Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jun 21;91(13):5942–5946. doi: 10.1073/pnas.91.13.5942

Decomposition of a mixture of signals in a model of the olfactory bulb.

O Hendin 1, D Horn 1, J J Hopfield 1
PMCID: PMC44113  PMID: 8016093

Abstract

We describe models for the olfactory bulb which perform separation and decomposition of mixed odor inputs from different sources. The odors are unknown to the system; hence this is an analog and extension of the engineering problem of blind separation of signals. The separation process makes use of the different temporal fluctuations of the input odors which occur under natural conditions. We discuss two possibilities, one relying on a specific architecture connecting modules with the same sensory inputs and the other assuming that the modules (e.g., glomeruli) have different receptive fields in odor space. We compare the implications of these models for the testing of mixed odors from a single source.

Full text

PDF
5946

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buck L., Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991 Apr 5;65(1):175–187. doi: 10.1016/0092-8674(91)90418-x. [DOI] [PubMed] [Google Scholar]
  2. Hopfield J. J. Olfactory computation and object perception. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6462–6466. doi: 10.1073/pnas.88.15.6462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kanter E. D., Haberly L. B. NMDA-dependent induction of long-term potentiation in afferent and association fiber systems of piriform cortex in vitro. Brain Res. 1990 Aug 13;525(1):175–179. doi: 10.1016/0006-8993(90)91337-g. [DOI] [PubMed] [Google Scholar]
  4. Laing D. G., Francis G. W. The capacity of humans to identify odors in mixtures. Physiol Behav. 1989 Nov;46(5):809–814. doi: 10.1016/0031-9384(89)90041-3. [DOI] [PubMed] [Google Scholar]
  5. Laing D. G., Panhuber H., Willcox M. E., Pittman E. A. Quality and intensity of binary odor mixtures. Physiol Behav. 1984 Aug;33(2):309–319. doi: 10.1016/0031-9384(84)90118-5. [DOI] [PubMed] [Google Scholar]
  6. Ressler K. J., Sullivan S. L., Buck L. B. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell. 1993 May 7;73(3):597–609. doi: 10.1016/0092-8674(93)90145-g. [DOI] [PubMed] [Google Scholar]
  7. Shepherd G. M. Neurobiology. Modules for molecules. Nature. 1992 Aug 6;358(6386):457–458. doi: 10.1038/358457a0. [DOI] [PubMed] [Google Scholar]
  8. Treisman A. M., Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980 Jan;12(1):97–136. doi: 10.1016/0010-0285(80)90005-5. [DOI] [PubMed] [Google Scholar]
  9. von der Malsburg C., Schneider W. A neural cocktail-party processor. Biol Cybern. 1986;54(1):29–40. doi: 10.1007/BF00337113. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES