Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Apr;71(4):892–899. doi: 10.1172/JCI110843

Ecto-5′-Nucleotidase Activity in Human T Cell Subsets. DECREASED NUMBERS OF ECTO-5′-NUCLEOTIDASE POSITIVE CELLS FROM BOTH OKT4+ AND OKT8+ CELLS IN PATIENTS WITH HYPOGAMMAGLOBULINEMIA

Linda F Thompson 1,2,3,4, Andrew Saxon 1,2,3,4, Richard D O'Connor 1,2,3,4, Robert I Fox 1,2,3,4
PMCID: PMC436946  PMID: 6300192

Abstract

T lymphocytes from control subjects were separated into subsets using monoclonal antibodies of the OKT series and complement lysis and analyzed for ecto-5′-nucleotidase activity both by quantitative radiochemical assay and a histochemical stain. T cells from 15 control subjects contained 54±4% OKT4+ (helper/inducer) cells and 32±3% OKT8+ (cytotoxic/suppressor) cells. Total T cell ecto-5′-nucleotidase activity was 10.9±2.1 nmol/h per 106 cells with 25±7% positive by histochemical stain. Ecto-5′-nucleotidase activity in OKT4-enriched populations was 5.43±1.8 nmol/h per 106 cells with 14±2% positive by histochemical stain; that in OKT8-enriched populations was 17.1±5.9 nmol/h per 106 cells with 35±8% positive by histochemical stain.

Two of four patients with congenital agammaglobulinemia and four of seven patients with common variable immunodeficiency had decreased proportions of OKT4+ T cells with corresponding increases in the proportions of OKT8+ T cells (OKT4/OKT8 = 0.60 to 1.0 as compared with 1.7±0.2 for control subjects). All four patients with congenital agammaglobulinemia, and three of seven patients with common variable immunodeficiency also had low T cell ecto-5′-nucleotidase activity (<5.5 nmol/h per 106 cells). Ecto-5′-nucleotidase activity in OKT4- enriched populations isolated from four patients with low total T cell activity was 2.85±0.90 nmol/h per 106 cells with 10±4% positive by histochemical stain; that in OKT8-enriched populations was 6.82±1.7 nmol/h per 106 cells with 7.5±3% positive by histochemical stain. Thus, the number of ecto-5′-nucleotidase positive cells is decreased, especially in the OKT8+ subpopulation, and the low total T cell ecto-5′-nucleotidase activity seen in these patients is due to fewer positive cells rather than to substantially less activity per cell.

Our data indicate that ecto-5′-nucleotidase activity defines two subpopulations of T lymphocytes (ecto-5′-nucleotidase positive and negative), the proportions of which are markedly altered in many patients with hypogammaglobulinemia. In preliminary studies with seven patients, increased numbers of ecto-5′-nucleotidase negative T cells appeared to correlate with increased suppressor T cell activity toward in vitro immunoglobulin synthesis. Therefore, ecto-5′-nucleotidase may be a useful cell surface marker in the study of imbalances of regulatory T cell subsets in patients with antibody synthesis disorders.

Full text

PDF
897

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boss G. R., Thompson L. F., O'Connor R. D., Ziering R. W., Seegmiller J. E. Ecto-5'-nucleotidase deficiency: association with adenosine deaminase deficiency and nonassociation with deoxyadenosine toxicity. Clin Immunol Immunopathol. 1981 Apr;19(1):1–7. doi: 10.1016/0090-1229(81)90042-8. [DOI] [PubMed] [Google Scholar]
  2. Boss G. R., Thompson L. F., Spiegelberg H. L., Pichler W. J., Seegmiller J. E. Age-dependency of lymphocyte ecto-5'-nucleotidase activity. J Immunol. 1980 Aug;125(2):679–682. [PubMed] [Google Scholar]
  3. Boss G. R., Thompson L. F., Spiegelberg H. L., Waldmann T. A., O'Connor R. D., Hamburger R. N., Seegmiller J. E. Lymphocyte ecto-5'-nucleotidase activity as a marker of B-cell maturation. Trans Assoc Am Physicians. 1979;92:309–315. [PubMed] [Google Scholar]
  4. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  5. Carson D. A., Goldblum R., Seegmiller J. E. Quantitative immunoassay of adenosine deaminase in combined immunodeficiency disease. J Immunol. 1977 Jan;118(1):270–273. [PubMed] [Google Scholar]
  6. Carson D. A., Kaye J., Seegmiller J. E. Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency: possible role of nucleoside kinase(s). Proc Natl Acad Sci U S A. 1977 Dec;74(12):5677–5681. doi: 10.1073/pnas.74.12.5677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen A., Gudas L. J., Ammann A. J., Staal G. E., Martin D. W., Jr Deoxyguanosine triphosphate as a possible toxic metabolite in the immunodeficiency associated with purine nucleoside phosphorylase deficiency. J Clin Invest. 1978 May;61(5):1405–1409. doi: 10.1172/JCI109058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen A., Hirschhorn R., Horowitz S. D., Rubinstein A., Polmar S. H., Hong R., Martin D. W., Jr Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency. Proc Natl Acad Sci U S A. 1978 Jan;75(1):472–476. doi: 10.1073/pnas.75.1.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen A., Lee J. W., Dosch H. M., Gelfand E. W. The expression of deoxyguanosine toxicity in T lymphocytes at different stages of maturation. J Immunol. 1980 Oct;125(4):1578–1582. [PubMed] [Google Scholar]
  10. Coleman M. S., Donofrio J., Hutton J. J., Hahn L., Daoud A., Lampkin B., Dyminski J. Identification and quantitation of adenine deoxynucleotides in erythrocytes of a patient with adenosine deaminase deficiency and severe combined immunodeficiency. J Biol Chem. 1978 Mar 10;253(5):1619–1626. [PubMed] [Google Scholar]
  11. Durandy A., Fischer A., Griscelli C. Dysfunctions of pokeweed mitogen-stimulated T and B lymphocyte responses induced by gammaglobulin therapy. J Clin Invest. 1981 Mar;67(3):867–877. doi: 10.1172/JCI110104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Edwards N. L., Cassidy J. T., Fox I. H. Lymphocyte 5'-nucleotidase deficiency in hypogammaglobulinemia: clinical characteristics. Clin Immunol Immunopathol. 1980 Sep;17(1):76–88. doi: 10.1016/0090-1229(80)90075-6. [DOI] [PubMed] [Google Scholar]
  13. Edwards N. L., Gelfand E. W., Burk L., Dosch H. M., Fox I. H. Distribution of 5'-nucleotidase in human lymphoid tissues. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3474–3476. doi: 10.1073/pnas.76.7.3474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edwards N. L., Magilavy D. B., Cassidy J. T., Fox I. H. Lymphocyte ecto-5'-nucleotidase deficiency in agammaglobulinemia. Science. 1978 Aug 18;201(4356):628–630. doi: 10.1126/science.27864. [DOI] [PubMed] [Google Scholar]
  15. Fox R. I., Thompson L. F., Huddlestone J. R. T gamma cells express T lymphocyte-associated antigens. J Immunol. 1981 May;126(5):2062–2063. [PubMed] [Google Scholar]
  16. Giblett E. R., Ammann A. J., Wara D. W., Sandman R., Diamond L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975 May 3;1(7914):1010–1013. doi: 10.1016/s0140-6736(75)91950-9. [DOI] [PubMed] [Google Scholar]
  17. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
  18. Gonzalez-Molina A., Spiegelberg H. L. A subpopulation of normal human peripheral B lymphcytes that bind IgE. J Clin Invest. 1977 Apr;59(4):616–624. doi: 10.1172/JCI108679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gudas L. J., Zannis V. I., Clift S. M., Ammann A. J., Staal G. E., Martin D. W., Jr Characterization of mutant subunits of human purine nucleoside phosphorylase. J Biol Chem. 1978 Dec 25;253(24):8916–8924. [PubMed] [Google Scholar]
  20. Hershfield M. S., Kredich N. M., Ownby D. R., Ownby H., Buckley R. In vivo inactivation of erythrocyte S-adenosylhomocysteine hydrolase by 2'-deoxyadenosine in adenosine deaminase-deficient patients. J Clin Invest. 1979 Apr;63(4):807–811. doi: 10.1172/JCI109367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hirschhorn R., Martiniuk F., Rosen F. S. Adenosine deaminase activity in normal tissues and tissues from a child with severe combined immunodeficiency and adenosine deaminase deficiency. Clin Immunol Immunopathol. 1978 Mar;9(3):287–292. doi: 10.1016/0090-1229(78)90100-9. [DOI] [PubMed] [Google Scholar]
  22. Izui S., Eisenberg R. A., Dixon F. J. Subclass-restricted IgG polyclonal antibody production in mice injected with lipid A-rich lipopolysaccharides. J Exp Med. 1981 Feb 1;153(2):324–338. doi: 10.1084/jem.153.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Janossy G., Tidman N., Papageorgiou E. S., Kung P. C., Goldstein G. Distribution of t lymphocyte subsets in the human bone marrow and thymus: an analysis with monoclonal antibodies. J Immunol. 1981 Apr;126(4):1608–1613. [PubMed] [Google Scholar]
  24. Johnson S. M., North M. E., Asherson G. L., Allsop J., Watts R. W., Webster A. D. Lymphocyte purine 5'-nucleotidase edficiency in primary hypogammaglobulinaemia. Lancet. 1977 Jan 22;1(8004):168–170. doi: 10.1016/s0140-6736(77)91765-2. [DOI] [PubMed] [Google Scholar]
  25. Kamoun M., Martin P. J., Hansen J. A., Brown M. A., Siadak A. W., Nowinski R. C. Identification of a human T lymphocyte surface protein associated with the E-rosette receptor. J Exp Med. 1981 Jan 1;153(1):207–212. doi: 10.1084/jem.153.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kay H. D., Horwitz D. A. Evidence by reactivity with hybridoma antibodies for a probable myeloid origin of peripheral blood cells active in natural cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J Clin Invest. 1980 Oct;66(4):847–851. doi: 10.1172/JCI109923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Loken M. R., Herzenber L. A. Analysis of cell populations with a fluorescence-activated cell sorter. Ann N Y Acad Sci. 1975 Jun 30;254:163–171. doi: 10.1111/j.1749-6632.1975.tb29166.x. [DOI] [PubMed] [Google Scholar]
  28. Matamoros N., Horwitz D. A., Newton C., Asherson G. L., Webster A. D. Histochemical studies for 5'-nucleotidase and alpha-naphthyl (non-specific) esterase in lymphocytes from patients with primary immunoglobulin deficiencies. Clin Exp Immunol. 1979 Apr;36(1):102–106. [PMC free article] [PubMed] [Google Scholar]
  29. Mitchell B. S., Mejias E., Daddona P. E., Kelley W. N. Purinogenic immunodeficiency diseases: selective toxicity of deoxyribonucleosides for T cells. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5011–5014. doi: 10.1073/pnas.75.10.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Moretta L., Ferrarini M., Mingari M. C., Moretta A., Webb S. R. Subpopulations of human T cells identified by receptors for immunoglobulins and mitogen responsiveness. J Immunol. 1976 Dec;117(6):2171–2174. [PubMed] [Google Scholar]
  31. Moretta L., Mingari M. C., Sekaly P. R., Moretta A., Chapuis B., Cerottini J. C. Surface markers of cloned human T cells with various cytolytic activities. J Exp Med. 1981 Aug 1;154(2):569–574. doi: 10.1084/jem.154.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Moretta L., Webb S. R., Grossi C. E., Lydyard P. M., Cooper M. D. Functional analysis of two human T-cell subpopulations: help and suppression of B-cell responses by T cells bearing receptors for IgM or IgG. J Exp Med. 1977 Jul 1;146(1):184–200. doi: 10.1084/jem.146.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pichler W. J., Broder S. In vitro functions of human T cells expressing Fc-IgG or Fc-IgM receptors. Immunol Rev. 1981;56:163–197. doi: 10.1111/j.1600-065x.1981.tb01051.x. [DOI] [PubMed] [Google Scholar]
  34. Recker D. P., Edwards N. L., Fox I. H. Histochemical evaluation of lymphocytes in hypogammaglobulinemia. Decreased number of 5'-nucleotidase-positive cells. J Lab Clin Med. 1980 Feb;95(2):175–179. [PubMed] [Google Scholar]
  35. Reinherz E. L., Cooper M. D., Schlossman S. F., Rosen F. S. Abnormalities of T cell maturation and regulation in human beings with immunodeficiency disorders. J Clin Invest. 1981 Sep;68(3):699–705. doi: 10.1172/JCI110305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reinherz E. L., Geha R., Wohl M. E., Morimoto C., Rosen F. S., Schlossman S. F. Immunodeficiency associated with loss of T4+ inducer T-cell function. N Engl J Med. 1981 Apr 2;304(14):811–816. doi: 10.1056/NEJM198104023041403. [DOI] [PubMed] [Google Scholar]
  37. Reinherz E. L., Moretta L., Roper M., Breard J. M., Mingari M. C., Cooper M. D., Schlossman S. F. Human T lymphocyte subpopulations defined by Fc receptors and monoclonal antibodies. A comparison. J Exp Med. 1980 Apr 1;151(4):969–974. doi: 10.1084/jem.151.4.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rowe M., de Gast C. G., Platts-Mills T. A., Asherson G. L., Webster A. D., Johnson S. M. 5'-nucleotidase of B and T lymphocytes isolated from human peripheral blood. Clin Exp Immunol. 1979 Apr;36(1):97–101. [PMC free article] [PubMed] [Google Scholar]
  39. Silber R., Conklyn M., Grusky G., Zucker-Franklin D. Human lymphocytes: 5'-nucleotidase-positive and -negative subpopulations. J Clin Invest. 1975 Nov;56(5):1324–1327. doi: 10.1172/JCI108209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Simmonds H. A., Sahota A., Potter C. F., Cameron J. S. Purine metabolism and immunodeficiency: urinary purine excretion as a diagnostic screening test in adenosine deaminase and purine nucleoside phosphorylase deficiency. Clin Sci Mol Med. 1978 May;54(5):579–584. doi: 10.1042/cs0540579. [DOI] [PubMed] [Google Scholar]
  41. Spiegelberg H. L., Dainer P. M. Fc receptors for IgG, IgM and IgE on human leukaemic lymphocytes. Clin Exp Immunol. 1979 Feb;35(2):286–295. [PMC free article] [PubMed] [Google Scholar]
  42. Thomas Y., Rogozinski L., Irigoyen O. H., Shen H. H., Talle M. A., Goldstein G., Chess L. Functional analysis of human T cell subsets defined by monoclonal antibodies. V. Suppressor cells within the activated OKT4+ population belong to a distinct subset. J Immunol. 1982 Mar;128(3):1386–1390. [PubMed] [Google Scholar]
  43. Thomas Y., Sosman J., Irigoyen O., Friedman S. M., Kung P. C., Goldstein G., Chess L. Functional analysis of human T cell subsets defined by monoclonal antibodies. I. Collaborative T-T interactions in the immunoregulation of B cell differentiation. J Immunol. 1980 Dec;125(6):2402–2408. [PubMed] [Google Scholar]
  44. Thompson L. F., Boss G. R., Spiegelberg H. L., Bianchino A., Seegmiller J. E. Ecto-5'-nucleotidase activity in lymphoblastoid cell lines derived from heterozygotes for congenital X-linked agammaglobulinemia. J Immunol. 1980 Jul;125(1):190–193. [PubMed] [Google Scholar]
  45. Thompson L. F., Boss G. R., Spiegelberg H. L., Jansen I. V., O'Connor R. D., Waldmann T. A., Hamburger R. N., Seegmiller J. E. Ecto-5'-nucleotidase activity in T and B lymphocytes from normal subjects and patients with congenital X-linked agammaglobulinemia. J Immunol. 1979 Dec;123(6):2475–2478. [PubMed] [Google Scholar]
  46. Ullman B., Gudas L. J., Cohen A., Martin D. W., Jr Deoxyadenosine metabolism and cytotoxicity in cultured mouse T lymphoma cells: a model for immunodeficiency disease. Cell. 1978 Jun;14(2):365–375. doi: 10.1016/0092-8674(78)90122-8. [DOI] [PubMed] [Google Scholar]
  47. Van der Weyden M. B., Buckley R. H., Kelley W. N. Molecular form of adenosine deaminase in severe combined immunodeficiency. Biochem Biophys Res Commun. 1974 Apr 8;57(3):590–595. doi: 10.1016/0006-291x(74)90587-7. [DOI] [PubMed] [Google Scholar]
  48. Waldmann T. A., Broder S. Suppressor cells in the regulation of the immune response. Prog Clin Immunol. 1977;3:155–199. [PubMed] [Google Scholar]
  49. Webster A. D., Rowe M., Johnson S. M., Asherson G. L., Harkness A. Ecto 5'-nucleotidase deficiency in primary hypogammaglobulinaemia. Ciba Found Symp. 1978;(68):135–151. doi: 10.1002/9780470720516.ch9. [DOI] [PubMed] [Google Scholar]
  50. Weiner M. S., Bianco C., Nussenzweig V. Enhanced binding of neuraminidase-treated sheep erythrocytes to human T lymphocytes. Blood. 1973 Dec;42(6):939–946. [PubMed] [Google Scholar]
  51. Yachie A., Miyawaki T., Nagaoki T., Yokoi T., Mukai M., Uwadana N., Taniguchi N. Regulation of B cell differentiation by T cell subsets defined with monoclonal OKT4 and OKT8 antibodies in human cord blood. J Immunol. 1981 Oct;127(4):1314–1317. [PubMed] [Google Scholar]
  52. van Heukelom L. H., Staal G. E., Stoop J. W., Zegers B. J. An abnormal form of purine nucleoside phosphorylase in a family with a child with severe defective T-cell-and normal B-cell immunity. Clin Chim Acta. 1976 Oct 1;72(1):117–124. doi: 10.1016/0009-8981(76)90042-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES