Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Mar 15;91(6):2216–2220. doi: 10.1073/pnas.91.6.2216

PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates.

W M Barnes 1
PMCID: PMC43341  PMID: 8134376

Abstract

A target length limitation to PCR amplification of DNA has been identified and addressed. Concomitantly, the base-pair fidelity, the ability to use PCR products as primers, and the maximum yield of target fragment were increased. These improvements were achieved by the combination of a high level of an exonuclease-free, N-terminal deletion mutant of Taq DNA polymerase, Klentaq1, with a very low level of a thermostable DNA polymerase exhibiting a 3'-exonuclease activity (Pfu, Vent, or Deep Vent). At least 35 kb can be amplified to high yields from 1 ng of lambda DNA template.

Full text

PDF
2218

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes W. M. The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene. 1992 Mar 1;112(1):29–35. doi: 10.1016/0378-1119(92)90299-5. [DOI] [PubMed] [Google Scholar]
  2. Brewer A. C., Marsh P. J., Patient R. K. A simplified method for in vivo footprinting using DMS. Nucleic Acids Res. 1990 Sep 25;18(18):5574–5574. doi: 10.1093/nar/18.18.5574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
  4. Clark J. M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 1988 Oct 25;16(20):9677–9686. doi: 10.1093/nar/16.20.9677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ippen K., Shapiro J. A., Beckwith J. R. Transposition of the lac region to the gal region of the Escherichia coli chromosome: isolation of lambda-lac transducing bacteriophages. J Bacteriol. 1971 Oct;108(1):5–9. doi: 10.1128/jb.108.1.5-9.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jeffreys A. J., Wilson V., Neumann R., Keyte J. Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Res. 1988 Dec 9;16(23):10953–10971. doi: 10.1093/nar/16.23.10953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kainz P., Schmiedlechner A., Strack H. B. In vitro amplification of DNA fragments greater than 10 kb. Anal Biochem. 1992 Apr;202(1):46–49. doi: 10.1016/0003-2697(92)90203-j. [DOI] [PubMed] [Google Scholar]
  8. Krishnan B. R., Kersulyte D., Brikun I., Berg C. M., Berg D. E. Direct and crossover PCR amplification to facilitate Tn5supF-based sequencing of lambda phage clones. Nucleic Acids Res. 1991 Nov 25;19(22):6177–6182. doi: 10.1093/nar/19.22.6177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lawyer F. C., Stoffel S., Saiki R. K., Chang S. Y., Landre P. A., Abramson R. D., Gelfand D. H. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity. PCR Methods Appl. 1993 May;2(4):275–287. doi: 10.1101/gr.2.4.275. [DOI] [PubMed] [Google Scholar]
  10. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr 22;362(6422):709–715. doi: 10.1038/362709a0. [DOI] [PubMed] [Google Scholar]
  11. Lindahl T., Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3610–3618. doi: 10.1021/bi00769a018. [DOI] [PubMed] [Google Scholar]
  12. Lundberg K. S., Shoemaker D. D., Adams M. W., Short J. M., Sorge J. A., Mathur E. J. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene. 1991 Dec 1;108(1):1–6. doi: 10.1016/0378-1119(91)90480-y. [DOI] [PubMed] [Google Scholar]
  13. Maga E. A., Richardson T. Amplification of a 9.0-kb fragment using PCR. Biotechniques. 1991 Aug;11(2):185–186. [PubMed] [Google Scholar]
  14. Ohler L. D., Rose E. A. Optimization of long-distance PCR using a transposon-based model system. PCR Methods Appl. 1992 Aug;2(1):51–59. doi: 10.1101/gr.2.1.51. [DOI] [PubMed] [Google Scholar]
  15. Rychlik W., Spencer W. J., Rhoads R. E. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 1990 Nov 11;18(21):6409–6412. doi: 10.1093/nar/18.21.6409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  17. Shpakovski G. V., Akhrem A. A., Berlin YuA Structural bases of a long-stretched deletion: completing the lambda plac5 DNA primary structure. Nucleic Acids Res. 1988 Nov 11;16(21):10199–10212. doi: 10.1093/nar/16.21.10199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tailor R., Tippett J., Gibb G., Pells S., Pike D., Jordan L., Ely S. Identification and characterization of a novel Bacillus thuringiensis delta-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol Microbiol. 1992 May;6(9):1211–1217. doi: 10.1111/j.1365-2958.1992.tb01560.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES