Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Dec 1;88(23):10392–10396. doi: 10.1073/pnas.88.23.10392

In vitro assembly of apophytochrome and apophytochrome deletion mutants expressed in yeast with phycocyanobilin.

L Deforce 1, K Tomizawa 1, N Ito 1, D Farrens 1, P S Song 1, M Furuya 1
PMCID: PMC52934  PMID: 1961705

Abstract

Recombinant pea type I phytochrome apoprotein expressed in yeast is shown to assemble in vitro with phycocyanobilin to produce a photoreversible phytochrome-like adduct. As an initial investigation of the amino acid sequence requirements for chromophore incorporation, three phyA gene product deletion mutants were produced in yeast. Truncation of the N-terminal tail to residue 46 demonstrates that this region is not critical to bilin attachment, but a deletion mutant lacking 222 amino acids from the N terminus failed to yield holophytochrome in vitro, under the same conditions. A mutant comprising a deletion of the C terminus to residue 548 showed bilin incorporation and red/far-red photoreversibility, indicating that bilin-apophytochrome assembly still occurred even when the entire C-terminal domain was truncated.

Full text

PDF
10396

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arciero D. M., Bryant D. A., Glazer A. N. In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J Biol Chem. 1988 Dec 5;263(34):18343–18349. [PubMed] [Google Scholar]
  2. BUTLER W. L., SIEGELMAN H. W., MILLER C. O. DENATURATION OF PHYTOCHROME. Biochemistry. 1964 Jun;3:851–857. doi: 10.1021/bi00894a022. [DOI] [PubMed] [Google Scholar]
  3. Berkelman T. R., Lagarias J. C. Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal Biochem. 1986 Jul;156(1):194–201. doi: 10.1016/0003-2697(86)90173-9. [DOI] [PubMed] [Google Scholar]
  4. Chai Y. G., Song P. S., Cordonnier M. M., Pratt L. H. A photoreversible circular dichroism spectral change in oat phytochrome is suppressed by a monoclonal antibody that binds near its N-terminus and by chromophore modification. Biochemistry. 1987 Aug 11;26(16):4947–4952. doi: 10.1021/bi00390a010. [DOI] [PubMed] [Google Scholar]
  5. Elich T. D., Lagarias J. C. Formation of a photoreversible phycocyanobilin-apophytochrome adduct in vitro. J Biol Chem. 1989 Aug 5;264(22):12902–12908. [PubMed] [Google Scholar]
  6. Elich T. D., Lagarias J. C. Phytochrome Chromophore Biosynthesis : Both 5-Aminolevulinic Acid and Biliverdin Overcome Inhibition by Gabaculine in Etiolated Avena sativa L. Seedlings. Plant Physiol. 1987 Jun;84(2):304–310. doi: 10.1104/pp.84.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elich T. D., McDonagh A. F., Palma L. A., Lagarias J. C. Phytochrome chromophore biosynthesis. Treatment of tetrapyrrole-deficient Avena explants with natural and non-natural bilatrienes leads to formation of spectrally active holoproteins. J Biol Chem. 1989 Jan 5;264(1):183–189. [PubMed] [Google Scholar]
  8. Fodor S. P., Lagarias J. C., Mathies R. A. Resonance Raman analysis of the Pr and Pfr forms of phytochrome. Biochemistry. 1990 Dec 18;29(50):11141–11146. doi: 10.1021/bi00502a018. [DOI] [PubMed] [Google Scholar]
  9. Gardner G., Gorton H. L. Inhibition of phytochrome synthesis by gabaculine. Plant Physiol. 1985 Mar;77(3):540–543. doi: 10.1104/pp.77.3.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hershey H. P., Barker R. F., Idler K. B., Lissemore J. L., Quail P. H. Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequences for two gene products expressed in etiolated Avena. Nucleic Acids Res. 1985 Dec 9;13(23):8543–8559. doi: 10.1093/nar/13.23.8543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kay S. A., Nagatani A., Keith B., Deak M., Furuya M., Chua N. H. Rice Phytochrome Is Biologically Active in Transgenic Tobacco. Plant Cell. 1989 Aug;1(8):775–782. doi: 10.1105/tpc.1.8.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lagarias J. C., Lagarias D. M. Self-assembly of synthetic phytochrome holoprotein in vitro. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5778–5780. doi: 10.1073/pnas.86.15.5778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morishima N., Nakagawa K., Yamamoto E., Shibata T. A subunit of yeast site-specific endonuclease SceI is a mitochondrial version of the 70-kDa heat shock protein. J Biol Chem. 1990 Sep 5;265(25):15189–15197. [PubMed] [Google Scholar]
  16. Rüdiger W., Thümmler F., Cmiel E., Schneider S. Chromophore structure of the physiologically active form (P(fr)) of phytochrome. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6244–6248. doi: 10.1073/pnas.80.20.6244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sharrock R. A., Quail P. H. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 1989 Nov;3(11):1745–1757. doi: 10.1101/gad.3.11.1745. [DOI] [PubMed] [Google Scholar]
  18. Song P. S. The molecular topography of phytochrome: chromophore and apoprotein. J Photochem Photobiol B. 1988 Jul;2(1):43–57. doi: 10.1016/1011-1344(88)85036-x. [DOI] [PubMed] [Google Scholar]
  19. Vierstra R. D., Quail P. H., Hahn T. R., Song P. S. Comparison of the protein conformations between different forms (Pr and Pfr) of native (124 kDa) and degraded (118/114 kDa) phytochromes from Avena sativa. Photochem Photobiol. 1987 Mar;45(3):429–432. doi: 10.1111/j.1751-1097.1987.tb05398.x. [DOI] [PubMed] [Google Scholar]
  20. Vierstra R. D., Quail P. H. Spectral Characterization and Proteolytic Mapping of Native 120-Kilodalton Phytochrome from Cucurbita pepo L. Plant Physiol. 1985 Apr;77(4):990–998. doi: 10.1104/pp.77.4.990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES