Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jul 19;91(15):6958–6962. doi: 10.1073/pnas.91.15.6958

Relief of opsin desensitization and prolonged excitation of rod photoreceptors by 9-desmethylretinal.

D W Corson 1, M C Cornwall 1, E F MacNichol 1, S Tsang 1, F Derguini 1, R K Crouch 1, K Nakanishi 1
PMCID: PMC44317  PMID: 8041729

Abstract

The 9-methyl group of 11-cis-retinal plays a crucial role in photoexcitation of the visual pigment rhodopsin. A hydrogen-substituted analogue, 11-cis-9-desmethylretinal, combines with opsin to form a pigment that produces abnormal photoproducts and diminished activation of the GTP-binding protein transducin in vitro. We have measured the formation of this analogue pigment in bleached salamander rods and determined the size and shape of its quantal response. In addition, we have characterized the influence of opsin and newly formed analogue pigment on the quantal response to native porphyropsin. We find that, as 11-cis-9-desmethylretinal combines with opsin in bleached rods, the amplitude of the quantal response from residual native pigment is elevated by approximately 7.5-fold to 0.15 +/- 0.09 pA, a value close to the amplitude of the quantal response before bleach (0.31 +/- 0.10 pA). When activated by light, the new analogue pigment produces a quantal response that is approximately 30-fold smaller and decays approximately 5 times more slowly than that of native pigment in unbleached cells. We conclude that the 9-methyl group of retinal is not critical for conversion of opsin to its nondesensitizing state but that it is critical for the normal processes of activation and deactivation of metarhodopsin that give rise to the quantal response.

Full text

PDF
6961

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader C. R., Macleish P. R., Schwartz E. A. A voltage-clamp study of the light response in solitary rods of the tiger salamander. J Physiol. 1979 Nov;296:1–26. doi: 10.1113/jphysiol.1979.sp012988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baylor D. A., Lamb T. D., Yau K. W. Responses of retinal rods to single photons. J Physiol. 1979 Mar;288:613–634. [PMC free article] [PubMed] [Google Scholar]
  3. Baylor D. A., Lamb T. D., Yau K. W. The membrane current of single rod outer segments. J Physiol. 1979 Mar;288:589–611. [PMC free article] [PubMed] [Google Scholar]
  4. Baylor D. A., Nunn B. J. Electrical properties of the light-sensitive conductance of rods of the salamander Ambystoma tigrinum. J Physiol. 1986 Feb;371:115–145. doi: 10.1113/jphysiol.1986.sp015964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett N., Michel-Villaz M., Kühn H. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved. Eur J Biochem. 1982 Sep;127(1):97–103. doi: 10.1111/j.1432-1033.1982.tb06842.x. [DOI] [PubMed] [Google Scholar]
  6. Brin K. P., Ripps H. Rhodopsin photoproducts and rod sensitivity in the skate retina. J Gen Physiol. 1977 Jan;69(1):97–120. doi: 10.1085/jgp.69.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bäckström A. C., Hemilä S. O. Dark-adaptation in frog rods: changes in the stimulus-response function. J Physiol. 1979 Feb;287:107–125. doi: 10.1113/jphysiol.1979.sp012649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Catt M., Ernst W., Kemp C. M. The links between rhodopsin bleaching and visual adaptation. Biochem Soc Trans. 1982 Oct;10(5):343–345. doi: 10.1042/bst0100343. [DOI] [PubMed] [Google Scholar]
  9. Cornwall M. C., Fein A., MacNichol E. F., Jr Cellular mechanisms that underlie bleaching and background adaptation. J Gen Physiol. 1990 Aug;96(2):345–372. doi: 10.1085/jgp.96.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Corson D. W., Cornwall M. C., MacNichol E. F., Jin J., Johnson R., Derguini F., Crouch R. K., Nakanishi K. Sensitization of bleached rod photoreceptors by 11-cis-locked analogues of retinal. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6823–6827. doi: 10.1073/pnas.87.17.6823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dawis S. M. A molecular basis for Weber's law. Vis Neurosci. 1991 Oct;7(4):285–320. doi: 10.1017/s0952523800004806. [DOI] [PubMed] [Google Scholar]
  12. Franke R. R., König B., Sakmar T. P., Khorana H. G., Hofmann K. P. Rhodopsin mutants that bind but fail to activate transducin. Science. 1990 Oct 5;250(4977):123–125. doi: 10.1126/science.2218504. [DOI] [PubMed] [Google Scholar]
  13. Ganter U. M., Schmid E. D., Perez-Sala D., Rando R. R., Siebert F. Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation. Biochemistry. 1989 Jul 11;28(14):5954–5962. doi: 10.1021/bi00440a036. [DOI] [PubMed] [Google Scholar]
  14. Hárosi F. I. Absorption spectra and linear dichroism of some amphibian photoreceptors. J Gen Physiol. 1975 Sep;66(3):357–382. doi: 10.1085/jgp.66.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jin J., Crouch R. K., Corson D. W., Katz B. M., MacNichol E. F., Cornwall M. C. Noncovalent occupancy of the retinal-binding pocket of opsin diminishes bleaching adaptation of retinal cones. Neuron. 1993 Sep;11(3):513–522. doi: 10.1016/0896-6273(93)90155-k. [DOI] [PubMed] [Google Scholar]
  16. Kahlert M., Pepperberg D. R., Hofmann K. P. Effect of bleached rhodopsin on signal amplification in rod visual receptors. Nature. 1990 Jun 7;345(6275):537–539. doi: 10.1038/345537a0. [DOI] [PubMed] [Google Scholar]
  17. Katz B., Miledi R. The statistical nature of the acetycholine potential and its molecular components. J Physiol. 1972 Aug;224(3):665–699. doi: 10.1113/jphysiol.1972.sp009918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Khorana H. G. Rhodopsin, photoreceptor of the rod cell. An emerging pattern for structure and function. J Biol Chem. 1992 Jan 5;267(1):1–4. [PubMed] [Google Scholar]
  19. Kibelbek J., Mitchell D. C., Beach J. M., Litman B. J. Functional equivalence of metarhodopsin II and the Gt-activating form of photolyzed bovine rhodopsin. Biochemistry. 1991 Jul 9;30(27):6761–6768. doi: 10.1021/bi00241a019. [DOI] [PubMed] [Google Scholar]
  20. Kropf A., Whittenberger B. P., Goff S. P., Waggoner A. S. The spectral properties of some visual pigment analogs. Exp Eye Res. 1973 Dec 24;17(6):591–606. doi: 10.1016/0014-4835(73)90088-2. [DOI] [PubMed] [Google Scholar]
  21. Lamb T. D., Simon E. J. Analysis of electrical noise in turtle cones. J Physiol. 1977 Nov;272(2):435–468. doi: 10.1113/jphysiol.1977.sp012053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Palczewski K., Buczyłko J., Kaplan M. W., Polans A. S., Crabb J. W. Mechanism of rhodopsin kinase activation. J Biol Chem. 1991 Jul 15;266(20):12949–12955. [PubMed] [Google Scholar]
  23. Palczewski K., Rispoli G., Detwiler P. B. The influence of arrestin (48K protein) and rhodopsin kinase on visual transduction. Neuron. 1992 Jan;8(1):117–126. doi: 10.1016/0896-6273(92)90113-r. [DOI] [PubMed] [Google Scholar]
  24. Pepperberg D. R., Brown P. K., Lurie M., Dowling J. E. Visual pigment and photoreceptor sensitivity in the isolated skate retina. J Gen Physiol. 1978 Apr;71(4):369–396. doi: 10.1085/jgp.71.4.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perlman J. I., Nodes B. R., Pepperberg D. R. Utilization of retinoids in the bullfrog retina. J Gen Physiol. 1982 Dec;80(6):885–913. doi: 10.1085/jgp.80.6.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ripps H., Pepperberg D. R. Photoreceptor processes in visual adaptation. Neurosci Res Suppl. 1987;6:S87–105. doi: 10.1016/0921-8696(87)90010-7. [DOI] [PubMed] [Google Scholar]
  27. Sigworth F. J. The variance of sodium current fluctuations at the node of Ranvier. J Physiol. 1980 Oct;307:97–129. doi: 10.1113/jphysiol.1980.sp013426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stryer L. Visual excitation and recovery. J Biol Chem. 1991 Jun 15;266(17):10711–10714. [PubMed] [Google Scholar]
  29. Uhl R., Ryba N. J. Transducin activation and deactivation in rod systems of different structural integrity. Attempts at a focussed view through scattered light. Biochim Biophys Acta. 1990 Aug 13;1054(1):56–68. doi: 10.1016/0167-4889(90)90205-r. [DOI] [PubMed] [Google Scholar]
  30. Wilden U., Hall S. W., Kühn H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1174–1178. doi: 10.1073/pnas.83.5.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van den Tempel P. J., Huisman H. O. Vitamin A analogues. V. Synthesis of 9-, 13-, and 9,13- desmethyl homologues of vitamin A. Tetrahedron. 1966 Jan;22(1):293–299. doi: 10.1016/0040-4020(66)80130-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES