, Lee SO, Kim MN, Woo JH, Kim YS. Prevalence of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme among Enterobacteriaceae blood isolates in Korea. Antimicrob Agents Chemother. 2009;53:2643–2645. doi: 10.1128/AAC.01534-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Yang J, Luo Y, Li J, Ma Y, Hu C, Jin S, Ye L, Cui S. Characterization of clinical Escherichia coli isolates from China containing transferable quinolone resistance determinants. J Antimicrob Chemother. 2010;65:453–459. doi: 10.1093/jac/dkp478. [DOI] [PubMed] [Google Scholar]
  • 197.Périchon B, Bogaerts P, Lambert T, Frangeul L, Courvalin P, Galimand M. Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Antimicrob Agents Chemother. 2008;52:2581–2592. doi: 10.1128/AAC.01540-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Yamane K, Wachino J, Suzuki S, Arakawa Y. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Chemother. 2008;52:1564–1566. doi: 10.1128/AAC.01137-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother. 2008;52:3801–3804. doi: 10.1128/AAC.00638-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Sorensen AH, Hansen LH, Johannesen E, Sorensen SJ. Conjugative plasmid conferring resistance to olaquindox. Antimicrob Agents Chemother. 2003;47:798–799. doi: 10.1128/AAC.47.2.798-799.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Hansen LH, Johannesen E, Burmolle M, Sorensen AH, Sorensen SJ. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother. 2004;48:3332–3337. doi: 10.1128/AAC.48.9.3332-3337.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Norman A, Hansen LH, She Q, Sørensen SJ. Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid. 2008;60:59–74. doi: 10.1016/j.plasmid.2008.03.003. [DOI] [PubMed] [Google Scholar]
  • 203.Kim HB, Wang M, Park CH, Kim EC, Jacoby GA, Hooper DC. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53:3582–3584. doi: 10.1128/AAC.01574-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Zhao J, Chen Z, Chen S, Deng Y, Liu Y, Tian W, Huang X, Wu C, Sun Y, Zeng Z, Liu JH. Prevalence and dissemination of oqxAB in Escherichia coli Isolates from animals, farmworkers, and the environment. Antimicrob Agents Chemother. 2010;54:4219–4224. doi: 10.1128/AAC.00139-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.Wong MH, Chen S. First detection of oqxAB in Salmonella spp. isolated from food. Antimicrob Agents Chemother. 2013;57:658–660. doi: 10.1128/AAC.01144-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Rodríguez-Martínez JM, Díaz de Alba P, Briales A, Machuca J, Lossa M, Fernández-Cuenca F, Rodríguez Baño J, Martínez-Martínez L, Pascual A. Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum-ß-lactamase-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2013;68:68–73. doi: 10.1093/jac/dks377. [DOI] [PubMed] [Google Scholar]
  • 207.Li L, Liao X, Yang Y, Sun J, Li L, Liu B, Yang S, Ma J, Li X, Zhang Q, Liu Y. Spread of oqxAB in Salmonella enterica serotype Typhimurium predominantly by IncHI2 plasmids. J Antimicrob Chemother. 2013;68:2263–2268. doi: 10.1093/jac/dkt209. [DOI] [PubMed] [Google Scholar]
  • 208.Yuan J, Xu X, Guo Q, Zhao X, Ye X, Guo Y, Wang M. Prevalence of the oqxAB gene complex in Klebsiella pneumoniae and Escherichia coli clinical isolates. J Antimicrob Chemother. 2012;67:1655–1659. doi: 10.1093/jac/dks086. [DOI] [PubMed] [Google Scholar]
  • 209.Perez F, Rudin SD, Marshall SH, Coakley P, Chen L, Kreiswirth BN, Rather PN, Hujer AM, Toltzis P, van Duin D, Paterson DL, Bonomo RA. OqxAB, a quinolone and olaquindox efflux pump, is widely distributed among multidrug-resistant Klebsiella pneumoniae isolates of human origin. Antimicrob Agents Chemother. 2013;57:4602–4603. doi: 10.1128/AAC.00725-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Veleba M, Higgins PG, Gonzalez G, Seifert H, Schneiders T. Characterization of RarA, a novel AraC family multidrug resistance regulator in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2012;56:4450–4458. doi: 10.1128/AAC.00456-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.De Majumdar S, Veleba M, Finn S, Fanning S, Schneiders T. Elucidating the regulon of multidrug resistance regulator RarA in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2013;57:1603–1609. doi: 10.1128/AAC.01998-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Szczepanowski R, Krahn I, Linke B, Goesmann A, Puhler A, Schluter A. Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. Microbiology. 2004;150:3613–3630. doi: 10.1099/mic.0.27317-0. [DOI] [PubMed] [Google Scholar]
  • 213.Nakaminami H, Noguchi N, Sasatsu M. Fluoroquinolone efflux by the plasmid-mediated multidrug efflux pump QacB variant QacBIII in Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54:4107–4111. doi: 10.1128/AAC.01065-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother. 2003;52:11–17. doi: 10.1093/jac/dkg269. [DOI] [PubMed] [Google Scholar]
  • 215.Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis. 2005;41(Suppl 2):S120–126. doi: 10.1086/428052. [DOI] [PubMed] [Google Scholar]
  • 216.Rodríguez-Martínez JM, Velasco C, García I, Cano ME, Martínez-Martínez L, Pascual A. Mutant prevention concentrations of fluoroquinolones for Enterobacteriaceae expressing the plasmid-carried quinolone resistance determinant qnrA1. Antimicrob Agents Chemother. 2007;51:2236–2239. doi: 10.1128/AAC.01444-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Cesaro A, Bettoni RR, Lascols C, Merens A, Soussy CJ, Cambau E. Low selection of topoisomerase mutants from strains of Escherichia coli harbouring plasmid-borne qnr genes. J Antimicrob Chemother. 2008;61:1007–1015. doi: 10.1093/jac/dkn077. [DOI] [PubMed] [Google Scholar]
  • 218.Martínez-Martínez L, Pascual A, García I, Tran J, Jacoby GA. Interaction of plasmid and host quinolone resistance. J Antimicrob Chemother. 2003;51:1037–1039. doi: 10.1093/jac/dkg157. [DOI] [PubMed] [Google Scholar]
  • 219.Briales A, Rodriguez-Martinez JM, Velasco C, Diaz de Alba P, Dominguez-Herrera J, Pachon J, Pascual A. In vitro effect of qnrA1, qnrB1, and qnrS1 genes on fluoroquinolone activity against isogenic Escherichia coli isolates with mutations in gyrA and parC. Antimicrob Agents Chemother. 2011;55:1266–1269. doi: 10.1128/AAC.00927-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220.Luo Y, Li J, Meng Y, Ma Y, Hu C, Jin S, Zhang Q, Ding H, Cui S. Joint effects of topoisomerase alterations and plasmid-mediated quinolone-resistant determinants in Salmonella enterica Typhimurium. Microb Drug Resist. 2011;17:1–5. doi: 10.1089/mdr.2010.0074. [DOI] [PubMed] [Google Scholar]
  • 221.Lascols C, Robert J, Cattoir V, Bébéar C, Cavallo JD, Podglajen I, Ploy MC, Bonnet R, Soussy CJ, Cambau E. Type II topoisomerase mutations in clinical isolates of Enterobacter cloacae and other enterobacterial species harbouring the qnrA gene. Int J Antimicrob Agents. 2007;29:402–409. doi: 10.1016/j.ijantimicag.2006.11.008. [DOI] [PubMed] [Google Scholar]
  • 222.Poirel L, Pitout JD, Calvo L, Rodriguez-Martinez JM, Church D, Nordmann P. In vivo selection of fluoroquinolone-resistant Escherichia coli isolates expressing plasmid-mediated quinolone resistance and expanded-spectrum ß-lactamase. Antimicrob Agents Chemother. 2006;50:1525–1527. doi: 10.1128/AAC.50.4.1525-1527.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.de Toro M, Rojo-Bezares B, Vinué L, Undabeitia E, Torres C, Sáenz Y. In vivo selection of aac(6′)-Ib-cr and mutations in the gyrA gene in a clinical qnrS1-positive Salmonella enterica serovar Typhimurium DT104B strain recovered after fluoroquinolone treatment. J Antimicrob Chemother. 2010;65:1945–1949. doi: 10.1093/jac/dkq262. [DOI] [PubMed] [Google Scholar]
  • 224.Jeong JY, Kim ES, Choi SH, Kwon HH, Lee SR, Lee SO, Kim MN, Woo JH, Kim YS. Effects of a plasmid-encoded qnrA1 determinant in Escherichia coli strains carrying chromosomal mutations in the acrAB efflux pump genes. Diagn Microbiol Infect Dis. 2008;60:105–107. doi: 10.1016/j.diagmicrobio.2007.07.015. [DOI] [PubMed] [Google Scholar]
  • 225.Sato T, Yokota S, Uchida I, Okubo T, Usui M, Kusumoto M, Akiba M, Fujii N, Tamura Y. Fluoroquinolone resistance mechanisms in an Escherichia coli isolate, HUE1, without quinolone resistance-determining region mutations. Front Microbiol. 2013;4 doi: 10.3389/fmicb.2013.00125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Warburg G, Korem M, Robicsek A, Engelstein D, Moses AE, Block C, Strahilevitz J. Changes in aac(6′)-Ib-cr prevalence and fluoroquinolone resistance in nosocomial isolates of Escherichia coli collected from 1991 through 2005. Antimicrob Agents Chemother. 2009;53:1268–1270. doi: 10.1128/AAC.01300-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Briales A, Rodriguez-Martinez JM, Velasco C, de Alba PD, Rodriguez-Bano J, Martinez-Martinez L, Pascual A. Prevalence of plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in Escherichia coli and Klebsiella pneumoniae producing extended-spectrum ß-lactamases in Spain. Int J Antimicrob Agents. 2012;39:431–434. doi: 10.1016/j.ijantimicag.2011.12.009. [DOI] [PubMed] [Google Scholar]
  • 228.Rodríguez-Martínez JM, Pichardo C, García I, Pachón-Ibañez ME, Docobo-Pérez F, Pascual A, Pachón J, Martínez-Martínez L. Activity of ciprofloxacin and levofloxacin in experimental pneumonia caused by Klebsiella pneumoniae deficient in porins, expressing active efflux and producing QnrA1. Clin Microbiol Infect. 2008;14:691–697. doi: 10.1111/j.1469-0691.2008.02020.x. [DOI] [PubMed] [Google Scholar]
  • 229.Domínguez-Herrera J, Velasco C, Docobo-Pérez F, Rodríguez-Martínez JM, López-Rojas R, Briales A, Pichardo C, Díaz-de-Alba P, Rodríguez-Baño J, Pascual A, Pachón J. Impact of qnrA1, qnrB1 and qnrS1 on the efficacy of ciprofloxacin and levofloxacin in an experimental pneumonia model caused by Escherichia coli with or without the GyrA mutation Ser83Leu. J Antimicrob Chemother. 2013;68:1609–1615. doi: 10.1093/jac/dkt063. [DOI] [PubMed] [Google Scholar]
  • 230.Allou N, Cambau E, Massias L, Chau F, Fantin B. Impact of low-level resistance to fluoroquinolones due to qnrA1 and qnrS1 genes or a gyrA mutation on ciprofloxacin bactericidal activity in a murine model of Escherichia coli urinary tract infection. Antimicrob Agents Chemother. 2009;53:4292–4297. doi: 10.1128/AAC.01664-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Jakobsen L, Cattoir V, Jensen KS, Hammerum AM, Nordmann P, Frimodt-Moller N. Impact of low-level fluoroquinolone resistance genes qnrA1, qnrB19 and qnrS1 on ciprofloxacin treatment of isogenic Escherichia coli strains in a murine urinary tract infection model. J Antimicrob Chemother. 2012;67:2438–2444. doi: 10.1093/jac/dks224. [DOI] [PubMed] [Google Scholar]
  • 232.Defife R, Scheetz MH, Feinglass JM, Postelnick MJ, Scarsi KK. Effect of differences in MIC values on clinical outcomes in patients with bloodstream infections caused by gram-negative organisms treated with levofloxacin. Antimicrob Agents Chemother. 2009;53:1074–1079. doi: 10.1128/AAC.00580-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Chong YP, Choi SH, Kim ES, Song EH, Lee EJ, Park KH, Cho OH, Kim SH, Lee SO, Kim MN, Jeong JY, Woo JH, Kim YS. Bloodstream infections caused by qnr-positive Enterobacteriaceae: clinical and microbiologic characteristics and outcomes. Diagn Microbiol Infect Dis. 2010;67:70–77. doi: 10.1016/j.diagmicrobio.2009.12.003. [DOI] [PubMed] [Google Scholar]
  • 234.Liao CH, Hsueh PR, Jacoby GA, Hooper DC. Risk factors and clinical characteristics of patients with qnr-positive Klebsiella pneumoniae bacteraemia. J Antimicrob Chemother. 2013;68:2907–2914. doi: 10.1093/jac/dkt295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235.Buchko GW, Ni S, Robinson H, Welsh EA, Pakrasi HB, Kennedy MA. Characterization of two potentially universal turn motifs that shape the repeated five-residues fold–Crystal structure of a lumenal pentapeptide repeat protein from Cyanothece 51142. Protein science : a publication of the Protein Society. 2006;15:2579–2595. doi: 10.1110/ps.062407506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 236.Lascols C, Podglajen I, Verdet C, Gautier V, Gutmann L, Soussy CJ, Collatz E, Cambau E. A plasmid-borne Shewanella algae gene, qnrA3, and its possible transfer in vivo between Kluyvera ascorbata and Klebsiella pneumoniae. J Bacteriol. 2008;190:5217–5223. doi: 10.1128/JB.00243-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237.Mnif B, Ktari S, Chaari A, Medhioub F, Rhimi F, Bouaziz M, Hammami A. Nosocomial dissemination of Providencia stuartii isolates carrying bla OXA-48, bla PER-1, bla CMY-4 and qnrA6 in a Tunisian hospital. J Antimicrob Chemother. 2013;68:329–332. doi: 10.1093/jac/dks386. [DOI] [PubMed] [Google Scholar]
  • 238.Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother. 2006;50:2872–2874. doi: 10.1128/AAC.01647-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.Quiroga MP, Andres P, Petroni A, Soler Bistué AJ, Guerriero L, Vargas LJ, Zorreguieta A, Tokumoto M, Quiroga C, Tolmasky ME, Galas M, Centrón D. Complex class 1 integrons with diverse variable regions, including aac(6′)-Ib-cr, and a novel allele, qnrB10, associated with ISCR1 in clinical enterobacterial isolates from Argentina. Antimicrob Agents Chemother. 2007;51:4466–4470. doi: 10.1128/AAC.00726-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.Hopkins KL, Wootton L, Day MR, Threlfall EJ. Plasmid-mediated quinolone resistance determinant qnrS1 found in Salmonella enterica strains isolated in the UK. J Antimicrob Chemother. 2007;59:1071–1075. doi: 10.1093/jac/dkm081. [DOI] [PubMed] [Google Scholar]
  • 241.Bönemann G, Stiens M, Pühler A, Schlüter A. Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, qnrS2, isolated from the bacterial community of a wastewater treatment plant. Antimicrob Agents Chemother. 2006;50:3075–3080. doi: 10.1128/AAC.00378-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Cattoir V, Poirel L, Aubert C, Soussy CJ, Nordmann P. Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental Aeromonas spp. Emerg Infect Dis. 2008;14:231–237. doi: 10.3201/eid1402.070677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Rajpara N, Patel A, Tiwari N, Bahuguna J, Antony A, Choudhury I, Ghosh A, Jain R, Bhardwaj AK. Mechanism of drug resistance in a clinical isolate of Vibrio fluvialis: involvement of multiple plasmids and integrons. Int J Antimicrob Agents. 2009;34:220–225. doi: 10.1016/j.ijantimicag.2009.03.020. [DOI] [PubMed] [Google Scholar]
  • 244.Boyd DA, Tyler S, Christianson S, McGeer A, Muller MP, Willey BM, Bryce E, Gardam M, Nordmann P, Mulvey MR. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum ß-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob Agents Chemother. 2004;48:3758–3764. doi: 10.1128/AAC.48.10.3758-3764.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Jacoby G, Chow N, Waites K. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother. 2003;47:559–562. doi: 10.1128/AAC.47.2.559-562.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246.Jonas D, Biehler K, Hartung D, Spitzmüller B, Daschner FD. Plasmid-mediated quinolone resistance in isolates obtained in German intensive care units. Antimicrob Agents Chemother. 2005;49:773–775. doi: 10.1128/AAC.49.2.773-775.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Jeong JY, Yoon HJ, Kim ES, Lee Y, Choi SH, Kim NJ, Woo JH, Kim YS. Detection of qnr in clinical isolates of Escherichia coli from Korea. Antimicrob Agents Chemother. 2005;49:2522–2524. doi: 10.1128/AAC.49.6.2522-2524.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Honoré S, Lascols C, Malin D, Targaouchi R, Cattoir V, Legrand P, Soussy CJ, Cambau E. Émergence et diffusion chez les entérobactéries du nouveau mécanisme de résistance plasmidique aux quinolones Qnr (résultats hôpital Henri-Mondor 2002–2005) Pathol Biol (Paris) 2006;54:270–279. doi: 10.1016/j.patbio.2005.11.001. [DOI] [PubMed] [Google Scholar]
  • 249.Saito R, Kumita W, Sato K, Chida T, Okamura N, Moriya K, Koike K. Detection of plasmid-mediated quinolone resistance associated with qnrA in an Escherichia coli clinical isolate producing CTX-M-9 ß-lactamase in Japan. Int J Antimicrob Agents. 2007;29:600–602. doi: 10.1016/j.ijantimicag.2006.11.016. [DOI] [PubMed] [Google Scholar]
  • 250.Poirel L, Nordmann P, De Champs C, Eloy C. Nosocomial spread of QnrA-mediated quinolone resistance in Enterobacter sakazakii. Int J Antimicrob Agents. 2007;29:223–224. doi: 10.1016/j.ijantimicag.2006.08.011. [DOI] [PubMed] [Google Scholar]
  • 251.Park YJ, Yu JK, Lee S, Oh EJ, Woo GJ. Prevalence and diversity of qnr alleles in AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Serratia marcescens: a multicentre study from Korea. J Antimicrob Chemother. 2007;60:868–871. doi: 10.1093/jac/dkm266. [DOI] [PubMed] [Google Scholar]
  • 252.Paauw A, Verhoef J, Fluit AC, Blok HE, Hopmans TE, Troelstra A, Leverstein-van Hall MA. Failure to control an outbreak of qnrA1-positive multidrug-resistant Enterobacter cloacae infection despite adequate implementation of recommended infection control measures. J Clin Microbiol. 2007;45:1420–1425. doi: 10.1128/JCM.02242-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Ellington MJ, Hope R, Turton JF, Warner M, Woodford N, Livermore DM. Detection of qnrA among Enterobacteriaceae from South-East England with extended-spectrum and high-level AmpC ß-lactamases. J Antimicrob Chemother. 2007;60:1176–1178. doi: 10.1093/jac/dkm308. [DOI] [PubMed] [Google Scholar]
  • 254.Castanheira M, Pereira AS, Nicoletti AG, Pignatari AC, Barth AL, Gales AC. First report of plasmid-mediated qnrA1 in a ciprofloxacin-resistant Escherichia coli strain in Latin America. Antimicrob Agents Chemother. 2007;51:1527–1529. doi: 10.1128/AAC.00780-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255.Cavaco LM, Hansen DS, Friis-Møller A, Aarestrup FM, Hasman H, Frimodt-Møller N. First detection of plasmid-mediated quinolone resistance (qnrA and qnrS) in Escherichia coli strains isolated from humans in Scandinavia. J Antimicrob Chemother. 2007;59:804–805. doi: 10.1093/jac/dkl554. [DOI] [PubMed] [Google Scholar]
  • 256.Xiong Z, Wang P, Wei Y, Wang H, Cao H, Huang H, Li J. Investigation of qnr and aac(6′)-Ib-cr in Enterobacter cloacae isolates from Anhui Province, China. Diagn Microbiol Infect Dis. 2008;62:457–459. doi: 10.1016/j.diagmicrobio.2008.07.010. [DOI] [PubMed] [Google Scholar]
  • 257.Tamang MD, Seol SY, Oh JY, Kang HY, Lee JC, Lee YC, Cho DT, Kim J. Plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS among clinical isolates of Enterobacteriaceae in a Korean hospital. Antimicrob Agents Chemother. 2008;52:4159–4162. doi: 10.1128/AAC.01633-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Öktem IM, Gülay Z, Biçmen M, Gür D. qnrA prevalence in extended-spectrum ß-lactamase-positive Enterobacteriaceae isolates from Turkey. Jpn J Infect Dis. 2008;61:13–17. [PubMed] [Google Scholar]
  • 259.Murray A, Mather H, Coia JE, Brown DJ. Plasmid-mediated quinolone resistance in nalidixic-acid-susceptible strains of Salmonella enterica isolated in Scotland. J Antimicrob Chemother. 2008;62:1153–1155. doi: 10.1093/jac/dkn340. [DOI] [PubMed] [Google Scholar]
  • 260.Cavaco LM, Frimodt-Møller N, Hasman H, Guardabassi L, Nielsen L, Aarestrup FM. Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations in quinolone-resistant Escherichia coli isolated from humans and swine in Denmark. Microb Drug Resist. 2008;14:163–169. doi: 10.1089/mdr.2008.0821. [DOI] [PubMed] [Google Scholar]
  • 261.Amin AK, Wareham DW. Plasmid-mediated quinolone resistance genes in Enterobacteriaceae isolates associated with community and nosocomial urinary tract infection in East London, UK. Int J Antimicrob Agents. 2009;34:490–491. doi: 10.1016/j.ijantimicag.2009.01.003. [DOI] [PubMed] [Google Scholar]
  • 262.Usein CR, Palade AM, Tatu-Chitoiu D, Ciontea S, Ceciu S, Nica M, Damian M. Identification of plasmid-mediated quinolone resistance qnr-like genes in Romanian clinical isolates of Escherichia coli and Klebsiella pneumoniae. Roum Arch Microbiol Immunol. 2009;68:55–57. [PubMed] [Google Scholar]
  • 263.Kim SY, Park YJ, Yu JK, Kim YS, Han K. Prevalence and characteristics of aac(6′)-Ib-cr in AmpC-producing Enterobacter cloacae, Citrobacter freundii, and Serratia marcescens: a multicenter study from Korea. Diagn Microbiol Infect Dis. 2009;63:314–318. doi: 10.1016/j.diagmicrobio.2008.11.016. [DOI] [PubMed] [Google Scholar]
  • 264.Gunell M, Webber MA, Kotilainen P, Lilly AJ, Caddick JM, Jalava J, Huovinen P, Siitonen A, Hakanen AJ, Piddock LJ. Mechanisms of resistance in nontyphoidal Salmonella enterica strains exhibiting a nonclassical quinolone resistance phenotype. Antimicrob Agents Chemother. 2009;53:3832–3836. doi: 10.1128/AAC.00121-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Sjölund-Karlsson M, Folster JP, Pecic G, Joyce K, Medalla F, Rickert R, Whichard JM. Emergence of plasmid-mediated quinolone resistance among non-Typhi Salmonella enterica isolates from humans in the United States. Antimicrob Agents Chemother. 2009;53:2142–2144. doi: 10.1128/AAC.01288-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266.Cui S, Li J, Sun Z, Hu C, Jin S, Li F, Guo Y, Ran L, Ma Y. Characterization of Salmonella enterica isolates from infants and toddlers in Wuhan, China. J Antimicrob Chemother. 2009;63:87–94. doi: 10.1093/jac/dkn452. [DOI] [PubMed] [Google Scholar]
  • 267.Ode T, Saito R, Kumita W, Sato K, Okugawa S, Moriya K, Koike K, Okamura N. Analysis of plasmid-mediated multidrug resistance in Escherichia coli and Klebsiella oxytoca isolates from clinical specimens in Japan. Int J Antimicrob Agents. 2009;34:347–350. doi: 10.1016/j.ijantimicag.2009.05.007. [DOI] [PubMed] [Google Scholar]
  • 268.Fang H, Huang H, Shi Y, Hedin G, Nord CE, Ullberg M. Prevalence of qnr determinants among extended-spectrum ß-lactamase-positive Enterobacteriaceae clinical isolates in southern Stockholm, Sweden. Int J Antimicrob Agents. 2009;34:268–270. doi: 10.1016/j.ijantimicag.2009.03.016. [DOI] [PubMed] [Google Scholar]
  • 269.Naqvi SM, Jenkins C, McHugh TD, Balakrishnan I. Identification of the qnr family in Enterobacteriaceae in clinical practice. J Antimicrob Chemother. 2009;63:830–832. doi: 10.1093/jac/dkp011. [DOI] [PubMed] [Google Scholar]
  • 270.Le TM, Baker S, Le TP, Cao TT, Tran TT, Nguyen VM, Campbell JI, Lam MY, Nguyen TH, Nguyen VV, Farrar J, Schultsz C. High prevalence of plasmid-mediated quinolone resistance determinants in commensal members of the Enterobacteriaceae in Ho Chi Minh City, Vietnam. J Med Microbiol. 2009;58:1585–1592. doi: 10.1099/jmm.0.010033-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 271.Bouchakour M, Zerouali K, Gros Claude JD, Amarouch H, El Mdaghri N, Courvalin P, Timinouni M. Plasmid-mediated quinolone resistance in expanded spectrum beta lactamase producing enterobacteriaceae in Morocco. Journal of infection in developing countries. 2010;4:779–803. doi: 10.3855/jidc.796. [DOI] [PubMed] [Google Scholar]
  • 272.Xiong Z, Li J, Li T, Shen J, Hu F, Wang M. Prevalence of plasmid-mediated quinolone-resistance determinants in Shigella flexneri isolates from Anhui Province, China. J Antibiot (Tokyo) 2010;63:187–189. doi: 10.1038/ja.2010.16. [DOI] [PubMed] [Google Scholar]
  • 273.Kim YS, Kim ES, Jeong JY. Genetic organization of plasmid-mediated Qnr determinants in cefotaxime-resistant Enterobacter cloacae isolates in Korea. Diagn Microbiol Infect Dis. 2010;68:318–321. doi: 10.1016/j.diagmicrobio.2010.06.013. [DOI] [PubMed] [Google Scholar]
  • 274.Ferreira S, Paradela A, Velez J, Ramalheira E, Walsh TR, Mendo S. Carriage of qnrA1 and qnrB2, blaCTX-M15, and complex class 1 integron in a clinical multiresistant Citrobacter freundii isolate. Diagn Microbiol Infect Dis. 2010;67:188–190. doi: 10.1016/j.diagmicrobio.2010.01.003. [DOI] [PubMed] [Google Scholar]
  • 275.Kiiru J, Kariuki S, Goddeeris BM, Revathi G, Maina TW, Ndegwa DW, Muyodi J, Butaye P. Escherichia coli strains from Kenyan patients carrying conjugatively transferable broad-spectrum beta-lactamase, qnr, aac(6′)-Ib-cr and 16S rRNA methyltransferase genes. J Antimicrob Chemother. 2011;66:1639–1642. doi: 10.1093/jac/dkr149. [DOI] [PubMed] [Google Scholar]
  • 276.Herrera-Leon S, Gonzalez-Sanz R, Herrera-Leon L, Echeita MA. Characterization of multidrug-resistant Enterobacteriaceae carrying plasmid-mediated quinolone resistance mechanisms in Spain. J Antimicrob Chemother. 2011;66:287–290. doi: 10.1093/jac/dkq423. [DOI] [PubMed] [Google Scholar]
  • 277.Garcia-Fulgueiras V, Bado I, Mota MI, Robino L, Cordeiro NF, Varela A, Algorta G, Gutkind G, Ayala JA, Vignoli R. Extended-spectrum ß-lactamases and plasmid-mediated quinolone resistance in enterobacterial clinical isolates in the paediatric hospital of Uruguay. J Antimicrob Chemother. 2011;66:1725–1729. doi: 10.1093/jac/dkr222. [DOI] [PubMed] [Google Scholar]
  • 278.Chowdhury G, Pazhani GP, Nair GB, Ghosh A, Ramamurthy T. Transferable plasmid-mediated quinolone resistance in association with extended-spectrum ß-lactamases and fluoroquinolone-acetylating aminoglycoside-6′-N-acetyltransferase in clinical isolates of Vibrio fluvialis. Int J Antimicrob Agents. 2011;38:169–173. doi: 10.1016/j.ijantimicag.2011.04.013. [DOI] [PubMed] [Google Scholar]
  • 279.Silva-Sanchez J, Barrios H, Reyna-Flores F, Bello-Diaz M, Sanchez-Perez A, Rojas T, Consortium BR, Garza-Ramos U. Prevalence and characterization of plasmid-mediated quinolone resistance genes in extended-spectrum ß-lactamase-producing Enterobacteriaceae isolates in Mexico. Microb Drug Resist. 2011;17:497–505. doi: 10.1089/mdr.2011.0086. [DOI] [PubMed] [Google Scholar]
  • 280.Muller S, Oesterlein A, Frosch M, Abele-Horn M, Valenza G. Characterization of extended-spectrum beta-lactamases and qnr plasmid-mediated quinolone resistance in German isolates of Enterobacter species. Microb Drug Resist. 2011;17:99–103. doi: 10.1089/mdr.2010.0114. [DOI] [PubMed] [Google Scholar]
  • 281.Jeong HS, Bae IK, Shin JH, Kim SH, Chang CL, Jeong J, Kim S, Lee CH, Ryoo NH, Lee JN. Fecal colonization of Enterobacteriaceae carrying plasmid-mediated quinolone resistance determinants in Korea. Microb Drug Resist. 2011;17:507–512. doi: 10.1089/mdr.2011.0040. [DOI] [PubMed] [Google Scholar]
  • 282.Frank T, Mbecko JR, Misatou P, Monchy D. Emergence of quinolone resistance among extended-spectrum ß-lactamase-producing Enterobacteriaceae in the Central African Republic: genetic characterization. BMC research notes. 2011;4:309. doi: 10.1186/1756-0500-4-309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 283.Tran QT, Nawaz MS, Deck J, Nguyen KT, Cerniglia CE. Plasmid-mediated quinolone resistance in Pseudomonas putida isolates from imported shrimp. Appl Environ Microbiol. 2011;77:1885–1887. doi: 10.1128/AEM.01176-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284.Hassan WM, Hashim A, Domany R. Plasmid mediated quinolone resistance determinants qnr, aac(6′)-Ib-cr, and qep in ESBL-producing Escherichia coli clinical isolates from Egypt. Indian J Med Microbiol. 2012;30:442–447. doi: 10.4103/0255-0857.103766. [DOI] [PubMed] [Google Scholar]
  • 285.Paltansing S, Kraakman ME, Ras JM, Wessels E, Bernards AT. Characterization of fluoroquinolone and cephalosporin resistance mechanisms in Enterobacteriaceae isolated in a Dutch teaching hospital reveals the presence of an Escherichia coli ST131 clone with a specific mutation in parE. J Antimicrob Chemother. 2013;68:40–45. doi: 10.1093/jac/dks365. [DOI] [PubMed] [Google Scholar]
  • 286.Wang Y, Ying C, Wu W, Ye Y, Zhang H, Yu J. Investigation of quinolone resistance in Shigella sonnei. Chin J Infect Chemother. 2009;9:27–31. [Google Scholar]
  • 287.Pasom W, Chanawong A, Lulitanond A, Wilailuckana C, Kenprom S, Puang-Ngern P. Plasmid-mediated quinolone resistance genes, aac(6′)-Ib-cr, qnrS, qnrB, and qnrA, in urinary isolates of Escherichia coli and Klebsiella pneumoniae at a teaching hospital, Thailand. Jpn J Infect Dis. 2013;66:428–432. doi: 10.7883/yoken.66.428. [DOI] [PubMed] [Google Scholar]
  • 288.Silva-Sánchez J, Cruz-Trujillo E, Barrios H, Reyna-Flores F, Sánchez-Pérez A, Consortium BR, Garza-Ramos U. Characterization of plasmid-mediated quinolone resistance (PMQR) genes in extended-spectrum ß-lactamase-producing Enterobacteriaceae pediatric clinical isolates in Mexico. PLoS One. 2013;8:e77968. doi: 10.1371/journal.pone.0077968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 289.Ferrari R, Galiana A, Cremades R, Rodriguez JC, Magnani M, Tognim MC, Oliveira TC, Royo G. Plasmid-mediated quinolone resistance (PMQR) and mutations in the topoisomerase genes of Salmonella enterica strains from Brazil. Braz J Microbiol. 2013;44:651–656. doi: 10.1590/S1517-83822013000200046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Xia R, Ren Y, Xu H. Identification of plasmid-mediated quinolone resistance qnr genes in multidrug-resistant gram-negative bacteria from hospital wastewaters and receiving waters in the Jinan area, China. Microb Drug Resist. 2013;19:446–456. doi: 10.1089/mdr.2012.0210. [DOI] [PubMed] [Google Scholar]
  • 291.Chu YW, Cheung TK, Ng TK, Tsang D, To WK, Kam KM, Lo JY. Quinolone resistance determinant qnrA3 in clinical isolates of Salmonella in 2000–2005 in Hong Kong. J Antimicrob Chemother. 2006;58:904–905. doi: 10.1093/jac/dkl340. [DOI] [PubMed] [Google Scholar]
  • 292.Dahmen S, Poirel L, Mansour W, Bouallegue O, Nordmann P. Prevalence of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae from Tunisia. Clin Microbiol Infect. 2010;16:1019–1023. doi: 10.1111/j.1469-0691.2009.03010.x. [DOI] [PubMed] [Google Scholar]
  • 293.Arpin C, Thabet L, Yassine H, Messadi AA, Boukadida J, Dubois V, Coulange-Mayonnove L, Andre C, Quentin C. Evolution of an incompatibility group IncA/C plasmid harboring blaCMY-16 and qnrA6 genes and its transfer through three clones of Providencia stuartii during a two-year outbreak in a Tunisian burn unit. Antimicrob Agents Chemother. 2012;56:1342–1349. doi: 10.1128/AAC.05267-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 294.Nazik H, Ongen B, Kuvat N. Investigation of plasmid-mediated quinolone resistance among isolates obtained in a Turkish intensive care unit. Jpn J Infect Dis. 2008;61:310–312. [PubMed] [Google Scholar]
  • 295.Torpdahl M, Hammerum AM, Zachariasen C, Nielsen EM. Detection of qnr genes in Salmonella isolated from humans in Denmark. J Antimicrob Chemother. 2009;63:406–408. doi: 10.1093/jac/dkn492. [DOI] [PubMed] [Google Scholar]
  • 296.Karah N, Poirel L, Bengtsson S, Sundqvist M, Kahlmeter G, Nordmann P, Sundsfjord A, Samuelsen O. Plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in Escherichia coli and Klebsiella spp. from Norway and Sweden. Diagn Microbiol Infect Dis. 2010;66:425–431. doi: 10.1016/j.diagmicrobio.2009.12.004. [DOI] [PubMed] [Google Scholar]
  • 297.Meradi L, Djahoudi A, Abdi A, Bouchakour M, Perrier Gros Claude JD, Timinouni M. Résistance aux quinolones de types qnr, aac (6′)-Ib-cr chez les entérobactéries isolées à Annaba en Algérie. Pathol Biol (Paris) 2011;59:e73–78. doi: 10.1016/j.patbio.2009.05.003. [DOI] [PubMed] [Google Scholar]
  • 298.Villa L, Poirel L, Nordmann P, Carta C, Carattoli A. Complete sequencing of an IncH plasmid carrying the blaNDM-1, blaCTX-M-15 and qnrB1 genes. J Antimicrob Chemother. 2012;67:1645–1650. doi: 10.1093/jac/dks114. [DOI] [PubMed] [Google Scholar]
  • 299.Guillard T, de Champs C, Moret H, Bertrand X, Scheftel JM, Cambau E. High-resolution melting analysis for rapid characterization of qnr alleles in clinical isolates and detection of two novel alleles, qnrB25 and qnrB42. J Antimicrob Chemother. 2012;67:2635–2639. doi: 10.1093/jac/dks292. [DOI] [PubMed] [Google Scholar]
  • 300.Dolejska M, Villa L, Dobiasova H, Fortini D, Feudi C, Carattoli A. Plasmid content of a clinically relevant Klebsiella pneumoniae clone from the Czech Republic producing CTX-M-15 and QnrB1. Antimicrob Agents Chemother. 2013;57:1073–1076. doi: 10.1128/AAC.01886-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 301.Viana AL, Cayo R, Avelino CC, Gales AC, Franco MC, Minarini LA. Extended-spectrum ß-lactamases in Enterobacteriaceae isolated in Brazil carry distinct types of plasmid-mediated quinolone resistance genes. J Med Microbiol. 2013;62:1326–1331. doi: 10.1099/jmm.0.055970-0. [DOI] [PubMed] [Google Scholar]
  • 302.Saiful Anuar AS, Mohd Yusof MY, Tay ST. Prevalence of plasmid-mediated qnr determinants and gyrase alteration in Klebsiella pneumoniae isolated from a university teaching hospital in Malaysia. Eur Rev Med Pharmacol Sci. 2013;17:1744–1747. [PubMed] [Google Scholar]
  • 303.Gay K, Robicsek A, Strahilevitz J, Park CH, Jacoby G, Barrett TJ, Medalla F, Chiller TM, Hooper DC. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clin Infect Dis. 2006;43:297–304. doi: 10.1086/505397. [DOI] [PubMed] [Google Scholar]
  • 304.Whichard J, Gay K, Stevenson JE, Joyce K, Cooper K, Omondi M, F M, Jacoby GA, Barrett TJ. Human Salmonella and concurrent decreased susceptibility to quinolones and extended-spectrum cephalosporins. Emerg Infect Dis. 2007;13:1681–1688. doi: 10.3201/eid1311.061438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 305.Hopkins KL, Day M, Threlfall EJ. Plasmid-mediated quinolone resistance in Salmonella enterica, United Kingdom. Emerg Infect Dis. 2008;14:340–342. doi: 10.3201/eid1402.070573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 306.Minarini LA, Poirel L, Cattoir V, Darini AL, Nordmann P. Plasmid-mediated quinolone resistance determinants among enterobacterial isolates from outpatients in Brazil. J Antimicrob Chemother. 2008;62:474–478. doi: 10.1093/jac/dkn237. [DOI] [PubMed] [Google Scholar]
  • 307.Wu JJ, Ko WC, Chiou CS, Chen HM, Wang LR, Yan JJ. Emergence of Qnr determinants in human Salmonella isolates in Taiwan. J Antimicrob Chemother. 2008;62:1269–1272. doi: 10.1093/jac/dkn426. [DOI] [PubMed] [Google Scholar]
  • 308.Veldman K, van Pelt W, Mevius D. First report of qnr genes in Salmonella in The Netherlands. J Antimicrob Chemother. 2008;61:452–453. doi: 10.1093/jac/dkm495. [DOI] [PubMed] [Google Scholar]
  • 309.Shin JH, Jung HJ, Lee JY, Kim HR, Lee JN, Chang CL. High rates of plasmid-mediated quinolone resistance QnrB variants among ciprofloxacin-resistant Escherichia coli and Klebsiella pneumoniae from urinary tract infections in Korea. Microb Drug Resist. 2008;14:221–226. doi: 10.1089/mdr.2008.0834. [DOI] [PubMed] [Google Scholar]
  • 310.Liassine N, Zulueta-Rodriguez P, Corbel C, Lascols C, Soussy CJ, Cambau E. First detection of plasmid-mediated quinolone resistance in the community setting and in hospitalized patients in Switzerland. J Antimicrob Chemother. 2008;62:1151–1152. doi: 10.1093/jac/dkn295. [DOI] [PubMed] [Google Scholar]
  • 311.Gutierrez B, Herrera-Leon S, Escudero JA, Hidalgo L, Gonzalez-Sanz R, Arroyo M, San Millan A, Echeita MA, Gonzalez-Zorn B. Novel genetic environment of qnrB2 associated with TEM-1 and SHV-12 on pB1004, an IncHI2 plasmid, in Salmonella Bredeney BB1047 from Spain. J Antimicrob Chemother. 2009;64:1334–1336. doi: 10.1093/jac/dkp340. [DOI] [PubMed] [Google Scholar]
  • 312.Pfeifer Y, Matten J, Rabsch W. Salmonella enterica serovar Typhi with CTX-M ß-lactamase, Germany. Emerg Infect Dis. 2009;15:1533–1535. doi: 10.3201/eid1509.090567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 313.Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007;60:394–397. doi: 10.1093/jac/dkm204. [DOI] [PubMed] [Google Scholar]
  • 314.Pallecchi L, Riccobono E, Mantella A, Bartalesi F, Sennati S, Gamboa H, Gotuzzo E, Bartoloni A, Rossolini GM. High prevalence of qnr genes in commensal enterobacteria from healthy children in Peru and Bolivia. Antimicrob Agents Chemother. 2009;53:2632–2635. doi: 10.1128/AAC.01722-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 315.Sjólund-Karlsson M, Howie R, Rickert R, Krueger A, Tran TT, Zhao S, Ball T, Haro J, Pecic G, Joyce K, Fedorka-Cray PJ, Whichard JM, McDermott PF. Plasmid-mediated quinolone resistance among non-Typhi Salmonella enterica isolates, USA. Emerg Infect Dis. 2010;16:1789–1791. doi: 10.3201/eid1611.100464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 316.Lin CJ, Siu LK, Ma L, Chang YT, Lu PL. Molecular epidemiology of ciprofloxacin-resistant extended-spectrum ß-lactamase-producing Klebsiella pneumoniae in Taiwan. Microb Drug Resist. 2012;18:52–58. doi: 10.1089/mdr.2011.0060. [DOI] [PubMed] [Google Scholar]
  • 317.Nordmann P, Poirel L, Mak JK, White PA, McIver CJ, Taylor P. Multidrug-resistant Salmonella strains expressing emerging antibiotic resistance determinants. Clin Infect Dis. 2008;46:324–325. doi: 10.1086/524898. [DOI] [PubMed] [Google Scholar]
  • 318.Kanamori H, Yano H, Hirakata Y, Endo S, Arai K, Ogawa M, Shimojima M, Aoyagi T, Hatta M, Yamada M, Nishimaki K, Kitagawa M, Kunishima H, Kaku M. High prevalence of extended-spectrum ß-lactamases and qnr determinants in Citrobacter species from Japan: dissemination of CTX-M-2. J Antimicrob Chemother. 2011;66:2255–2262. doi: 10.1093/jac/dkr283. [DOI] [PubMed] [Google Scholar]
  • 319.Zhu YL, Yang HF, Liu YY, Hu LF, Cheng J, Ye Y, Li JB. Detection of plasmid-mediated quinolone resistance determinants and the emergence of multidrug resistance in clinical isolates of Shigella in SiXian area, China. Diagn Microbiol Infect Dis. 2013;75:327–329. doi: 10.1016/j.diagmicrobio.2012.12.001. [DOI] [PubMed] [Google Scholar]
  • 320.Cavaco LM, Korsgaard H, Sorensen G, Aarestrup FM. Plasmid-mediated quinolone resistance due to qnrB5 and qnrS1 genes in Salmonella enterica serovars Newport, Hadar and Saintpaul isolated from turkey meat in Denmark. J Antimicrob Chemother. 2008;62:632–634. doi: 10.1093/jac/dkn211. [DOI] [PubMed] [Google Scholar]
  • 321.Lunn AD, Fabrega A, Sanchez-Cespedes J, Vila J. Prevalence of mechanisms decreasing quinolone-susceptibility among Salmonella spp. clinical isolates. International microbiology : the official journal of the Spanish Society for Microbiology. 2010;13:15–20. doi: 10.2436/20.1501.01.107. [DOI] [PubMed] [Google Scholar]
  • 322.Folster JP, Pecic G, Bowen A, Rickert R, Carattoli A, Whichard JM. Decreased susceptibility to ciprofloxacin among Shigella isolates in the United States, 2006 to 2009. Antimicrob Agents Chemother. 2011;55:1758–1760. doi: 10.1128/AAC.01463-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 323.Zhao JY, Dang H. Coastal seawater bacteria harbor a large reservoir of plasmid-mediated quinolone resistance determinants in Jiaozhou Bay, China. Microb Ecol. 2012;64:187–199. doi: 10.1007/s00248-012-0008-z. [DOI] [PubMed] [Google Scholar]
  • 324.Fortini D, Fashae K, Garcia-Fernandez A, Villa L, Carattoli A. Plasmid-mediated quinolone resistance and ß-lactamases in Escherichia coli from healthy animals from Nigeria. J Antimicrob Chemother. 2011;66:1269–1272. doi: 10.1093/jac/dkr085. [DOI] [PubMed] [Google Scholar]
  • 325.Hammerl JA, Beutlich J, Hertwig S, Mevius D, Threlfall EJ, Helmuth R, Guerra B. pSGI15, a small ColE-like qnrB19 plasmid of a Salmonella enterica serovar Typhimurium strain carrying Salmonella genomic island 1 (SGI1) J Antimicrob Chemother. 2010;65:173–175. doi: 10.1093/jac/dkp383. [DOI] [PubMed] [Google Scholar]
  • 326.Pallecchi L, Riccobono E, Mantella A, Fernandez C, Bartalesi F, Rodriguez H, Gotuzzo E, Bartoloni A, Rossolini GM. Small qnrB-harbouring ColE-like plasmids widespread in commensal enterobacteria from a remote Amazonas population not exposed to antibiotics. J Antimicrob Chemother. 2011;66:1176–1178. doi: 10.1093/jac/dkr026. [DOI] [PubMed] [Google Scholar]
  • 327.Jeong HS, Kim JA, Shin JH, Chang CL, Jeong J, Cho JH, Kim MN, Kim S, Kim YR, Lee CH, Lee K, Lee MA, Lee WG, Lee JN. Prevalence of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes in Salmonella isolated from 12 tertiary-care hospitals in Korea. Microb Drug Resist. 2011;17:551–557. doi: 10.1089/mdr.2011.0095. [DOI] [PubMed] [Google Scholar]
  • 328.Riveros M, Riccobono E, Durand D, Mosquito S, Ruiz J, Rossolini GM, Ochoa TJ, Pallecchi L. Plasmid-mediated quinolone resistance genes in enteroaggregative Escherichia coli from infants in Lima, Peru. Int J Antimicrob Agents. 2012;39:540–542. doi: 10.1016/j.ijantimicag.2012.02.008. [DOI] [PubMed] [Google Scholar]
  • 329.Gonzalez F, Pallecchi L, Rossolini GM, Araque M. Plasmid-mediated quinolone resistance determinant qnrB19 in non-typhoidal Salmonella enterica strains isolated in Venezuela. Journal of infection in developing countries. 2012;6:462–464. doi: 10.3855/jidc.2599. [DOI] [PubMed] [Google Scholar]
  • 330.Bae IK, Park I, Lee JJ, Sun HI, Park KS, Lee JE, Ahn JH, Lee SH, Woo GJ. Novel variants of the qnrB gene, qnrB22 and qnrB23, in Citrobacter werkmanii and Citrobacter freundii. Antimicrob Agents Chemother. 2010;54:3068–3069. doi: 10.1128/AAC.01339-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 331.Wang D, Wang H, Qi Y, Liang Y, Zhang J, Yu L. Novel variants of the qnrB gene, qnrB31 and qnrB32, in Klebsiella pneumoniae. J Med Microbiol. 2011;60:1849–1852. doi: 10.1099/jmm.0.034272-0. [DOI] [PubMed] [Google Scholar]
  • 332.Wang D, Wang H, Qi Y, Liang Y, Zhang J, Yu L. Characteristics of Klebsiella pneumoniae harboring QnrB32, Aac(6′)-Ib-cr, GyrA and CTX-M-22 genes. Folia Histochem Cytobiol. 2012;50:68–74. doi: 10.2478/18698. [DOI] [PubMed] [Google Scholar]
  • 333.Poirel L, Nguyen TV, Weintraub A, Leviandier C, Nordmann P. Plasmid-mediated quinolone resistance determinant qnrS in Enterobacter cloacae. Clin Microbiol Infect. 2006;12:1021–1023. doi: 10.1111/j.1469-0691.2006.01531.x. [DOI] [PubMed] [Google Scholar]
  • 334.Avsaroglu MD, Helmuth R, Junker E, Hertwig S, Schroeter A, Akcelik M, Bozoglu F, Guerra B. Plasmid-mediated quinolone resistance conferred by qnrS1 in Salmonella enterica serovar Virchow isolated from Turkish food of avian origin. J Antimicrob Chemother. 2007;60:1146–1150. doi: 10.1093/jac/dkm352. [DOI] [PubMed] [Google Scholar]
  • 335.Vasilaki O, Ntokou E, Ikonomidis A, Sofianou D, Frantzidou F, Alexiou-Daniel S, Maniatis AN, Pournaras S. Emergence of the plasmid-mediated quinolone resistance gene qnrS1 in Escherichia coli isolates in Greece. Antimicrob Agents Chemother. 2008;52:2996–2997. doi: 10.1128/AAC.00325-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 336.Pu XY, Pan JC, Wang HQ, Zhang W, Huang ZC, Gu YM. Characterization of fluoroquinolone-resistant Shigella flexneri in Hangzhou area of China. J Antimicrob Chemother. 2009;63:917–920. doi: 10.1093/jac/dkp087. [DOI] [PubMed] [Google Scholar]
  • 337.Keddy KH, Smith AM, Sooka A, Ismail H, Oliver S. Fluoroquinolone-resistant typhoid, South Africa. Emerg Infect Dis. 2010;16:879–880. doi: 10.3201/eid1605.091917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 338.Le TM, AbuOun M, Morrison V, Thomson N, Campbell JI, Woodward MJ, Van Vinh Chau N, Farrar J, Schultsz C, Baker S. Differential phenotypic and genotypic characteristics of qnrS1-harboring plasmids carried by hospital and community commensal Enterobacteria. Antimicrob Agents Chemother. 2011;55:1798–1802. doi: 10.1128/AAC.01200-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 339.Sato T, Yokota S, Uchida I, Okubo T, Ishihara K, Fujii N, Tamura Y. A fluoroquinolone-resistant Escherichia coli clinical isolate without quinolone resistance-determining region mutations found in Japan. Antimicrob Agents Chemother. 2011;55:3964–3965. doi: 10.1128/AAC.00532-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 340.Mokracka J, Gruszczynska B, Kaznowski A. Integrons, ß-lactamase and qnr genes in multidrug resistant clinical isolates of Proteus mirabilis and P. vulgaris. APMIS. 2012;120:950–958. doi: 10.1111/j.1600-0463.2012.02923.x. [DOI] [PubMed] [Google Scholar]
  • 341.Kanamori H, Yano H, Hirakata Y, Hirotani A, Arai K, Endo S, Ichimura S, Ogawa M, Shimojima M, Aoyagi T, Hatta M, Yamada M, Gu Y, Tokuda K, Kunishima H, Kitagawa M, Kaku M. Molecular characteristics of extended-spectrum beta-lactamases and qnr determinants in Enterobacter species from Japan. PLoS ONE. 2012;7:e37967. doi: 10.1371/journal.pone.0037967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 342.Sánchez-Céspedes J, Blasco MD, Marti S, Alba V, Alcalde E, Esteve C, Vila J. Plasmid-mediated QnrS2 determinant from a clinical Aeromonas veronii isolate. Antimicrob Agents Chemother. 2008;52:2990–2991. doi: 10.1128/AAC.00287-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 343.Arias A, Seral C, Navarro F, Miro E, Coll P, Castillo FJ. Plasmid-mediated QnrS2 determinant in an Aeromonas caviae isolate recovered from a patient with diarrhoea. Clin Microbiol Infect. 2010;16:1005–1007. doi: 10.1111/j.1469-0691.2009.02958.x. [DOI] [PubMed] [Google Scholar]
  • 344.Majumdar T, Das B, Bhadra RK, Dam B, Mazumder S. Complete nucleotide sequence of a quinolone resistance gene (qnrS2) carrying plasmid of Aeromonas hydrophila isolated from fish. Plasmid. 2011;66:79–84. doi: 10.1016/j.plasmid.2011.05.001. [DOI] [PubMed] [Google Scholar]
  • 345.Han JE, Kim JH, Cheresca CH, Jr, Shin SP, Jun JW, Chai JY, Han SY, Park SC. First description of the qnrS-like (qnrS5) gene and analysis of quinolone resistance-determining regions in motile Aeromonas spp. from diseased fish and water. Res Microbiol. 2012;163:73–79. doi: 10.1016/j.resmic.2011.09.001. [DOI] [PubMed] [Google Scholar]
  • 346.Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegard B, Soderstrom H, Larsson DG. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One. 2011;6:e17038. doi: 10.1371/journal.pone.0017038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 347.Li J, Wang T, Shao B, Shen J, Wang S, Wu Y. Plasmid-mediated quinolone resistance genes and antibiotic residues in wastewater and soil adjacent to Swine feedlots: potential transfer to agricultural lands. Environmental health perspectives. 2012;120:1144–1149. doi: 10.1289/ehp.1104776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 348.Karisik E, Ellington MJ, Pike R, Warren RE, Livermore DM, Woodford N. Molecular characterization of plasmids encoding CTX-M-15 ß-lactamases from Escherichia coli strains in the United Kingdom. J Antimicrob Chemother. 2006;58:665–668. doi: 10.1093/jac/dkl309. [DOI] [PubMed] [Google Scholar]
  • 349.Machado E, Coque TM, Cantón R, Baquero F, Sousa JC, Peixe L. Dissemination in Portugal of CTX-M-15-, OXA-1-, and TEM-1-producing Enterobacteriaceae strains containing the aac(6′)-Ib-cr gene, which encodes an aminoglycoside- and fluoroquinolone-modifying enzyme. Antimicrob Agents Chemother. 2006;50:3220–3221. doi: 10.1128/AAC.00473-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 350.Pallecchi L, Bartoloni A, Fiorelli C, Mantella A, Di Maggio T, Gamboa H, Gotuzzo E, Kronvall G, Paradisi F, Rossolini GM. Rapid dissemination and diversity of CTX-M extended-spectrum ß-lactamase genes in commensal Escherichia coli isolates from healthy children from low-resource settings in Latin America. Antimicrob Agents Chemother. 2007;51:2720–2725. doi: 10.1128/AAC.00026-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 351.Ambrožič Avguštin J, Keber R, Žerjavič K, Oražem T, Grabnar M. Emergence of the quinolone resistance-mediating gene aac(6′)-Ib-cr in extended-spectrum-ß-lactamase-producing Klebsiella isolates collected in Slovenia between 2000 and 2005. Antimicrob Agents Chemother. 2007;51:4171–4173. doi: 10.1128/AAC.01480-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 352.Cordeiro NF, Robino L, Medina J, Seija V, Bado I, Garcia V, Berro M, Pontet J, Lopez L, Bazet C, Rieppi G, Gutkind G, Ayala JA, Vignoli R. Ciprofloxacin-resistant enterobacteria harboring the aac(6′)-Ib-cr variant isolated from feces of inpatients in an intensive care unit in Uruguay. Antimicrob Agents Chemother. 2008;52:806–807. doi: 10.1128/AAC.00444-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 353.Chmelnitsky I, Hermesh O, Navon-Venezia S, Strahilevitz J, Carmeli Y. Detection of aac(6′)-Ib-cr in KPC-producing Klebsiella pneumoniae isolates from Tel Aviv, Israel. J Antimicrob Chemother. 2009;64:718–722. doi: 10.1093/jac/dkp272. [DOI] [PubMed] [Google Scholar]
  • 354.Deepak RN, Koh TH, Chan KS. Plasmid-mediated quinolone resistance determinants in urinary isolates of Escherichia coli and Klebsiella pneumoniae in a large Singapore hospital. Ann Acad Med Singapore. 2009;38:1070–1073. [PubMed] [Google Scholar]
  • 355.Morgan-Linnell SK, Becnel Boyd L, Steffen D, Zechiedrich L. Mechanisms accounting for fluoroquinolone resistance in Escherichia coli clinical isolates. Antimicrob Agents Chemother. 2009;53:235–241. doi: 10.1128/AAC.00665-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 356.Bell JM, Turnidge JD, Andersson P. aac(6′)-Ib-cr genotyping by simultaneous high-resolution melting analyses of an unlabeled probe and full-length amplicon. Antimicrob Agents Chemother. 2010;54:1378–1380. doi: 10.1128/AAC.01476-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 357.Hidalgo-Grass C, Strahilevitz J. High-resolution melt curve analysis for identification of single nucleotide mutations in the quinolone resistance gene aac(6′)-Ib-cr. Antimicrob Agents Chemother. 2010;54:3509–3511. doi: 10.1128/AAC.00485-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 358.Christiansen N, Nielsen L, Jakobsen L, Stegger M, Hansen LH, Frimodt-Moller N. Fluoroquinolone resistance mechanisms in urinary tract pathogenic Escherichia coli isolated during rapidly increasing fluoroquinolone consumption in a low-use country. Microb Drug Resist. 2011;17:395–406. doi: 10.1089/mdr.2011.0015. [DOI] [PubMed] [Google Scholar]
  • 359.Frasson I, Cavallaro A, Bergo C, Richter SN, Palu G. Prevalence of aac(6′)-Ib-cr plasmid-mediated and chromosome-encoded fluoroquinolone resistance in Enterobacteriaceae in Italy. Gut Pathog. 2011;3:12. doi: 10.1186/1757-4749-3-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 360.Park KS, Kim MH, Park TS, Nam YS, Lee HJ, Suh JT. Prevalence of the plasmid-mediated quinolone resistance genes, aac(6′)-Ib-cr, qepA, and oqxAB in clinical isolates of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in Korea. Ann Clin Lab Sci. 2012;42:191–197. [PubMed] [Google Scholar]
  • 361.Bartoloni A, Pallecchi L, Riccobono E, Mantella A, Magnelli D, Di Maggio T, Villagran AL, Lara Y, Saavedra C, Strohmeyer M, Bartalesi F, Trigoso C, Rossolini GM. Relentless increase of resistance to fluoroquinolones and expanded-spectrum cephalosporins in Escherichia coli: 20 years of surveillance in resource-limited settings from Latin America. Clin Microbiol Infect. 2013;19:356–361. doi: 10.1111/j.1469-0691.2012.03807.x. [DOI] [PubMed] [Google Scholar]
  • 362.Chen DQ, Yang L, Luo YT, Mao MJ, Lin YP, Wu AW. Prevalence and characterization of quinolone resistance in Laribacter hongkongensis from grass carp and Chinese tiger frog. J Med Microbiol. 2013;62:1559–1564. doi: 10.1099/jmm.0.059451-0. [DOI] [PubMed] [Google Scholar]
  • 363.Liu BT, Wang XM, Liao XP, Sun J, Zhu HQ, Chen XY, Liu YH. Plasmid-mediated quinolone resistance determinants oqxAB and aac(6′)-Ib-cr and extended-spectrum ß-lactamase gene blaCTX-M-24 co-located on the same plasmid in one Escherichia coli strain from China. J Antimicrob Chemother. 2011;66:1638–1639. doi: 10.1093/jac/dkr172. [DOI] [PubMed] [Google Scholar]
  • 364.Yang H, Duan G, Zhu J, Zhang W, Xi Y, Fan Q. Prevalence and characterisation of plasmid-mediated quinolone resistance and mutations in the gyrase and topoisomerase IV genes among Shigella isolates from Henan, China, between 2001 and 2008. Int J Antimicrob Agents. 2013;42:173–177. doi: 10.1016/j.ijantimicag.2013.04.026. [DOI] [PubMed] [Google Scholar]
  • 365.Rocha-Gracia R, Ruiz E, Romero-Romero S, Lozano-Zarain P, Somalo S, Palacios-Hernández JM, Caballero-Torres P, Torres C. Detection of the plasmid-borne quinolone resistance determinant qepA1 in a CTX-M-15-producing Escherichia coli strain from Mexico. J Antimicrob Chemother. 2010;65:169–171. doi: 10.1093/jac/dkp418. [DOI] [PubMed] [Google Scholar]
  • 366.Deng Y, He L, Chen S, Zheng H, Zeng Z, Liu Y, Sun Y, Ma J, Chen Z, Liu JH. F33:A-:B- and F2:A-:B- plasmids mediate dissemination of rmtB-blaCTX-M-9 group genes and rmtB-qepA in Enterobacteriaceae isolates from pets in China. Antimicrob Agents Chemother. 2011;55:4926–4929. doi: 10.1128/AAC.00133-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 367.Tian GB, Rivera JI, Park YS, Johnson LE, Hingwe A, Adams-Haduch JM, Doi Y. Sequence type ST405 Escherichia coli isolate producing QepA1, CTX-M-15, and RmtB from Detroit, Michigan. Antimicrob Agents Chemother. 2011;55:3966–3967. doi: 10.1128/AAC.00652-11. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES