Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Nov;87(22):8874–8878. doi: 10.1073/pnas.87.22.8874

Molecular cloning of complementary DNAs encoding two cationic peroxidases from cultivated peanut cells.

D Buffard 1, C Breda 1, R B van Huystee 1, O Asemota 1, M Pierre 1, D B Ha 1, R Esnault 1
PMCID: PMC55062  PMID: 2247460

Abstract

We have isolated, cloned, and characterized two cDNAs corresponding to the mRNAs for cationic peroxidases synthesized by cultured peanut cells. The first clone was obtained from a phage lambda gt11 library screened with antibodies directed against the major secreted isozyme. Its predicted amino acid sequence, deduced from the 1228-base-pair (bp) cDNA, revealed a 22-amino acid signal peptide and a 294-amino acid mature protein (Mr, 31,228). The second clone was isolated from a lambda gt10 library screened with oligonucleotides corresponding to the regions for acid/base catalysis and the fifth ligand of heme. This cDNA (1344 bp) encodes a protein (330 amino acids) with a mature peptide of 307 residues (Mr, 32,954). The two peanut peroxidases are 46% homologous. The estimated gene copy numbers of these peroxidases might be close to 1 or 2 per haploid genome. A comparison of the amino acid sequence of these peanut peroxidases with other known isozymes shows two already known regions of homology (the region for acid/base catalysis and the fifth ligand of heme). Moreover, some new characteristics appeared such as a glycosylation site identical in five of the seven isozymes, a putative antigenic determinant common to all the isozymes, and a region of the highest homology. A secondary structure prediction showed that it corresponds to a 16-amino acid helix linked to the next one by a long stretch of beta strands and coils and might represent a critical structural element.

Full text

PDF
8878

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeles F. B., Dunn L. J., Morgens P., Callahan A., Dinterman R. E., Schmidt J. Induction of 33-kD and 60-kD Peroxidases during Ethylene-Induced Senescence of Cucumber Cotyledons. Plant Physiol. 1988 Jul;87(3):609–615. doi: 10.1104/pp.87.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biou V., Gibrat J. F., Levin J. M., Robson B., Garnier J. Secondary structure prediction: combination of three different methods. Protein Eng. 1988 Sep;2(3):185–191. doi: 10.1093/protein/2.3.185. [DOI] [PubMed] [Google Scholar]
  3. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  4. Fujiyama K., Takemura H., Shibayama S., Kobayashi K., Choi J. K., Shinmyo A., Takano M., Yamada Y., Okada H. Structure of the horseradish peroxidase isozyme C genes. Eur J Biochem. 1988 May 2;173(3):681–687. doi: 10.1111/j.1432-1033.1988.tb14052.x. [DOI] [PubMed] [Google Scholar]
  5. Lagrimini L. M., Bradford S., Rothstein S. Peroxidase-Induced Wilting in Transgenic Tobacco Plants. Plant Cell. 1990 Jan;2(1):7–18. doi: 10.1105/tpc.2.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lagrimini L. M., Burkhart W., Moyer M., Rothstein S. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7542–7546. doi: 10.1073/pnas.84.21.7542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lagrimini L. M., Rothstein S. Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection. Plant Physiol. 1987 Jun;84(2):438–442. doi: 10.1104/pp.84.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mazza G., Welinder K. G. Covalent structure of turnip peroxidase 7. Cyanogen bromide fragments, complete structure and comparison to horseradish peroxidase C. Eur J Biochem. 1980 Jul;108(2):481–489. doi: 10.1111/j.1432-1033.1980.tb04745.x. [DOI] [PubMed] [Google Scholar]
  9. Risler J. L., Delorme M. O., Delacroix H., Henaut A. Amino acid substitutions in structurally related proteins. A pattern recognition approach. Determination of a new and efficient scoring matrix. J Mol Biol. 1988 Dec 20;204(4):1019–1029. doi: 10.1016/0022-2836(88)90058-7. [DOI] [PubMed] [Google Scholar]
  10. Roberts E., Kolattukudy P. E. Molecular cloning, nucleotide sequence, and abscisic acid induction of a suberization-associated highly anionic peroxidase. Mol Gen Genet. 1989 Jun;217(2-3):223–232. doi: 10.1007/BF02464885. [DOI] [PubMed] [Google Scholar]
  11. Welinder K. G. Covalent structure of the glycoprotein horseradish peroxidase (EC 1.11.1.7). FEBS Lett. 1976 Dec 15;72(1):19–23. doi: 10.1016/0014-5793(76)80804-6. [DOI] [PubMed] [Google Scholar]
  12. Welinder K. G. Plant peroxidases. Their primary, secondary and tertiary structures, and relation to cytochrome c peroxidase. Eur J Biochem. 1985 Sep 16;151(3):497–504. doi: 10.1111/j.1432-1033.1985.tb09129.x. [DOI] [PubMed] [Google Scholar]
  13. Woods D. E., Markham A. F., Ricker A. T., Goldberger G., Colten H. R. Isolation of cDNA clones for the human complement protein factor B, a class III major histocompatibility complex gene product. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5661–5665. doi: 10.1073/pnas.79.18.5661. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES