Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Dec 15;89(24):11701–11705. doi: 10.1073/pnas.89.24.11701

Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase.

J M Davies 1, R J Poole 1, P A Rea 1, D Sanders 1
PMCID: PMC50624  PMID: 1334545

Abstract

Potassium is accumulated in plant vacuoles against an inside-positive membrane potential. The mechanism facilitating energized K+ transport has remained obscure. However, electrogenic activity of the inorganic pyrophosphatase (H(+)-PPase) at the vacuolar membrane is dependent on cytoplasmic K+, raising the possibility that the enzyme translocates K+ into the vacuole. Membrane currents generated by the H(+)-PPase were measured (using a patch clamp technique) in intact vacuoles isolated from Beta vulgaris storage tissue. A significant orthophosphate-dependent outward current mediated by the enzyme in reverse mode is evoked only when potassium is present at the vacuolar face of the tonoplast, suggesting that potassium is a translocated ion. Furthermore, current-voltage analysis of the effects of extravacuolar potassium and pH on the reversal potential of the H(+)-PPase-generated current points to direct translocation of K+ and H+ by the enzyme. Thus the H(+)-PPase represents a distinct class of eukaryote translocase and could facilitate vacuolar K+ accumulation in vivo.

Full text

PDF
11703

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry P. H., Lynch J. W. Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol. 1991 Apr;121(2):101–117. doi: 10.1007/BF01870526. [DOI] [PubMed] [Google Scholar]
  2. Blackford S., Rea P. A., Sanders D. Voltage sensitivity of H+/Ca2+ antiport in higher plant tonoplast suggests a role in vacuolar calcium accumulation. J Biol Chem. 1990 Jun 15;265(17):9617–9620. [PubMed] [Google Scholar]
  3. Cooper S., Lerner H. R., Reinhold L. Evidence for a highly specific k/h antiporter in membrane vesicles from oil-seed rape hypocotyls. Plant Physiol. 1991 Nov;97(3):1212–1220. doi: 10.1104/pp.97.3.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies J. M., Rea P. A., Sanders D. Vacuolar proton-pumping pyrophosphatase in Beta vulgaris shows vectorial activation by potassium. FEBS Lett. 1991 Jan 14;278(1):66–68. doi: 10.1016/0014-5793(91)80085-h. [DOI] [PubMed] [Google Scholar]
  5. Fan T. W., Higashi R. M., Norlyn J., Epstein E. In vivo 23Na and 31P NMR measurement of a tonoplast Na+/H+ exchange process and its characteristics in two barley cultivars. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9856–9860. doi: 10.1073/pnas.86.24.9856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flodgaard H., Fleron P. Thermodynamic parameters for the hydrolysis of inorganic pyrophosphate at pH 7.4 as a function of (Mg2+), (K+), and ionic strength determined from equilibrium studies of the reaction. J Biol Chem. 1974 Jun 10;249(11):3465–3474. [PubMed] [Google Scholar]
  7. Fox G. G., Ratcliffe G. P NMR Observations on the Effect of the External pH on the Intracellular pH Values in Plant Cell Suspension Cultures. Plant Physiol. 1990 Jun;93(2):512–521. doi: 10.1104/pp.93.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  9. Hedrich R., Kurkdjian A., Guern J., Flügge U. I. Comparative studies on the electrical properties of the H+ translocating ATPase and pyrophosphatase of the vacuolar-lysosomal compartment. EMBO J. 1989 Oct;8(10):2835–2841. doi: 10.1002/j.1460-2075.1989.tb08430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johannes E., Felle H. Proton Gradient Across the Tonoplast of Riccia fluitans as a Result of the Joint Action of Two Electroenzymes. Plant Physiol. 1990 Jun;93(2):412–417. doi: 10.1104/pp.93.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rebeille F., Bligny R., Douce R. Is the cytosolic pi concentration a limiting factor for plant cell respiration? Plant Physiol. 1984 Feb;74(2):355–359. doi: 10.1104/pp.74.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rosing J., Slater E. C. The value of G degrees for the hydrolysis of ATP. Biochim Biophys Acta. 1972 May 25;267(2):275–290. doi: 10.1016/0005-2728(72)90116-8. [DOI] [PubMed] [Google Scholar]
  13. Wang Y., Leigh R. A., Kaestner K. H., Sze H. Electrogenic h-pumping pyrophosphatase in tonoplast vesicles of oat roots. Plant Physiol. 1986 Jun;81(2):497–502. doi: 10.1104/pp.81.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES