Skip to main content
Journal of Clinical Pathology logoLink to Journal of Clinical Pathology
. 1999 Oct;52(10):766–769. doi: 10.1136/jcp.52.10.766

Rapid detection of the factor V Leiden (1691 G > A) and haemochromatosis (845 G > A) mutation by fluorescence resonance energy transfer (FRET) and real time PCR.

S H Neoh 1, M J Brisco 1, F A Firgaira 1, K J Trainor 1, D R Turner 1, A A Morley 1
PMCID: PMC501573  PMID: 10674036

Abstract

A rapid method based on fluorescence resonance energy transfer (FRET) and real time polymerase chain reaction (PCR) was used to identify the haemochromatosis genotype in 112 individuals and the factor V genotype in 134 individuals. The results were compared with conventional methods based on restriction enzyme digestion of PCR products. The two methods agreed in 244 of the 246 individuals; for the other two individuals, sequencing showed that they had been incorrectly genotyped by the standard method but correctly genotyped by FRET. The simplicity, speed, and accuracy of real time PCR analysis using FRET probes make it the method of choice in the clinical laboratory for genotyping the haemochromatosis and factor V genes.

Full text

PDF
769

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauchamp N. J., Daly M. E., Cooper P. C., Preston F. E., Peake I. R. Rapid two-stage PCR for detecting factor V G1691A mutation. Lancet. 1994 Sep 3;344(8923):694–695. doi: 10.1016/s0140-6736(94)92136-9. [DOI] [PubMed] [Google Scholar]
  2. Bernard P. S., Ajioka R. S., Kushner J. P., Wittwer C. T. Homogeneous multiplex genotyping of hemochromatosis mutations with fluorescent hybridization probes. Am J Pathol. 1998 Oct;153(4):1055–1061. doi: 10.1016/s0002-9440(10)65650-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertina R. M., Koeleman B. P., Koster T., Rosendaal F. R., Dirven R. J., de Ronde H., van der Velden P. A., Reitsma P. H. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994 May 5;369(6475):64–67. doi: 10.1038/369064a0. [DOI] [PubMed] [Google Scholar]
  4. Feder J. N., Gnirke A., Thomas W., Tsuchihashi Z., Ruddy D. A., Basava A., Dormishian F., Domingo R., Jr, Ellis M. C., Fullan A. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996 Aug;13(4):399–408. doi: 10.1038/ng0896-399. [DOI] [PubMed] [Google Scholar]
  5. Jouanolle A. M., Gandon G., Jézéquel P., Blayau M., Campion M. L., Yaouanq J., Mosser J., Fergelot P., Chauvel B., Bouric P. Haemochromatosis and HLA-H. Nat Genet. 1996 Nov;14(3):251–252. doi: 10.1038/ng1196-251. [DOI] [PubMed] [Google Scholar]
  6. Kyger E. M., Krevolin M. D., Powell M. J. Detection of the hereditary hemochromatosis gene mutation by real-time fluorescence polymerase chain reaction and peptide nucleic acid clamping. Anal Biochem. 1998 Jul 1;260(2):142–148. doi: 10.1006/abio.1998.2687. [DOI] [PubMed] [Google Scholar]
  7. Lay M. J., Wittwer C. T. Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin Chem. 1997 Dec;43(12):2262–2267. [PubMed] [Google Scholar]
  8. Wittwer C. T., Ririe K. M., Andrew R. V., David D. A., Gundry R. A., Balis U. J. The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques. 1997 Jan;22(1):176–181. doi: 10.2144/97221pf02. [DOI] [PubMed] [Google Scholar]
  9. Zöller B., Dahlbäck B. Linkage between inherited resistance to activated protein C and factor V gene mutation in venous thrombosis. Lancet. 1994 Jun 18;343(8912):1536–1538. doi: 10.1016/s0140-6736(94)92940-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Pathology are provided here courtesy of BMJ Publishing Group

RESOURCES