Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Mar 29;91(7):2572–2576. doi: 10.1073/pnas.91.7.2572

Schwann cells transplanted in the lateral ventricles prevent the functional and anatomical effects of monocular deprivation in the rat.

T Pizzorusso 1, M Fagiolini 1, M Fabris 1, G Ferrari 1, L Maffei 1
PMCID: PMC43411  PMID: 8146156

Abstract

We investigated whether the transplant of Schwann cells prevents the physiological and morphological effects of monocular deprivation in the rat. On the day of eye opening in rats (postnatal day 14), we transplanted Schwann cells in the lateral ventricles and sutured the eyelids of one eye. After 20-30 days, at the end of the critical period for the visual system development, we analyzed the functional properties of visual cortical neurons. Spontaneous discharge, orientation selectivity, and receptive field size of visual cortical neurons in transplanted animals were in the normal range. Transplantation of Schwann cells prevented the detrimental effects of monocular deprivation on ocular dominance and binocularity of cortical neurons. Visual acuity of the deprived eye estimated by visually evoked potentials was also normal. Schwann cells derived from adult animals were as effective as those derived from neonates. The effects of Schwann cells on monocular deprivation were dependent upon the number of cells present in the transplant so that 10(6) Schwann cells were sufficient to prevent the effect of monocular deprivation, whereas 10(5) and 3.3 x 10(5) Schwann cells were ineffective, and 6.3 x 10(5) cells gave variable results. Shrinkage of the deprived lateral geniculate neurons was prevented by a transplant of 10(6) cells. In rats transplanted with hybridoma cells producing an antibody that functionally blocks nerve growth factor (NGF), we found that the effect of cotransplanted Schwann cells on monocular deprivation was partly counteracted. We conclude that transplantation of Schwann cells prevents both functional and anatomical effects of monocular deprivation, presumably acting through the production of NGF. We propose that transplants of Schwann cells could be a promising technique for clinical applications.

Full text

PDF
2575

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acheson A., Barker P. A., Alderson R. F., Miller F. D., Murphy R. A. Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron. 1991 Aug;7(2):265–275. doi: 10.1016/0896-6273(91)90265-2. [DOI] [PubMed] [Google Scholar]
  2. Altar C. A., Boylan C. B., Jackson C., Hershenson S., Miller J., Wiegand S. J., Lindsay R. M., Hyman C. Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11347–11351. doi: 10.1073/pnas.89.23.11347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell F. W., Maffei L. Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J Physiol. 1970 May;207(3):635–652. doi: 10.1113/jphysiol.1970.sp009085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carmignoto G., Canella R., Candeo P., Comelli M. C., Maffei L. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex. J Physiol. 1993 May;464:343–360. doi: 10.1113/jphysiol.1993.sp019638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daniloff J. K. A novel assay for the in vivo study of Schwann cells. Exp Neurol. 1991 Oct;114(1):140–143. doi: 10.1016/0014-4886(91)90092-q. [DOI] [PubMed] [Google Scholar]
  6. Domenici L., Berardi N., Carmignoto G., Vantini G., Maffei L. Nerve growth factor prevents the amblyopic effects of monocular deprivation. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8811–8815. doi: 10.1073/pnas.88.19.8811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Domenici L., Cellerino A., Maffei L. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). II. Lateral geniculate nucleus. Proc Biol Sci. 1993 Jan 22;251(1330):25–31. doi: 10.1098/rspb.1993.0004. [DOI] [PubMed] [Google Scholar]
  8. Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. doi: 10.1128/mcb.5.12.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferrari G., Fabris M., Polato P., Skaper S. D., Fiori M. G., Yan Q. Rat NGF receptor is recognized by the tumor-associated antigen monoclonal antibody 217c. Exp Neurol. 1991 May;112(2):183–194. doi: 10.1016/0014-4886(91)90068-n. [DOI] [PubMed] [Google Scholar]
  10. Fischer W., Björklund A., Chen K., Gage F. H. NGF improves spatial memory in aged rodents as a function of age. J Neurosci. 1991 Jul;11(7):1889–1906. doi: 10.1523/JNEUROSCI.11-07-01889.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Friedman B., Scherer S. S., Rudge J. S., Helgren M., Morrisey D., McClain J., Wang D. Y., Wiegand S. J., Furth M. E., Lindsay R. M. Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron. 1992 Aug;9(2):295–305. doi: 10.1016/0896-6273(92)90168-d. [DOI] [PubMed] [Google Scholar]
  12. Giffin F., Mitchell D. E. The rate of recovery of vision after early monocular deprivation in kittens. J Physiol. 1978 Jan;274:511–537. doi: 10.1113/jphysiol.1978.sp012164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guillery R. W., Stelzner D. J. The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat. J Comp Neurol. 1970 Aug;139(4):413–421. doi: 10.1002/cne.901390403. [DOI] [PubMed] [Google Scholar]
  14. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanker J. S., Yates P. E., Metz C. B., Rustioni A. A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J. 1977 Nov;9(6):789–792. doi: 10.1007/BF01003075. [DOI] [PubMed] [Google Scholar]
  16. Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci. 1986 Aug;6(8):2155–2162. doi: 10.1523/JNEUROSCI.06-08-02155.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kawaja M. D., Rosenberg M. B., Yoshida K., Gage F. H. Somatic gene transfer of nerve growth factor promotes the survival of axotomized septal neurons and the regeneration of their axons in adult rats. J Neurosci. 1992 Jul;12(7):2849–2864. doi: 10.1523/JNEUROSCI.12-07-02849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Knüsel B., Beck K. D., Winslow J. W., Rosenthal A., Burton L. E., Widmer H. R., Nikolics K., Hefti F. Brain-derived neurotrophic factor administration protects basal forebrain cholinergic but not nigral dopaminergic neurons from degenerative changes after axotomy in the adult rat brain. J Neurosci. 1992 Nov;12(11):4391–4402. doi: 10.1523/JNEUROSCI.12-11-04391.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knüsel B., Beck K. D., Winslow J. W., Rosenthal A., Burton L. E., Widmer H. R., Nikolics K., Hefti F. Brain-derived neurotrophic factor administration protects basal forebrain cholinergic but not nigral dopaminergic neurons from degenerative changes after axotomy in the adult rat brain. J Neurosci. 1992 Nov;12(11):4391–4402. doi: 10.1523/JNEUROSCI.12-11-04391.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kromer L. F., Cornbrooks C. J. Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6330–6334. doi: 10.1073/pnas.82.18.6330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lapchak P. A., Beck K. D., Araujo D. M., Irwin I., Langston J. W., Hefti F. Chronic intranigral administration of brain-derived neurotrophic factor produces striatal dopaminergic hypofunction in unlesioned adult rats and fails to attenuate the decline of striatal dopaminergic function following medial forebrain bundle transection. Neuroscience. 1993 Apr;53(3):639–650. doi: 10.1016/0306-4522(93)90612-j. [DOI] [PubMed] [Google Scholar]
  22. Maffei L., Berardi N., Domenici L., Parisi V., Pizzorusso T. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J Neurosci. 1992 Dec;12(12):4651–4662. doi: 10.1523/JNEUROSCI.12-12-04651.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maffei L., Carmignoto G., Perry V. H., Candeo P., Ferrari G. Schwann cells promote the survival of rat retinal ganglion cells after optic nerve section. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1855–1859. doi: 10.1073/pnas.87.5.1855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matsuoka I., Meyer M., Thoenen H. Cell-type-specific regulation of nerve growth factor (NGF) synthesis in non-neuronal cells: comparison of Schwann cells with other cell types. J Neurosci. 1991 Oct;11(10):3165–3177. doi: 10.1523/JNEUROSCI.11-10-03165.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Messersmith D. J., Fabrazzo M., Mocchetti I., Kromer L. F. Effects of sciatic nerve transplants after fimbria-fornix lesion: examination of the role of nerve growth factor. Brain Res. 1991 Aug 23;557(1-2):293–297. doi: 10.1016/0006-8993(91)90147-n. [DOI] [PubMed] [Google Scholar]
  26. Phelps C. H., Gage F. H., Growdon J. H., Hefti F., Harbaugh R., Johnston M. V., Khachaturian Z. S., Mobley W. C., Price D. L., Raskind M. Potential use of nerve growth factor to treat Alzheimer's disease. Neurobiol Aging. 1989 Mar-Apr;10(2):205–207. doi: 10.1016/0197-4580(89)90032-8. [DOI] [PubMed] [Google Scholar]
  27. Reese B. E., Jeffery G. Crossed and uncrossed visual topography in dorsal lateral geniculate nucleus of the pigmented rat. J Neurophysiol. 1983 Apr;49(4):877–885. doi: 10.1152/jn.1983.49.4.877. [DOI] [PubMed] [Google Scholar]
  28. Schnell L., Schwab M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature. 1990 Jan 18;343(6255):269–272. doi: 10.1038/343269a0. [DOI] [PubMed] [Google Scholar]
  29. Sloan D. J., Wood M. J., Charlton H. M. The immune response to intracerebral neural grafts. Trends Neurosci. 1991 Aug;14(8):341–346. doi: 10.1016/0166-2236(91)90159-r. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES