Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Aug 24;74(Pt 9):1344–1357. doi: 10.1107/S2056989018011544

A resonance-assisted intra­molecular hydrogen bond in compounds containing 2-hy­droxy-3,5-di­nitro­benzoic acid and its various deprotonated forms: redetermination of several related structures

Jan Fábry a,*
PMCID: PMC6127720  PMID: 30225130

A large number of structural determinations of compounds containing 2-hy­droxy-3,5-di­nitro­benzoic acid and its various deprotonated forms, 2-hy­droxy-3,5-di­nitro­benzoate or 2-carb­oxy-4,6-di­nitro­phenolate, are biased. The reason for the bias follows from incorrectly applied constraints or restraints on the bridging hydrogen, which is involved in the intra­molecular hydrogen bond between the neighbouring carb­oxy­lic/carboxyl­ate and oxo/hy­droxy groups. The present article examines the problem of the location and refinement of such a bridging hydrogen in a number of reported compounds. The analysis of the intra­molecular hydrogen bonding is also discussed.

Keywords: crystal structure; resonance-assisted hydrogen bonds; refinement constraints; 2-hy­droxy-3,5-di­nitro­benzoic acid; 2-hy­droxy-3,5-di­nitro­benzoate; 2-carb­oxy-4,6-di­nitro­phenolate; 3,5-di­nitro-2-oxidobenzoate

Abstract

A large number of structural determinations of compounds containing 2-hy­droxy-3,5-di­nitro­benzoic acid (I) and its various deprotonated forms, 2-hy­droxy-3,5-di­nitro­benzoate (II) or 2-carb­oxy-4,6-di­nitro­phenolate (III), are biased. The reason for the bias follows from incorrectly applied constraints or restraints on the bridging hydrogen, which is involved in the intra­molecular hydrogen bond between the neighbouring carb­oxy­lic/carboxyl­ate and oxo/hy­droxy groups. This hydrogen bond belongs to the category of resonance-assisted hydrogen bonds. The present article suggests corrections for the following structure determinations that have been published in Acta Crystallographica: DUJZAK, JEVNAA, LUDFUL, NUQVEB, QIQJAD, SAFGUD, SEDKET, TIYZIM, TUJPEV, VABZIJ, WADXOR, YAXPOE [refcodes are taken from the Cambridge Structural Database [CSD; Groom et al. (2016). Acta Cryst. B72, 171–179]. The structural features of the title mol­ecules in all the retrieved structures, together with structures that contain 3,5-di­nitro-2-oxidobenzoate (IV), are discussed. Attention is paid to the localization of the above-mentioned bridging hydrogen, which can be situated closer to the O atom of the carboxyl­ate/carb­oxy­lic group or that of the hy­droxy/oxo group. In some cases, it is disordered between the two O atoms. The position of the bridging hydrogen seems to be dependent on the pK a(base) although with exceptions. A stronger basicity enhances the probability of the presence of a phenolate (III). The present article examines the problem of the refinement of such a bridging hydrogen as well as that of the hydrogen atoms involved in the hy­droxy and primary and secondary amine groups. It appears that the best model, in many cases, is obtained by fixing the hydrogen-atom position found in the difference electron-density map while refining its isotropic displacement parameter.

Chemical context  

2-Hy­droxy-3,5-di­nitro­benzoic acid (I; alternatively 3,5-di­nitro­salicylic acid, DNSA), 2-hy­droxy-3,5-di­nitro­benzoate (II; alternatively 3,5-di­nitro­salicylate), 2-carb­oxy-4,6-di­nitro­phenolate (III) and 3,5-di­nitro-2-oxidobenzoate (IV), are mol­ecules that have inter­esting structural and chemical features. Such mol­ecules have been studied because of the proton transfer from the carb­oxy­lic group, which is dependent on its environment (e.g. Smith et al., 2007). Thus, three deprotonated forms of mol­ecule I have been observed. The last one, IV, is deprived of all of the hydrogen atoms while the others differ in the localization of the hydrogen atom involved in the intra­molecular hydrogen bond between the O atoms of the carboxyl­ate/carb­oxy­lic and the hy­droxy/oxo groups. In the different structures, this hydrogen atom may be closer to either oxygen atom, depending on the properties of each particular structure. In some cases, this hydrogen atom may even be disordered. In the following, it will be referred to as a bridging hydrogen.graphic file with name e-74-01344-scheme1.jpg

Such a bridging hydrogen is a part of a resonance-assisted moiety (Gilli & Gilli, 2009) composed of six atoms with the pertinent bonds being D1, D2, D3, D4, D11 and D12, as shown in Fig. 1 a. However, the delocalized bonds can be further extended within the mol­ecule, especially to the C=O/C—OH bond (D1/D5 in Fig. 1 a). Resonance-assisted hydrogen bonds tend to be stronger and therefore the bridging hydrogen should be displaced towards the hydrogen-bond centre. On the other hand, O⋯H⋯O hydrogen bonds with a bridging hydrogen that is situated about its centre are usually observed for strong intra­molecular hydrogen bonds with the O⋯O distances being shorter than 2.5 Å (Gilli & Gilli, 2009), while the O⋯H⋯O angles tend to be close to 180° (Jeffrey, 1995). The Ocarboxyl­ate/carboxyl­icgroup⋯Ohy­droxy/oxo group distance can be as short as 2.41 Å in some 2-hy­droxy-3,5-di­nitro­benzoates (II) or 2-carb­oxy-4,6-di­nitro­phenolates (III); however, the O⋯H⋯O angle, which is ca 160°, situates it in a category of its own.

Figure 1.

Figure 1

Definition of bonds and various angles in IIV.

The above-mentioned features of the intra­molecular O⋯H⋯O hydrogen bond in the mol­ecules considered herein have been ignored on many occasions by incorrectly applied constraints or severe restraints on the O—H distances, 0.82 or 0.84 Å, together with angle constraints/restraints equal to 109° as proposed by SHELXL (Sheldrick, 2008, 2015).

A robust indication whether the bridging hydrogen has been positioned correctly follows from the bond distances C=O/C—O of the involved carboxyl­ate/carb­oxy­lic and hydrox­yl/oxo groups, although there are a few exceptions in which the bridging hydrogen is attached to the oxygen forming a slightly shorter C—O distance. These exceptions will be mentioned briefly below. Thus, it seems that a considerable number of the structures containing the mol­ecules IIV could have been determined more correctly with a more realistic description of the pertinent hydrogen bond in these mol­ecular fragments.

A search of the Cambridge Structural Database (CSD, Version 3.58, last update May 2017; Groom et al., 2016) indicated that 27 structures out of 53 reported as 2-hy­droxy-3,5-di­nitro­benzoates (II) seem to be suspect; 21 structures out of 70 reported as 2-carb­oxy-4,6-di­nitro­phenolates (III) seem to be suspect, and nine structures out of 15 that contain a mol­ecule of 2-hy­droxy-3,5-di­nitro­benzoic acid (I) also appear to be suspect. Figs. 2 a and 2 b illustrate this situation for 2-hy­droxy-3,5-di­nitro­benzoates (II) and 2-carb­oxy-4,6-di­nitro­phenolates (III), respectively.

Figure 2.

Figure 2

The dependence of bond distances: (a) D2 on D4 for structures that were originally determined as 2-hy­droxy-3,5-di­nitro­benzoate (II), or as containing 2-hy­droxy-3,5-di­nitro­benzoic acid (I); (b) D1 on D3 for the structures that were determined as 2-carb­oxy-4,6-di­nitro­phenolate (III). Colour code for symbols: black squares are the data retrieved from the CSD; red circles are the corrected title structures; green and blue triangles are the original and the corrected structure of LUDFUL, which contains a mol­ecule of 2-hy­droxy-3,5-di­nitro­benzoic acid (I).

It is plausible to expect that the environment affects the position of the bridging hydrogen. Therefore, it can be assumed that the proton transfer stemming from the carboxyl group will affect its position.

The data for the suspect structures published in Acta Crystallographica were retrieved from the journal’s web page and recalculated. Tables 1 and 2 contain an overview of those structures, which were successfully redetermined. In the following, these structures are referred to by their CSD refcodes; for the pertinent chemical names, see Table 2.

Table 1. Experimental details.

  DUJZAK JEVNAA LUDFUL NUQVEB
Crystal data
Chemical formula [Ag(C9H7NO)2](C7H3N2O7) [Zn(C3H4N2)4](C7H3N2O7)2 C7H4N2O7·C12H8N2 C6H9N2 +·C7H3N2O7
M r 625.30 791.93 408.33 336.27
Crystal system, space group Monoclinic, P21 Monoclinic, C2/c Monoclinic, P21/a Triclinic, P Inline graphic
Temperature (K) 293 293 293 100
a, b, c (Å) 9.0154 (18), 7.6122 (15), 17.138 (3) 25.0809 (15), 6.7251 (4), 18.9145 (10) 14.8002 (15), 7.4029 (16), 16.0091 (16) 5.8673 (7), 8.0991 (9), 15.2437 (17)
α, β, γ (°) 90, 104.38 (3), 90 90, 97.658 (6), 90 90, 96.395 (8), 90 86.844 (3), 84.252 (3), 81.209 (3)
V3) 1139.3 (4) 3161.9 (3) 1743.1 (5) 711.69 (14)
Z 2 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.95 0.87 0.12 0.13
Crystal size (mm) 0.20 × 0.15 × 0.11 0.20 × 0.18 × 0.10 0.36 × 0.34 × 0.26 0.29 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker SMART CCD area-detector Bruker APEXII area-detector Enraf–Nonius CAD-4 Bruker APEX DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 1999) Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.846, 0.918 0.963, 0.990
No. of measured, independent and observed [I > 3σ(I)] reflections 10841, 4602, 4225 20634, 3635, 2152 8396, 4202, 1587 12709, 4943, 3677
R int 0.022 0.058 0.056 0.023
(sin θ/λ)max−1) 0.651 0.651 0.661 0.756
 
Refinement
R factors and goodness of fit R[F > 3σ(F)] = 0.023, wR(F) = 0.053, S = 1.34 R[F > 3σ(F)] = 0.036, wR(F) = 0.075, S = 1.23 R[F > 3σ(F)] = 0.044, wR(F) = 0.083, S = 1.08 R[F > 3σ(F)] = 0.042, wR(F) = 0.109, S = 2.06
No. of reflections 4602 3635 4202 4943
No. of parameters 356 244 274 222
No. of restraints 0 0 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.30 0.23, −0.23 0.29, −0.31 0.40, −0.32
Absolute structure 1800 of Friedel pairs used in the refinement
Absolute structure parameter 0.004 (17)
  QIQJAD SAFGUD SEDKET TIYZIM
Crystal data
Chemical formula C9H8Cl2N5 +·C7H3N2O7 ·C3H7NO [Ag(C12H6N2O2)](C7H3N2O7) C5H9N2 +·C7H3N2O7 C6H12N3 +·C7H3N2O7
M r 557.31 755.36 324.26 353.30
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/c Monoclinic, P21 Triclinic, P Inline graphic
Temperature (K) 294 174 293 173
a, b, c (Å) 10.0227 (5), 10.5507 (5), 12.5359 (6) 11.757 (2), 18.297 (4), 13.223 (3) 8.1183 (7), 6.0636 (5), 14.1453 (11) 7.0109 (4), 10.6617 (8), 10.7454 (7)
α, β, γ (°) 81.858 (1), 71.888 (1), 70.009 (1) 90, 103.91 (3), 90 90, 91.904 (1), 90 93.075 (6), 95.863 (5), 104.944 (6)
V3) 1183.1 (1) 2761.1 (11) 695.93 (10) 769.30 (9)
Z 2 4 2 2
Radiation type Mo Kα Mo Kα Mo Kα Cu Kα
μ (mm−1) 0.34 0.81 0.13 1.09
Crystal size (mm) 0.16 × 0.14 × 0.08 0.3 × 0.24 × 0.2 0.40 × 0.27 × 0.11 0.22 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector Oxford Diffraction Gemini R Ultra Bruker SMART CCD Agilent Xcalibur (Eos, Gemini)
Absorption correction Multi-scan (SADABS; Bruker, 2001) Multi-scan (SADABS; Bruker, 2002) Multi-scan (SADABS; Bruker, 2002) Multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012)
T min, T max 0.93, 0.97 0.780, 0.910 0.959, 0.986 0.925, 1.000
No. of measured, independent and observed [I > 3σ(I)] reflections 13936, 5507, 4441 12726, 5013, 3100 3523, 2301, 1444 4664, 2953, 2426
R int 0.019 0.052 0.040 0.026
(sin θ/λ)max−1) 0.661 0.603 0.595 0.618
 
Refinement
R factors and goodness of fit R[F > 3σ(F)] = 0.056, wR(F) = 0.147, S = 3.41 R[F > 3σ(F)] = 0.062, wR(F) = 0.118, S = 1.64 R[F > 3σ(F)] = 0.041, wR(F) = 0.088, S = 1.16 R[F > 3σ(F)] = 0.041, wR(F) = 0.100, S = 1.64
No. of reflections 5507 5013 2301 2953
No. of parameters 340 444 212 229
No. of restraints 0 0 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.80, −0.36 0.76, −0.63 0.11, −0.10 0.21, −0.18
Absolute structure 955 Friedel pairs used in the refinement
Absolute structure parameter 0.5
  TUJPEV (VABZIJ) WADXOR YAXPOE
Crystal data
Chemical formula C10H12N3O3S+·C7H3N2O7 C8H13N2O+·C7H3N2O7 ·H2O C9H17N2 +·C7H3N2O7 C26H29N2 +·C7H3N2O7
M r 481.41 398.33 380.35 596.63
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 296 100 200 200
a, b, c (Å) 8.5551 (1), 10.5000 (2), 12.7576 (3) 6.6691 (3), 11.3831 (4), 12.2900 (5) 6.1537 (3), 19.1541 (14), 14.5527 (11) 14.5648 (3), 12.9374 (3), 16.1619 (3)
α, β, γ (°) 106.463 (1), 100.913 (1), 108.272 (1) 89.727 (2), 76.771 (2), 76.930 (2) 90, 98.343 (6), 90 90, 103.900 (1), 90
V3) 993.72 (3) 883.62 (6) 1697.2 (2) 2956.22 (11)
Z 2 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.23 0.13 0.12 0.10
Crystal size (mm) 0.20 × 0.20 × 0.16 0.52 × 0.13 × 0.10 0.30 × 0.13 × 0.10 0.51 × 0.26 × 0.17
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker SMART APEXII CCD area-detector Oxford Diffraction Gemini-S CCD-detector Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004) Multi-scan (SADABS; Bruker, 2009) Multi-scan (CrysAlis PRO; Agilent, 2014) Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.955, 0.964 0.937, 0.987 0.920, 0.990 0.932, 1.000
No. of measured, independent and observed [I > 3σ(I)] reflections 24261, 6717, 4398 17014, 4061, 3042 7800, 3339, 1976 29552, 7344, 5724
R int 0.030 0.030 0.034 0.015
(sin θ/λ)max−1) 0.758 0.650 0.617 0.667
 
Refinement
R factors and goodness of fit R[F > 3σ(F)] = 0.044, wR(F) = 0.104, S = 1.95 R[F > 3σ(F)] = 0.038, wR(F) = 0.086, S = 1.77 R[F 2 > 2σ(F 2)] = 0.046, wR(F 2) = 0.095, S = 1.33 R[F > 3σ(F)] = 0.054, wR(F) = 0.190, S = 1.80
No. of reflections 6717 4061 3339 7344
No. of parameters 301 258 268 399
No. of restraints 0 0 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.35 0.46, −0.23 0.36, −0.24 0.63, −0.28
Absolute structure
Absolute structure parameter

Table 2. Overview of the redetermined structures.

REFCODE Chemical name original/corrected if necessary
DUJZAKa Bis(quinolin-8-ol)silver(I) 2-hy­droxy-3,5-di­nitro­benzoate
JEVNAAb Tetra­kis(1H-imidazole-N 3)zinc(II) bis­(2-hy­droxy-3,5-di­nitro­benzoate / tetra­kis­(1H-imidazole-N 3)zinc(II) bis­(2-carb­oxy-4,6-di­nitro­phenolate)
LUDFULc 1-Aza-8-azoniabi­cyclo­[5.4.0]undec-7-ene 2-hy­droxy-3,5-di­nitro­benzoate / phenazine 2-hy­droxy-3,5-di­nitro­benzoic acid
NUQVEBd 2-Amino-5-methyl­pyridinium 2-hy­droxy-3,5-di­nitro­benzoate) / 2-amino-5-methyl­pyridinium 2-hy­droxy-3,5-di­nitro­benzoate) (0.38) / 2-amino-5-methyl­pyridinium 2-carb­oxy-4,6-di­nitro­phenolate (0.62)
QIQJADe 3,5-Di­amino-6-(2,3-di­chloro­phen­yl)-1,2,4-triazin-2-ium 3,5-di­nitro-2-hy­droxy­benzoate N,N-di­methyl­formamide solvate / 3,5-di­nitro-2-hy­droxy­benzoate (0.55) 2-carb­oxy-4,6-di­nitro­phenolate (0.45) N,N-di­methyl­formamide monosolvate / 3,5-di­amino-6-(2,3-di­chloro­phen­yl)-1,2,4-triazin-2-ium 3,5-di­nitro-2-hy­droxy­benzoate N,N-di­methyl­formamide monosolvate
SAFGUDf Bis(1,10-phenanthroline-5,6-dione-2N,N′)silver(I) 2-hy­droxy-3,5-di­nitro­benzoate / bis(1,10-phenanthroline-5,6-dione-2N,N′)silver(I) 2-carb­oxy-4,6-di­nitro­phenolate
SEDKETg 3,5-Di­methyl­pyrazolium 2-carb­oxy-4,6-di­nitro­phenolate / 3,5-di­methyl­pyrazolium 2-hy­droxy-3,5-di­nitro­benzoate
TIYZIM h 3-(1H-Imidazol-1-yl)propanaminium 2-carb­oxy-4,6-di­nitro­phenolate
TUJPEVi 4-[(5-methyl­isoxazol-3-yl)amino­sulfon­yl]anilinium 3,5-di­nitro­salicylate
VABZIJj 2-Isopropyl-6-methyl-4-oxo-3,4-di­hydro­pyrimidin-1-ium 2-carb­oxy-4,6-di­nitro­phenolatemonohydrate
WADXOR k 1-Aza-8-azoniabi­cyclo­[5.4.0]undec-7-ene 2-hy­droxy-3,5-di­nitro­benzoate / 2,3,4,6,7,8,9,10-octa­hydro­pyrimido[1,2-a]azepin-1-ium 2-hy­droxy-3,5-di­nitro­benzoate (0.73) / 2,3,4,6,7,8,9,10-octa­hydro­pyrimido[1,2-a]azepin-1-ium 2-carb­oxy-4,6–2-carb­oxy-4,6-di­nitro­phenolate (0.37)
YAXPOEl 4-(Di­phenyl­meth­yl)-1-(3-phenyl­prop-2-en-1-yl)piperazin-1-ium 2-carb­oxy-4,6-di­nitro­phenolate

Notes: (a) Zhang & Jian (2009); (b) Huang et al. (2007); (c) Senthil Kumar et al. (2002); (d) Hemamalini & Fun (2010a ); (e) Sridhar et al. (2013); (f) Wang et al. (2012); (g) Wei et al. (2012); (h) Yamuna et al. (2014); (i) Malathy et al. (2015); (j) Hemamalini & Fun (2010b ); (k) Smith & Lynch (2016); (l) Dayananda et al. (2012).

Notably, JEVNAA turns out not to be a substituted benzoate but a phenolate. NUQVEB though reported as a substituted benzoate turns out to be present in a disordered benzoate and a phenolate form. QIQJAD though reported as a disordered benzoate and a phenolate turns out to be a substituted benzoate. SAFGUD was reported as a substituted benzoate but turns out to be a phenolate. WADXOR was reported as a substituted benzoate that is disordered over two positions but it turns out to be present both in a dominant benzoate as well as in a minor phenolate form. Finally, SEDKET was originally determined as a substituted phenolate but it turns out to be a benzoate.

Some of the retrieved structures were difficult or impossible to recalculate with sufficient accuracy: HILPOI (trimetho­prim­ium 3,5-di­nitro­salicylate; Subashini et al., 2007) because of an abnormally low proportion of observed reflections (moreover the bridging hydrogen H6a is situated out of the plane between the carboxyl­ate and hy­droxy oxygen atoms, which seems to indicate an error) and VUZNEK (3,4-di­amino­pyridinium 2-carb­oxy-4,6-di­nitro­phenolate; Hemamalini & Fun, 2010b ) because of the disorder present in the structure.

Refinement of the title structures  

For each structure, two methods have been applied for the refinement of the hydrogen atoms involved in hydrogen bonding. In Method 1, the positions of the bridging hydrogens as well as those of the hy­droxy, primary and secondary amine and ammonium hydrogen atoms were fixed after their local­ization in the difference electron-density maps while their displacement parameters were refined. In Method 2, the positional parameters of the latter hydrogen atoms were refined while their displacement parameters were constrained in the usual manner: U iso(H) = 1.2U eq(Namine) or U iso(H) = 1.5U eq(Ohy­droxy) or U iso(H) = 1.5U eq(Nammonium).

The appropriate sections of the difference electron-density maps of the title structures (see supplementary Fig. S1) show regions with the hy­droxy, amine and ammonium hydrogen atoms. These sections comprise the maps that were obtained after the refinement of the models without the pertinent hydrogen atoms as well as the maps that were calculated by either refinement method. It can be seen from the supplementary Fig. S1 that one of the reasons that hinders the correct localization of the hydrogen atoms involved in the hydrogen bonds is an apparent non-spherical electron density of the donor and acceptor atoms. Thus, hydrogen-atom local­ization by X-ray diffraction is hindered not only by its weak scattering power, but also by the polarization of its electron density resulting from the proximity of the acceptor and by the asphericity of the electron density of the donor and acceptor atoms. Therefore, refinement Method 1 was given preference. The hydrogen bonds in the title structures are listed in Table 3, which shows that there might be quite a large difference between the results with the fixed and the refined positional parameters of such hydrogen atoms. In the following, a detailed description of the refinement of the recalculated structures is given:

Table 3. Hydrogen bonds (Å, °) in the redetermined structures.

The upper entries for each hydrogen bond refer to refinement Method 1: fixed hydrogen-atom positions, which were obtained from the difference electron-density maps, and refined displacement parameters. The lower entries refer to refinement Method 2: refined hydrogen-atom positions and constrained displacement parameters.

D—H⋯A D—H H⋯A DA D—H⋯A
DUJZAK        
O1—H1aa⋯O8 0.759 (2) 1.859 (2) 2.606 (3) 167.96 (14)
  0.97 (4) 1.64 (4) 2.603 (3) 175 (3)
O2—H2aa⋯O9 0.922 (2) 1.727 (2) 2.631 (3) 166.48 (15)
  0.75 (4) 1.90 (4) 2.636 (3) 165 (4)
O3—H3b⋯O9 1.040 (2) 1.495 (2) 2.481 (3) 155.88 (12)
  1.11 (4) 1.41 (4) 2.480 (3) 160 (3)
         
JEVNAA        
O2—H1a⋯O1 1.039 (2) 1.496 (2) 2.498 (2) 160.4 (1)
  0.89 (2) 1.65 (3) 2.503 (2) 160 (2)
N2—H2a⋯O3 0.967 (2) 1.890 (2) 2.838 (3) 165.9 (1)
  0.84 (2) 2.02 (2) 2.845 (3) 169 (2)
N4—H4a⋯O1i 0.943 (2) 1.924 (1) 2.784 (2) 150.6 (1)
  0.86 (2) 1.95 (2) 2.792 (2) 165 (2)
         
LUDFUL        
O3—H3a⋯O2 1.059 (1) 1.530 (1) 2.513 (2) 151.7 (1)
  1.06 (2) 1.51 (2) 2.516 (2) 156 (2)
O1—H1a⋯N3 1.163 (1) 1.416 (1) 2.552 (2) 163.2 (1)
  1.14 (2) 1.44 (2) 2.552 (2) 166 (2)
         
NUQVEB        
O7—H1o7⋯O1 0.919 (1) 1.531 (1) 2.4202 (12) 161.55 (6)
  1.14 (2) 1.31 (2) 2.4178 (12) 163 (2)
O1—H1o1⋯O7 0.931 (1) 1.513 (1) 2.4202 (12) 163.52 (6)
  1.31 (2) 1.14 (2) 2.4178 (12) 163 (2)
N2—H2a⋯O7ii 0.892 (1) 2.079 (1) 2.9655 (14) 172.84 (6)
  0.87 (1) 2.095 (14) 2.9674 (14) 176.5 (12)
N2—H2b⋯O1iii 0.846 (1) 2.165 (1) 2.8526 (14) 138.40 (6)
  0.88 (2) 2.146 (14) 2.852 (1) 137.3 (11)
N2—H2b⋯O2iii 0.846 (1) 2.413 (1) 3.1741 (14) 150.02 (6)
  0.88 (2) 2.384 (14) 3.1736 (15) 150.3 (11)
N1—H1⋯O6ii 0.898 (1) 1.783 (1) 2.6781 (13) 174.83 (6)
  0.90 (1) 1.784 (14) 2.6773 (14) 173.3 (13)
         
QIQJAD        
N3—H3n⋯O2 0.862 (2) 1.994 (2) 2.854 (2) 174.8 (1)
  0.81 (3) 2.05 (3) 2.854 (3) 175 (3)
N3—H4n⋯O8iv 0.863 (2) 2.059 (1) 2.921 (2) 176.9 (1)
  0.85 (2) 2.07 (2) 2.920 (2) 173 (3)
N2—H2n⋯O1 0.897 (2) 1.831 (2) 2.728 (2) 177.5 (1)
  0.81 (3) 1.93 (3) 2.731 (2) 171 (2)
N5—H5n⋯N4v 0.866 (1) 2.141 (1) 2.9992 (19) 171.1 (1)
  0.84 (2) 2.17 (2) 2.999 (2) 171 (2)
N5—H6n⋯O8vi 0.863 (2) 2.041 (2) 2.760 (2) 140.2 (1)
  0.78 (2) 2.12 (3) 2.764 (2) 141 (2)
O3—H3o⋯O1 0.926 (1) 1.562 (1) 2.4572 (18) 161.3 (1)
  0.99 (3) 1.49 (3) 2.4569 (19) 164 (3)
         
SAFGUD        
O8—H7⋯O7 1.155 (4) 1.346 (4) 2.462 (6) 159.6 (3)
  1.05 (7) 1.57 (7) 2.452 (7) 138 (6)
         
SEDKET        
O1—H2a⋯O2 1.22 (5) 1.34 (5) 2.476 (3) 149 (5)
  1.27 (3) 1.29 (3) 2.477 (3) 151 (3)
O2—H2a⋯O1 1.34 (5) 1.22 (5) 2.476 (3) 149 (5)
  1.29 (3) 1.27 (3) 2.477 (3) 151 (3)
N1—H1⋯O1vii 1.11 (5) 1.92 (5) 2.799 (4) 133 (3)
  0.99 (4) 2.00 (3) 2.804 (4) 137 (3)
N1—H1⋯O7vii 1.11 (5) 1.94 (5) 2.850 (4) 137 (3)
  0.99 (4) 2.03 (3) 2.855 (4) 140 (3)
N2—H2⋯O3 0.96 (3) 1.77 (3) 2.685 (4) 158 (3)
  0.99 (3) 1.75 (3) 2.684 (4) 157 (3)
         
TIYZIM        
O2b—H2b⋯O1b 0.982 (1) 1.516 (1) 2.4473 (16) 156.3 (1)
  1.02 (2) 1.48 (2) 2.4476 (16) 156 (2)
N3a—H3aa⋯N1aa viii 0.904 (1) 1.932 (1) 2.797 (2) 159.6 (1)
  0.91 1.92 2.797 (2) 162
N3a—H3ab⋯O2b ix 0.901 (1) 2.565 (1) 3.1297 (17) 121.4 (1)
  0.91 2.58 3.1298 (17) 120
N3a—H3ab⋯O2b ix 0.901 (1) 2.565 (1) 3.1297 (17) 121.4 (1)
  0.91 2.58 3.1297 (18) 120
N3a—H3ab⋯O3b ix 0.901 (1) 2.072 (1) 2.9537 (17) 165.8 (1)
  0.91 2.06 2.9542 (17) 165
N3a—H3ac⋯O1b x 0.893 (1) 2.061 (1) 2.815 (2) 141.5 (1)
  0.91 2.03 2.815 (2) 144
N3a—H3ac⋯O7b x 0.893 (1) 2.484 (1) 2.9712 (19) 114.7 (1)
  0.91 2.46 2.9706 (19) 116
         
TUJPEV        
O6—H6a⋯O5 1.184 (1) 1.295 (1) 2.4268 (16) 156.58 (6)
  1.24 (2) 1.21 (2) 2.4280 (17) 165.3 (14)
N1—H1a⋯O6xi 1.002 (1) 2.068 (1) 3.0655 (17) 173.55 (7)
  0.89 2.24 3.0694 (17) 155
N1—H1b⋯N3v 0.793 (1) 2.292 (1) 3.0393 (15) 157.3 (1)
  0.89 2.20 3.0382 (15) 157
N1—H1c⋯O4v 0.832 (2) 1.831 (1) 2.663 (2) 177.1 (1)
  0.89 1.77 2.660 (2) 175
N2—H2a⋯O5 0.970 (1) 1.844 (1) 2.7852 (15) 162.64 (9)
  0.827 (17) 1.986 (16) 2.7900 (16) 164.0 (18)
         
VABZIJ        
N3—H1n3⋯O6x 0.973 (1) 1.754 (1) 2.7182 (14) 170.48 (8)
  0.91 (1) 1.823 (14) 2.7214 (14) 170.8 (15)
N4—H1n4⋯O1w 0.909 (1) 1.840 (1) 2.7348 (15) 167.76 (8)
  0.91 (2) 1.833 (15) 2.7323 (16) 172.0 (15)
O1w—H2w1⋯O1xii 0.917 (1) 1.890 (1) 2.7886 (14) 166.21 (6)
  0.82 (2) 1.995 (19) 2.7906 (15) 162.7 (16)
O1w—H1w1—O3iii 0.915 (1) 2.040 (1) 2.9352 (14) 165.84 (7)
  0.89 (2) 2.064 (18) 2.9357 (15) 168.0 (17)
O7—H7⋯O1 1.019 (1) 1.433 (1) 2.4340 (13) 165.94 (7)
  0.96 (2) 1.505 (16) 2.4358 (13) 162.0 (16)
         
WADXOR        
N8a—H8a⋯O11b 0.960 (2) 1.933 (2) 2.864 (2) 162.83 (11)
  0.91 (2) 1.96 (2) 2.869 (2) 174.1 (17)
O11b—H21b⋯O21b 1.145 (2) 1.303 (6) 2.433 (6) 167.3 (3)
  1.07 (9) 1.48 (9) 2.430 (6) 145 (7)
O2b—H2b⋯O12b 1.103 (2) 1.385 (2) 2.471 (2) 166.81 (13)
  0.91 (3) 1.61 (3) 2.475 (3) 159 (3)
         
YAXPOE        
N1—H71⋯O1iv 0.945 (1) 1.954 (1) 2.813 (2) 150.01 (8)
  0.90 (2) 1.98 (2) 2.812 (2) 154.0 (19)
N1—H71⋯O2iv 0.945 (1) 2.302 (2) 3.032 (2) 133.62 (8)
  0.90 (2) 2.36 (2) 3.034 (2) 131.8 (17)
O7—H7⋯O1 0.924 (2) 1.668 (1) 2.505 (2) 148.96 (9)
  0.92 (3) 1.71 (3) 2.504 (2) 142 (2)

Symmetry codes: (i) −x + Inline graphic, −y + Inline graphic, −z + 1; (ii) −x + 1, −y + 1, −z; (iii) −x + 1, −y, −z; (iv) −x + 1, −y + 1, −z + 1; (v) −x + 1, −y + 2, −z + 1; (vi) x − 1, y + 1, z; (vii) −x + 1, y + Inline graphic, −z + 1; (viii) −x, −y, −z; (ix) x + 1, y, z; (x) −x, −y + 1, −z + 1; (xi) −x, −y + 2, −z + 1; (xii) x, y + 1, z.

DUJZAK (Zhang & Jian, 2009): C—Har­yl were constrained to be equal to 0.93 Å while U iso(Har­yl) = 1.2U eq(Car­yl). The position of the bridging hydrogen H3b as well as those of the hy­droxy hydrogen atoms H1aa and H2aa were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displace­ment parameters were refined.

JEVNAA (Huang et al., 2007): C—Har­yl were constrained to be equal to 0.93 Å while U iso(Har­yl) = 1.2U eq(Car­yl). The position of the bridging hydrogen H1a as well as those of the secondary amine hydrogen atoms H2a and H4a were located in the difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

LUDFUL (Senthil Kumar et al., 2002): C—Har­yl were constrained to be equal to 0.93 Å while U iso(Har­yl) = 1.2U eq(Car­yl). The position of the bridging hydrogen H3a as well as that of the hydroxy hydrogen atom H1a were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

NUQVEB (Hemamalini & Fun, 2010a ): The subroutine TwinRotMax of PLATON (Spek, 2009) indicated non-merohedral twinning: h2 = −h1; k2 = −k1; l2 = −0.488 h1 − 0.153k1 + l1. The refinement was carried out on the non-overlapped reflections only. The refined value of the second domain fraction converged to the value −0.0006 (4). Therefore the value of the second domain fraction was set to 0 and was not refined further. C—Har­yl and C—Hmeth­yl were constrained to be equal to 0.95 and 0.98 Å, respectively. U iso(Har­yl) = 1.2U eq(Car­yl) and U iso(Hmeth­yl) = 1.5U eq(Cmeth­yl). The positions of the disordered bridging hydrogens H1o1 and H1o7 as well as those of the primary (H2a, H2b) and the secondary amine hydrogen atoms (H1a) were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined; in the case of the bridging hydrogens H1o1 and H1o7, their isotropic displacement parameters were refined to be equal while their occupational parameters were refined under the condition that their sum was equal to 1.

QIQJAD (Sridhar et al., 2013): The subroutine TwinRotMax of PLATON (Spek, 2009) indicated non-merohedral twinning: h2 = −1.018h1 + 0.054k1; k2 = −0.673h1 + 1.018k1; l2 = −0.039h1 + 0.116k1 − l1. The refined value of the second domain fraction converged to the value 0.028 (13). Therefore the value of the second domain fraction was set to 0 and was not refined further. C—Hsp 2 and C—Hmeth­yl were constrained to equal to 0.93 and 0.96 Å, respectively. U iso(Hsp 2) = 1.2U eq(Csp 2) and U iso(Hmeth­yl) = 1.5U eq(Cmeth­yl). The positions of the bridging hydrogen H3o and those of the primary (H3n, H4n, H5n, H6n) as well as of the secondary (H2n) amine hydrogen atoms were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

SAFGUD (Wang et al., 2012): C—Har­yl were constrained to be equal to 0.93 Å while U iso(Har­yl) = 1.2U eq(Car­yl). The bridging hydrogen H7 was located in a difference electron-density map and its position was fixed while its isotropic displacement parameter U iso(H7) was refined.

SEDKET (Wei et al., 2012): The non-centrosymmetric structure is composed of the light atoms only (the heaviest atom is O) and the data collection was carried out with Mo Kα radiation. The article by Wei et al. (2012) does not indicate whether the Friedel pairs were merged and nor does it contain the value of the Flack parameter. The Flack parameter was set to 0.5 without being refined in the present model. C—Har­yl and C—Hmeth­yl were constrained to be equal to 0.93 and 0.96 Å, respectively. U iso(Har­yl) = 1.2U eq(Car­yl) and U iso(Hmeth­yl) = 1.5U eq(Cmeth­yl). The position of the bridging hydrogen H2a as well as those of the secondary amine hydrogen atoms H1 and H2 were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined.

TIYZIM (Yamuna et al. (2014): C—Har­yl and C—Hmethyl­ene were constrained to be equal to 0.95 and 0.99 Å, respectively. U iso(Har­yl) = 1.2U eq(Car­yl) and U iso(Hmethyl­ene) = 1.5U eq(Cmethyl­ene). The position of the bridging hydrogen H2b as well as those of the ammonium hydrogen atoms (H3aa, H3ab, H3ac) were found in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined; in the case of the ammonium hydrogen atoms (H3ab, H3ac,), their displacement parameters were constrained to be equal to that of H3aa.

TUJPEV (Malathy et al., 2015): C—Har­yl were constrained to be equal to 0.93 Å while U iso(Har­yl) = 1.2U eq(Car­yl). C—Hmeth­yl were constrained to be equal to 0.96 Å while U iso(Hmeth­yl) = 1.5U eq(Cmeth­yl). The position of the bridging hydrogen H6a as well as those of the secondary amine group H2a and of the ammonium hydrogen atoms H1a, H1b and H1c were found in a difference-electron map. Their positional parameters were fixed during the refinement while their isotropic displacement parameters were refined; in the case of the ammonium hydrogen atoms (H1b, H1c), their displacement parameters were constrained to be equal to that of H1a.

VABZIJ (Hemamalini & Fun, 2010c ): C—Har­yl, C—Hmeth­yl, C—Hmethine were constrained to be equal to 0.93, 0.96 and 0.98 Å, respectively. U iso(Har­yl) = 1.2U eq(Car­yl), U iso(Hmethine) = 1.2U eq(Cmethine), U iso(Hmeth­yl) = 1.5U eq(Cmeth­yl). The position of the bridging hydrogen H7 as well as those of the secondary amine hydrogen atom H1n4 and of the water hydrogen atoms H1w1 and H1w2 were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their displacement parameters were refined.

WADXOR (Smith & Lynch, 2016): The non-centrosymmetric structure is composed of light atoms only (the heaviest atoms present in the structure are oxygens) and the data collection was carried out with Mo Kα radiation. The original article reported the refined Flack parameter to be equal to −0.1 (13); however, the refinement using JANA2006 (Petříček et al., 2014) did not converge and therefore the Flack parameter was set to 0.5 without being refined. C—Har­yl and C—Hmethyl­ene were constrained to be equal to 0.95 and 0.99 Å, respectively, except for the distances between the methyl­ene atom C11 and the attached hydrogen atoms H12a and H13a, which were restrained to 0.99 (1) Å (Müller, 2009). [The reason for the different treatment of the latter methyl­ene group was its vicinity to the disordered methyl­ene groups centered on C10 and C12a.] U iso(Har­yl) = 1.2U eq(Car­yl) and U iso(Hmethyl­ene) = 1.2U eq(Cmethyl­ene). There were two types of occupational disorder present in the structure. The first one was related to the fragments with the methyl­ene carbon atoms C9a, C10a and the attached respective pairs of hydrogen atoms H91a, H92a and H10a, H11a, as well as to C13a and C12a with the attached respective pairs of hydrogen atoms H16a, H17a and H14a, H15a. The occupation parameter of C13 was refined while those of the related atoms were either set equal to that of C13 (i.e. C12a and attached hydrogen atoms) or its complement to 1 (C9a and C10a and attached hydrogen atoms). The displacement parameters of the disordered pairs of atoms C9a and C13a as well as C10a and C12a were set to be equal, i.e. that of C13a equalled that of C9a while that of C10a equalled that of C12a. The second type of occupational disorder referred to the fragments C2b—H61b, C2b–O2b—H2b and C6b—H6b, C6b—O21b—H21b. This means that the occupation parameters of H61b, H21b were set equal to the refined occupational parameter of O21b while being complements to 1 for H6b, O2b, H2b. The positions of the bridging hydrogens H2b and H21b as well as that of the primary amine hydrogen atom H8a were located in a difference electron-density map. Their positional parameters were fixed during the refinement while their isotropic displace­ment parameters were refined; in the case of bridging hydrogens H2b and H21b, their isotropic displacement parameters were constrained to be equal.

YAXPOE (Dayananda et al., 2012): C—Har­yl and C—Hmethyl­ene were constrained to equal to 0.95 and 0.99 Å, respectively. U iso(Har­yl) = 1.2U eq(Car­yl) and U iso(Hmethyl­ene) = 1.5U eq(Cmethyl­ene). The bridging hydrogen H7 was located in a difference electron-density map. Its positional parameters were fixed while U iso(H7a) was refined. A high instability factor Δ in the weighting scheme (0.0064) was applied in order to avoid a large number of reflections with (I obsI calc)/σ(w) > 10 where σ(w) = [σ2(I) + ΔI 2]−1/2. [This condition generates A alerts for Δ = 0.0004, which has been used in other refinements of the title structure, when running checkCIF (Spek, 2009).] The residual electron-density map contains peaks which are difficult to inter­pret (see supplementary Fig. S1).

Discussion of the inter­dependence of bond lengths and angles  

For this discussion, the definition of the various bonds and angles in the moieties of IIV (shown in the scheme), are illustrated in Figs. 1 a and 1b, respectively. As already pointed out, the dependence D2 on D4 and D1 on D3 (Fig. 2) has shown that a large number of structures are biased by incorrectly applied constraints or restraints on the bridging hydrogen. However, a dubious or incorrect localization of the bridging hydrogen or the acid hydrogen is believed to affect the positions of the non-hydrogen atoms only minutely, and therefore even the biased structures can be considered further. The parameters q1 = D2 − D1 and q2 = D12 − D11 express the electron delocalization within the fragment D1–D12–D11–D2. The introduction of the parameters q1 and q2 follows an analogous discussion of resonance-assisted hydrogen bonds in the enol forms of β-diketone fragments (Gilli et al., 1989, 2009). Fig. 3 a shows that the distance where the structures with 2-carb­oxy-4,6-di­nitro­phenolates (III; red circles) transform into 2-hy­droxy-3,5-di­nitro­benzoates (II; black squares) corresponds to the shortest distance D13min ≃ 2.41 Å, which in turn corresponds to (q1 + q2) ≃ 0.08 Å. This implies that this is the region where the bridging hydrogen has the greatest tendency to be situated about the centre of the O⋯O intra­molecular hydrogen bond or disordered about it. A very similar dependence is shown in Fig. 3 b, where only distances D1 and D3 are compared. The observed dependence means that the elongation of one C—O bond takes place mostly at the cost of the shortening of the neighbouring C=O bond; in other words, the distance between these two O atoms, D13 ≃ [(D13min)2 + (D2 − D1)2]1/2 (Fig. 1). Table 4 lists the structures in which the title mol­ecules are present in different forms. In the recalculated structure of SEDKET (Table 2) and e.g. the reported structures of KEZJIJ (Song et al., 2007) and KEZJIJ01 (Smith et al., 2007) that refer to the structure determination of 2-(pyridin-2-yl)pyridinium 2-carb­oxy-4,6-di­nitro­phenolate, the bridging hydrogen is attached to the O atom having the shorter C—O bond distance.

Figure 3.

Figure 3

The dependence of distances: (a) D13 on (q1 + q2); (b) D13 on D2 − D1; (c) D13 on D12—D11; (d) D2 − D1 on (q1 + q2); (e) D13 on (q1 + q2), also for the structures with 3,5-di­nitro-2-oxidobenzoate (IV), which are shown as blue triangles. Colour code for symbols: green triangles refer to the structures with 2-hy­droxy-3,5-di­nitro­benzoic acid (I), black squares are the structures with 2-hy­droxy-3,5-di­nitro­benzoate (II), and red circles are the structures with 2-carb­oxy-4,6-di­nitro­phenolates (III).

Table 4. Overview of selected structures with different forms of the mol­ecules: 2-hy­droxy-3,5-di­nitro­benzoic acid (I); 2-hy­droxy-3,5-di­nitro­benzoate (II); 2-carb­oxy-4,6-di­nitro­phenolate (III); 3,5-di­nitro-2-oxidobenzoate (IV).

The structures are ordered by ascending pK a value of the base. The corresponding values of (q1 + q2), D13, D1, D2 and D5 (cf. Fig. 1) are also given.

  Refcode Base and its form present in the structure pK a ΔpK a Type (q1 + q2) (Å) D13 (Å) D1 (Å) D2 (Å) D5 (Å) Remarks
1 GORXAM a 1,4-dioxane −3.9 −6.08 I 0.204 0.196 2.547 2.545 1.219 1.220 1.337 1.336 1.307 1.300 Two independent mol­ecules
2 GORXEQa 1,4-dioxane −3.9 −6.08 I 0.235 2.601 1.206 1.343 1.319  
3 GORXEQ01a 1,4-dioxane −3.9 −6.08 I 0.197 2.531 1.222 1.346 1.302  
4 AJEBOGb 4-cyanopyridinium 1.92 −0.26 III 0.003 2.523 1.324 1.28 1.213  
5 ABULAM c 2-aminoanilinium <2 <-0.18 III 0.011 2.447 1.309 1.282 1.219  
6 PIDCAIc 2-aminoanilinium <2 <-0.18 III 0.009 2.44 1.314 1.285 1.229 Wrongly attached hydrogen due to C=O distances. Originally determined as type II but it should be III.
7 PERBAR d 3-carbamoylpyridinium 3.35 1.2 II 0.17 2.452 1.287 1.329 1.239 Wrongly attached hydrogen due to C=O distances. Originally determined as type II but it is probably III. Disorder present in the structure.
8 GIFMUEe 1-naphthylammonium 3.92 1.74 III 0.011 2.488 1.31 1.279 1.224  
9 MIPROSf 8-aminoquinolinium 3.95 1.77 II 0.072 2.408 1.278 1.300 1.237 The bridging hydrogen is situated about the centre.
10 ABUKUFg 4-chloroanilinium 3.98 1.80 II 0.094 2.435 1.276 1.297 1.242  
11 YIVHIWh 4-iodoanilinium 4.18 1.63 II 0.129 2.461 1.285 1.321 1.228  
12 GIFNUFi 1,10-phenanthrolinium 4.27 2.09 II 0.096 2.428 1.280 1.297 1.232 Determined as the type III but it is probably II (Fig. 1). The chemical name was correct.
13 FOXHADj 2-(pyridin-2-yl)pyridinium 4.33 2.15 II 0.047 2.42 1.307 1.292 1.228 100 K; the reported hydrogen H3 is situated out of the plane formed by C⋯O bonds and is superficial.
14 KEZJIJj 2-(pyridin-2-yl)pyridinium 4.33 2.15 III 0.07 2.422 1.293 1.296 1.231 C=O distances are about equal. The recalculation has shown that the bridging hydrogen is about the centre of the hydrogen bond, slightly closer to atom O2, which forms a shorter C=O bond.
15 KEZJIJ01j 2-(pyridin-2-yl)pyridinium 4.33 2.15 III 0.066 2.423 1.295 1.299 1.221 C=O distances are about equal, the hydrogen is attached to the O atom forming a shorter C=O bond.
16 FICXIZk cytosinium 4.60 2.42 II 0.098 2.423 1.285 1.310 1.234 The type according to the C=O distances should be II; the bridging hydrogen was wrongly attached.
17 ABUJUEl anilinium 4.60 2.42 II 0.129 2.448 1.280 1.323 1.231  
18 ABUKOZ m 4-fluoroanilinium 4.65 2.47 II 0.142 2.465 1.273 1.325 1.252  
19 GIFMOYn quinolinium 4.85 2.67 III 0.05 2.414 1.294 1.285 1.235 The title mol­ecule has similarly long C=O distances.
20 ZAJHATo 2-amminobenzoic acid 4.96 2.78 II 0.135 2.461 1.282 1.324 1.227  
21 AJEBIAp pyridinium 5.23 3.05 I and II 0.142 0.163 2.458 2.582 1.250 1.308 1.257 Two independent mol­ecules
22 EGABOFq 2-methylquinolinium 5.71 3.53 II 0.285 2.411 1.207 1.359 1.244 Outlier
23 AJECEX01r 2,6-di­aminopyridin-1-ium 6.13 3.95 II 0.072 0.121 2.435 2.464 1.298 1.295 1.309 1.332 1.241 1.237 One of the title mol­ecules has similarly long C=O distances.
24 AJECIBs 2-aminopyrimidinium 6.82 4.64 II 0.114 0.145 2.466 2.473 1.277 1.270 1.308 1.323 1.241 1.238  
25 TUMWABt 1H-imidazol-3-ium 6.95 4.77 III −0.01 2.457 1.320 1.279 1.214  
26 LUMJOUu hydrazinium 8.12 5.94 III 0.014 2.459 1.318 1.275 1.211  
27 SEDKETv 3,5-di­methylpyrazolium 9 6.82 III 0.037 2.481 1.300 1.282 1.224  
28 SEDKETv (corrected) 3,5-di­methylpyrazolium 9 6.82 II 0.027 2.476 1.305 1.277 1.229 The bridging hydrogen after recalculation is closer to oxygen O1, which forms the shorter C=O bond (C12—O1).
29 LUDDETw benzylammonium 9.33 7.15 III 0.002 2.483 1.305 1.269 1.218  
30 LUDDET01w benzylammonium 9.33 7.15 III     1.311 1.311 1.275 1.279 1.217 1.219  
31 INELUIx 1-phenyl­ethylammonium 9.79 7.61 III 0.009 0.009 2.467 2.482 1.309 1.320 1.272 1.277 1.221 1.214  
32 MILLOIy di­cyclo­hexylammonium 10.4 8.22 III 0.028 2.464 1.289 1.273 1.225 The C=O distances of the title mol­ecule are similar.
33 ACIFATz 4-sulfamoylanilinium 10.6 8.42 III 0.028 2.462 1.315 1.287 1.209  
34 EGUTIJaa methylammonium 10.6 8.42 III 0.011 2.481 1.314 1.276 1.218  
35 EGUTOPbb tri­ethylammonium 10.78 8.6 II 0.082 2.429 1.275 1.286 1.248  
36 EGUTOP01bb tri­ethylammonium 10.78 8.6 II 0.072 2.419 1.275 1.288 1.242  
37 FOGZILcc di­ethylammonium 11.09 8.91 III 0.004 2.489 1.308 1.270 1.217  
38 XEBFAM dd piperidinium C5H11N 11.28 9.1 II and IV 0.078 0.061 2.586 2.736 1.219 1.234 1.278 1.253 1.255 1.271 One mol­ecule of DNSA (I) is fully ionized, the other is in form II.
39 YEJZAOee guanidinium 12.5 10.32 II 0.079 2.415 1.291 1.305 1.235  
40 YEJZAO01ee guanidinium 12.5 10.32 II 0.073 2.415 1.292 1.300 1.239  

References for the pK a values: (a) https://chemaxon.com/products/calculators-and-predictors#pka; (b) https://www.chemicalbook.com/ProductMSDSDetailCB0688145_EN.htm; (c) Dean (1987); (d) https://pubchem.ncbi.nlm.nih.gov/compound/nicotinamide#section=pK a; (e) https://labs.chem.ucsb.edu/zhang/liming/pdf/pKas_of_Organic_Acids_and_Bases.pdf; (f) http://binarystore.wiley.com/store/10.1002/jcc.23068/asset/supinfo/JCC_23068_sm_SuppInfo.pdf?v=1&s=e864a51d58b4cdc175f6b69c92ceddb546201e3b; (g) http://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf; (h) http://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf; (i) http://chemicalland21.com/specialtychem/finechem/1,10-PHENANTHROLINE.htm; (j) https://www.chemicalbook.com/ProductMSDSDetailCB5195697_EN.htm; (k) http://www.drugfuture.com/chemdata/cytosine.html; (l) https://pubchem.ncbi.nlm.nih.gov/compound/aniline#section=pKa; (m) http://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf; (n) Hosmane & Liebman (2009); (o) http://www.csun.edu/\~hcchm003/321/Ka.pdf; (p) https://pubchem.ncbi.nlm.nih.gov/compound/pyridine#section=Dissociation-Constants; (q) https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.23068; (r) https://www.chemicalbook.com/ProductMSDSDetailCB0236195_EN.htm; (s) https://pubchem.ncbi.nlm.nih.gov/compound/2-amino­pyridine#section=Dissociation-Constants; (t) https://pubchem.ncbi.nlm.nih.gov/compound/imidazole#section=pKa; (u) http://evans.rc.fas.harvard.edu/pdf/evans_pKa_table.pdf; (v) https://www.chemicalbook.com/ProductMSDSDetailCB2707394_EN.htm; (w) https://pubchem.ncbi.nlm.nih.gov/compound/benzyl­amine#section=pK a; (x) https://www.drugbank.ca/drugs/DB04325; (z) https://pubchem.ncbi.nlm.nih.gov/compound/di­cyclo­hexyl­amine#section=Dissociation-Constants; (z) https://pubchem.ncbi.nlm.nih.gov/compound/sulfanilamide#section=Dissociation-Constants; (aa) https://pubchem.ncbi.nlm.nih.gov/compound/methyl­amine#section=pK a; (ab) https://pubchem.ncbi.nlm.nih.gov/compound/tri­ethyl­amine#section=Dissociation-Constants; (ac) https://pubchem.ncbi.nlm.nih.gov/compound/di­ethyl­amine#section=Dissociation-Constants; (ad) https://pubchem.ncbi.nlm.nih.gov/compound/piperidine#section=Dissociation-Constants; (ae) https://pubchem.ncbi.nlm.nih.gov/compound/guanidine#section=pK a.

References to publications with the chemical names of the determined compounds (original and corrected ones if necessary): (1) Senthil Kumar et al. (1999): 3,5-di­nitro­salicylic acid 1,4-dioxane solvate, 3,5-di­nitro­salicylic acid 1,4-dioxane (1:1)]; (2) Senthil Kumar et al. (1999): 3,5-di­nitro­salicylic acid 1,4-dioxane solvate, 3,5-di­nitro­salicylic acid 1,4-dioxane (2:1); (3) Senthil Kumar et al. (1999): 3,5-di­nitro­salicylic acid 1,4-dioxane solvate, 3,5-di­nitro­salicylic acid 1,4-dioxane (2:1); (4) Smith et al. (2003a ): 4-cyano­pyridinium 3,5-di­nitro­salicylate, 4-cyano­pyridinium 3,5-di­nitro­salicylate 2-carb­oxy-4,6-di­nitro­phenolate; (5) Smith et al. (2011): 2-amino­anilinium 2-carb­oxy-4,6-di­nitro­phenolate; (6) Khan et al. (2013): 2-amino­anilinium 2-hy­droxy-3,5-di­nitro­benzoate, 2-amino­anilinium 2-carb­oxy-4,6-di­nitro­phenolate; (7) Jin et al. (2013): 3-carbamoylpyridinium 2-carb­oxy-4,6-di­nitro­phenolate, 3-carbamoylpyridinium 2-hy­droxy-3,5-di­nitro­benzoate; (8) Smith et al. (2007): 1-naphthyl­ammonium 3,5-di­nitro­salicylate, 1-naphthyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (9) Smith et al. (2001b ): 8-amino­quinolinium 3,5-di­nitro­salicylate; (10) Smith et al. (2011): 4-chloro­anilinium 2-hy­droxy-3,5-di­nitro­benzoate; (11) Jones et al. (2014): (4-iodo­anilinium 2-hy­droxy-3,5-di­nitro­benzoate; (12) Smith et al. (2007): 1,10-Phenanthrolinium 3,5-di­nitro­salicylate; (13) Singh et al. (2014): 2-(pyridin-2-yl)pyridinium 2-hy­droxy-3,5-di­nitro­benzoate; (14) Song et al. (2007): 2,2′-bipyridinium 2-carb­oxy-4,6-di­nitro­phenolate; (15) Smith et al. (2007): 2,2′-bipyridinium 2-carb­oxy-4,6-di­nitro­phenolate; (16) Smith et al. (2005a ): cytosinium 3,5-di­nitro­salicylate, cytosinium 2-carb­oxy-4,6-di­nitro­phenolate; (17) Smith et al. (2011): anilinium 2-hy­droxy-3,5-di­nitro­benzoate; (18) Smith et al. (2011): 4-fluoro­anilinium 2-hy­droxy-3,5-di­nitro­benzoate; (19) Smith et al. (2007): quinolinium 3,5-di­nitro­salicylate, quinolinium 2-carb­oxy-4,6-di­nitro­phenolate; (20) Smith et al. (1995): 3,5-di­nitro­salicylic acid 2-amino­benzoic acid, 2-ammonium­benzoic acid 2-carb­oxy-4,6-di­nitro­phenolate; (21) Smith et al. (2003a ): pyridinium 3,5-di­nitro­salicylate 3,5-di­nitro­salicylic acid; (22) Zhang et al. (2014): 2-methyl­quinolinium 2-hy­droxy-3,5-di­nitro­benzoate; (23) Gao et al. (2015): 2,6-di­amino­pyridin-1-ium 2-hy­droxy-3,5-di­nitro­benzoate; (24) Smith et al. (2003a ): 2-amino­pyrimidinium 3,5-di­nitro­salicylate ethanol solvate, 2-amino­pyrimidinium 3,5-di­nitro­salicylate ethanol (2:2:1); (25) Jin et al. (2015b ): 1H-imidazol-3-ium 2-carb­oxy-4,6-di­nitro­phenolate; (26) Fu et al. (2015): hydrazinium 2-carb­oxy-4,6-di­nitro­phenolate; (27) Wei et al. (2012): (3,5-Di­methyl­pyrazolium 2-carb­oxy-4,6-di­nitro­phenolate); (28) this work: (3,5-di­methyl­pyrazolium 2-hy­droxy-3,5-di­nitro­benzoate; (29) Smith et al. (2002b ): benzyl­ammonium 3,5-di­nitro­salicylate, benzyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (30) Jin et al. (2015a ): benzyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (31) Smith et al. (2003b ): (S)-(−)-1-phenyl­ethyl­aminium 3,5-di­nitro­salicylate, (S)-(−)-1-phenyl­ethyl­aminium 2-carb­oxy-4,6-di­nitro­phenolate; (32) Ng et al. (2001): di­cyclo­hexyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (33) Smith et al. (2001c ): 4-ammonio­benzene­sulfonamide 3,5-di­nitro­salicylate, 4-ammonio­benzene­sulfonamide 2-carb­oxy-4,6-di­nitro­phenolate; (34) Smith et al. (2002a ): methyl­ammonium 3,5-di­nitro­salicylate, methyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (35) Smith et al. (2002a ): tri­ethyl­ammonium 3,5-di­nitro­salicylate; (36) Rajkumar & Chandramohan (2017): tri­ethyl­ammonium 2-hy­droxy-3,5-di­nitro­benzoate; (37) Smith et al. (2005b ): di­ethyl­ammonium 3,5-di­nitro­salicylate, di­ethyl­ammonium 2-carb­oxy-4,6-di­nitro­phenolate; (38) Smith et al. (2006): tris­(piperidinium) bis­(3,5-di­nitro­salicylate) monohydrate, tris­(piperidinium) 2-hy­droxy-3,5-di­nitro­benzoate 2-olate-3,5-di­nitro­benzoate monohydrate; (39) Smith et al. (2001a ): guanidinium 3,5-di­nitro­salicylate; (40) Fu et al. (2015): guanidinium 3,5-di­nitro­salicylate.

Fig. 3 a and 3b also show that the bridging hydrogen cannot be situated near the centre of the intra­molecular O⋯O hydrogen bond in structures with 2-hy­droxy-3,5-di­nitro­benzoic acid (I). Fig. 3 c shows a similar dependence of D13 on (D12 − D11). It can be seen that the adjacent C—C conjugated bonds are less, but still sensitive to the bonding of the hy­droxy hydrogen atom to one of the neighbouring C—O groups. These properties indicate that the O⋯H⋯O hydrogen bonding with the pertinent O⋯O distance D13 belongs to the category of resonance-assisted hydrogen bonds (Gilli et al., 1989, 2009; Sobczyk et al., 2005).

Fig. 3 d compares both dependences shown in Figs. 3 a and 3b. It can be seen that the dependence of (D2 − D1) on (q1 + q2) is fairly linear. The dependence seems to show the narrowest spread for the 2-hy­droxy-3,5-di­nitro­benzoates (II), which are represented by the black squares. Importantly, the line for each class of mol­ecules inter­cepts the D2 − D1 axis at different values. The structures that contain 2-hy­droxy-3,5-di­nitro­benzoic acid (I) mol­ecules (green triangles) are clearly separated from the rest of the structures although they show a similar trend. Figs. 3 a–3d also show outliers that do not fit the overall trends and which are most probably the structures determined as 2-hy­droxy-3,5-di­nitro­benzoates (II) instead of 2-carb­oxy-4,6-di­nitro­phenolates (III) and vice versa. Fig. 3 e shows the same as Fig. 3 a except for the addition of a few known structures that contain a 3,5-di­nitro-2-oxidobenzoate (IV), which are indicated by blue triangles. Their positions can be explained by the fact that the carboxyl­ate groups are substanti­ally inclined to the benzene ring in such compounds, which causes elongation of the distance between the carboxyl­ate and oxo group, and these mol­ecules will not be considered further.

The alternation of the inclinations (Fig. 4 a–4d) of the dependences of D1, D12, D11, and D2 on (q1 + q2) are in agreement with the delocalization of the electron density in these bonds. The 2-hy­droxy-3,5-di­nitro­benzoic acid (I) mol­ecules (green triangles) and the 2-hy­droxy-3,5-di­nitro­benzoates (II; black squares) are situated apart from the 2-carb­oxy-4,6-di­nitro­phenolates (III; red circles) in the given figures. The fact that D1 tends to be shortest in 2-hy­droxy-3,5-di­nitro­benzoic acid (I) mol­ecules (Fig. 4 a) can be explained by the elongation of bond D5 in the latter mol­ecules because of the attachment of the hydrogen atom and the concomitant shortening of D1. The bond lengths D1 (Fig. 4 a) are equal to 1.28–1.30 Å at (q1 + q2) ≃ 0.08 where the highest probability for the occurrence of a symmetric intra­molecular O⋯H⋯O hydrogen bond takes place. The corresponding values of D12, D11, D2, D6 and D10 are 1.49 Å (Fig. 4 b), 1.43 Å (Fig. 4 c), 1.30 Å (Fig. 4 d), 1.37–1.39 Å (Fig. 4 e) and 1.41–1.43 Å (Fig. 4 f).

Figure 4.

Figure 4

The dependence of bond distances: (a) D1 on (q1 + q2); (b) D12 on (q1 + q2); (c) D11 on (q1 + q2); (d) D2 on (q1 + q2); (e) D6 on (q1 + q2); (f) D10 on (q1 + q2). The colour code for the symbols is the same as in Fig. 3.

Fig. 5 a shows the dependence of D5 on (q1 + q2). Comparing Fig. 5 a to Fig. 4 a, which shows the dependence of D1 on (q1 + q2), an indirect proportionality of both dependences can be observed. The bond length D5 is equal to 1.22–1.24 Å for (q1 + q2) ≃ 0.08 Å. The dependence of D5 on (q1 + q2) (Fig. 5 a) is similar to that of bond D12 (Fig. 4 b) in 2-hy­droxy-3,5-di­nitro­benzoates (II) and 2-carb­oxy-4,6-di­nitro­phenolates (III), but not in mol­ecules of 2-hydroxo-3,5-di­nitro­benzoic acid (I). It is inter­esting that 2-hy­droxy-3,5-di­nitro­benzoic acid (I) mol­ecules are in line with other forms of the title mol­ecules for the dependences in Fig. 5 c and Fig. 4 d. Bond D7 is rather distant from the carb­oxy­lic group (Fig. 5 b) and the delocalization within the pyridine ring is no longer clear. The same holds for bonds D14 and D15 (Figs. 5 c and 5d). Figs. 5 e and 5f show the inclinations, ANG1 and ANG2, of the nitro groups involving bonds D14 and D15, respectively, toward the ring plane.

Figure 5.

Figure 5

The dependence of bond distances: (a) D5 on (q1 + q2); (b) D7 on (q1 + q2); (c) D14 on (q1 + q2). The dependence of dihedral angles: (e) ANG1 on (q1 + q2); (f) ANG2 on (q1 + q2). [ANG1 and ANG2 are the dihedral angles of the nitro groups involving bonds D14 and D15, respectively, toward the ring plane.] The colour code of the symbols is the same as in Fig. 3.

Fig. 6 a–6c show dependences in which the localization of the bridging hydrogen takes place. It seems that the most obtuse angles of O⋯H⋯O (ANG3) occur for (q1 + q2) in the range <0.06–0.10> Å, i.e. for the shortest distances of D13 (2.41 Å). It is questionable whether the position of a bridging hydrogen in the transition zone between 2-hy­droxy-3,5-di­nitro­benzoates (II) and 2-carb­oxy-4,6-di­nitro­phenolates (III) facilitates its positional disorder, which occurs e.g. in NUQVEB, because of the impossibility of angle ANG3 approaching 180°. The dependence of the angles ANG4 and ANG5 (Fig. 1 b) shows once more the effect of incorrectly applied constraints, which are manifested by values close to 109.54° (cf. Figs. 2 a and 2b).

Figure 6.

Figure 6

(a) Dependence of the O⋯H⋯O angle ANG3 on (q1 + q2); (b) dependence of ANG4 on (q1 + q2); (c) dependence of ANG5 on (q1 + q2). Colour code for symbols: green triangles refer to the structures with 2-hy­droxy-3,5-di­nitro­benzoic acid (I), black squares are the structures with 2-hy­droxy-3,5-di­nitro­benzoate (II), and red circles are the structures with 2-carb­oxy-4,6-di­nitro­phenolate (III); blue triangles, squares and circles are the recalculated structures with 2-hy­droxy-3,5-di­nitro­benzoic acid (I), 2-hy­droxy-3,5-di­nitro­benzoate (II) and 2-carb­oxy-4,6-di­nitro­phenolate (III), respectively.

The previous discussion has shown the correlations of D1 and D5 on (q1 + q2) (Figs. 4 a and 5a, respectively), and the indirect dependence of D1 on D5. Therefore, the position of the bridging hydrogen is expected to be related to the environment of the mol­ecules, i.e. to be dependent on ΔpK a = pK a(base) − pK a(acid). The value of ΔpK a is correlated with the occurrence of a structure where the base and the acid components are not ionized, thus forming a co-crystal (Δ < 0), or ionized forming a salt (ΔpK a > 3) (Childs et al., 2007). It is difficult to predict the form in which the acid and the base are present for 0 < ΔpK a < 3 (Childs et al., 2007).

In Table 4, the structures are ordered according to ascending values of the pK a values of the bases, i.e. according to increasing basicity. The corresponding values of ΔpK a are compared with (q1 + q2) and D13. The pK a of 2-hy­droxy-3,5-di­nitro­benzoic acid (I; 3,5-di­nitro­salicylic acid) is reported as 2.18 (Smith & Wermuth, 2014; Hemamalini & Fun, 2010a ), although a value of 1.53 has been reported in the literature (https://www.chemicalbook.com/ProductMSDSDetailCB9172047_EN.htm). The weakest bases given at the top of Table 4 are not able to deprotonate the title mol­ecule, which remains in the form of 2-hy­droxy-3,5-di­nitro­benzoic acid (I). On the other hand, the bases with the largest values of pK a (see the bottom of Table 3) are able to deprive the title mol­ecule of the hy­droxy and acid hydrogen atoms, so in such cases the resulting mol­ecule would be in the form of 3,5-di­nitro-2-oxidobenzoate (IV). The compounds with moderate basicities are able to deprotonate the acid hydrogen atom but not the bridging hydrogen; hence, the resulting forms are 2-hy­droxy-3,5-di­nitro­benzoate (II) or 2-carb­oxy-4,6-di­nitro­phenolate (III). These structures appear in the inter­mediate region of Table 4. A more radical transfer of the acid hydrogen atom should cause a more significant shortening of bond D5, which should be concomitant with the elongation of bond D1. Such an elongation of bond D1 (cf. Fig. 1 a) should support the formation of a 2-carb­oxy-4,6-di­nitro­phenolate (III).

Summary  

(1) The bridging hydrogen in the mol­ecules discussed (IIII) is involved in a resonance-assisted hydrogen bond, which is part of a hexa­gonal Inline graphic(6) ring. The system of conjugated bonds in the title mol­ecules, however, comprises more atoms than the ring in which the bridging hydrogen is involved. In particular, the whole carboxyl­ate/carb­oxy­lic group affects the discussed intra­molecular O⋯H⋯O hydrogen bond.

(2) The transition region between the forms of 2-hy­droxy-3,5-di­nitro­benzoates (II) and 2-carb­oxy-4,6-di­nitro­phenolates (III) takes place for C—O (D1) ≃ 1.28–1.30 Å, C—O (D2) ≃ 1.30 Å, O⋯O distance D13 ≃ 2.41 Å and (q1 + q2) ≃ 0.08 Å. Simultaneously, the highest probability for the presence of the bridging hydrogen to be in the centre of the hydrogen bond is expected in this transition region. However, the hydrogen atom can also be disordered over two positions as occurs in NUQVEB.

(3) The bridging hydrogen in the discussed intra­molecular hydrogen bond can be situated at the centre between both oxygen atoms with approximately equal C—O bond distances. Therefore, the bridging hydrogen can not be situated at the centre of the intra­molecular O⋯H⋯O hydrogen bond in compounds containing 2-hy­droxy-3,5-di­nitro­benzoic acid (I).

(4) In some rare cases (e.g. recalculated SEDKET, KEZJIJ and KEZJIJ01), the bridging hydrogen is bonded to the oxygen atom that forms the shorter C—O bond distance (Table 3). It would be of inter­est to see how the localization of the bridging hydrogen develops with changing temperature in such cases.

(5) Table 4 shows the occurrence of the different forms of the mol­ecules (see scheme) and the dependence on basicity. Alhough it would be expected that the increasing basicity should support the occurrence of 2-carb­oxy-4,6-di­nitro­phenolates (III) and, of course, for very strong bases, 3,5-di­nitro-2-oxidobenzoates (IV), there are many exceptions to this rule.

(6) The positioning of the hydrogen atoms can be affected by the asphericity of the electron density of the donor and acceptor atoms.

(7) It is essential to calculate difference electron-density maps in order to locate correctly the bridging hydrogen atom, and any other hydrogen atoms involved in hydrogen bonding.

(8) The present overview has shown that the application of constraints and restraints is frequently incorrect.

Supplementary Material

Crystal structure: contains datablock(s) global, DUJZAK, JEVNAA, NUQVEB, QIQJAD, SEDKET, VABZIJ, WADXOR, YAXPOE, LUDFUL, SAFGUD, TIYZIM, TUJPEV. DOI: 10.1107/S2056989018011544/su5452sup1.cif

e-74-01344-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018011544/su5452Isup2.hkl

e-74-01344-Isup2.hkl (189.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018011544/su5452IIsup3.hkl

e-74-01344-IIsup3.hkl (160.7KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018011544/su5452IIIsup4.hkl

e-74-01344-IIIsup4.hkl (173.2KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989018011544/su5452IVsup5.hkl

e-74-01344-IVsup5.hkl (327.8KB, hkl)

Structure factors: contains datablock(s) V. DOI: 10.1107/S2056989018011544/su5452Vsup6.hkl

e-74-01344-Vsup6.hkl (313.5KB, hkl)

Structure factors: contains datablock(s) I Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018011544/su5452Isup2.hkl

e-74-01344-Isup2.hkl (189.6KB, hkl)

Structure factors: contains datablock(s) VI. DOI: 10.1107/S2056989018011544/su5452VIsup7.hkl

e-74-01344-VIsup7.hkl (221.2KB, hkl)

Structure factors: contains datablock(s) VII. DOI: 10.1107/S2056989018011544/su5452VIIsup8.hkl

e-74-01344-VIIsup8.hkl (122KB, hkl)

Structure factors: contains datablock(s) VIII. DOI: 10.1107/S2056989018011544/su5452VIIIsup9.hkl

e-74-01344-VIIIsup9.hkl (276.4KB, hkl)

Structure factors: contains datablock(s) IX. DOI: 10.1107/S2056989018011544/su5452IXsup10.hkl

e-74-01344-IXsup10.hkl (167.4KB, hkl)

Structure factors: contains datablock(s) X. DOI: 10.1107/S2056989018011544/su5452Xsup11.hkl

e-74-01344-Xsup11.hkl (137.8KB, hkl)

Structure factors: contains datablock(s) XI. DOI: 10.1107/S2056989018011544/su5452XIsup12.hkl

e-74-01344-XIsup12.hkl (302.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018011544/su5452NUQVEBsup13.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452QIQJADsup14.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452SEDKETsup15.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452TIYZIMsup16.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452TUJPEVsup17.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452VABZIJsup18.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452WADXORsup19.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452YAXPOEsup20.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452sup21.pdf

e-74-01344-sup21.pdf (3.9MB, pdf)

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate (DUJZAK). Crystal data

[Ag(C9H7NO)2](C7H3N2O7) F(000) = 628
Mr = 625.30 Dx = 1.823 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4356 reflections
a = 9.0154 (18) Å θ = 3.6–27.6°
b = 7.6122 (15) Å µ = 0.95 mm1
c = 17.138 (3) Å T = 293 K
β = 104.38 (3)° Block, yellow
V = 1139.3 (4) Å3 0.20 × 0.15 × 0.11 mm
Z = 2

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate (DUJZAK). Data collection

Bruker SMART CCD area-detector diffractometer 4225 reflections with I > 3σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
Graphite monochromator θmax = 27.6°, θmin = 3.6°
φ and ω scans h = −11→11
10841 measured reflections k = −9→8
4602 independent reflections l = −22→22

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate (DUJZAK). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F > 3σ(F)] = 0.023 Hydrogen site location: difference Fourier map
wR(F) = 0.053 H atoms treated by a mixture of independent and constrained refinement
S = 1.34 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
4602 reflections (Δ/σ)max = 0.025
356 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.30 e Å3
48 constraints Absolute structure: 1800 of Friedel pairs used in the refinement
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.004 (17)

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate (DUJZAK). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.Number of fixed parameters 9.

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate (DUJZAK). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.062197 (18) 0.74282 (3) 0.668863 (11) 0.01868 (5)
O1 −0.0993 (2) 0.4630 (2) 0.64021 (12) 0.0202 (6)
O2 0.1741 (2) 0.5061 (2) 0.77196 (12) 0.0214 (6)
N1 −0.1154 (2) 0.7667 (3) 0.55616 (13) 0.0177 (7)
N2 0.2685 (2) 0.8371 (3) 0.75427 (14) 0.0163 (7)
C1 −0.1280 (3) 0.9181 (4) 0.51463 (18) 0.0222 (9)
H1a −0.061241 1.009276 0.535386 0.0267*
C2 −0.2362 (3) 0.9448 (4) 0.44205 (18) 0.0243 (9)
H2a −0.240923 1.051917 0.415439 0.0291*
C3 −0.3354 (3) 0.8130 (4) 0.41016 (19) 0.0209 (9)
H3a −0.407848 0.829471 0.361612 0.0251*
C4 −0.3270 (3) 0.6506 (4) 0.45167 (18) 0.0169 (8)
C5 −0.4264 (3) 0.5079 (4) 0.42259 (17) 0.0209 (9)
H5a −0.500744 0.518344 0.37429 0.0251*
C6 −0.4131 (3) 0.3554 (4) 0.46539 (17) 0.0217 (9)
H6a −0.477402 0.261662 0.445311 0.026*
C7 −0.3036 (3) 0.3371 (3) 0.53948 (17) 0.0184 (8)
H7a −0.297965 0.232672 0.568204 0.0221*
C8 −0.2057 (3) 0.4717 (3) 0.56954 (16) 0.0148 (8)
C9 −0.2139 (3) 0.6331 (3) 0.52566 (16) 0.0141 (8)
C10 0.3159 (3) 0.9993 (4) 0.74633 (17) 0.0188 (9)
H10a 0.256892 1.069872 0.706108 0.0225*
C11 0.4512 (3) 1.0703 (4) 0.79567 (18) 0.0220 (9)
H11a 0.480885 1.184529 0.787703 0.0264*
C12 0.5373 (3) 0.9693 (4) 0.85495 (18) 0.0210 (9)
H12a 0.627346 1.01397 0.887796 0.0252*
C13 0.4907 (3) 0.7960 (3) 0.86712 (16) 0.0171 (8)
C14 0.5743 (3) 0.6845 (4) 0.92853 (17) 0.0200 (8)
H14a 0.665083 0.723938 0.962749 0.024*
C15 0.5225 (3) 0.5197 (4) 0.93771 (17) 0.0206 (8)
H15a 0.577789 0.447807 0.978539 0.0247*
C16 0.3863 (3) 0.4570 (3) 0.88620 (16) 0.0173 (8)
H16a 0.35178 0.344669 0.8937 0.0208*
C17 0.3043 (3) 0.5596 (3) 0.82528 (16) 0.0142 (8)
C18 0.3541 (2) 0.7340 (5) 0.81443 (13) 0.0140 (6)
O3 0.1402 (2) −0.0134 (3) 0.92525 (13) 0.0259 (7)
O4 −0.4152 (2) −0.3755 (3) 0.69139 (13) 0.0284 (7)
O5 −0.3271 (2) −0.5961 (3) 0.76858 (13) 0.0271 (7)
O6 0.1238 (2) −0.5247 (2) 0.98352 (12) 0.0211 (6)
O7 0.1679 (2) −0.2659 (4) 1.03546 (11) 0.0286 (6)
O8 −0.0981 (2) 0.1498 (2) 0.70180 (12) 0.0237 (7)
O9 0.06657 (19) 0.2138 (2) 0.81885 (11) 0.0196 (6)
N3 −0.3217 (2) −0.4436 (3) 0.74764 (14) 0.0173 (7)
N4 0.1088 (2) −0.3645 (3) 0.98085 (13) 0.0152 (7)
C19 −0.1970 (3) −0.3339 (4) 0.79254 (18) 0.0130 (8)
C20 −0.1027 (3) −0.3992 (3) 0.86303 (15) 0.0126 (7)
H20a −0.114934 −0.512855 0.880295 0.0151*
C21 0.0095 (2) −0.2908 (3) 0.90660 (15) 0.0114 (8)
C22 0.0326 (3) −0.1188 (3) 0.88194 (16) 0.0130 (8)
C23 −0.0605 (3) −0.0603 (3) 0.80708 (16) 0.0129 (7)
C24 −0.1770 (3) −0.1678 (3) 0.76332 (17) 0.0132 (8)
H24a −0.240539 −0.128661 0.715089 0.0159*
C25 −0.0307 (3) 0.1145 (3) 0.77245 (16) 0.0148 (8)
H1aa −0.091407 0.377732 0.663815 0.047 (14)*
H2aa 0.145536 0.395004 0.783901 0.043 (11)*
H3b 0.135279 0.095353 0.887993 0.17 (3)*

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate (DUJZAK). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.01622 (8) 0.01722 (9) 0.01945 (10) −0.00339 (11) −0.00154 (6) 0.00024 (11)
O1 0.0219 (9) 0.0127 (9) 0.0199 (10) −0.0063 (8) −0.0065 (8) 0.0058 (8)
O2 0.0185 (9) 0.0173 (9) 0.0231 (11) −0.0065 (8) −0.0049 (8) 0.0030 (8)
N1 0.0190 (9) 0.0152 (14) 0.0181 (11) −0.0003 (11) 0.0033 (8) 0.0008 (10)
N2 0.0145 (10) 0.0161 (11) 0.0187 (12) −0.0018 (9) 0.0049 (9) 0.0005 (9)
C1 0.0254 (14) 0.0145 (12) 0.0263 (16) −0.0042 (12) 0.0056 (12) 0.0044 (11)
C2 0.0325 (15) 0.0177 (13) 0.0239 (16) 0.0069 (13) 0.0093 (12) 0.0104 (11)
C3 0.0214 (13) 0.0247 (13) 0.0154 (15) 0.0059 (12) 0.0021 (12) 0.0023 (11)
C4 0.0136 (12) 0.0220 (14) 0.0150 (15) 0.0026 (11) 0.0031 (10) 0.0005 (12)
C5 0.0160 (12) 0.0289 (15) 0.0156 (14) 0.0005 (12) −0.0002 (10) −0.0035 (12)
C6 0.0156 (12) 0.0247 (14) 0.0217 (16) −0.0092 (12) −0.0009 (11) −0.0062 (11)
C7 0.0179 (12) 0.0175 (14) 0.0187 (14) −0.0039 (11) 0.0026 (10) 0.0018 (11)
C8 0.0139 (12) 0.0146 (12) 0.0140 (13) 0.0001 (11) 0.0000 (9) −0.0001 (10)
C9 0.0147 (12) 0.0142 (12) 0.0132 (13) −0.0002 (11) 0.0032 (9) 0.0016 (10)
C10 0.0208 (13) 0.0176 (13) 0.0198 (15) −0.0021 (12) 0.0084 (11) 0.0021 (11)
C11 0.0259 (14) 0.0166 (13) 0.0254 (16) −0.0085 (12) 0.0099 (12) −0.0039 (11)
C12 0.0180 (12) 0.0226 (14) 0.0235 (15) −0.0108 (12) 0.0074 (11) −0.0101 (12)
C13 0.0138 (11) 0.0232 (14) 0.0156 (14) −0.0032 (10) 0.0064 (10) −0.0059 (10)
C14 0.0118 (11) 0.0285 (14) 0.0182 (15) −0.0034 (11) 0.0010 (10) −0.0071 (10)
C15 0.0143 (12) 0.0281 (15) 0.0175 (15) 0.0038 (12) 0.0002 (10) 0.0017 (11)
C16 0.0160 (12) 0.0146 (12) 0.0208 (15) −0.0018 (11) 0.0035 (10) −0.0001 (10)
C17 0.0107 (11) 0.0149 (12) 0.0165 (14) −0.0020 (10) 0.0025 (9) −0.0031 (10)
C18 0.0115 (9) 0.0160 (11) 0.0156 (11) 0.0014 (17) 0.0052 (8) 0.0001 (15)
O3 0.0215 (10) 0.0236 (11) 0.0279 (12) −0.0066 (9) −0.0029 (9) 0.0016 (9)
O4 0.0212 (10) 0.0283 (11) 0.0267 (12) −0.0044 (9) −0.0110 (8) −0.0010 (9)
O5 0.0295 (10) 0.0195 (10) 0.0288 (12) −0.0130 (9) 0.0004 (9) 0.0016 (9)
O6 0.0213 (9) 0.0158 (9) 0.0236 (11) 0.0028 (8) 0.0007 (8) 0.0059 (8)
O7 0.0340 (9) 0.0225 (9) 0.0194 (9) 0.0057 (15) −0.0121 (7) −0.0015 (13)
O8 0.0304 (11) 0.0156 (10) 0.0204 (11) −0.0061 (9) −0.0028 (8) 0.0051 (8)
O9 0.0209 (8) 0.0129 (12) 0.0223 (10) −0.0061 (8) 0.0003 (7) 0.0009 (8)
N3 0.0141 (10) 0.0190 (11) 0.0169 (12) −0.0064 (10) 0.0001 (9) −0.0044 (9)
N4 0.0115 (10) 0.0169 (11) 0.0154 (12) 0.0012 (9) −0.0003 (8) 0.0025 (9)
C19 0.0080 (11) 0.0164 (12) 0.0135 (15) −0.0043 (10) 0.0009 (10) −0.0044 (11)
C20 0.0158 (12) 0.0082 (11) 0.0137 (13) −0.0009 (10) 0.0036 (9) 0.0004 (9)
C21 0.0098 (9) 0.0122 (17) 0.0103 (11) 0.0048 (10) −0.0012 (8) 0.0021 (9)
C22 0.0086 (11) 0.0150 (13) 0.0147 (14) −0.0009 (10) 0.0015 (9) −0.0033 (10)
C23 0.0133 (11) 0.0110 (12) 0.0134 (13) −0.0001 (10) 0.0015 (9) −0.0007 (9)
C24 0.0120 (12) 0.0135 (13) 0.0142 (15) 0.0018 (11) 0.0033 (10) 0.0004 (11)
C25 0.0153 (12) 0.0109 (11) 0.0177 (14) 0.0006 (10) 0.0029 (10) 0.0010 (10)

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate (DUJZAK). Geometric parameters (Å, º)

O1—C8 1.347 (3) C13—C14 1.415 (4)
O1—H1aa 0.7585 (19) C13—C18 1.415 (3)
O2—C17 1.359 (3) C14—H14a 0.93
O2—H2aa 0.922 (2) C14—C15 1.361 (4)
N1—C1 1.344 (4) C15—H15a 0.93
N1—C9 1.365 (3) C15—C16 1.406 (3)
N2—C10 1.325 (4) C16—H16a 0.93
N2—C18 1.371 (4) C16—C17 1.365 (4)
C1—H1a 0.93 C17—C18 1.429 (5)
C1—C2 1.392 (4) O3—C22 1.333 (3)
C2—H2a 0.93 O3—H3b 1.040 (2)
C2—C3 1.364 (4) O4—N3 1.227 (3)
C3—H3a 0.93 O5—N3 1.219 (3)
C3—C4 1.419 (4) O6—N4 1.226 (3)
C4—C5 1.418 (4) O7—N4 1.215 (3)
C4—C9 1.423 (4) O8—C25 1.242 (3)
C5—H5a 0.93 O9—C25 1.275 (3)
C5—C6 1.362 (4) O9—H3b 1.4952 (19)
C6—H6a 0.93 N3—C19 1.458 (3)
C6—C7 1.408 (4) N4—C21 1.473 (3)
C7—H7a 0.93 C19—C20 1.385 (4)
C7—C8 1.367 (4) C19—C24 1.388 (4)
C8—C9 1.433 (4) C20—H20a 0.93
C10—H10a 0.93 C20—C21 1.373 (3)
C10—C11 1.408 (4) C21—C22 1.408 (4)
C11—H11a 0.93 C22—C23 1.419 (3)
C11—C12 1.354 (4) C23—C24 1.394 (3)
C12—H12a 0.93 C23—C25 1.508 (4)
C12—C13 1.416 (4) C24—H24a 0.93
C8—O1—H1aa 118.2 (2) C13—C14—C15 120.2 (2)
C17—O2—H2aa 111.60 (19) H14a—C14—C15 119.88
C1—N1—C9 118.3 (2) C14—C15—H15a 119.61
C10—N2—C18 118.4 (2) C14—C15—C16 120.8 (2)
N1—C1—H1a 118.43 H15a—C15—C16 119.61
N1—C1—C2 123.1 (2) C15—C16—H16a 119.71
H1a—C1—C2 118.43 C15—C16—C17 120.6 (2)
C1—C2—H2a 120.19 H16a—C16—C17 119.71
C1—C2—C3 119.6 (3) O2—C17—C16 123.8 (2)
H2a—C2—C3 120.19 O2—C17—C18 116.0 (2)
C2—C3—H3a 120.26 C16—C17—C18 120.2 (2)
C2—C3—C4 119.5 (2) N2—C18—C13 121.8 (3)
H3a—C3—C4 120.27 N2—C18—C17 119.6 (2)
C3—C4—C5 122.8 (2) C13—C18—C17 118.6 (2)
C3—C4—C9 117.8 (2) C22—O3—H3b 102.89 (19)
C5—C4—C9 119.5 (2) C25—O9—H3b 102.84 (17)
C4—C5—H5a 120 O4—N3—O5 124.3 (2)
C4—C5—C6 120.0 (2) O4—N3—C19 117.5 (2)
H5a—C5—C6 120 O5—N3—C19 118.2 (2)
C5—C6—H6a 119.4 O6—N4—O7 124.2 (2)
C5—C6—C7 121.2 (2) O6—N4—C21 116.66 (19)
H6a—C6—C7 119.4 O7—N4—C21 119.1 (2)
C6—C7—H7a 119.72 N3—C19—C20 118.7 (2)
C6—C7—C8 120.6 (2) N3—C19—C24 118.9 (2)
H7a—C7—C8 119.72 C20—C19—C24 122.3 (2)
O1—C8—C7 123.5 (2) C19—C20—H20a 121.04
O1—C8—C9 116.5 (2) C19—C20—C21 117.9 (2)
C7—C8—C9 120.0 (2) H20a—C20—C21 121.04
N1—C9—C4 121.7 (2) N4—C21—C20 116.7 (2)
N1—C9—C8 119.6 (2) N4—C21—C22 120.67 (19)
C4—C9—C8 118.7 (2) C20—C21—C22 122.7 (2)
N2—C10—H10a 118.33 O3—C22—C21 122.3 (2)
N2—C10—C11 123.3 (2) O3—C22—C23 120.0 (2)
H10a—C10—C11 118.33 C21—C22—C23 117.7 (2)
C10—C11—H11a 120.58 C22—C23—C24 120.0 (2)
C10—C11—C12 118.8 (3) C22—C23—C25 120.6 (2)
H11a—C11—C12 120.58 C24—C23—C25 119.4 (2)
C11—C12—H12a 119.87 C19—C24—C23 119.2 (2)
C11—C12—C13 120.3 (2) C19—C24—H24a 120.38
H12a—C12—C13 119.87 C23—C24—H24a 120.38
C12—C13—C14 123.1 (2) O8—C25—O9 125.0 (2)
C12—C13—C18 117.4 (2) O8—C25—C23 118.9 (2)
C14—C13—C18 119.6 (3) O9—C25—C23 116.1 (2)
C13—C14—H14a 119.88 O3—H3b—O9 155.88 (12)

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate (DUJZAK). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11a···O5i 0.93 2.48 3.335 (4) 152
O1—H1aa···O8 0.7585 (19) 1.859 (2) 2.606 (3) 167.96 (14)
O2—H2aa···O9 0.922 (2) 1.727 (2) 2.631 (3) 166.48 (15)
O3—H3b···O9 1.040 (2) 1.4952 (19) 2.481 (3) 155.88 (12)

Symmetry code: (i) x+1, y+2, z.

Tetrakis(1H-imidazole-κN3)zinc(II) bis(2-hydroxy-3,5-dinitrobenzoate) (JEVNAA) . Crystal data

[Zn(C3H4N2)4](C7H3N2O7)2 F(000) = 1616
Mr = 791.93 Dx = 1.664 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3242 reflections
a = 25.0809 (15) Å θ = 2.1–26.9°
b = 6.7251 (4) Å µ = 0.87 mm1
c = 18.9145 (10) Å T = 293 K
β = 97.658 (6)° Platelet, yellow
V = 3161.9 (3) Å3 0.20 × 0.18 × 0.10 mm
Z = 4

Tetrakis(1H-imidazole-κN3)zinc(II) bis(2-hydroxy-3,5-dinitrobenzoate) (JEVNAA) . Data collection

Bruker APEX-II area-detector diffractometer 3635 independent reflections
Radiation source: fine-focus sealed tube 2152 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.058
φ and ω scans θmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −32→31
Tmin = 0.846, Tmax = 0.918 k = −8→8
20634 measured reflections l = −24→24

Tetrakis(1H-imidazole-κN3)zinc(II) bis(2-hydroxy-3,5-dinitrobenzoate) (JEVNAA) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F > 3σ(F)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.075 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.23 (Δ/σ)max = 0.007
3635 reflections Δρmax = 0.23 e Å3
244 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
32 constraints Extinction coefficient: 1400 (500)
Primary atom site location: structure-invariant direct methods

Tetrakis(1H-imidazole-κN3)zinc(II) bis(2-hydroxy-3,5-dinitrobenzoate) (JEVNAA) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Number of fixed parameters: 9

Tetrakis(1H-imidazole-κN3)zinc(II) bis(2-hydroxy-3,5-dinitrobenzoate) (JEVNAA) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.47960 (10) 0.4200 (3) 0.62639 (13) 0.0460 (10)
H1 0.444004 0.398202 0.633096 0.0552*
C2 0.50386 (10) 0.3369 (4) 0.57533 (13) 0.0484 (10)
H2 0.488745 0.248295 0.540565 0.0581*
C3 0.56018 (9) 0.5299 (3) 0.63970 (12) 0.0401 (9)
H3 0.591591 0.597819 0.656666 0.0481*
C4 0.59325 (9) 0.9065 (4) 0.83991 (12) 0.0404 (9)
H4 0.591722 0.823229 0.87885 0.0485*
N4 0.62879 (7) 1.0508 (3) 0.83789 (11) 0.0471 (8)
C6 0.57665 (9) 1.0451 (4) 0.73735 (13) 0.0444 (9)
H6 0.560952 1.074705 0.691199 0.0533*
C7 0.73999 (9) 0.4553 (3) 0.34225 (11) 0.0329 (8)
C8 0.79245 (9) 0.5059 (3) 0.36676 (12) 0.0342 (8)
H8 0.817639 0.51762 0.335092 0.0411*
C9 0.80717 (8) 0.5388 (3) 0.43803 (12) 0.0311 (8)
C10 0.77048 (8) 0.5210 (3) 0.48978 (12) 0.0302 (8)
C11 0.71702 (8) 0.4593 (3) 0.46099 (11) 0.0282 (7)
C12 0.70286 (9) 0.4300 (3) 0.38898 (12) 0.0323 (8)
H12 0.667845 0.392676 0.371656 0.0388*
C13 0.67545 (9) 0.4249 (3) 0.50834 (12) 0.0333 (8)
N1 0.51487 (7) 0.5429 (3) 0.66784 (9) 0.0373 (7)
N2 0.55523 (8) 0.4075 (3) 0.58408 (10) 0.0438 (8)
N3 0.56024 (7) 0.8957 (3) 0.77961 (9) 0.0354 (7)
C5 0.61854 (9) 1.1406 (4) 0.77303 (14) 0.0479 (10)
H5 0.637064 1.247402 0.75675 0.0575*
N5 0.72386 (8) 0.4225 (3) 0.26644 (10) 0.0427 (8)
N6 0.86351 (7) 0.5897 (3) 0.46068 (11) 0.0403 (8)
O1 0.78238 (6) 0.5518 (2) 0.55681 (8) 0.0378 (6)
O2 0.68832 (6) 0.4695 (2) 0.57640 (8) 0.0420 (6)
O3 0.63104 (6) 0.3579 (2) 0.48669 (8) 0.0426 (6)
O4 0.67630 (7) 0.3835 (3) 0.24643 (8) 0.0575 (7)
O5 0.75772 (7) 0.4340 (3) 0.22570 (9) 0.0662 (8)
O6 0.89634 (7) 0.5475 (3) 0.42013 (9) 0.0658 (8)
O7 0.87622 (6) 0.6730 (3) 0.51757 (9) 0.0568 (7)
Zn1 0.5 0.70908 (6) 0.75 0.03866 (15)
H1a 0.728641 0.508268 0.579335 0.108 (11)*
H2a 0.580668 0.367714 0.552562 0.088 (9)*
H4a 0.657593 1.098579 0.870594 0.106 (11)*

Tetrakis(1H-imidazole-κN3)zinc(II) bis(2-hydroxy-3,5-dinitrobenzoate) (JEVNAA) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0323 (14) 0.0558 (17) 0.0507 (17) −0.0069 (12) 0.0086 (12) −0.0071 (13)
C2 0.0460 (16) 0.0536 (18) 0.0448 (17) −0.0064 (13) 0.0033 (12) −0.0116 (13)
C3 0.0327 (13) 0.0485 (16) 0.0396 (16) −0.0053 (11) 0.0071 (11) 0.0037 (12)
C4 0.0366 (14) 0.0491 (16) 0.0343 (15) 0.0066 (12) 0.0004 (11) 0.0062 (12)
N4 0.0332 (12) 0.0568 (15) 0.0484 (15) −0.0016 (10) −0.0048 (10) −0.0044 (11)
C6 0.0416 (15) 0.0568 (17) 0.0336 (15) −0.0015 (12) 0.0004 (12) 0.0077 (13)
C7 0.0344 (13) 0.0369 (14) 0.0264 (14) 0.0024 (10) 0.0002 (10) −0.0008 (10)
C8 0.0332 (13) 0.0366 (14) 0.0337 (15) 0.0009 (10) 0.0073 (10) 0.0030 (10)
C9 0.0254 (12) 0.0287 (13) 0.0382 (15) −0.0031 (9) 0.0003 (10) −0.0001 (10)
C10 0.0338 (13) 0.0219 (12) 0.0342 (14) 0.0035 (9) 0.0013 (10) 0.0006 (10)
C11 0.0288 (12) 0.0245 (12) 0.0310 (14) 0.0011 (9) 0.0030 (10) −0.0013 (10)
C12 0.0281 (12) 0.0306 (14) 0.0370 (15) 0.0009 (9) −0.0002 (10) 0.0004 (10)
C13 0.0338 (13) 0.0312 (14) 0.0356 (15) 0.0037 (10) 0.0067 (11) −0.0026 (10)
N1 0.0341 (11) 0.0433 (13) 0.0357 (12) −0.0029 (9) 0.0086 (9) −0.0001 (9)
N2 0.0437 (12) 0.0526 (14) 0.0371 (13) 0.0034 (10) 0.0126 (10) −0.0035 (10)
N3 0.0321 (10) 0.0442 (12) 0.0288 (11) 0.0016 (9) 0.0003 (9) 0.0042 (9)
C5 0.0393 (15) 0.0540 (18) 0.0499 (18) −0.0090 (12) 0.0040 (12) 0.0069 (14)
N5 0.0414 (13) 0.0517 (14) 0.0338 (13) 0.0032 (10) 0.0004 (10) −0.0005 (10)
N6 0.0327 (11) 0.0435 (13) 0.0438 (14) −0.0038 (9) 0.0023 (10) 0.0059 (10)
O1 0.0362 (9) 0.0445 (10) 0.0308 (10) −0.0009 (7) −0.0026 (7) −0.0054 (7)
O2 0.0399 (10) 0.0552 (11) 0.0313 (10) −0.0055 (8) 0.0056 (7) −0.0066 (8)
O3 0.0325 (9) 0.0561 (11) 0.0400 (10) −0.0091 (8) 0.0079 (7) −0.0084 (8)
O4 0.0395 (10) 0.0890 (14) 0.0408 (11) −0.0047 (9) −0.0063 (8) −0.0048 (9)
O5 0.0499 (11) 0.1146 (17) 0.0361 (11) −0.0057 (10) 0.0133 (9) −0.0036 (10)
O6 0.0351 (10) 0.1012 (16) 0.0635 (13) −0.0075 (10) 0.0156 (9) −0.0121 (11)
O7 0.0430 (10) 0.0799 (14) 0.0453 (11) −0.0182 (9) −0.0029 (8) −0.0108 (10)
Zn1 0.0355 (2) 0.0455 (3) 0.0352 (3) 0 0.00566 (17) 0

Tetrakis(1H-imidazole-κN3)zinc(II) bis(2-hydroxy-3,5-dinitrobenzoate) (JEVNAA) . Geometric parameters (Å, º)

C1—H1 0.93 C8—H8 0.93
C1—C2 1.331 (4) C8—C9 1.367 (3)
C1—N1 1.377 (3) C9—C10 1.435 (3)
C2—H2 0.93 C9—N6 1.462 (3)
C2—N2 1.362 (3) C10—C11 1.440 (3)
C3—H3 0.93 C10—O1 1.280 (3)
C3—N1 1.320 (3) C11—C12 1.375 (3)
C3—N2 1.328 (3) C11—C13 1.480 (3)
C4—H4 0.93 C12—H12 0.93
C4—N4 1.322 (3) C13—O2 1.319 (3)
C4—N3 1.319 (3) C13—O3 1.220 (3)
N4—C5 1.361 (3) N2—H2a 0.967 (2)
N4—H4a 0.9427 (18) C5—H5 0.93
C6—H6 0.93 N5—O4 1.231 (3)
C6—N3 1.381 (3) N5—O5 1.223 (3)
C6—C5 1.335 (3) N6—O6 1.231 (3)
C7—C8 1.378 (3) N6—O7 1.217 (3)
C7—C12 1.377 (3) O1—H1a 1.4955 (15)
C7—N5 1.454 (3) O2—H1a 1.0386 (15)
H1—C1—C2 124.94 C9—C10—O1 125.18 (18)
H1—C1—N1 124.94 C11—C10—O1 120.2 (2)
C2—C1—N1 110.1 (2) C10—C11—C12 121.4 (2)
C1—C2—H2 126.81 C10—C11—C13 120.78 (19)
C1—C2—N2 106.4 (2) C12—C11—C13 117.85 (18)
H2—C2—N2 126.81 C7—C12—C11 120.69 (19)
H3—C3—N1 124.28 C7—C12—H12 119.65
H3—C3—N2 124.28 C11—C12—H12 119.66
N1—C3—N2 111.44 (19) C11—C13—O2 117.03 (18)
H4—C4—N4 124.35 C11—C13—O3 122.6 (2)
H4—C4—N3 124.35 O2—C13—O3 120.3 (2)
N4—C4—N3 111.3 (2) C1—N1—C3 104.66 (19)
C4—N4—C5 107.74 (19) C2—N2—C3 107.4 (2)
C4—N4—H4a 133.8 (2) C2—N2—H2a 121.3 (2)
C5—N4—H4a 118.5 (2) C3—N2—H2a 131.3 (2)
H6—C6—N3 125.29 C4—N3—C6 105.04 (18)
H6—C6—C5 125.29 N4—C5—C6 106.5 (2)
N3—C6—C5 109.4 (2) N4—C5—H5 126.75
C8—C7—C12 120.8 (2) C6—C5—H5 126.75
C8—C7—N5 119.8 (2) C7—N5—O4 117.82 (19)
C12—C7—N5 119.40 (19) C7—N5—O5 119.10 (18)
C7—C8—H8 120.27 O4—N5—O5 123.08 (19)
C7—C8—C9 119.5 (2) C9—N6—O6 117.66 (19)
H8—C8—C9 120.27 C9—N6—O7 119.73 (19)
C8—C9—C10 123.06 (18) O6—N6—O7 122.61 (18)
C8—C9—N6 116.8 (2) C10—O1—H1a 98.67 (13)
C10—C9—N6 120.16 (19) C13—O2—H1a 102.66 (16)
C9—C10—C11 114.56 (19) O1—H1a—O2 160.37 (10)

Tetrakis(1H-imidazole-κN3)zinc(II) bis(2-hydroxy-3,5-dinitrobenzoate) (JEVNAA) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O3i 0.93 2.47 3.327 (3) 154
O2—H1a···C10 1.0386 (15) 2.110 (2) 2.820 (3) 123.5 (1)
O2—H1a···O1 1.0386 (15) 1.4955 (15) 2.498 (2) 160.4 (1)
N2—H2a···O3 0.967 (2) 1.8902 (16) 2.838 (3) 165.87 (12)
N4—H4a···O1ii 0.9427 (18) 1.9236 (14) 2.784 (2) 150.60 (13)
N4—H4a···O7ii 0.9427 (18) 2.4336 (18) 2.873 (3) 108.36 (13)

Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+3/2, y+1/2, −z+3/2.

3,5-Dinitrosalicylic acid–phenazine (1/1) (LUDFUL). Crystal data

C7H4N2O7·C12H8N2 Dx = 1.556 Mg m3
Mr = 408.33 Melting point: 471 K
Monoclinic, P21/a Mo Kα radiation, λ = 0.71073 Å
a = 14.8002 (15) Å Cell parameters from 25 reflections
b = 7.4029 (16) Å θ = 5–12°
c = 16.0091 (16) Å µ = 0.12 mm1
β = 96.395 (8)° T = 293 K
V = 1743.1 (5) Å3 Rhombic, yellow
Z = 4 0.36 × 0.34 × 0.26 mm
F(000) = 840

3,5-Dinitrosalicylic acid–phenazine (1/1) (LUDFUL). Data collection

Enraf-Nonius CAD-4 diffractometer Rint = 0.056
Radiation source: fine-focus sealed tube θmax = 28.0°, θmin = 1.5°
Graphite monochromator h = 0→19
w scans k = −9→9
8396 measured reflections l = −21→21
4202 independent reflections 3 standard reflections every 150 reflections
1587 reflections with I > 3σ(I) intensity decay: 2%

3,5-Dinitrosalicylic acid–phenazine (1/1) (LUDFUL). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F > 3σ(F)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.083 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.08 (Δ/σ)max = 0.006
4202 reflections Δρmax = 0.29 e Å3
274 parameters Δρmin = −0.31 e Å3
0 restraints Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
40 constraints Extinction coefficient: 5100 (500)
Primary atom site location: structure-invariant direct methods

3,5-Dinitrosalicylic acid–phenazine (1/1) (LUDFUL). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Number of fixed parameters: 6

3,5-Dinitrosalicylic acid–phenazine (1/1) (LUDFUL). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.98761 (10) 0.2874 (2) 0.46747 (9) 0.0599 (6)
O1 0.85079 (8) 0.4309 (2) 0.24121 (9) 0.0539 (6)
C1 0.98636 (12) 0.4161 (3) 0.33159 (12) 0.0373 (7)
O7 1.12739 (10) 0.6537 (3) 0.15665 (10) 0.0716 (7)
C4 1.17200 (13) 0.4785 (3) 0.36328 (13) 0.0421 (8)
H4a 1.234071 0.501018 0.373432 0.0506*
C5 1.12429 (13) 0.5256 (3) 0.28746 (12) 0.0378 (7)
O2 0.84456 (9) 0.3110 (2) 0.36758 (9) 0.0632 (7)
C2 1.03254 (14) 0.3661 (3) 0.40995 (13) 0.0430 (8)
C3 1.12654 (13) 0.3980 (3) 0.42348 (12) 0.0423 (8)
N1 1.18089 (15) 0.3455 (3) 0.50174 (12) 0.0665 (9)
C7 0.88704 (14) 0.3818 (3) 0.31414 (14) 0.0457 (9)
C6 1.03232 (13) 0.4947 (3) 0.27113 (12) 0.0386 (7)
H6a 1.001506 0.526882 0.219465 0.0463*
O6 1.25212 (10) 0.6448 (3) 0.23814 (10) 0.0804 (8)
O4 1.14445 (14) 0.2742 (3) 0.55587 (13) 0.1291 (12)
N2 1.17129 (12) 0.6128 (3) 0.22290 (12) 0.0504 (8)
O5 1.26041 (12) 0.3839 (3) 0.51002 (10) 0.0996 (10)
N3 0.68389 (10) 0.3729 (2) 0.18982 (10) 0.0388 (6)
N4 0.50803 (11) 0.3575 (3) 0.10509 (11) 0.0517 (7)
C17 0.57960 (14) 0.2988 (3) 0.06927 (13) 0.0505 (9)
C19 0.61248 (13) 0.4326 (3) 0.22726 (12) 0.0377 (7)
C8 0.74378 (15) 0.2489 (3) 0.06912 (15) 0.0552 (9)
H8a 0.802687 0.252957 0.096215 0.0663*
C16 0.66987 (13) 0.3064 (3) 0.11118 (13) 0.0405 (8)
C18 0.52369 (13) 0.4267 (3) 0.18296 (13) 0.0413 (8)
C12 0.45074 (14) 0.4976 (3) 0.22251 (15) 0.0533 (9)
H12a 0.392387 0.498106 0.194132 0.064*
C14 0.55304 (15) 0.5655 (3) 0.34545 (14) 0.0522 (9)
H14a 0.561295 0.610201 0.400052 0.0627*
C13 0.46523 (15) 0.5645 (3) 0.30108 (15) 0.0555 (10)
H13a 0.416606 0.610633 0.326453 0.0666*
C15 0.62592 (14) 0.5020 (3) 0.30951 (13) 0.0442 (8)
H15a 0.683759 0.504497 0.338918 0.053*
C10 0.6400 (2) 0.1763 (4) −0.05197 (16) 0.0789 (12)
H10a 0.631177 0.131533 −0.10654 0.0946*
C11 0.56781 (17) 0.2291 (3) −0.01395 (15) 0.0689 (11)
H11a 0.509671 0.219906 −0.042373 0.0827*
C9 0.72833 (18) 0.1879 (3) −0.01060 (16) 0.0685 (12)
H9a 0.777245 0.152877 −0.038619 0.0822*
H3a 0.919191 0.279002 0.440153 0.138 (12)*
H1a 0.773139 0.402666 0.229166 0.105 (8)*

3,5-Dinitrosalicylic acid–phenazine (1/1) (LUDFUL). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0634 (10) 0.0734 (13) 0.0442 (9) −0.0001 (9) 0.0122 (8) 0.0094 (9)
O1 0.0315 (8) 0.0749 (13) 0.0545 (10) −0.0027 (8) 0.0009 (7) 0.0096 (9)
C1 0.0315 (11) 0.0413 (14) 0.0394 (12) 0.0004 (10) 0.0046 (10) −0.0033 (11)
O7 0.0556 (10) 0.1066 (17) 0.0520 (10) −0.0111 (10) 0.0040 (8) 0.0199 (11)
C4 0.0326 (11) 0.0468 (15) 0.0457 (13) 0.0043 (11) −0.0016 (11) −0.0111 (12)
C5 0.0325 (11) 0.0414 (15) 0.0398 (12) 0.0028 (10) 0.0059 (10) −0.0035 (11)
O2 0.0445 (9) 0.0836 (14) 0.0637 (10) −0.0069 (9) 0.0161 (8) 0.0161 (10)
C2 0.0493 (13) 0.0426 (15) 0.0377 (12) 0.0029 (12) 0.0073 (11) −0.0033 (12)
C3 0.0449 (12) 0.0468 (16) 0.0337 (12) 0.0128 (11) −0.0024 (10) −0.0056 (12)
N1 0.0646 (15) 0.090 (2) 0.0420 (13) 0.0141 (14) −0.0078 (12) −0.0014 (13)
C7 0.0413 (13) 0.0461 (16) 0.0509 (14) −0.0004 (12) 0.0098 (11) −0.0019 (13)
C6 0.0334 (11) 0.0433 (14) 0.0381 (12) 0.0051 (10) −0.0003 (10) −0.0035 (11)
O6 0.0328 (8) 0.1225 (17) 0.0871 (12) −0.0130 (10) 0.0128 (8) 0.0119 (12)
O4 0.1041 (16) 0.197 (3) 0.0807 (15) −0.0108 (16) −0.0151 (13) 0.0758 (17)
N2 0.0369 (11) 0.0590 (15) 0.0567 (13) −0.0011 (11) 0.0116 (10) −0.0046 (12)
O5 0.0575 (11) 0.177 (2) 0.0581 (11) 0.0108 (14) −0.0193 (9) −0.0056 (13)
N3 0.0310 (9) 0.0431 (12) 0.0419 (10) −0.0041 (9) 0.0024 (8) 0.0009 (10)
N4 0.0446 (11) 0.0533 (14) 0.0545 (12) 0.0017 (10) −0.0065 (9) −0.0035 (11)
C17 0.0538 (14) 0.0491 (17) 0.0469 (14) 0.0046 (13) −0.0024 (12) −0.0024 (13)
C19 0.0354 (12) 0.0362 (14) 0.0412 (13) −0.0040 (11) 0.0029 (10) 0.0023 (11)
C8 0.0564 (15) 0.0521 (18) 0.0588 (16) 0.0030 (13) 0.0136 (13) −0.0013 (13)
C16 0.0459 (13) 0.0339 (14) 0.0419 (13) −0.0006 (11) 0.0057 (11) 0.0018 (11)
C18 0.0352 (11) 0.0378 (15) 0.0504 (13) −0.0009 (11) 0.0032 (10) −0.0008 (12)
C12 0.0355 (13) 0.0510 (17) 0.0730 (17) 0.0020 (12) 0.0041 (12) −0.0052 (14)
C14 0.0630 (15) 0.0471 (17) 0.0484 (14) −0.0037 (14) 0.0143 (13) −0.0049 (13)
C13 0.0457 (14) 0.0512 (18) 0.0728 (18) 0.0032 (13) 0.0208 (13) −0.0040 (15)
C15 0.0419 (13) 0.0481 (16) 0.0418 (13) −0.0029 (12) 0.0012 (11) 0.0047 (12)
C10 0.107 (2) 0.078 (2) 0.0504 (16) 0.009 (2) 0.0051 (17) −0.0198 (16)
C11 0.0775 (19) 0.071 (2) 0.0533 (17) 0.0057 (16) −0.0147 (14) −0.0148 (15)
C9 0.089 (2) 0.060 (2) 0.0602 (18) 0.0060 (17) 0.0270 (15) −0.0069 (16)

3,5-Dinitrosalicylic acid–phenazine (1/1) (LUDFUL). Geometric parameters (Å, º)

O3—C2 1.329 (3) N4—C17 1.332 (3)
O3—H3a 1.0592 (14) N4—C18 1.344 (3)
O1—C7 1.282 (3) C17—C16 1.428 (3)
O1—H1a 1.1628 (13) C17—C11 1.421 (3)
C1—C2 1.410 (3) C19—C18 1.423 (3)
C1—C7 1.487 (3) C19—C15 1.407 (3)
C1—C6 1.373 (3) C8—H8a 0.93
O7—N2 1.219 (2) C8—C16 1.413 (3)
C4—H4a 0.93 C8—C9 1.349 (3)
C4—C5 1.379 (3) C18—C12 1.412 (3)
C4—C3 1.371 (3) C12—H12a 0.93
C5—C6 1.376 (3) C12—C13 1.347 (3)
C5—N2 1.459 (3) C14—H14a 0.93
O2—C7 1.234 (3) C14—C13 1.410 (3)
C2—C3 1.404 (3) C14—C15 1.361 (3)
C3—N1 1.464 (3) C13—H13a 0.93
N1—O4 1.194 (3) C15—H15a 0.93
N1—O5 1.204 (3) C10—H10a 0.93
C6—H6a 0.93 C10—C11 1.346 (4)
O6—N2 1.217 (2) C10—C9 1.400 (4)
N3—C19 1.346 (3) C11—H11a 0.93
N3—C16 1.346 (3) C9—H9a 0.93
C2—O3—H3a 105.60 (13) C16—C17—C11 117.8 (2)
C7—O1—H1a 113.94 (15) N3—C19—C18 119.68 (18)
C2—C1—C7 119.58 (18) N3—C19—C15 120.03 (17)
C2—C1—C6 120.63 (17) C18—C19—C15 120.28 (19)
C7—C1—C6 119.79 (17) H8a—C8—C16 120.23
H4a—C4—C5 120.49 H8a—C8—C9 120.23
H4a—C4—C3 120.49 C16—C8—C9 119.5 (2)
C5—C4—C3 119.01 (18) N3—C16—C17 119.52 (18)
C4—C5—C6 121.58 (19) N3—C16—C8 120.61 (17)
C4—C5—N2 119.83 (17) C17—C16—C8 119.86 (19)
C6—C5—N2 118.58 (17) N4—C18—C19 121.90 (19)
C7—O2—H3a 102.24 (13) N4—C18—C12 119.74 (18)
O3—C2—C1 120.09 (17) C19—C18—C12 118.35 (19)
O3—C2—C3 122.05 (17) C18—C12—H12a 119.82
C1—C2—C3 117.84 (19) C18—C12—C13 120.35 (19)
C4—C3—C2 121.34 (18) H12a—C12—C13 119.82
C4—C3—N1 116.79 (18) H14a—C14—C13 119.52
C2—C3—N1 121.86 (19) H14a—C14—C15 119.52
C3—N1—O4 119.3 (2) C13—C14—C15 121.0 (2)
C3—N1—O5 118.0 (2) C12—C13—C14 121.0 (2)
O4—N1—O5 122.7 (2) C12—C13—H13a 119.52
O1—C7—C1 115.30 (19) C14—C13—H13a 119.52
O1—C7—O2 123.93 (18) C19—C15—C14 119.05 (18)
C1—C7—O2 120.76 (18) C19—C15—H15a 120.48
C1—C6—C5 119.59 (17) C14—C15—H15a 120.48
C1—C6—H6a 120.21 H10a—C10—C11 119.51
C5—C6—H6a 120.2 H10a—C10—C9 119.51
O7—N2—C5 118.45 (16) C11—C10—C9 121.0 (2)
O7—N2—O6 122.87 (19) C17—C11—C10 120.6 (2)
C5—N2—O6 118.66 (17) C17—C11—H11a 119.71
C19—N3—C16 119.31 (15) C10—C11—H11a 119.71
C19—N3—H1a 119.38 (14) C8—C9—C10 121.3 (3)
C16—N3—H1a 120.79 (14) C8—C9—H9a 119.37
C17—N4—C18 117.41 (17) C10—C9—H9a 119.37
N4—C17—C16 122.14 (19) O3—H3a—O2 151.72 (10)
N4—C17—C11 120.09 (19) O1—H1a—N3 163.24 (10)

3,5-Dinitrosalicylic acid–phenazine (1/1) (LUDFUL). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13a···O4i 0.93 2.49 3.334 (3) 151
O3—H3a···O2 1.0592 (14) 1.5297 (14) 2.5132 (19) 151.72 (10)
O1—H1a···N3 1.1628 (13) 1.4160 (14) 2.5515 (19) 163.24 (10)

Symmetry code: (i) −x+3/2, y+1/2, −z+1.

2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (NUQVEB). Crystal data

C6H9N2+·C7H3N2O7 Z = 2
Mr = 336.27 F(000) = 348
Triclinic, P1 Dx = 1.569 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.8673 (7) Å Cell parameters from 5139 reflections
b = 8.0991 (9) Å θ = 2.7–32.4°
c = 15.2437 (17) Å µ = 0.13 mm1
α = 86.844 (3)° T = 100 K
β = 84.252 (3)° Block, yellow
γ = 81.209 (3)° 0.29 × 0.14 × 0.08 mm
V = 711.69 (14) Å3

2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (NUQVEB). Data collection

Bruker APEX DUO CCD area-detector diffractometer 4943 independent reflections
Radiation source: fine-focus sealed tube 3677 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.023
φ and ω scans θmax = 32.5°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −8→8
Tmin = 0.963, Tmax = 0.990 k = −12→11
12709 measured reflections l = −22→23

2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (NUQVEB). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F > 3σ(F)] = 0.042 Hydrogen site location: difference Fourier map
wR(F) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 2.06 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
4943 reflections (Δ/σ)max = 0.009
222 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.32 e Å3
34 constraints

2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (NUQVEB). Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Number of fixed parameters: 15

2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (NUQVEB). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.50355 (15) 0.28624 (11) 0.24318 (6) 0.0153 (3)
N2 0.82331 (16) 0.41649 (12) 0.19964 (6) 0.0182 (3)
C1 0.67739 (18) 0.36376 (13) 0.26429 (7) 0.0152 (3)
C2 0.35124 (18) 0.22197 (14) 0.30471 (7) 0.0165 (3)
H2 0.233313 0.167725 0.285731 0.0198*
C3 0.36539 (18) 0.23424 (14) 0.39257 (7) 0.0180 (3)
C4 0.54266 (19) 0.31918 (15) 0.41642 (7) 0.0200 (3)
H4 0.556083 0.332079 0.477169 0.024*
C5 0.69461 (19) 0.38301 (14) 0.35491 (7) 0.0186 (3)
H5 0.811136 0.439959 0.372833 0.0223*
C6 0.2014 (2) 0.16274 (17) 0.46143 (8) 0.0262 (4)
H6a 0.118019 0.252439 0.498084 0.0394*
H6b 0.090144 0.110743 0.432458 0.0394*
H6c 0.289083 0.078457 0.498608 0.0394*
O1 0.17284 (13) 0.61818 (10) 0.14277 (5) 0.0201 (2)
O2 0.10549 (15) 0.60964 (11) 0.31689 (5) 0.0252 (3)
O3 0.28472 (15) 0.76461 (12) 0.38855 (5) 0.0275 (3)
O4 0.93312 (14) 0.99538 (11) 0.26216 (6) 0.0242 (3)
O5 0.99966 (15) 1.02486 (11) 0.11988 (6) 0.0279 (3)
O6 0.55543 (14) 0.76370 (11) −0.07523 (5) 0.0224 (3)
O7 0.26607 (14) 0.63258 (10) −0.01549 (5) 0.0199 (2)
N3 0.25052 (15) 0.70323 (12) 0.31961 (6) 0.0172 (3)
N4 0.89095 (16) 0.97282 (12) 0.18597 (6) 0.0190 (3)
C7 0.33912 (17) 0.70052 (13) 0.15501 (7) 0.0141 (3)
C8 0.38900 (17) 0.74506 (13) 0.23906 (7) 0.0144 (3)
C9 0.56997 (17) 0.83259 (13) 0.24874 (7) 0.0156 (3)
H9 0.601439 0.859704 0.305724 0.0187*
C10 0.70326 (17) 0.87968 (13) 0.17493 (7) 0.0154 (3)
C11 0.66121 (18) 0.84357 (13) 0.09021 (7) 0.0157 (3)
H11 0.753695 0.879143 0.040052 0.0188*
C12 0.48279 (17) 0.75522 (13) 0.08058 (7) 0.0139 (3)
C13 0.43623 (18) 0.71649 (13) −0.01006 (7) 0.0165 (3)
H1o7 0.20768 0.615457 0.041923 0.044 (6)* 0.62 (3)
H1o1 0.186813 0.613081 0.081569 0.044 (6)* 0.38 (3)
H2a 0.809476 0.397973 0.143402 0.035 (4)*
H2b 0.928572 0.469891 0.211657 0.048 (5)*
H1 0.481117 0.276133 0.186443 0.032 (4)*

2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (NUQVEB). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0166 (4) 0.0168 (5) 0.0130 (4) −0.0032 (3) −0.0023 (3) −0.0006 (3)
N2 0.0194 (4) 0.0221 (5) 0.0147 (4) −0.0085 (4) −0.0004 (3) −0.0009 (4)
C1 0.0166 (5) 0.0137 (5) 0.0152 (5) −0.0012 (4) −0.0022 (4) −0.0004 (4)
C2 0.0142 (5) 0.0162 (5) 0.0192 (5) −0.0026 (4) −0.0015 (4) −0.0007 (4)
C3 0.0182 (5) 0.0180 (5) 0.0168 (5) −0.0011 (4) 0.0004 (4) 0.0009 (4)
C4 0.0239 (5) 0.0239 (6) 0.0127 (5) −0.0043 (5) −0.0035 (4) −0.0007 (4)
C5 0.0201 (5) 0.0201 (6) 0.0169 (5) −0.0054 (4) −0.0041 (4) −0.0004 (4)
C6 0.0238 (6) 0.0324 (7) 0.0219 (6) −0.0077 (5) 0.0028 (4) 0.0047 (5)
O1 0.0192 (4) 0.0259 (4) 0.0176 (4) −0.0108 (3) −0.0027 (3) −0.0010 (3)
O2 0.0275 (4) 0.0281 (5) 0.0220 (4) −0.0141 (4) 0.0034 (3) −0.0013 (3)
O3 0.0290 (5) 0.0434 (6) 0.0120 (4) −0.0097 (4) −0.0019 (3) −0.0062 (4)
O4 0.0215 (4) 0.0234 (4) 0.0302 (5) −0.0036 (3) −0.0110 (3) −0.0066 (4)
O5 0.0227 (4) 0.0276 (5) 0.0354 (5) −0.0122 (4) −0.0009 (3) 0.0022 (4)
O6 0.0280 (4) 0.0278 (5) 0.0128 (4) −0.0102 (4) 0.0001 (3) −0.0006 (3)
O7 0.0229 (4) 0.0252 (4) 0.0139 (4) −0.0096 (3) −0.0034 (3) −0.0010 (3)
N3 0.0168 (4) 0.0200 (5) 0.0145 (4) −0.0020 (4) −0.0017 (3) −0.0002 (4)
N4 0.0154 (4) 0.0150 (5) 0.0275 (5) −0.0027 (4) −0.0051 (4) −0.0025 (4)
C7 0.0135 (4) 0.0136 (5) 0.0150 (5) −0.0010 (4) −0.0022 (4) −0.0010 (4)
C8 0.0145 (5) 0.0155 (5) 0.0128 (5) −0.0016 (4) 0.0000 (4) −0.0003 (4)
C9 0.0144 (5) 0.0156 (5) 0.0169 (5) 0.0000 (4) −0.0038 (4) −0.0031 (4)
C10 0.0128 (4) 0.0131 (5) 0.0210 (5) −0.0030 (4) −0.0035 (4) −0.0018 (4)
C11 0.0148 (5) 0.0137 (5) 0.0179 (5) −0.0009 (4) −0.0007 (4) −0.0005 (4)
C12 0.0145 (4) 0.0141 (5) 0.0132 (5) −0.0020 (4) −0.0018 (4) −0.0009 (4)
C13 0.0190 (5) 0.0153 (5) 0.0151 (5) −0.0021 (4) −0.0026 (4) −0.0012 (4)

2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (NUQVEB). Geometric parameters (Å, º)

N1—C1 1.3498 (15) O1—H1o1 0.9310 (8)
N1—C2 1.3674 (14) O2—N3 1.2280 (14)
N1—H1 0.8977 (9) O3—N3 1.2338 (13)
N2—C1 1.3353 (14) O4—N4 1.2402 (14)
N2—H2a 0.8921 (9) O5—N4 1.2273 (13)
N2—H2b 0.8456 (10) O6—C13 1.2340 (13)
C1—C5 1.4139 (15) O7—C13 1.3022 (15)
C2—H2 0.95 O7—H1o7 0.9185 (8)
C2—C3 1.3602 (16) N3—C8 1.4564 (13)
C3—C4 1.4174 (17) N4—C10 1.4544 (15)
C3—C6 1.5049 (16) C7—C8 1.4197 (15)
C4—H4 0.95 C7—C12 1.4357 (14)
C4—C5 1.3643 (16) C8—C9 1.3874 (16)
C5—H5 0.95 C9—H9 0.95
C6—H6a 0.98 C9—C10 1.3750 (15)
C6—H6b 0.98 C10—C11 1.3934 (16)
C6—H6c 0.98 C11—H11 0.95
H6a—H6b 1.6003 C11—C12 1.3787 (16)
H6a—H6c 1.6003 C12—C13 1.4939 (15)
H6b—H6c 1.6003 H2a—H2b 1.4990 (2)
O1—C7 1.2964 (14)
C1—N1—C2 123.29 (9) O2—N3—O3 122.52 (9)
C1—N1—H1 120.41 (9) O2—N3—C8 119.61 (9)
C2—N1—H1 116.29 (10) O3—N3—C8 117.87 (10)
C1—N2—H2a 120.74 (11) O4—N4—O5 123.30 (10)
C1—N2—H2b 120.05 (10) O4—N4—C10 118.02 (9)
H2a—N2—H2b 119.20 (10) O5—N4—C10 118.69 (10)
N1—C1—N2 118.98 (10) O1—C7—C8 124.03 (9)
N1—C1—C5 117.27 (9) O1—C7—C12 119.84 (10)
N2—C1—C5 123.75 (11) C8—C7—C12 116.12 (10)
N1—C2—H2 119.38 N3—C8—C7 121.67 (10)
N1—C2—C3 121.25 (11) N3—C8—C9 116.48 (9)
H2—C2—C3 119.38 C7—C8—C9 121.84 (9)
C2—C3—C4 116.54 (10) C8—C9—H9 120.37
C2—C3—C6 122.15 (11) C8—C9—C10 119.26 (10)
C4—C3—C6 121.31 (10) H9—C9—C10 120.37
C3—C4—H4 118.95 N4—C10—C9 118.68 (10)
C3—C4—C5 122.10 (10) N4—C10—C11 119.25 (9)
H4—C4—C5 118.95 C9—C10—C11 122.05 (10)
C1—C5—C4 119.51 (11) C10—C11—H11 120.64
C1—C5—H5 120.24 C10—C11—C12 118.72 (9)
C4—C5—H5 120.24 H11—C11—C12 120.64
C3—C6—H6a 109.47 C7—C12—C11 121.98 (10)
C3—C6—H6b 109.47 C7—C12—C13 119.00 (10)
C3—C6—H6c 109.47 C11—C12—C13 119.02 (9)
H6a—C6—H6b 109.47 O6—C13—O7 123.12 (10)
H6a—C6—H6c 109.47 O6—C13—C12 120.31 (10)
H6b—C6—H6c 109.47 O7—C13—C12 116.57 (9)
C7—O1—H1o7 98.33 (6) O1—H1o7—O7 161.55 (6)
C7—O1—H1o1 101.65 (8) O7—H1o7—H1o1 166.67 (6)
C13—O7—H1o7 104.71 (9) O1—H1o1—O7 163.52 (6)
C13—O7—H1o1 99.43 (7) O1—H1o1—H1o7 171.56 (5)

2-Amino-5-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate (NUQVEB). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O4i 0.95 2.47 3.4107 (16) 169
C4—H4···O3ii 0.95 2.38 3.2397 (15) 151
C5—H5···O2iii 0.95 2.43 3.2361 (16) 143
O7—H1o7···O1 0.9185 (8) 1.5313 (8) 2.4202 (12) 161.55 (6)
O1—H1o1···O7 0.9310 (8) 1.5130 (8) 2.4202 (12) 163.52 (6)
N2—H2a···O7iv 0.8921 (9) 2.0783 (9) 2.9655 (14) 172.84 (6)
N2—H2b···O1iii 0.8456 (10) 2.1644 (9) 2.8526 (14) 138.40 (6)
N2—H2b···O2iii 0.8456 (10) 2.4133 (10) 3.1741 (14) 150.02 (6)
N1—H1···O6iv 0.8977 (9) 1.7828 (9) 2.6781 (13) 174.83 (6)

Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y+1, −z.

3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide monosolvate (QIQJAD) . Crystal data

C9H8Cl2N5+·C7H3N2O7·C3H7NO Z = 2
Mr = 557.31 F(000) = 572
Triclinic, P1 Dx = 1.564 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.0227 (5) Å Cell parameters from 6413 reflections
b = 10.5507 (5) Å θ = 2.3–28.2°
c = 12.5359 (6) Å µ = 0.34 mm1
α = 81.858 (1)° T = 294 K
β = 71.888 (1)° Plate, colourless
γ = 70.009 (1)° 0.16 × 0.14 × 0.08 mm
V = 1183.1 (1) Å3

3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide monosolvate (QIQJAD) . Data collection

Bruker SMART APEX CCD area-detector diffractometer 5507 independent reflections
Radiation source: fine-focus sealed tube 4441 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.019
ω scans θmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→13
Tmin = 0.93, Tmax = 0.97 k = −13→13
13936 measured reflections l = −16→16

3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide monosolvate (QIQJAD) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
R[F > 3σ(F)] = 0.056 Secondary atom site location: difference Fourier map
wR(F) = 0.147 Hydrogen site location: difference Fourier map
S = 3.41 H atoms treated by a mixture of independent and constrained refinement
5507 reflections Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
340 parameters (Δ/σ)max = 0.020
0 restraints Δρmax = 0.80 e Å3
48 constraints Δρmin = −0.36 e Å3

3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide monosolvate (QIQJAD) . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Number of fixed parameters: 18

3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide monosolvate (QIQJAD) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.32107 (18) 1.06764 (19) 0.15844 (16) 0.0464 (7)
C2 0.2718 (2) 1.0232 (2) 0.08378 (15) 0.0485 (7)
C3 0.2713 (2) 1.0903 (2) −0.02046 (16) 0.0529 (8)
C4 0.3231 (2) 1.2001 (2) −0.04951 (19) 0.0621 (9)
H4 0.323127 1.245173 −0.11886 0.0745*
C5 0.3741 (2) 1.2420 (2) 0.02358 (19) 0.0632 (10)
H5 0.410127 1.314857 0.001937 0.0758*
C6 0.3745 (2) 1.1807 (2) 0.12857 (17) 0.0537 (8)
H6 0.40816 1.211924 0.177727 0.0645*
C7 0.32753 (18) 0.99894 (19) 0.26974 (15) 0.0437 (7)
C8 0.35068 (19) 0.8912 (2) 0.47363 (15) 0.0449 (7)
C9 0.19780 (18) 0.99408 (18) 0.36291 (15) 0.0418 (7)
N1 0.45735 (16) 0.95248 (17) 0.28531 (13) 0.0488 (6)
N2 0.46755 (16) 0.89842 (17) 0.38722 (13) 0.0484 (6)
N3 0.37354 (18) 0.8352 (2) 0.56859 (14) 0.0613 (8)
N4 0.21299 (15) 0.93978 (16) 0.46191 (12) 0.0454 (6)
N5 0.06397 (16) 1.04599 (17) 0.35102 (13) 0.0504 (7)
Cl1 0.21444 (7) 0.88366 (6) 0.11855 (5) 0.0685 (3)
Cl2 0.20368 (7) 1.04039 (8) −0.11161 (5) 0.0772 (3)
C10 0.7671 (2) 0.7509 (2) 0.50260 (17) 0.0495 (8)
C11 0.92521 (19) 0.68875 (18) 0.50532 (16) 0.0456 (8)
C12 1.0399 (2) 0.68056 (19) 0.40501 (17) 0.0482 (8)
C13 1.1855 (2) 0.6217 (2) 0.4120 (2) 0.0565 (9)
C14 1.2169 (3) 0.5728 (2) 0.5120 (2) 0.0650 (11)
H14 1.31429 0.535992 0.515021 0.078*
C15 1.1014 (3) 0.5795 (2) 0.6070 (2) 0.0608 (10)
C16 0.9560 (2) 0.63637 (19) 0.60559 (18) 0.0537 (9)
H16 0.879592 0.639442 0.671313 0.0645*
N6 1.3082 (2) 0.6096 (2) 0.3083 (2) 0.0763 (10)
N7 1.1324 (3) 0.5213 (2) 0.7146 (3) 0.0870 (14)
O1 0.74835 (14) 0.79734 (16) 0.40757 (12) 0.0638 (7)
O2 0.66684 (16) 0.75284 (17) 0.58991 (13) 0.0695 (7)
O3 1.01381 (16) 0.72881 (16) 0.30779 (13) 0.0651 (7)
O4 1.3027 (2) 0.5624 (2) 0.22939 (18) 0.0962 (10)
O5 1.4096 (2) 0.6460 (3) 0.3106 (2) 0.1311 (14)
O6 1.2621 (3) 0.4654 (3) 0.7114 (2) 0.1272 (14)
O7 1.0297 (3) 0.5356 (3) 0.7980 (2) 0.1153 (15)
C17 0.8968 (2) 0.2419 (2) 0.13898 (19) 0.0638 (10)
H17 0.997049 0.225753 0.10284 0.0765*
C18 0.6486 (3) 0.3564 (4) 0.1366 (3) 0.1002 (16)
H18a 0.600566 0.362237 0.079827 0.1503*
H18b 0.612084 0.441665 0.171497 0.1503*
H18c 0.628154 0.287766 0.192178 0.1503*
C19 0.8613 (4) 0.3905 (3) −0.0204 (2) 0.0959 (16)
H19a 0.812684 0.38463 −0.07367 0.1439*
H19b 0.842404 0.483699 −0.008394 0.1439*
H19c 0.965894 0.347377 −0.048929 0.1439*
N8 0.8043 (2) 0.32305 (17) 0.08649 (14) 0.0588 (8)
O8 0.86513 (17) 0.18476 (18) 0.23111 (12) 0.0693 (7)
H3n 0.459992 0.808642 0.579383 0.067 (7)*
H4n 0.300684 0.831649 0.62665 0.058 (6)*
H2n 0.560448 0.867423 0.392878 0.069 (7)*
H5n −0.01125 1.040769 0.406749 0.056 (6)*
H6n 0.043449 1.086703 0.2906 0.052 (6)*
H3o 0.911378 0.756483 0.330791 0.131 (12)*

3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide monosolvate (QIQJAD) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0300 (8) 0.0541 (11) 0.0483 (10) −0.0081 (8) −0.0060 (7) −0.0055 (8)
C2 0.0354 (9) 0.0578 (11) 0.0464 (10) −0.0118 (8) −0.0044 (8) −0.0068 (8)
C3 0.0364 (9) 0.0682 (13) 0.0443 (10) −0.0090 (9) −0.0049 (8) −0.0047 (9)
C4 0.0457 (11) 0.0737 (15) 0.0546 (12) −0.0053 (10) −0.0119 (9) −0.0038 (11)
C5 0.0580 (13) 0.0599 (13) 0.0701 (14) −0.0224 (11) −0.0153 (11) 0.0054 (11)
C6 0.0442 (10) 0.0589 (12) 0.0502 (11) −0.0107 (9) −0.0112 (9) 0.0032 (9)
C7 0.0323 (9) 0.0527 (11) 0.0433 (10) −0.0115 (8) −0.0076 (7) −0.0053 (8)
C8 0.0316 (8) 0.0564 (11) 0.0446 (10) −0.0113 (8) −0.0096 (7) −0.0050 (8)
C9 0.0305 (8) 0.0502 (10) 0.0430 (9) −0.0112 (7) −0.0074 (7) −0.0072 (8)
N1 0.0326 (8) 0.0622 (10) 0.0469 (9) −0.0126 (7) −0.0079 (6) −0.0007 (7)
N2 0.0282 (7) 0.0679 (10) 0.0450 (9) −0.0113 (7) −0.0098 (6) −0.0005 (7)
N3 0.0343 (8) 0.0949 (14) 0.0468 (9) −0.0152 (9) −0.0110 (7) 0.0078 (9)
N4 0.0293 (7) 0.0618 (10) 0.0417 (8) −0.0119 (7) −0.0077 (6) −0.0027 (7)
N5 0.0307 (7) 0.0730 (11) 0.0421 (9) −0.0106 (7) −0.0102 (7) −0.0001 (8)
Cl1 0.0784 (4) 0.0786 (4) 0.0600 (3) −0.0419 (3) −0.0150 (3) −0.0059 (3)
Cl2 0.0721 (4) 0.1162 (5) 0.0522 (3) −0.0373 (4) −0.0190 (3) −0.0090 (3)
C10 0.0386 (10) 0.0504 (11) 0.0597 (12) −0.0073 (8) −0.0180 (9) −0.0107 (9)
C11 0.0404 (10) 0.0417 (10) 0.0597 (12) −0.0103 (8) −0.0219 (9) −0.0067 (8)
C12 0.0395 (10) 0.0464 (10) 0.0641 (12) −0.0136 (8) −0.0218 (9) −0.0030 (9)
C13 0.0384 (10) 0.0512 (11) 0.0826 (15) −0.0101 (8) −0.0220 (10) −0.0101 (10)
C14 0.0504 (12) 0.0533 (12) 0.1065 (19) −0.0093 (10) −0.0465 (13) −0.0135 (12)
C15 0.0692 (15) 0.0506 (12) 0.0797 (15) −0.0144 (10) −0.0492 (13) −0.0036 (10)
C16 0.0578 (12) 0.0501 (11) 0.0625 (13) −0.0162 (9) −0.0287 (10) −0.0069 (9)
N6 0.0372 (10) 0.0779 (14) 0.1062 (18) −0.0082 (9) −0.0156 (10) −0.0157 (12)
N7 0.113 (2) 0.0759 (15) 0.1066 (19) −0.0325 (14) −0.0800 (17) 0.0073 (14)
O1 0.0374 (7) 0.0841 (11) 0.0645 (9) −0.0093 (7) −0.0222 (7) 0.0067 (8)
O2 0.0428 (8) 0.0946 (12) 0.0601 (9) −0.0074 (8) −0.0121 (7) −0.0108 (8)
O3 0.0427 (8) 0.0802 (10) 0.0653 (9) −0.0151 (7) −0.0148 (7) 0.0074 (8)
O4 0.0575 (10) 0.1277 (17) 0.0882 (13) −0.0110 (11) −0.0135 (9) −0.0195 (12)
O5 0.0520 (11) 0.164 (2) 0.181 (2) −0.0480 (13) 0.0026 (13) −0.0623 (18)
O6 0.1283 (19) 0.1273 (18) 0.142 (2) 0.0037 (15) −0.1080 (17) −0.0100 (15)
O7 0.142 (2) 0.159 (2) 0.0879 (15) −0.0849 (19) −0.0675 (16) 0.0370 (15)
C17 0.0454 (11) 0.0753 (15) 0.0575 (13) −0.0065 (10) −0.0078 (10) −0.0085 (11)
C18 0.0568 (15) 0.129 (3) 0.120 (2) −0.0180 (16) −0.0417 (16) −0.009 (2)
C19 0.123 (3) 0.0831 (19) 0.0697 (17) −0.0251 (18) −0.0261 (16) 0.0120 (14)
N8 0.0593 (11) 0.0601 (11) 0.0548 (10) −0.0096 (9) −0.0229 (9) −0.0033 (8)
O8 0.0558 (9) 0.0937 (12) 0.0520 (9) −0.0195 (8) −0.0165 (7) 0.0097 (8)

3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide monosolvate (QIQJAD) . Geometric parameters (Å, º)

C1—C2 1.382 (3) C13—C14 1.374 (4)
C1—C6 1.427 (3) C13—N6 1.471 (3)
C1—C7 1.488 (3) C14—H14 0.93
C2—C3 1.396 (3) C14—C15 1.369 (3)
C3—C4 1.385 (4) C15—C16 1.378 (3)
C4—H4 0.93 C15—N7 1.479 (4)
C4—C5 1.362 (4) C16—H16 0.93
C5—H5 0.93 N6—O4 1.192 (4)
C5—C6 1.382 (3) N6—O5 1.213 (4)
C6—H6 0.93 N7—O6 1.221 (4)
C7—C9 1.464 (2) N7—O7 1.202 (4)
C7—N1 1.291 (2) O3—H3o 0.9258 (14)
C8—N2 1.342 (2) C17—H17 0.93
C8—N3 1.303 (3) C17—N8 1.305 (3)
C8—N4 1.345 (2) C17—O8 1.226 (3)
C9—N4 1.322 (2) C18—H18a 0.96
C9—N5 1.312 (2) C18—H18b 0.96
N1—N2 1.343 (2) C18—H18c 0.96
N2—H2n 0.8973 (16) C18—N8 1.425 (3)
N3—H3n 0.8624 (18) H18a—H18b 1.5677
N3—H4n 0.8630 (15) H18a—H18c 1.5677
N5—H5n 0.8658 (14) H18b—H18c 1.5677
N5—H6n 0.8630 (16) C19—H19a 0.96
C10—C11 1.503 (3) C19—H19b 0.96
C10—O1 1.267 (3) C19—H19c 0.96
C10—O2 1.231 (2) C19—N8 1.470 (3)
C11—C12 1.405 (2) H19a—H19b 1.5677
C11—C16 1.382 (3) H19a—H19c 1.5677
C12—C13 1.402 (3) H19b—H19c 1.5677
C12—O3 1.321 (3)
C2—C1—C6 120.20 (18) C11—C12—O3 122.09 (17)
C2—C1—C7 122.86 (19) C13—C12—O3 120.57 (17)
C6—C1—C7 116.9 (2) C12—C13—C14 122.17 (18)
C1—C2—C3 120.2 (2) C12—C13—N6 118.7 (2)
C2—C3—C4 119.6 (2) C14—C13—N6 119.10 (19)
C3—C4—H4 120.02 C13—C14—H14 120.79
C3—C4—C5 120.0 (2) C13—C14—C15 118.4 (2)
H4—C4—C5 120.02 H14—C14—C15 120.79
C4—C5—H5 118.63 C14—C15—C16 122.1 (2)
C4—C5—C6 122.7 (2) C14—C15—N7 119.4 (2)
H5—C5—C6 118.63 C16—C15—N7 118.5 (2)
C1—C6—C5 117.3 (2) C11—C16—C15 119.19 (18)
C1—C6—H6 121.37 C11—C16—H16 120.41
C5—C6—H6 121.36 C15—C16—H16 120.41
C1—C7—C9 124.50 (16) C13—N6—O4 118.2 (2)
C1—C7—N1 115.60 (15) C13—N6—O5 117.0 (3)
C9—C7—N1 119.58 (16) O4—N6—O5 124.8 (2)
N2—C8—N3 118.61 (17) C15—N7—O6 116.6 (2)
N2—C8—N4 120.57 (17) C15—N7—O7 118.1 (3)
N3—C8—N4 120.81 (16) O6—N7—O7 125.3 (3)
C7—C9—N4 120.53 (16) C10—O1—H3o 101.27 (12)
C7—C9—N5 120.93 (16) C12—O3—H3o 99.28 (14)
N4—C9—N5 118.52 (15) H17—C17—N8 116.69
C7—N1—N2 117.85 (14) H17—C17—O8 116.69
C8—N2—N1 123.77 (16) N8—C17—O8 126.6 (2)
C8—N2—H2n 122.42 (17) H18a—C18—H18b 109.47
N1—N2—H2n 113.82 (14) H18a—C18—H18c 109.47
C8—N3—H3n 122.28 (17) H18a—C18—N8 109.47
C8—N3—H4n 121.07 (18) H18b—C18—H18c 109.47
H3n—N3—H4n 116.2 (2) H18b—C18—N8 109.47
C8—N4—C9 117.69 (14) H18c—C18—N8 109.47
C9—N5—H5n 119.55 (17) H19a—C19—H19b 109.47
C9—N5—H6n 124.81 (16) H19a—C19—H19c 109.47
H5n—N5—H6n 115.64 (18) H19a—C19—N8 109.47
C11—C10—O1 115.76 (15) H19b—C19—H19c 109.47
C11—C10—O2 119.27 (19) H19b—C19—N8 109.47
O1—C10—O2 124.96 (19) H19c—C19—N8 109.47
C10—C11—C12 119.51 (18) C17—N8—C18 120.7 (2)
C10—C11—C16 119.71 (16) C17—N8—C19 119.5 (2)
C12—C11—C16 120.74 (18) C18—N8—C19 119.6 (2)
C11—C12—C13 117.3 (2) O1—H3o—O3 161.33 (12)

3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide monosolvate (QIQJAD) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C19—H19a···O4i 0.96 2.47 3.401 (4) 163
N3—H3n···O2 0.8624 (18) 1.9939 (16) 2.854 (2) 174.78 (11)
N3—H4n···O8ii 0.8630 (15) 2.0586 (14) 2.921 (2) 176.91 (12)
N2—H2n···O1 0.8973 (16) 1.8310 (15) 2.728 (2) 177.45 (12)
N5—H5n···N4iii 0.8658 (14) 2.1409 (13) 2.9992 (19) 171.06 (11)
N5—H6n···O8iv 0.8630 (16) 2.0412 (16) 2.760 (2) 140.22 (10)
O3—H3o···O1 0.9258 (14) 1.5621 (12) 2.4572 (18) 161.33 (12)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+2, −z+1; (iv) x−1, y+1, z.

Bis(1,10-phenanthroline-5,6-dione-κ2N,N')silver(I) 3,5-dinitrosalicylate (SAFGUD) . Crystal data

[Ag(C12H6N2O2)](C7H3N2O7) F(000) = 1512
Mr = 755.36 Dx = 1.817 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5197 reflections
a = 11.757 (2) Å θ = 3.2–25.4°
b = 18.297 (4) Å µ = 0.81 mm1
c = 13.223 (3) Å T = 174 K
β = 103.91 (3)° Prism, yellow
V = 2761.1 (11) Å3 0.3 × 0.24 × 0.2 mm
Z = 4

Bis(1,10-phenanthroline-5,6-dione-κ2N,N')silver(I) 3,5-dinitrosalicylate (SAFGUD) . Data collection

Oxford Diffraction Gemini R Ultra diffractometer 5013 independent reflections
Radiation source: fine-focus sealed tube 3100 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.052
ω scans θmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −14→11
Tmin = 0.780, Tmax = 0.910 k = −17→22
12726 measured reflections l = −15→13

Bis(1,10-phenanthroline-5,6-dione-κ2N,N')silver(I) 3,5-dinitrosalicylate (SAFGUD) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F > 3σ(F)] = 0.062 H-atom parameters constrained
wR(F) = 0.118 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.64 (Δ/σ)max = 0.016
5013 reflections Δρmax = 0.76 e Å3
444 parameters Δρmin = −0.63 e Å3
0 restraints Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
56 constraints Extinction coefficient: 2400 (800)
Primary atom site location: structure-invariant direct methods

Bis(1,10-phenanthroline-5,6-dione-κ2N,N')silver(I) 3,5-dinitrosalicylate (SAFGUD) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Number of fixed parameters 3

Bis(1,10-phenanthroline-5,6-dione-κ2N,N')silver(I) 3,5-dinitrosalicylate (SAFGUD) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.21070 (4) 0.44031 (3) 0.52479 (4) 0.0538 (2)
C1 0.4796 (5) 0.5138 (3) 0.6221 (4) 0.043 (2)
H1 0.440696 0.558209 0.60689 0.0511*
C2 0.5975 (6) 0.5153 (3) 0.6692 (4) 0.046 (2)
H2 0.637009 0.559483 0.684873 0.0553*
C3 0.6551 (5) 0.4500 (3) 0.6925 (4) 0.046 (2)
H3 0.734391 0.449118 0.725729 0.0547*
C4 0.5946 (5) 0.3859 (3) 0.6661 (4) 0.035 (2)
C5 0.6523 (8) 0.3141 (4) 0.6884 (5) 0.068 (3)
C6 0.5912 (10) 0.2510 (4) 0.6718 (6) 0.093 (5)
C7 0.4628 (6) 0.2534 (3) 0.6228 (4) 0.042 (2)
C8 0.3994 (7) 0.1881 (3) 0.6033 (4) 0.052 (3)
H8 0.435089 0.143184 0.6224 0.0623*
C9 0.2837 (7) 0.1928 (4) 0.5555 (5) 0.063 (3)
H9 0.238665 0.150616 0.540161 0.0756*
C10 0.2345 (6) 0.2592 (3) 0.5304 (5) 0.052 (3)
H10 0.155582 0.26107 0.496188 0.0629*
C11 0.4065 (5) 0.3197 (3) 0.5966 (4) 0.032 (2)
C12 0.4742 (5) 0.3885 (3) 0.6197 (4) 0.033 (2)
C13 0.0851 (5) 0.4150 (3) 0.2774 (5) 0.054 (3)
H13 0.109147 0.367048 0.293174 0.0649*
C14 0.0376 (5) 0.4324 (4) 0.1743 (5) 0.060 (3)
H14 0.029151 0.397085 0.122358 0.0717*
C15 0.0032 (5) 0.5033 (3) 0.1508 (5) 0.051 (3)
H15 −0.030371 0.516779 0.082274 0.0617*
C16 0.0190 (5) 0.5550 (3) 0.2306 (4) 0.040 (2)
C17 −0.0145 (5) 0.6317 (3) 0.2063 (5) 0.051 (3)
C18 −0.0094 (5) 0.6826 (3) 0.2940 (5) 0.053 (3)
C19 0.0474 (5) 0.6578 (3) 0.4023 (5) 0.042 (2)
C20 0.0689 (5) 0.7058 (3) 0.4858 (5) 0.052 (3)
H20 0.048099 0.754726 0.475014 0.063*
C21 0.1204 (6) 0.6817 (4) 0.5833 (5) 0.058 (3)
H21 0.134626 0.713123 0.64029 0.0692*
C22 0.1503 (5) 0.6091 (4) 0.5941 (5) 0.054 (3)
H22 0.186352 0.59254 0.660553 0.0653*
C23 0.0818 (5) 0.5847 (3) 0.4195 (4) 0.036 (2)
C24 0.0637 (4) 0.5318 (3) 0.3326 (4) 0.032 (2)
C25 0.6150 (6) 0.4142 (3) 0.9276 (4) 0.041 (2)
C26 0.5079 (6) 0.4527 (3) 0.8869 (4) 0.040 (2)
C27 0.4074 (5) 0.4101 (3) 0.8426 (4) 0.037 (2)
C28 0.4091 (5) 0.3351 (3) 0.8456 (4) 0.041 (2)
H28 0.341998 0.308064 0.817616 0.0498*
C29 0.5156 (6) 0.3004 (3) 0.8924 (4) 0.041 (2)
C30 0.6177 (5) 0.3387 (3) 0.9323 (4) 0.043 (2)
H30 0.687051 0.314123 0.961804 0.0515*
C31 0.2956 (6) 0.4467 (4) 0.7881 (5) 0.047 (3)
N1 0.4179 (4) 0.4525 (2) 0.5968 (3) 0.0338 (17)
N2 0.2929 (4) 0.3229 (2) 0.5519 (3) 0.0387 (18)
N3 0.0989 (4) 0.4627 (2) 0.3563 (3) 0.0413 (18)
N4 0.1317 (4) 0.5603 (2) 0.5163 (3) 0.0405 (18)
N5 0.7267 (6) 0.4510 (4) 0.9628 (4) 0.059 (3)
N6 0.5168 (6) 0.2209 (3) 0.9002 (4) 0.055 (3)
O1 0.7646 (5) 0.3117 (3) 0.7273 (4) 0.092 (3)
O2 0.6406 (5) 0.1892 (3) 0.6987 (4) 0.102 (3)
O3 −0.0421 (4) 0.6544 (2) 0.1169 (3) 0.069 (2)
O4 −0.0501 (5) 0.7444 (2) 0.2776 (4) 0.081 (2)
O5 0.8168 (5) 0.4145 (3) 0.9750 (4) 0.090 (3)
O6 0.7298 (5) 0.5169 (3) 0.9762 (4) 0.084 (2)
O7 0.5025 (4) 0.5233 (2) 0.8850 (3) 0.0617 (19)
O8 0.2936 (4) 0.5168 (3) 0.7945 (3) 0.066 (2)
O9 0.2137 (4) 0.4111 (3) 0.7370 (3) 0.064 (2)
O10 0.4286 (5) 0.1877 (2) 0.8580 (4) 0.070 (2)
O11 0.6096 (5) 0.1916 (2) 0.9512 (4) 0.068 (2)
H7 0.388884 0.531747 0.83591 0.019 (12)*

Bis(1,10-phenanthroline-5,6-dione-κ2N,N')silver(I) 3,5-dinitrosalicylate (SAFGUD) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0474 (4) 0.0492 (3) 0.0603 (3) 0.0150 (3) 0.0038 (2) 0.0149 (3)
C1 0.054 (5) 0.035 (4) 0.041 (3) −0.006 (3) 0.014 (3) 0.001 (3)
C2 0.052 (5) 0.041 (4) 0.048 (4) −0.010 (3) 0.018 (3) −0.001 (3)
C3 0.031 (4) 0.063 (4) 0.043 (3) −0.004 (3) 0.008 (3) −0.008 (3)
C4 0.036 (4) 0.034 (3) 0.035 (3) 0.015 (3) 0.013 (3) 0.004 (3)
C5 0.085 (7) 0.078 (6) 0.048 (4) 0.014 (5) 0.031 (4) 0.006 (4)
C6 0.201 (12) 0.037 (5) 0.065 (5) 0.012 (6) 0.081 (7) 0.001 (4)
C7 0.033 (4) 0.059 (5) 0.035 (3) 0.007 (3) 0.008 (3) 0.001 (3)
C8 0.088 (6) 0.023 (3) 0.051 (4) 0.010 (4) 0.029 (4) 0.005 (3)
C9 0.074 (6) 0.053 (5) 0.067 (5) −0.009 (4) 0.025 (4) −0.008 (4)
C10 0.039 (4) 0.054 (4) 0.064 (4) −0.003 (4) 0.012 (3) −0.014 (4)
C11 0.043 (4) 0.026 (3) 0.029 (3) 0.006 (3) 0.010 (3) 0.002 (2)
C12 0.043 (4) 0.031 (3) 0.028 (3) −0.004 (3) 0.014 (3) 0.002 (2)
C13 0.052 (5) 0.034 (4) 0.071 (5) −0.002 (3) 0.005 (4) −0.001 (3)
C14 0.055 (5) 0.055 (5) 0.064 (4) 0.000 (4) 0.003 (4) −0.024 (4)
C15 0.046 (4) 0.057 (4) 0.045 (4) −0.004 (3) 0.000 (3) −0.002 (3)
C16 0.029 (3) 0.038 (3) 0.051 (4) 0.000 (3) 0.004 (3) 0.005 (3)
C17 0.039 (4) 0.054 (4) 0.055 (4) 0.002 (3) 0.001 (3) 0.021 (4)
C18 0.036 (4) 0.042 (4) 0.077 (5) −0.003 (3) 0.004 (3) 0.005 (4)
C19 0.035 (4) 0.032 (3) 0.057 (4) 0.003 (3) 0.007 (3) 0.002 (3)
C20 0.046 (4) 0.031 (3) 0.079 (5) 0.000 (3) 0.012 (4) −0.010 (4)
C21 0.049 (5) 0.055 (5) 0.067 (5) 0.002 (4) 0.010 (4) −0.013 (4)
C22 0.046 (4) 0.070 (5) 0.042 (4) −0.003 (4) 0.001 (3) −0.006 (4)
C23 0.027 (3) 0.034 (3) 0.046 (3) 0.002 (3) 0.006 (3) 0.000 (3)
C24 0.019 (3) 0.031 (3) 0.046 (3) −0.001 (2) 0.007 (2) 0.004 (3)
C25 0.058 (5) 0.037 (4) 0.028 (3) −0.010 (3) 0.010 (3) −0.004 (3)
C26 0.062 (5) 0.032 (3) 0.030 (3) 0.001 (3) 0.018 (3) −0.002 (3)
C27 0.039 (4) 0.038 (4) 0.035 (3) 0.002 (3) 0.012 (3) 0.006 (3)
C28 0.057 (5) 0.041 (4) 0.030 (3) −0.007 (3) 0.018 (3) −0.002 (3)
C29 0.068 (5) 0.029 (3) 0.032 (3) 0.004 (3) 0.024 (3) 0.005 (3)
C30 0.047 (4) 0.047 (4) 0.036 (3) 0.005 (3) 0.014 (3) 0.002 (3)
C31 0.057 (5) 0.041 (4) 0.048 (4) 0.011 (4) 0.023 (3) 0.008 (3)
N1 0.036 (3) 0.031 (3) 0.033 (2) 0.005 (2) 0.008 (2) 0.001 (2)
N2 0.033 (3) 0.037 (3) 0.044 (3) −0.001 (2) 0.006 (2) −0.002 (2)
N3 0.040 (3) 0.029 (3) 0.051 (3) 0.001 (2) 0.004 (2) −0.003 (2)
N4 0.035 (3) 0.043 (3) 0.041 (3) 0.003 (2) 0.004 (2) 0.006 (2)
N5 0.057 (4) 0.072 (5) 0.044 (3) −0.015 (4) 0.003 (3) −0.009 (3)
N6 0.090 (5) 0.039 (4) 0.044 (3) 0.004 (3) 0.033 (3) 0.004 (3)
O1 0.083 (4) 0.104 (4) 0.088 (4) 0.034 (4) 0.022 (3) 0.021 (3)
O2 0.095 (5) 0.085 (4) 0.115 (5) 0.014 (4) 0.002 (4) −0.007 (4)
O3 0.066 (3) 0.071 (3) 0.065 (3) 0.002 (3) 0.004 (3) 0.026 (3)
O4 0.101 (4) 0.040 (3) 0.095 (4) 0.019 (3) 0.007 (3) 0.017 (3)
O5 0.052 (4) 0.100 (4) 0.111 (4) −0.002 (3) 0.006 (3) −0.031 (3)
O6 0.091 (4) 0.051 (3) 0.090 (4) −0.024 (3) −0.015 (3) 0.003 (3)
O7 0.088 (4) 0.042 (3) 0.057 (3) −0.005 (2) 0.021 (3) −0.002 (2)
O8 0.069 (4) 0.060 (3) 0.072 (3) 0.017 (3) 0.022 (3) 0.009 (2)
O9 0.042 (3) 0.084 (4) 0.066 (3) 0.006 (3) 0.012 (2) −0.002 (3)
O10 0.107 (5) 0.039 (3) 0.067 (3) −0.016 (3) 0.025 (3) −0.001 (2)
O11 0.089 (4) 0.042 (3) 0.081 (3) 0.016 (3) 0.036 (3) 0.022 (2)

Bis(1,10-phenanthroline-5,6-dione-κ2N,N')silver(I) 3,5-dinitrosalicylate (SAFGUD) . Geometric parameters (Å, º)

Ag1—N1 2.404 (4) C16—C24 1.392 (7)
Ag1—N2 2.348 (5) C17—C18 1.476 (9)
Ag1—N3 2.335 (4) C17—O3 1.220 (8)
Ag1—N4 2.376 (5) C18—C19 1.498 (8)
C1—H1 0.93 C18—O4 1.227 (8)
C1—C2 1.376 (8) C19—C20 1.386 (8)
C1—N1 1.334 (7) C19—C23 1.400 (8)
C2—H2 0.93 C20—H20 0.93
C2—C3 1.373 (8) C20—C21 1.359 (9)
C3—H3 0.93 C21—H21 0.93
C3—C4 1.372 (8) C21—C22 1.373 (9)
C4—C5 1.475 (10) C22—H22 0.93
C4—C12 1.402 (8) C22—N4 1.341 (8)
C5—C6 1.349 (12) C23—C24 1.478 (7)
C5—O1 1.298 (10) C23—N4 1.349 (7)
C6—C7 1.493 (13) C24—N3 1.344 (7)
C6—O2 1.283 (10) C25—C26 1.430 (9)
C7—C8 1.399 (9) C25—C30 1.384 (8)
C7—C11 1.385 (8) C25—N5 1.450 (9)
C8—H8 0.93 C26—C27 1.418 (8)
C8—C9 1.357 (10) C26—O7 1.293 (7)
C9—H9 0.93 C27—C28 1.373 (8)
C9—C10 1.353 (9) C27—C31 1.496 (8)
C10—H10 0.93 C28—H28 0.93
C10—N2 1.347 (8) C28—C29 1.407 (8)
C11—C12 1.481 (7) C29—C30 1.380 (8)
C11—N2 1.326 (7) C29—N6 1.458 (8)
C12—N1 1.344 (7) C30—H30 0.93
C13—H13 0.93 C31—O8 1.286 (8)
C13—C14 1.381 (9) C31—O9 1.223 (8)
C13—N3 1.339 (8) N5—O5 1.230 (9)
C14—H14 0.93 N5—O6 1.218 (8)
C14—C15 1.373 (9) N6—O10 1.216 (8)
C15—H15 0.93 N6—O11 1.257 (8)
C15—C16 1.396 (8) O7—H7 1.346 (4)
C16—C17 1.473 (8) O8—H7 1.155 (4)
H1—C1—C2 118.04 C19—C18—O4 120.9 (6)
H1—C1—N1 118.04 C18—C19—C20 121.6 (5)
C2—C1—N1 123.9 (5) C18—C19—C23 119.3 (5)
C1—C2—H2 120.88 C20—C19—C23 119.1 (5)
C1—C2—C3 118.2 (5) C19—C20—H20 119.84
H2—C2—C3 120.88 C19—C20—C21 120.3 (6)
C2—C3—H3 120.34 H20—C20—C21 119.84
C2—C3—C4 119.3 (5) C20—C21—H21 121.42
H3—C3—C4 120.34 C20—C21—C22 117.2 (6)
C3—C4—C5 121.7 (6) H21—C21—C22 121.42
C3—C4—C12 119.3 (5) C21—C22—H22 117.46
C5—C4—C12 119.0 (5) C21—C22—N4 125.1 (5)
C4—C5—C6 121.9 (8) H22—C22—N4 117.46
C4—C5—O1 118.9 (7) C19—C23—C24 121.2 (5)
C6—C5—O1 119.2 (8) C19—C23—N4 120.8 (5)
C5—C6—C7 119.3 (7) C24—C23—N4 118.0 (5)
C5—C6—O2 121.4 (9) C16—C24—C23 120.2 (5)
C7—C6—O2 119.3 (7) C16—C24—N3 122.5 (5)
C6—C7—C8 119.6 (6) C23—C24—N3 117.2 (4)
C6—C7—C11 120.4 (6) C26—C25—C30 121.2 (5)
C8—C7—C11 120.0 (6) C26—C25—N5 122.7 (5)
C7—C8—H8 121.23 C30—C25—N5 116.1 (6)
C7—C8—C9 117.5 (6) C25—C26—C27 117.1 (5)
H8—C8—C9 121.23 C25—C26—O7 122.2 (5)
C8—C9—H9 120.26 C27—C26—O7 120.5 (5)
C8—C9—C10 119.5 (6) C26—C27—C28 122.1 (5)
H9—C9—C10 120.26 C26—C27—C31 120.1 (5)
C9—C10—H10 118.01 C28—C27—C31 117.8 (5)
C9—C10—N2 124.0 (6) C27—C28—H28 121
H10—C10—N2 118.01 C27—C28—C29 118.0 (5)
C7—C11—C12 119.5 (5) H28—C28—C29 121
C7—C11—N2 121.3 (5) C28—C29—C30 122.6 (5)
C12—C11—N2 119.2 (5) C28—C29—N6 118.3 (5)
C4—C12—C11 119.8 (5) C30—C29—N6 119.1 (5)
C4—C12—N1 121.2 (5) C25—C30—C29 118.7 (5)
C11—C12—N1 118.9 (5) C25—C30—H30 120.65
H13—C13—C14 117.83 C29—C30—H30 120.65
H13—C13—N3 117.83 C27—C31—O8 116.2 (5)
C14—C13—N3 124.3 (5) C27—C31—O9 120.8 (6)
C13—C14—H14 121.04 O8—C31—O9 122.9 (6)
C13—C14—C15 117.9 (6) C1—N1—C12 117.9 (4)
H14—C14—C15 121.04 C10—N2—C11 117.6 (5)
C14—C15—H15 120.29 C13—N3—C24 117.3 (5)
C14—C15—C16 119.4 (5) C22—N4—C23 117.5 (5)
H15—C15—C16 120.29 C25—N5—O5 118.4 (6)
C15—C16—C17 120.1 (5) C25—N5—O6 120.0 (6)
C15—C16—C24 118.5 (5) O5—N5—O6 121.6 (6)
C17—C16—C24 121.4 (5) C29—N6—O10 118.3 (5)
C16—C17—C18 118.1 (5) C29—N6—O11 117.2 (5)
C16—C17—O3 122.0 (6) O10—N6—O11 124.5 (5)
C18—C17—O3 119.9 (6) C26—O7—H7 99.4 (4)
C17—C18—C19 119.0 (5) C31—O8—H7 103.7 (4)
C17—C18—O4 120.1 (6) O7—H7—O8 159.6 (3)

Bis(1,10-phenanthroline-5,6-dione-κ2N,N')silver(I) 3,5-dinitrosalicylate (SAFGUD) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O10i 0.93 2.49 3.180 (7) 131
C8—H8···O7ii 0.93 2.32 3.220 (7) 162
C9—H9···O6ii 0.93 2.49 3.243 (9) 138
C13—H13···O4iii 0.93 2.47 3.209 (7) 137
C22—H22···O8 0.93 2.36 3.251 (7) 160
O7—H7···C31 1.346 (4) 1.922 (7) 2.833 (8) 119.1 (3)
O7—H7···O8 1.346 (4) 1.155 (4) 2.462 (6) 159.6 (3)
O8—H7···C26 1.155 (4) 2.013 (6) 2.781 (7) 120.3 (3)
O8—H7···O7 1.155 (4) 1.346 (4) 2.462 (6) 159.6 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x, y−1/2, −z+1/2.

3,5-Dimethylpyrazolium 3,5-dinitrosalicylate (SEDKET). Crystal data

C5H9N2+·C7H3N2O7 F(000) = 336
Mr = 324.26 Dx = 1.547 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 8.1183 (7) Å Cell parameters from 1025 reflections
b = 6.0636 (5) Å θ = 2.5–22.6°
c = 14.1453 (11) Å µ = 0.13 mm1
β = 91.904 (1)° T = 293 K
V = 695.93 (10) Å3 Block, colorless
Z = 2 0.40 × 0.27 × 0.11 mm

3,5-Dimethylpyrazolium 3,5-dinitrosalicylate (SEDKET). Data collection

Bruker SMART CCD diffractometer 2301 independent reflections
Radiation source: fine-focus sealed tube 1444 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.040
ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −9→9
Tmin = 0.959, Tmax = 0.986 k = −7→7
3523 measured reflections l = −16→12

3,5-Dimethylpyrazolium 3,5-dinitrosalicylate (SEDKET). Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F > 3σ(F)] = 0.041 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F) = 0.088 (Δ/σ)max = 0.033
S = 1.16 Δρmax = 0.11 e Å3
2301 reflections Δρmin = −0.10 e Å3
212 parameters Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
0 restraints Extinction coefficient: 3100 (400)
37 constraints Absolute structure: 955 of Friedel pairs used in the refinement
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.5
Secondary atom site location: difference Fourier map

3,5-Dimethylpyrazolium 3,5-dinitrosalicylate (SEDKET). Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.Number of fixed parameters 10.

3,5-Dimethylpyrazolium 3,5-dinitrosalicylate (SEDKET). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2262 (4) 0.7164 (5) 0.2338 (2) 0.0464 (11)
N2 0.2203 (3) 0.6196 (5) 0.3198 (2) 0.0478 (11)
C6 0.3519 (4) 0.7226 (6) 0.5525 (2) 0.0412 (12)
N3 0.2179 (3) 1.3158 (5) 0.7705 (2) 0.0509 (12)
N4 0.5552 (4) 0.7120 (5) 0.8913 (2) 0.0501 (12)
O1 0.5417 (3) 0.5285 (4) 0.70239 (16) 0.0462 (9)
O2 0.4266 (3) 0.5357 (4) 0.53811 (15) 0.0582 (10)
O3 0.2657 (3) 0.8100 (4) 0.49006 (14) 0.0507 (8)
O4 0.1415 (3) 1.4013 (4) 0.70419 (18) 0.0652 (10)
O5 0.2270 (3) 1.3968 (4) 0.85025 (18) 0.0709 (11)
O6 0.5263 (4) 0.7839 (5) 0.96960 (17) 0.0853 (12)
O7 0.6549 (4) 0.5664 (5) 0.87980 (17) 0.0719 (12)
C1 0.1300 (5) 0.6431 (8) 0.0685 (2) 0.0762 (19)
H1a 0.132119 0.800298 0.060733 0.1144*
H1b 0.027525 0.586015 0.043068 0.1144*
H1c 0.219699 0.578396 0.035744 0.1144*
C2 0.1466 (4) 0.5878 (6) 0.1713 (2) 0.0469 (13)
C3 0.0892 (4) 0.4058 (7) 0.2187 (3) 0.0553 (14)
H3 0.029651 0.288588 0.192446 0.0663*
C4 0.1373 (4) 0.4313 (6) 0.3133 (2) 0.0481 (13)
C5 0.1093 (5) 0.2896 (7) 0.3966 (3) 0.0669 (16)
H5a 0.025142 0.183251 0.380914 0.1003*
H5b 0.20964 0.214551 0.414477 0.1003*
H5c 0.074882 0.379302 0.448238 0.1003*
C12 0.4691 (4) 0.7102 (6) 0.7196 (2) 0.0372 (12)
C7 0.3736 (3) 0.8233 (6) 0.6477 (2) 0.0348 (11)
C8 0.2972 (4) 1.0181 (6) 0.6641 (2) 0.0380 (12)
H8 0.239805 1.089516 0.615013 0.0456*
C9 0.3044 (4) 1.1108 (6) 0.7534 (2) 0.0381 (11)
C10 0.3902 (4) 1.0091 (6) 0.8274 (2) 0.0403 (12)
H10 0.393751 1.071121 0.887603 0.0483*
C11 0.4704 (4) 0.8133 (6) 0.8100 (2) 0.0380 (11)
H2a 0.507 (5) 0.485 (9) 0.620 (3) 0.145 (19)*
H1 0.289 (6) 0.878 (9) 0.225 (3) 0.130 (19)*
H2 0.258 (4) 0.707 (6) 0.373 (2) 0.063 (12)*

3,5-Dimethylpyrazolium 3,5-dinitrosalicylate (SEDKET). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0502 (18) 0.049 (2) 0.0399 (18) 0.0006 (15) −0.0027 (14) −0.0034 (15)
N2 0.0497 (19) 0.051 (2) 0.0422 (18) −0.0046 (17) −0.0047 (14) −0.0066 (17)
C6 0.0393 (19) 0.047 (2) 0.037 (2) −0.0016 (18) 0.0053 (16) −0.0027 (18)
N3 0.0500 (19) 0.043 (2) 0.060 (2) −0.0003 (17) 0.0048 (16) −0.0031 (18)
N4 0.065 (2) 0.046 (2) 0.0387 (19) 0.0015 (17) −0.0037 (16) 0.0042 (16)
O1 0.0564 (15) 0.0414 (15) 0.0407 (14) 0.0091 (13) −0.0027 (11) −0.0072 (12)
O2 0.0704 (17) 0.0626 (18) 0.0414 (14) 0.0205 (15) −0.0036 (12) −0.0156 (14)
O3 0.0581 (14) 0.0600 (17) 0.0333 (13) 0.0050 (14) −0.0083 (11) 0.0013 (12)
O4 0.0703 (17) 0.0521 (17) 0.0721 (18) 0.0185 (15) −0.0141 (14) 0.0031 (15)
O5 0.092 (2) 0.0593 (19) 0.0617 (17) 0.0072 (16) 0.0048 (14) −0.0187 (15)
O6 0.148 (3) 0.075 (2) 0.0326 (16) 0.035 (2) −0.0069 (15) −0.0032 (15)
O7 0.092 (2) 0.072 (2) 0.0510 (16) 0.0308 (19) −0.0083 (14) 0.0090 (16)
C1 0.086 (3) 0.096 (4) 0.047 (2) −0.014 (3) −0.009 (2) −0.007 (2)
C2 0.043 (2) 0.054 (3) 0.0434 (19) 0.005 (2) −0.0046 (17) −0.009 (2)
C3 0.049 (2) 0.057 (3) 0.060 (2) −0.004 (2) −0.0075 (18) −0.022 (2)
C4 0.039 (2) 0.044 (2) 0.062 (2) 0.0027 (19) 0.0037 (17) −0.003 (2)
C5 0.066 (3) 0.060 (3) 0.074 (3) 0.000 (2) −0.002 (2) 0.012 (2)
C12 0.0351 (19) 0.041 (2) 0.036 (2) −0.0079 (18) 0.0025 (15) 0.0010 (17)
C7 0.0342 (17) 0.039 (2) 0.0316 (17) −0.0052 (17) 0.0004 (13) 0.0031 (16)
C8 0.041 (2) 0.038 (2) 0.0349 (19) −0.0032 (18) −0.0036 (15) 0.0039 (17)
C9 0.041 (2) 0.032 (2) 0.0416 (19) −0.0045 (17) 0.0020 (15) −0.0015 (17)
C10 0.049 (2) 0.039 (2) 0.0325 (19) −0.0038 (18) 0.0020 (16) −0.0017 (17)
C11 0.0419 (19) 0.041 (2) 0.0312 (17) −0.0038 (19) −0.0025 (14) 0.0049 (17)

3,5-Dimethylpyrazolium 3,5-dinitrosalicylate (SEDKET). Geometric parameters (Å, º)

N1—N2 1.353 (4) H1a—H1b 1.5677
N1—C2 1.330 (5) H1a—H1c 1.5677
N1—H1 1.11 (5) H1b—H1c 1.5677
N2—C4 1.327 (5) C2—C3 1.380 (5)
N2—H2 0.96 (3) C3—H3 0.93
C6—O2 1.304 (4) C3—C4 1.389 (5)
C6—O3 1.229 (4) C4—C5 1.482 (5)
C6—C7 1.484 (4) C5—H5a 0.96
N3—O4 1.223 (4) C5—H5b 0.96
N3—O5 1.231 (4) C5—H5c 0.96
N3—C9 1.452 (5) H5a—H5b 1.5677
N4—O6 1.220 (4) H5a—H5c 1.5677
N4—O7 1.213 (4) H5b—H5c 1.5677
N4—C11 1.457 (4) C12—C7 1.433 (4)
O1—C12 1.277 (4) C12—C11 1.422 (4)
O1—H2a 1.22 (5) C7—C8 1.358 (5)
O2—H2a 1.34 (5) C8—H8 0.93
C1—H1a 0.96 C8—C9 1.382 (4)
C1—H1b 0.96 C9—C10 1.384 (4)
C1—H1c 0.96 C10—H10 0.93
C1—C2 1.494 (5) C10—C11 1.380 (5)
N2—N1—C2 108.2 (3) N2—C4—C3 106.8 (3)
N2—N1—H1 121 (2) N2—C4—C5 122.3 (3)
C2—N1—H1 131 (2) C3—C4—C5 130.9 (3)
N1—N2—C4 110.1 (3) C4—C5—H5a 109.47
N1—N2—H2 117 (2) C4—C5—H5b 109.47
C4—N2—H2 132 (2) C4—C5—H5c 109.47
O2—C6—O3 121.3 (3) H5a—C5—H5b 109.47
O2—C6—C7 117.2 (3) H5a—C5—H5c 109.47
O3—C6—C7 121.5 (3) H5b—C5—H5c 109.47
O4—N3—O5 123.2 (3) O1—C12—C7 121.3 (3)
O4—N3—C9 118.1 (3) O1—C12—C11 124.1 (3)
O5—N3—C9 118.7 (3) C7—C12—C11 114.5 (3)
O6—N4—O7 122.1 (3) C6—C7—C12 119.5 (3)
O6—N4—C11 117.8 (3) C6—C7—C8 118.1 (3)
O7—N4—C11 120.1 (3) C12—C7—C8 122.3 (3)
C12—O1—H2a 106 (2) C7—C8—H8 119.87
C6—O2—H2a 106 (2) C7—C8—C9 120.3 (3)
H1a—C1—H1b 109.47 H8—C8—C9 119.87
H1a—C1—H1c 109.47 N3—C9—C8 119.6 (3)
H1a—C1—C2 109.47 N3—C9—C10 119.3 (3)
H1b—C1—H1c 109.47 C8—C9—C10 121.0 (3)
H1b—C1—C2 109.47 C9—C10—H10 120.77
H1c—C1—C2 109.47 C9—C10—C11 118.5 (3)
N1—C2—C1 122.8 (3) H10—C10—C11 120.77
N1—C2—C3 108.1 (3) N4—C11—C12 120.9 (3)
C1—C2—C3 129.1 (3) N4—C11—C10 115.7 (3)
C2—C3—H3 126.58 C12—C11—C10 123.3 (3)
C2—C3—C4 106.8 (3) O1—H2a—O2 149 (5)
H3—C3—C4 126.58

3,5-Dimethylpyrazolium 3,5-dinitrosalicylate (SEDKET). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1a···O7i 0.96 2.49 3.176 (5) 128
C5—H5a···O4ii 0.96 2.47 3.395 (5) 162
C10—H10···O6iii 0.93 2.47 3.369 (4) 164
O1—H2a···O2 1.22 (5) 1.34 (5) 2.476 (3) 149 (5)
O2—H2a···O1 1.34 (5) 1.22 (5) 2.476 (3) 149 (5)
N1—H1···O1i 1.11 (5) 1.92 (5) 2.799 (4) 133 (3)
N1—H1···O7i 1.11 (5) 1.94 (5) 2.850 (4) 137 (3)
N2—H2···O3 0.96 (3) 1.77 (3) 2.685 (4) 158 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x, y−3/2, −z+1; (iii) −x+1, y+1/2, −z+2.

3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate (TIYZIM) . Crystal data

C6H12N3+·C7H3N2O7 Z = 2
Mr = 353.30 F(000) = 368
Triclinic, P1 Dx = 1.525 Mg m3
a = 7.0109 (4) Å Cu Kα radiation, λ = 1.54184 Å
b = 10.6617 (8) Å Cell parameters from 2218 reflections
c = 10.7454 (7) Å θ = 4.2–72.3°
α = 93.075 (6)° µ = 1.09 mm1
β = 95.863 (5)° T = 173 K
γ = 104.944 (6)° Irregular, yellow
V = 769.30 (9) Å3 0.22 × 0.14 × 0.12 mm

3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate (TIYZIM) . Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 2953 independent reflections
Graphite monochromator 2426 reflections with I > 3σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.026
ω scans θmax = 72.5°, θmin = 4.2°
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) h = −8→5
Tmin = 0.925, Tmax = 1.000 k = −12→13
4664 measured reflections l = −13→13

3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate (TIYZIM) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F > 3σ(F)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.100 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.64 (Δ/σ)max = 0.013
2953 reflections Δρmax = 0.21 e Å3
229 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
46 constraints Extinction coefficient: 740 (130)

3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate (TIYZIM) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Number of fixed parameters: 12

3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate (TIYZIM) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1b −0.19161 (17) 0.67539 (12) 0.52684 (11) 0.0294 (4)
O2b −0.38292 (17) 0.47166 (12) 0.40838 (12) 0.0313 (4)
O3b −0.25511 (17) 0.37712 (12) 0.26158 (12) 0.0312 (4)
O4b 0.41258 (19) 0.58639 (13) 0.16853 (13) 0.0365 (5)
O5b 0.59776 (18) 0.75622 (13) 0.28239 (14) 0.0382 (5)
O6b 0.3446 (2) 0.93719 (14) 0.62658 (15) 0.0474 (5)
O7b 0.02822 (19) 0.91655 (13) 0.61477 (13) 0.0410 (5)
N1b 0.1720 (2) 0.88469 (14) 0.58118 (14) 0.0301 (5)
N2b 0.4396 (2) 0.67347 (14) 0.25363 (14) 0.0281 (5)
C1b −0.0455 (2) 0.68023 (16) 0.46268 (15) 0.0225 (5)
C2b −0.0572 (2) 0.57873 (15) 0.36597 (15) 0.0217 (5)
C3b 0.0987 (2) 0.57933 (16) 0.29810 (15) 0.0228 (5)
H3b 0.086172 0.512562 0.233219 0.0273*
C4b 0.2738 (2) 0.67709 (16) 0.32422 (15) 0.0238 (5)
C5b 0.2967 (2) 0.77664 (16) 0.41630 (15) 0.0244 (5)
H5b 0.418494 0.842618 0.433677 0.0292*
C6b 0.1392 (2) 0.77850 (16) 0.48267 (15) 0.0244 (5)
C7b −0.2405 (2) 0.46767 (16) 0.33986 (15) 0.0245 (5)
N1a −0.2235 (2) 0.05127 (14) −0.17301 (14) 0.0305 (5)
N2a −0.0146 (2) 0.22579 (13) −0.06967 (13) 0.0239 (4)
N3a 0.3467 (2) 0.20531 (13) 0.28160 (13) 0.0254 (4)
C1a −0.0395 (2) 0.12591 (16) −0.15749 (16) 0.0272 (6)
H1a 0.06324 0.111094 −0.202772 0.0327*
C2a −0.3211 (3) 0.10665 (17) −0.08987 (17) 0.0314 (6)
H2a −0.457443 0.07432 −0.079116 0.0377*
C3a −0.1954 (3) 0.21356 (17) −0.02572 (17) 0.0294 (6)
H3a −0.225845 0.269084 0.03706 0.0353*
C4a 0.1719 (2) 0.32466 (17) −0.02832 (15) 0.0268 (5)
H4aa 0.242014 0.351332 −0.101965 0.0322*
H4ab 0.142708 0.403798 0.008481 0.0322*
C5a 0.3076 (2) 0.27759 (16) 0.06668 (16) 0.0271 (5)
H5aa 0.324487 0.193134 0.033664 0.0326*
H5ab 0.440667 0.340434 0.079114 0.0326*
C6a 0.2253 (2) 0.26206 (16) 0.19085 (15) 0.0279 (6)
H6aa 0.218227 0.347891 0.227027 0.0335*
H6ab 0.08712 0.206021 0.17726 0.0335*
H2b −0.339134 0.554144 0.46148 0.075 (9)*
H3aa 0.329781 0.119532 0.260701 0.045 (4)*
H3ab 0.475827 0.248704 0.284554 0.045 (4)*
H3ac 0.313145 0.21209 0.359189 0.045 (4)*

3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate (TIYZIM) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1b 0.0268 (6) 0.0307 (7) 0.0277 (6) 0.0010 (5) 0.0098 (5) −0.0050 (5)
O2b 0.0247 (6) 0.0313 (7) 0.0327 (7) −0.0024 (5) 0.0088 (5) −0.0060 (5)
O3b 0.0283 (6) 0.0285 (7) 0.0317 (7) 0.0002 (5) 0.0047 (5) −0.0082 (5)
O4b 0.0371 (7) 0.0325 (7) 0.0413 (8) 0.0085 (6) 0.0167 (6) −0.0042 (6)
O5b 0.0231 (6) 0.0380 (8) 0.0506 (9) 0.0010 (6) 0.0111 (6) 0.0014 (6)
O6b 0.0352 (7) 0.0408 (8) 0.0552 (10) −0.0009 (6) −0.0052 (7) −0.0197 (7)
O7b 0.0398 (7) 0.0333 (7) 0.0470 (8) 0.0034 (6) 0.0162 (6) −0.0121 (6)
N1b 0.0326 (8) 0.0241 (8) 0.0301 (8) 0.0012 (6) 0.0060 (6) −0.0023 (6)
N2b 0.0260 (7) 0.0259 (7) 0.0343 (8) 0.0074 (6) 0.0092 (6) 0.0063 (6)
C1b 0.0234 (8) 0.0236 (8) 0.0201 (8) 0.0054 (6) 0.0034 (6) 0.0027 (6)
C2b 0.0218 (8) 0.0215 (8) 0.0207 (8) 0.0036 (6) 0.0019 (6) 0.0029 (6)
C3b 0.0265 (8) 0.0220 (8) 0.0208 (8) 0.0077 (7) 0.0043 (6) 0.0017 (6)
C4b 0.0220 (8) 0.0254 (8) 0.0260 (8) 0.0080 (7) 0.0064 (7) 0.0057 (7)
C5b 0.0220 (8) 0.0220 (8) 0.0269 (8) 0.0015 (6) 0.0023 (7) 0.0050 (7)
C6b 0.0276 (8) 0.0210 (8) 0.0230 (8) 0.0045 (7) 0.0018 (7) −0.0001 (6)
C7b 0.0247 (8) 0.0261 (8) 0.0216 (8) 0.0051 (7) 0.0021 (6) 0.0007 (6)
N1a 0.0292 (8) 0.0252 (8) 0.0349 (8) 0.0050 (6) 0.0011 (6) −0.0007 (6)
N2a 0.0247 (7) 0.0234 (7) 0.0229 (7) 0.0054 (6) 0.0034 (5) 0.0002 (6)
N3a 0.0268 (7) 0.0229 (7) 0.0245 (7) 0.0041 (6) 0.0021 (6) −0.0026 (6)
C1a 0.0286 (9) 0.0260 (9) 0.0278 (9) 0.0087 (7) 0.0051 (7) −0.0018 (7)
C2a 0.0269 (9) 0.0316 (10) 0.0352 (10) 0.0047 (7) 0.0073 (7) 0.0060 (8)
C3a 0.0301 (9) 0.0311 (9) 0.0289 (9) 0.0095 (7) 0.0092 (7) 0.0016 (7)
C4a 0.0277 (8) 0.0248 (8) 0.0248 (8) 0.0009 (7) 0.0052 (7) 0.0000 (7)
C5a 0.0237 (8) 0.0295 (9) 0.0260 (9) 0.0030 (7) 0.0055 (7) −0.0021 (7)
C6a 0.0301 (9) 0.0306 (9) 0.0261 (9) 0.0125 (7) 0.0053 (7) 0.0016 (7)

3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate (TIYZIM) . Geometric parameters (Å, º)

O1b—C1b 1.284 (2) N1a—C2a 1.376 (3)
O2b—C7b 1.308 (2) N2a—C1a 1.348 (2)
O2b—H2b 0.9820 (12) N2a—C3a 1.375 (2)
O3b—C7b 1.222 (2) N2a—C4a 1.4622 (19)
O4b—N2b 1.232 (2) N3a—C6a 1.483 (2)
O5b—N2b 1.2248 (17) N3a—H3aa 0.9042 (14)
O6b—N1b 1.2313 (18) N3a—H3ab 0.9009 (13)
O7b—N1b 1.225 (2) N3a—H3ac 0.8932 (14)
N1b—C6b 1.464 (2) C1a—H1a 0.95
N2b—C4b 1.458 (2) C2a—H2a 0.95
C1b—C2b 1.440 (2) C2a—C3a 1.351 (2)
C1b—C6b 1.428 (2) C3a—H3a 0.95
C2b—C3b 1.373 (2) C4a—H4aa 0.99
C2b—C7b 1.496 (2) C4a—H4ab 0.99
C3b—H3b 0.95 C4a—C5a 1.517 (2)
C3b—C4b 1.382 (2) C5a—H5aa 0.99
C4b—C5b 1.378 (2) C5a—H5ab 0.99
C5b—H5b 0.95 C5a—C6a 1.507 (2)
C5b—C6b 1.378 (2) C6a—H6aa 0.99
N1a—C1a 1.318 (2) C6a—H6ab 0.99
C1b—O1b—H2b 99.82 (10) C6a—N3a—H3ab 109.46 (13)
C7b—O2b—H2b 106.90 (11) C6a—N3a—H3ac 111.76 (15)
O6b—N1b—O7b 123.30 (15) H3aa—N3a—H3ab 110.21 (16)
O6b—N1b—C6b 117.72 (16) H3aa—N3a—H3ac 106.71 (14)
O7b—N1b—C6b 118.97 (13) H3ab—N3a—H3ac 107.27 (13)
O4b—N2b—O5b 123.59 (16) N1a—C1a—N2a 111.91 (16)
O4b—N2b—C4b 117.89 (12) N1a—C1a—H1a 124.04
O5b—N2b—C4b 118.52 (14) N2a—C1a—H1a 124.04
O1b—C1b—C2b 120.19 (13) N1a—C2a—H2a 124.86
O1b—C1b—C6b 124.76 (15) N1a—C2a—C3a 110.28 (15)
C2b—C1b—C6b 115.00 (15) H2a—C2a—C3a 124.86
C1b—C2b—C3b 121.54 (13) N2a—C3a—C2a 106.10 (16)
C1b—C2b—C7b 119.88 (15) N2a—C3a—H3a 126.95
C3b—C2b—C7b 118.56 (14) C2a—C3a—H3a 126.95
C2b—C3b—H3b 120.01 N2a—C4a—H4aa 109.47
C2b—C3b—C4b 119.99 (15) N2a—C4a—H4ab 109.47
H3b—C3b—C4b 120.01 N2a—C4a—C5a 112.62 (14)
N2b—C4b—C3b 119.03 (14) H4aa—C4a—H4ab 106.12
N2b—C4b—C5b 119.24 (13) H4aa—C4a—C5a 109.47
C3b—C4b—C5b 121.73 (16) H4ab—C4a—C5a 109.47
C4b—C5b—H5b 120.69 C4a—C5a—H5aa 109.47
C4b—C5b—C6b 118.62 (13) C4a—C5a—H5ab 109.47
H5b—C5b—C6b 120.69 C4a—C5a—C6a 111.50 (15)
N1b—C6b—C1b 120.26 (15) H5aa—C5a—H5ab 107.36
N1b—C6b—C5b 116.59 (13) H5aa—C5a—C6a 109.47
C1b—C6b—C5b 123.09 (15) H5ab—C5a—C6a 109.47
O2b—C7b—O3b 121.86 (14) N3a—C6a—C5a 112.35 (15)
O2b—C7b—C2b 115.78 (14) N3a—C6a—H6aa 109.47
O3b—C7b—C2b 122.33 (16) N3a—C6a—H6ab 109.47
C1a—N1a—C2a 105.01 (14) C5a—C6a—H6aa 109.47
C1a—N2a—C3a 106.69 (13) C5a—C6a—H6ab 109.47
C1a—N2a—C4a 125.73 (15) H6aa—C6a—H6ab 106.43
C3a—N2a—C4a 127.56 (14) O1b—H2b—O2b 156.29 (9)
C6a—N3a—H3aa 111.33 (12)

3-(1H-Imidazol-1-yl)propanaminium 2-carboxy-4,6-dinitrophenolate (TIYZIM) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4a—H4aa···O4bi 0.99 2.53 3.359 (2) 141
O2b—H2b···O1b 0.9820 (12) 1.5161 (11) 2.4473 (16) 156.29 (9)
O2b—H2b···C1b 0.9820 (12) 2.1471 (15) 2.7833 (18) 121.00 (8)
N3a—H3aa···N1aii 0.9042 (14) 1.9318 (14) 2.797 (2) 159.6 (1)
N3a—H3ab···O2biii 0.9009 (13) 2.5650 (12) 3.1297 (17) 121.35 (10)
N3a—H3ab···O3biii 0.9009 (13) 2.0721 (11) 2.9537 (17) 165.79 (10)
N3a—H3ac···O1biv 0.8932 (14) 2.0610 (13) 2.815 (2) 141.47 (11)
N3a—H3ac···O7biv 0.8932 (14) 2.4844 (13) 2.9712 (19) 114.74 (8)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z; (iii) x+1, y, z; (iv) −x, −y+1, −z+1.

4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate (TUJPEV). Crystal data

C10H12N3O3S+·C7H3N2O7 Z = 2
Mr = 481.41 F(000) = 496
Triclinic, P1 Dx = 1.609 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.5551 (1) Å Cell parameters from 6718 reflections
b = 10.5000 (2) Å θ = 1.8–32.6°
c = 12.7576 (3) Å µ = 0.23 mm1
α = 106.463 (1)° T = 296 K
β = 100.913 (1)° Prism, yellow
γ = 108.272 (1)° 0.20 × 0.20 × 0.16 mm
V = 993.72 (3) Å3

4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate (TUJPEV). Data collection

Bruker Kappa APEXII CCD diffractometer 6717 independent reflections
Radiation source: fine-focus sealed tube 4398 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.030
ω and φ scan θmax = 32.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→12
Tmin = 0.955, Tmax = 0.964 k = −15→15
24261 measured reflections l = −19→16

4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate (TUJPEV). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F > 3σ(F)] = 0.044 Hydrogen site location: difference Fourier map
wR(F) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.95 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
6717 reflections (Δ/σ)max = 0.013
301 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.35 e Å3
48 constraints

4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate (TUJPEV). Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.Number of fixed parameters: 9

4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate (TUJPEV). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.02012 (4) 0.65156 (4) 0.38514 (3) 0.03475 (15)
O1 −0.12136 (12) 0.56298 (10) 0.26952 (9) 0.0472 (5)
O2 −0.09555 (13) 0.65440 (11) 0.47594 (9) 0.0468 (5)
O3 0.47434 (14) 0.55510 (13) 0.32058 (11) 0.0626 (6)
N1 0.29155 (15) 1.24477 (12) 0.38430 (11) 0.0434 (6)
N2 0.13845 (14) 0.60248 (12) 0.42019 (10) 0.0376 (5)
N3 0.39246 (16) 0.57705 (15) 0.40555 (12) 0.0536 (6)
C1 0.07464 (15) 0.82919 (13) 0.38935 (12) 0.0322 (5)
C2 0.21693 (19) 0.93183 (16) 0.47844 (13) 0.0511 (7)
C3 0.28732 (19) 1.06857 (16) 0.47796 (14) 0.0514 (7)
C4 0.21467 (16) 1.10142 (13) 0.38945 (12) 0.0344 (6)
C5 0.07052 (18) 1.00124 (15) 0.30229 (13) 0.0444 (7)
C6 0.00046 (17) 0.86380 (15) 0.30181 (13) 0.0421 (6)
C7 0.24788 (17) 0.58299 (13) 0.35471 (13) 0.0355 (6)
C8 0.2306 (2) 0.56568 (16) 0.23936 (14) 0.0473 (7)
C9 0.3761 (2) 0.55015 (16) 0.22381 (16) 0.0511 (8)
C10 0.4452 (3) 0.5287 (2) 0.12416 (18) 0.0766 (11)
O4 0.51685 (14) 0.76882 (14) 0.75724 (10) 0.0657 (6)
O5 0.25004 (13) 0.72390 (11) 0.65907 (9) 0.0495 (5)
O6 0.03442 (11) 0.74382 (11) 0.75483 (8) 0.0431 (4)
O7 −0.13539 (17) 0.8490 (2) 0.89544 (14) 0.0980 (10)
O8 −0.12065 (16) 0.7660 (2) 1.03000 (12) 0.0975 (9)
O9 0.46550 (16) 0.90412 (15) 1.25865 (10) 0.0717 (7)
O10 0.66293 (15) 0.90569 (15) 1.17611 (11) 0.0749 (7)
N4 −0.06158 (16) 0.80710 (17) 0.96062 (13) 0.0598 (7)
N5 0.51466 (16) 0.88865 (13) 1.17407 (12) 0.0488 (6)
C11 0.31789 (15) 0.78551 (13) 0.85956 (12) 0.0326 (5)
C12 0.14714 (16) 0.77857 (13) 0.85292 (12) 0.0328 (5)
C13 0.10840 (16) 0.80786 (15) 0.95755 (13) 0.0389 (6)
C14 0.22578 (17) 0.84024 (15) 1.06095 (13) 0.0403 (6)
C15 0.38931 (16) 0.84763 (14) 1.06263 (12) 0.0365 (6)
C16 0.43735 (16) 0.82163 (13) 0.96389 (12) 0.0356 (6)
C17 0.36856 (18) 0.75728 (15) 0.75210 (13) 0.0400 (6)
H1a 0.188848 1.256572 0.342213 0.088 (4)*
H1b 0.353568 1.297412 0.446823 0.088 (4)*
H1c 0.348288 1.238627 0.338232 0.088 (4)*
H2 0.265121 0.908789 0.538567 0.0613*
H2a 0.186499 0.630039 0.50234 0.068 (5)*
H3 0.383907 1.138439 0.537561 0.0617*
H5 0.020222 1.025766 0.243815 0.0533*
H6 −0.096798 0.794538 0.242417 0.0506*
H8 0.139615 0.565054 0.185878 0.0568*
H10a 0.551947 0.608597 0.142286 0.1149*
H10b 0.362955 0.522551 0.058321 0.1149*
H10c 0.46505 0.441064 0.1077 0.1149*
H14 0.194965 0.856742 1.128171 0.0484*
H16 0.549353 0.82833 0.967386 0.0428*
H6a 0.115577 0.727699 0.69023 0.132 (9)*

4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate (TUJPEV). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.03683 (17) 0.03321 (18) 0.0360 (2) 0.01370 (13) 0.01260 (14) 0.01423 (16)
O1 0.0462 (5) 0.0373 (5) 0.0422 (7) 0.0089 (4) 0.0009 (5) 0.0087 (5)
O2 0.0524 (6) 0.0510 (6) 0.0532 (7) 0.0246 (5) 0.0309 (5) 0.0276 (6)
O3 0.0518 (6) 0.0718 (8) 0.0660 (9) 0.0313 (6) 0.0248 (6) 0.0153 (7)
N1 0.0510 (7) 0.0374 (6) 0.0502 (9) 0.0178 (5) 0.0268 (6) 0.0202 (6)
N2 0.0476 (6) 0.0413 (6) 0.0327 (7) 0.0235 (5) 0.0154 (5) 0.0169 (6)
N3 0.0495 (7) 0.0628 (9) 0.0487 (9) 0.0283 (6) 0.0154 (6) 0.0136 (7)
C1 0.0350 (6) 0.0317 (7) 0.0316 (8) 0.0143 (5) 0.0112 (5) 0.0120 (6)
C2 0.0588 (9) 0.0433 (9) 0.0382 (9) 0.0107 (7) −0.0053 (7) 0.0197 (8)
C3 0.0520 (9) 0.0380 (8) 0.0432 (10) 0.0029 (7) −0.0033 (7) 0.0129 (8)
C4 0.0400 (7) 0.0320 (7) 0.0393 (9) 0.0172 (6) 0.0208 (6) 0.0153 (6)
C5 0.0478 (8) 0.0446 (8) 0.0438 (10) 0.0195 (7) 0.0064 (7) 0.0235 (8)
C6 0.0392 (7) 0.0397 (8) 0.0403 (9) 0.0118 (6) 0.0004 (6) 0.0159 (7)
C7 0.0414 (7) 0.0275 (7) 0.0374 (9) 0.0132 (5) 0.0131 (6) 0.0113 (6)
C8 0.0553 (9) 0.0506 (9) 0.0426 (10) 0.0238 (7) 0.0203 (7) 0.0194 (8)
C9 0.0605 (9) 0.0379 (8) 0.0574 (12) 0.0169 (7) 0.0325 (9) 0.0141 (8)
C10 0.0921 (14) 0.0731 (13) 0.0819 (15) 0.0351 (12) 0.0607 (13) 0.0275 (13)
O4 0.0483 (6) 0.0981 (10) 0.0513 (8) 0.0274 (6) 0.0254 (5) 0.0227 (7)
O5 0.0578 (6) 0.0613 (7) 0.0295 (6) 0.0241 (5) 0.0132 (5) 0.0156 (5)
O6 0.0404 (5) 0.0525 (6) 0.0322 (6) 0.0196 (4) 0.0028 (4) 0.0136 (5)
O7 0.0700 (8) 0.1711 (16) 0.0831 (11) 0.0810 (10) 0.0212 (8) 0.0529 (11)
O8 0.0537 (7) 0.1721 (16) 0.0566 (9) 0.0299 (9) 0.0287 (7) 0.0359 (10)
O9 0.0770 (8) 0.0950 (10) 0.0308 (7) 0.0267 (7) 0.0041 (6) 0.0211 (7)
O10 0.0480 (7) 0.0991 (10) 0.0639 (9) 0.0302 (6) −0.0064 (6) 0.0241 (8)
N4 0.0396 (7) 0.0856 (11) 0.0419 (9) 0.0249 (7) 0.0082 (6) 0.0084 (8)
N5 0.0478 (7) 0.0458 (7) 0.0405 (9) 0.0147 (6) −0.0044 (6) 0.0138 (7)
C11 0.0346 (6) 0.0281 (6) 0.0318 (8) 0.0107 (5) 0.0078 (5) 0.0096 (6)
C12 0.0351 (6) 0.0301 (7) 0.0291 (8) 0.0112 (5) 0.0039 (5) 0.0104 (6)
C13 0.0330 (6) 0.0444 (8) 0.0356 (9) 0.0154 (6) 0.0079 (6) 0.0108 (7)
C14 0.0424 (7) 0.0454 (8) 0.0301 (8) 0.0162 (6) 0.0100 (6) 0.0112 (7)
C15 0.0370 (7) 0.0341 (7) 0.0297 (8) 0.0107 (5) −0.0009 (6) 0.0104 (6)
C16 0.0321 (6) 0.0324 (7) 0.0393 (9) 0.0124 (5) 0.0061 (6) 0.0120 (6)
C17 0.0411 (7) 0.0393 (8) 0.0385 (9) 0.0139 (6) 0.0130 (6) 0.0143 (7)

4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate (TUJPEV). Geometric parameters (Å, º)

S1—O1 1.4228 (9) C9—C10 1.491 (3)
S1—O2 1.4264 (13) C10—H10a 0.96
S1—N2 1.6264 (14) C10—H10b 0.96
O3—N3 1.402 (2) C10—H10c 0.96
O3—C9 1.333 (2) O4—C17 1.223 (2)
N1—C4 1.468 (2) O5—C17 1.2827 (18)
N1—H1a 1.0015 (14) O5—H6a 1.2945 (12)
N1—H1b 0.7932 (11) O6—C12 1.3010 (16)
N1—H1c 0.8315 (15) O6—H6a 1.1837 (11)
N2—C7 1.391 (2) O7—N4 1.211 (3)
N2—H2a 0.9703 (12) O8—N4 1.214 (2)
N3—C7 1.312 (2) O9—N5 1.218 (2)
C1—C2 1.3764 (15) O10—N5 1.218 (2)
C1—C6 1.374 (2) N4—C13 1.460 (2)
C2—C3 1.374 (2) N5—C15 1.4638 (19)
C2—H2 0.93 C11—C12 1.425 (2)
C3—C4 1.367 (2) C11—C16 1.3841 (19)
C3—H3 0.93 C11—C17 1.493 (2)
C4—C5 1.3668 (15) C12—C13 1.409 (2)
C5—C6 1.376 (2) C13—C14 1.376 (2)
C5—H5 0.93 C14—C15 1.372 (2)
C6—H6 0.93 C14—H14 0.93
C7—C8 1.403 (2) C15—C16 1.379 (2)
C8—C9 1.348 (3) C16—H16 0.93
C8—H8 0.93
O1—S1—O2 120.50 (6) C8—C9—C10 133.88 (19)
O1—S1—N2 108.78 (6) C9—C10—H10a 109.47
O2—S1—N2 104.15 (7) C9—C10—H10b 109.47
N3—O3—C9 108.94 (14) C9—C10—H10c 109.47
C4—N1—H1a 102.59 (10) H10a—C10—H10b 109.47
C4—N1—H1b 107.06 (15) H10a—C10—H10c 109.47
C4—N1—H1c 107.83 (13) H10b—C10—H10c 109.47
H1a—N1—H1b 124.65 (16) C17—O5—H6a 105.28 (11)
H1a—N1—H1c 103.41 (14) C12—O6—H6a 102.01 (10)
H1b—N1—H1c 110.21 (14) O7—N4—O8 123.34 (17)
S1—N2—C7 124.43 (12) O7—N4—C13 118.74 (17)
S1—N2—H2a 113.65 (11) O8—N4—C13 117.91 (17)
C7—N2—H2a 116.39 (12) O9—N5—O10 124.03 (14)
O3—N3—C7 104.86 (14) O9—N5—C15 118.56 (14)
C2—C1—C6 120.38 (14) O10—N5—C15 117.41 (15)
C1—C2—C3 119.57 (16) C12—C11—C16 120.99 (14)
C1—C2—H2 120.22 C12—C11—C17 118.93 (12)
C3—C2—H2 120.22 C16—C11—C17 120.07 (13)
C2—C3—C4 119.68 (12) O6—C12—C11 121.05 (14)
C2—C3—H3 120.16 O6—C12—C13 122.90 (13)
C4—C3—H3 120.16 C11—C12—C13 116.03 (12)
N1—C4—C3 120.80 (10) N4—C13—C12 120.40 (13)
N1—C4—C5 118.09 (15) N4—C13—C14 116.57 (15)
C3—C4—C5 121.09 (14) C12—C13—C14 123.02 (14)
C4—C5—C6 119.44 (16) C13—C14—C15 118.50 (15)
C4—C5—H5 120.28 C13—C14—H14 120.75
C6—C5—H5 120.28 C15—C14—H14 120.75
C1—C6—C5 119.80 (11) N5—C15—C14 117.72 (14)
C1—C6—H6 120.1 N5—C15—C16 120.43 (13)
C5—C6—H6 120.1 C14—C15—C16 121.82 (13)
N2—C7—N3 117.05 (14) C11—C16—C15 119.61 (13)
N2—C7—C8 131.01 (14) C11—C16—H16 120.19
N3—C7—C8 111.93 (15) C15—C16—H16 120.19
C7—C8—C9 104.20 (16) O4—C17—O5 124.29 (16)
C7—C8—H8 127.9 O4—C17—C11 119.59 (13)
C9—C8—H8 127.9 O5—C17—C11 116.11 (13)
O3—C9—C8 110.05 (18) O5—H6a—O6 156.58 (6)
O3—C9—C10 116.07 (17)

4-{[(5-Methylisoxazol-3-yl)amino]sulfonyl}anilinium 2-hydroxy-3,5-dinitrobenzoate (TUJPEV). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1a···O6i 1.0015 (14) 2.0683 (10) 3.0655 (17) 173.55 (7)
N1—H1b···N3ii 0.7932 (11) 2.2920 (11) 3.0393 (15) 157.33 (11)
N1—H1c···O4ii 0.8315 (15) 1.8318 (14) 2.663 (2) 177.12 (7)
N2—H2a···O5 0.9703 (12) 1.8440 (10) 2.7852 (15) 162.64 (9)
O5—H6a···O6 1.2945 (12) 1.1837 (11) 2.4268 (16) 156.58 (6)
O5—H6a···C12 1.2945 (12) 1.9326 (15) 2.7490 (19) 115.40 (6)
O6—H6a···O5 1.1837 (11) 1.2945 (12) 2.4268 (16) 156.58 (6)
O6—H6a···C17 1.1837 (11) 2.0485 (15) 2.8249 (19) 119.42 (7)

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+2, −z+1.

2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate (VABZIJ). Crystal data

C8H13N2O+·C7H3N2O7·H2O Z = 2
Mr = 398.33 F(000) = 416
Triclinic, P1 Dx = 1.497 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.6691 (3) Å Cell parameters from 6994 reflections
b = 11.3831 (4) Å θ = 2.4–31.6°
c = 12.2900 (5) Å µ = 0.13 mm1
α = 89.727 (2)° T = 100 K
β = 76.771 (2)° Block, yellow
γ = 76.930 (2)° 0.52 × 0.13 × 0.10 mm
V = 883.62 (6) Å3

2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate (VABZIJ). Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4061 independent reflections
Radiation source: fine-focus sealed tube 3042 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −8→8
Tmin = 0.937, Tmax = 0.987 k = −14→12
17014 measured reflections l = −15→15

2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate (VABZIJ). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
R[F > 3σ(F)] = 0.038 Secondary atom site location: difference Fourier map
wR(F) = 0.086 Hydrogen site location: difference Fourier map
S = 1.77 H atoms treated by a mixture of independent and constrained refinement
4061 reflections Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
258 parameters (Δ/σ)max = 0.014
0 restraints Δρmax = 0.46 e Å3
52 constraints Δρmin = −0.23 e Å3

2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate (VABZIJ). Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Number of fixed parameters: 15

2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate (VABZIJ). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.30546 (16) −0.17099 (9) 0.14963 (8) 0.0232 (4)
O2 0.56653 (17) −0.35718 (9) 0.01361 (9) 0.0316 (4)
O3 0.48656 (18) −0.36691 (9) −0.14697 (9) 0.0311 (4)
O4 0.36254 (16) −0.00313 (9) −0.33889 (8) 0.0235 (4)
O5 0.23753 (16) 0.16995 (9) −0.24573 (8) 0.0255 (4)
O6 0.07250 (15) 0.19153 (8) 0.16330 (8) 0.0204 (4)
O7 0.14533 (16) 0.02234 (9) 0.25238 (8) 0.0215 (4)
O8 0.31889 (16) 0.38510 (9) 0.41956 (8) 0.0221 (4)
N1 0.30174 (18) 0.05930 (11) −0.25094 (10) 0.0185 (4)
N2 0.48606 (19) −0.31064 (11) −0.06125 (10) 0.0213 (4)
N3 0.11898 (17) 0.64252 (10) 0.66449 (9) 0.0147 (4)
N4 0.23841 (17) 0.58259 (10) 0.47936 (9) 0.0144 (4)
C1 0.3103 (2) −0.11910 (12) 0.05547 (11) 0.0151 (5)
C2 0.3895 (2) −0.18160 (12) −0.05145 (11) 0.0154 (5)
C3 0.3838 (2) −0.12419 (13) −0.15034 (12) 0.0160 (5)
H3a 0.432743 −0.167918 −0.218686 0.0192*
C4 0.3044 (2) −0.00126 (13) −0.14615 (11) 0.0150 (5)
C5 0.2281 (2) 0.06626 (13) −0.04539 (11) 0.0148 (5)
H5a 0.176964 0.149404 −0.044656 0.0177*
C6 0.2290 (2) 0.00871 (12) 0.05379 (11) 0.0140 (5)
C7 0.1429 (2) 0.08121 (13) 0.16123 (11) 0.0159 (5)
C8 0.2598 (2) 0.45829 (12) 0.49910 (12) 0.0158 (5)
C9 0.2070 (2) 0.43367 (13) 0.61582 (11) 0.0160 (5)
H9a 0.221191 0.354014 0.636387 0.0192*
C10 0.1376 (2) 0.52320 (12) 0.69587 (11) 0.0157 (5)
C11 0.1694 (2) 0.67095 (12) 0.55875 (11) 0.0141 (5)
C12 0.1445 (2) 0.80006 (12) 0.52928 (11) 0.0153 (5)
H12a 0.110348 0.85057 0.598371 0.0184*
C13 −0.0374 (2) 0.83589 (13) 0.47019 (13) 0.0224 (5)
H13a −0.054927 0.919318 0.452627 0.0335*
H13b −0.165759 0.824046 0.518462 0.0335*
H13c −0.005734 0.786763 0.402409 0.0335*
C14 0.3509 (2) 0.82298 (12) 0.45745 (12) 0.0195 (5)
H14a 0.461527 0.800548 0.496897 0.0292*
H14b 0.331515 0.907081 0.442205 0.0292*
H14c 0.389104 0.775688 0.38823 0.0292*
C15 0.0772 (2) 0.50600 (13) 0.81821 (12) 0.0221 (5)
H15a −0.068894 0.545223 0.847126 0.0332*
H15b 0.163895 0.540389 0.855439 0.0332*
H15c 0.097793 0.421295 0.830953 0.0332*
O1w 0.32852 (17) 0.60955 (9) 0.25340 (8) 0.0272 (4)
H1n3 0.061415 0.706878 0.722609 0.037 (5)*
H1n4 0.270467 0.602234 0.406704 0.034 (5)*
H2w1 0.339729 0.675124 0.210779 0.053 (6)*
H1w1 0.381611 0.539911 0.20932 0.055 (6)*
H7 0.211364 −0.063754 0.220331 0.078 (7)*

2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate (VABZIJ). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0305 (6) 0.0178 (6) 0.0185 (6) −0.0038 (5) −0.0018 (5) 0.0031 (4)
O2 0.0431 (7) 0.0219 (6) 0.0232 (6) 0.0045 (5) −0.0063 (5) 0.0044 (5)
O3 0.0489 (7) 0.0181 (6) 0.0229 (6) −0.0036 (5) −0.0053 (5) −0.0086 (5)
O4 0.0291 (6) 0.0274 (6) 0.0138 (6) −0.0083 (5) −0.0030 (5) −0.0009 (5)
O5 0.0347 (6) 0.0178 (6) 0.0235 (6) −0.0045 (5) −0.0072 (5) 0.0058 (5)
O6 0.0244 (6) 0.0142 (6) 0.0187 (6) −0.0013 (4) −0.0004 (4) −0.0029 (4)
O7 0.0284 (6) 0.0175 (6) 0.0140 (5) −0.0009 (5) 0.0003 (4) −0.0003 (4)
O8 0.0321 (6) 0.0137 (5) 0.0176 (6) −0.0026 (5) −0.0027 (5) −0.0025 (4)
N1 0.0182 (6) 0.0202 (7) 0.0186 (7) −0.0071 (6) −0.0047 (5) 0.0034 (6)
N2 0.0240 (7) 0.0161 (7) 0.0198 (7) −0.0035 (6) 0.0019 (6) 0.0001 (6)
N3 0.0168 (6) 0.0123 (6) 0.0136 (6) −0.0024 (5) −0.0017 (5) −0.0006 (5)
N4 0.0172 (6) 0.0117 (6) 0.0129 (6) −0.0026 (5) −0.0014 (5) 0.0011 (5)
C1 0.0133 (7) 0.0177 (8) 0.0148 (7) −0.0064 (6) −0.0014 (6) 0.0022 (6)
C2 0.0158 (7) 0.0118 (7) 0.0176 (8) −0.0030 (6) −0.0017 (6) −0.0008 (6)
C3 0.0159 (7) 0.0184 (8) 0.0140 (8) −0.0070 (6) −0.0012 (6) −0.0029 (6)
C4 0.0146 (7) 0.0196 (8) 0.0125 (7) −0.0073 (6) −0.0030 (6) 0.0033 (6)
C5 0.0121 (7) 0.0137 (7) 0.0188 (8) −0.0046 (6) −0.0026 (6) 0.0007 (6)
C6 0.0113 (7) 0.0154 (7) 0.0154 (7) −0.0048 (6) −0.0015 (6) −0.0005 (6)
C7 0.0130 (7) 0.0171 (8) 0.0170 (8) −0.0048 (6) −0.0008 (6) 0.0000 (6)
C8 0.0145 (7) 0.0132 (7) 0.0193 (8) −0.0022 (6) −0.0036 (6) 0.0001 (6)
C9 0.0177 (7) 0.0110 (7) 0.0187 (8) −0.0031 (6) −0.0036 (6) 0.0032 (6)
C10 0.0137 (7) 0.0154 (8) 0.0182 (8) −0.0033 (6) −0.0041 (6) 0.0029 (6)
C11 0.0106 (7) 0.0152 (7) 0.0161 (8) −0.0028 (6) −0.0026 (6) −0.0012 (6)
C12 0.0178 (7) 0.0114 (7) 0.0155 (7) −0.0034 (6) −0.0014 (6) −0.0007 (6)
C13 0.0218 (8) 0.0140 (8) 0.0321 (9) −0.0033 (6) −0.0089 (7) 0.0052 (7)
C14 0.0210 (8) 0.0141 (8) 0.0218 (8) −0.0048 (6) −0.0012 (6) 0.0004 (6)
C15 0.0269 (8) 0.0194 (8) 0.0188 (8) −0.0047 (7) −0.0034 (6) 0.0019 (6)
O1w 0.0471 (7) 0.0134 (6) 0.0163 (6) −0.0043 (5) −0.0005 (5) 0.0003 (5)

2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate (VABZIJ). Geometric parameters (Å, º)

O1—C1 1.2939 (17) C4—C5 1.3881 (18)
O1—H7 1.4329 (9) C5—H5a 0.93
O2—N2 1.2279 (17) C5—C6 1.3816 (19)
O3—N2 1.2346 (17) C6—C7 1.4844 (18)
O4—N1 1.2304 (15) C8—C9 1.439 (2)
O5—N1 1.2321 (15) C9—H9a 0.93
O6—C7 1.2355 (16) C9—C10 1.3449 (19)
O7—C7 1.3040 (17) C10—C15 1.4889 (19)
O7—H7 1.0191 (9) C11—C12 1.4936 (19)
O8—C8 1.2198 (17) C12—H12a 0.98
N1—C4 1.4597 (18) C12—C13 1.531 (2)
N2—C2 1.4576 (17) C12—C14 1.5318 (19)
N3—C10 1.3963 (18) C13—H13a 0.96
N3—C11 1.3236 (17) C13—H13b 0.96
N3—H1n3 0.9729 (11) C13—H13c 0.96
N4—C8 1.4152 (18) C14—H14a 0.96
N4—C11 1.3303 (17) C14—H14b 0.96
N4—H1n4 0.9085 (11) C14—H14c 0.96
C1—C2 1.4259 (18) C15—H15a 0.96
C1—C6 1.4349 (19) C15—H15b 0.96
C2—C3 1.381 (2) C15—H15c 0.96
C3—H3a 0.93 O1w—H2w1 0.9169 (10)
C3—C4 1.3763 (19) O1w—H1w1 0.9146 (10)
C1—O1—H7 96.54 (8) N4—C8—C9 113.60 (12)
C7—O7—H7 101.27 (9) C8—C9—H9a 119.24
O4—N1—O5 124.04 (12) C8—C9—C10 121.51 (13)
O4—N1—C4 118.12 (11) H9a—C9—C10 119.24
O5—N1—C4 117.84 (11) N3—C10—C9 118.95 (12)
O2—N2—O3 123.42 (12) N3—C10—C15 116.00 (11)
O2—N2—C2 119.16 (12) C9—C10—C15 125.06 (13)
O3—N2—C2 117.39 (12) N3—C11—N4 118.76 (12)
C10—N3—C11 122.45 (11) N3—C11—C12 120.45 (12)
C10—N3—H1n3 118.37 (11) N4—C11—C12 120.78 (12)
C11—N3—H1n3 119.14 (11) C11—C12—H12a 108.71
C8—N4—C11 124.69 (12) C11—C12—C13 109.61 (13)
C8—N4—H1n4 116.55 (11) C11—C12—C14 111.42 (10)
C11—N4—H1n4 118.72 (12) H12a—C12—C13 108.78
O1—C1—C2 124.06 (12) H12a—C12—C14 106.87
O1—C1—C6 120.40 (11) C13—C12—C14 111.36 (12)
C2—C1—C6 115.53 (12) C12—C13—H13a 109.47
N2—C2—C1 120.85 (12) C12—C13—H13b 109.47
N2—C2—C3 116.56 (11) C12—C13—H13c 109.47
C1—C2—C3 122.58 (12) H13a—C13—H13b 109.47
C2—C3—H3a 120.52 H13a—C13—H13c 109.47
C2—C3—C4 118.97 (12) H13b—C13—H13c 109.47
H3a—C3—C4 120.52 C12—C14—H14a 109.47
N1—C4—C3 118.77 (12) C12—C14—H14b 109.47
N1—C4—C5 119.38 (12) C12—C14—H14c 109.47
C3—C4—C5 121.85 (13) H14a—C14—H14b 109.47
C4—C5—H5a 120.33 H14a—C14—H14c 109.47
C4—C5—C6 119.34 (12) H14b—C14—H14c 109.47
H5a—C5—C6 120.33 C10—C15—H15a 109.47
C1—C6—C5 121.71 (12) C10—C15—H15b 109.47
C1—C6—C7 119.30 (12) C10—C15—H15c 109.47
C5—C6—C7 118.99 (12) H15a—C15—H15b 109.47
O6—C7—O7 122.20 (12) H15a—C15—H15c 109.47
O6—C7—C6 121.26 (12) H15b—C15—H15c 109.47
O7—C7—C6 116.54 (12) H2w1—O1w—H1w1 110.00 (10)
O8—C8—N4 119.14 (12) O1—H7—O7 165.94 (7)
O8—C8—C9 127.26 (13)

2-Isopropyl-6-methyl-4-oxo-3,4-dihydropyrimidin-1-ium 2-carboxy-4,6-dinitrophenolate monohydrate (VABZIJ). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12a···O7i 0.98 2.42 3.3068 (15) 151
N3—H1n3···O6i 0.9729 (11) 1.7539 (9) 2.7182 (14) 170.48 (8)
N4—H1n4···O1w 0.9085 (11) 1.8401 (10) 2.7348 (15) 167.76 (8)
O1w—H2w1···O1ii 0.9169 (10) 1.8895 (10) 2.7886 (14) 166.21 (6)
O1w—H1w1···O3iii 0.9146 (10) 2.0399 (10) 2.9352 (14) 165.84 (7)
O7—H7···O1 1.0191 (9) 1.4329 (9) 2.4340 (13) 165.94 (7)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) −x+1, −y, −z.

1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate (WADXOR). Crystal data

C9H17N2+·C7H3N2O7 F(000) = 800
Mr = 380.35 Dx = 1.489 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabc Cell parameters from 1891 reflections
a = 6.1537 (3) Å θ = 3.5–26.6°
b = 19.1541 (14) Å µ = 0.12 mm1
c = 14.5527 (11) Å T = 200 K
β = 98.343 (6)° Needle, yellow
V = 1697.2 (2) Å3 0.30 × 0.13 × 0.10 mm
Z = 4

1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate (WADXOR). Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 3339 independent reflections
Graphite monochromator 1976 reflections with I > 3σ(I)
Detector resolution: 16.067 pixels mm-1 Rint = 0.034
ω scans θmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) h = −7→7
Tmin = 0.920, Tmax = 0.990 k = −23→23
7800 measured reflections l = −17→17

1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate (WADXOR). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.33 (Δ/σ)max = 0.005
3339 reflections Δρmax = 0.36 e Å3
268 parameters Δρmin = −0.24 e Å3
2 restraints Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
98 constraints Extinction coefficient: 2200 (700)
Primary atom site location: structure-invariant direct methods

1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate (WADXOR). Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.Number of fixed parameters : 10

1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate (WADXOR). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O2b 0.8418 (3) 0.56169 (11) 0.78950 (14) 0.0440 (8) 0.727 (4)
H61b 0.852107 0.560819 0.76707 0.0359* 0.273 (4)
O21b 0.7735 (8) 0.6569 (3) 0.4912 (4) 0.048 (2) 0.273 (4)
H6b 0.805712 0.644967 0.507207 0.0328* 0.727 (4)
O11b 0.5083 (2) 0.68884 (8) 0.59278 (11) 0.0444 (6)
O12b 0.5447 (2) 0.64534 (8) 0.73586 (12) 0.0524 (7)
O31b 1.1108 (3) 0.45706 (10) 0.81717 (14) 0.0829 (9)
O32b 1.4073 (3) 0.47245 (10) 0.75770 (13) 0.0775 (8)
O51b 1.3288 (3) 0.55869 (9) 0.44602 (12) 0.0603 (7)
O52b 1.0707 (3) 0.63212 (10) 0.39870 (12) 0.0680 (8)
N3b 1.2111 (3) 0.48284 (10) 0.76049 (14) 0.0472 (8)
N5b 1.1654 (3) 0.59180 (10) 0.45701 (14) 0.0418 (7)
C1b 0.8002 (3) 0.60956 (10) 0.63903 (15) 0.0264 (7)
C2b 0.9062 (3) 0.56604 (11) 0.70954 (15) 0.0299 (7)
C3b 1.0952 (3) 0.53063 (10) 0.69140 (15) 0.0309 (7)
C4b 1.1814 (3) 0.53946 (10) 0.61042 (15) 0.0309 (7)
C5b 1.0736 (3) 0.58234 (10) 0.54290 (14) 0.0271 (7)
C6b 0.8810 (3) 0.61681 (10) 0.55538 (15) 0.0273 (7)
C11b 0.6030 (3) 0.65080 (11) 0.65583 (18) 0.0351 (8)
N1a −0.1521 (2) 0.82026 (8) 0.63826 (12) 0.0293 (6)
N8a 0.1721 (2) 0.76019 (9) 0.67283 (12) 0.0373 (7)
C2a −0.3261 (3) 0.85089 (11) 0.57022 (15) 0.0370 (8)
C3a −0.2602 (3) 0.91805 (11) 0.52679 (15) 0.0401 (8)
C4a −0.1188 (3) 0.90791 (11) 0.45061 (16) 0.0417 (8)
C5a 0.0933 (3) 0.86805 (11) 0.48032 (14) 0.0401 (8)
C6a 0.0611 (3) 0.79367 (11) 0.51423 (14) 0.0344 (8)
C7a 0.0226 (3) 0.79087 (10) 0.61288 (14) 0.0268 (7)
C9a 0.1394 (8) 0.7480 (3) 0.7694 (4) 0.0377 (17) 0.687 (4)
C10a 0.0234 (5) 0.8112 (2) 0.8006 (2) 0.0388 (12) 0.687 (4)
C11a −0.1865 (3) 0.82334 (13) 0.73606 (16) 0.0375 (8)
C13a 0.192 (2) 0.7733 (6) 0.7752 (10) 0.0377 (17) 0.313 (4)
C12a −0.0453 (12) 0.7700 (5) 0.7962 (6) 0.0388 (12) 0.313 (4)
H4b 1.313123 0.516393 0.601144 0.0371*
H8a 0.304017 0.743029 0.652706 0.073 (8)*
H10a 0.119515 0.852593 0.800333 0.0466* 0.686
H21a −0.458393 0.859249 0.600103 0.0444*
H22a −0.373911 0.816372 0.520773 0.0444*
H31a −0.393523 0.944805 0.502041 0.0481*
H32a −0.182575 0.948658 0.575716 0.0481*
H41a −0.084564 0.95395 0.425285 0.0501*
H42a −0.20539 0.883982 0.397103 0.0501*
H51a 0.180506 0.866759 0.428286 0.0482*
H52a 0.186838 0.894538 0.52943 0.0482*
H61a 0.191356 0.765112 0.506561 0.0413*
H62a −0.063947 0.77162 0.474177 0.0413*
H91a 0.046176 0.706149 0.772504 0.0452* 0.687 (4)
H92a 0.283833 0.74265 0.808712 0.0452* 0.687 (4)
H11a −0.009873 0.803439 0.864351 0.0466* 0.686
H12a −0.318 (2) 0.7965 (9) 0.7425 (13) 0.045*
H13a −0.230 (3) 0.8711 (6) 0.7485 (13) 0.045*
H14a −0.105082 0.7226 0.782436 0.0466* 0.313 (4)
H15a −0.047311 0.780768 0.862598 0.0466* 0.313 (4)
H16a 0.27893 0.735519 0.809131 0.0452* 0.313 (4)
H17a 0.251697 0.820686 0.789237 0.0452* 0.313 (4)
H21b 0.621837 0.678052 0.538628 0.082 (11)* 0.273 (4)
H2b 0.702896 0.598291 0.774475 0.082 (11)* 0.727 (4)

1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate (WADXOR). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2b 0.0481 (12) 0.0570 (16) 0.0296 (15) 0.0087 (11) 0.0152 (10) 0.0091 (11)
O21b 0.045 (3) 0.053 (4) 0.046 (4) 0.006 (3) 0.006 (3) 0.023 (3)
O11b 0.0369 (8) 0.0391 (10) 0.0583 (12) 0.0136 (7) 0.0102 (8) 0.0073 (9)
O12b 0.0488 (9) 0.0643 (12) 0.0488 (12) 0.0091 (8) 0.0232 (8) −0.0030 (9)
O31b 0.0796 (13) 0.0853 (16) 0.0753 (16) −0.0256 (11) −0.0175 (11) 0.0533 (13)
O32b 0.0728 (12) 0.0903 (16) 0.0642 (14) 0.0483 (11) −0.0074 (10) 0.0050 (11)
O51b 0.0542 (10) 0.0650 (12) 0.0694 (13) 0.0077 (9) 0.0350 (9) −0.0110 (10)
O52b 0.0926 (13) 0.0722 (14) 0.0455 (12) 0.0171 (11) 0.0314 (10) 0.0241 (10)
N3b 0.0575 (13) 0.0347 (13) 0.0432 (15) 0.0005 (11) −0.0137 (11) −0.0004 (10)
N5b 0.0476 (11) 0.0400 (13) 0.0414 (13) −0.0046 (10) 0.0193 (10) −0.0067 (10)
C1b 0.0265 (10) 0.0220 (11) 0.0303 (13) −0.0029 (9) 0.0024 (9) −0.0023 (10)
C2b 0.0337 (11) 0.0267 (12) 0.0294 (14) −0.0061 (10) 0.0050 (10) −0.0023 (10)
C3b 0.0361 (11) 0.0233 (12) 0.0304 (14) 0.0002 (9) −0.0053 (10) 0.0025 (10)
C4b 0.0257 (10) 0.0240 (12) 0.0413 (15) −0.0013 (9) −0.0005 (10) −0.0053 (11)
C5b 0.0295 (10) 0.0254 (12) 0.0274 (13) −0.0052 (9) 0.0073 (9) −0.0017 (10)
C6b 0.0298 (10) 0.0218 (12) 0.0290 (13) −0.0028 (9) −0.0003 (9) 0.0007 (10)
C11b 0.0297 (11) 0.0296 (13) 0.0464 (16) −0.0042 (10) 0.0070 (11) −0.0061 (12)
N1a 0.0249 (8) 0.0327 (11) 0.0305 (11) 0.0026 (8) 0.0041 (8) 0.0000 (9)
N8a 0.0332 (9) 0.0493 (12) 0.0291 (12) 0.0137 (9) 0.0037 (8) 0.0056 (9)
C2a 0.0243 (10) 0.0400 (14) 0.0451 (15) 0.0063 (10) −0.0002 (10) −0.0020 (12)
C3a 0.0374 (12) 0.0331 (14) 0.0465 (16) 0.0071 (10) −0.0044 (11) 0.0000 (11)
C4a 0.0450 (12) 0.0397 (15) 0.0370 (15) −0.0028 (11) −0.0060 (11) 0.0087 (11)
C5a 0.0368 (11) 0.0526 (16) 0.0319 (14) −0.0008 (11) 0.0079 (10) 0.0091 (12)
C6a 0.0355 (11) 0.0411 (15) 0.0262 (13) 0.0079 (10) 0.0032 (9) −0.0057 (11)
C7a 0.0283 (10) 0.0224 (12) 0.0291 (13) −0.0012 (9) 0.0025 (9) −0.0030 (10)
C9a 0.040 (3) 0.041 (4) 0.0304 (18) −0.001 (2) −0.001 (2) 0.004 (3)
C10a 0.049 (2) 0.042 (2) 0.0270 (17) −0.0043 (18) 0.0083 (15) −0.0029 (19)
C11a 0.0367 (12) 0.0426 (15) 0.0364 (15) 0.0003 (11) 0.0161 (11) −0.0056 (12)
C13a 0.040 (3) 0.041 (4) 0.0304 (18) −0.001 (2) −0.001 (2) 0.004 (3)
C12a 0.049 (2) 0.042 (2) 0.0270 (17) −0.0043 (18) 0.0083 (15) −0.0029 (19)

1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate (WADXOR). Geometric parameters (Å, º)

O2b—C2b 1.285 (3) C2a—H22a 0.99
O2b—H2b 1.103 (2) C3a—C4a 1.518 (3)
H61b—C2b 0.95 C3a—H31a 0.99
O21b—C6b 1.311 (6) C3a—H32a 0.99
O21b—H21b 1.303 (6) C4a—C5a 1.520 (3)
H6b—C6b 0.95 C4a—H41a 0.99
O11b—C11b 1.248 (3) C4a—H42a 0.99
O11b—H21b 1.1454 (16) C5a—C6a 1.530 (3)
O12b—C11b 1.272 (3) C5a—H51a 0.99
O12b—H2b 1.3846 (15) C5a—H52a 0.99
O31b—N3b 1.205 (3) C6a—C7a 1.490 (3)
O32b—N3b 1.230 (3) C6a—H61a 0.99
O51b—N5b 1.219 (3) C6a—H62a 0.99
O52b—N5b 1.230 (3) C9a—C10a 1.508 (6)
N3b—C3b 1.466 (3) C9a—C13a 0.581 (13)
N5b—C5b 1.456 (3) C9a—C12a 1.323 (10)
C1b—C2b 1.407 (3) C9a—H91a 0.99
C1b—C6b 1.387 (3) C9a—H92a 0.99
C1b—C11b 1.497 (3) C9a—H16a 0.9922
C2b—C3b 1.404 (3) C10a—C11a 1.501 (4)
C3b—C4b 1.371 (3) C10a—C13a 1.358 (14)
C4b—C5b 1.375 (3) C10a—H10a 0.99
C4b—H4b 0.95 C10a—H11a 0.99
C5b—C6b 1.392 (3) C10a—H15a 1.207
N1a—C2a 1.471 (2) C11a—C12a 1.530 (8)
N1a—C7a 1.313 (2) C11a—H12a 0.977 (15)
N1a—C11a 1.470 (3) C11a—H13a 0.978 (13)
N8a—C7a 1.311 (2) C13a—C12a 1.534 (16)
N8a—C9a 1.467 (6) C13a—H92a 0.9083
N8a—C13a 1.498 (15) C13a—H16a 0.99
N8a—H8a 0.9604 (17) C13a—H17a 0.99
C2a—C3a 1.514 (3) C12a—H14a 0.99
C2a—H21a 0.99 C12a—H15a 0.99
H6b—O21b—H21b 102.88 N8a—C9a—C13a 81.6 (16)
C11b—O12b—H2b 98.61 (14) N8a—C9a—C12a 118.3 (5)
O31b—N3b—O32b 124.0 (2) N8a—C9a—H91a 109.47
O31b—N3b—C3b 118.6 (2) N8a—C9a—H92a 109.47
O32b—N3b—C3b 117.4 (2) N8a—C9a—H14a 114.78
O51b—N5b—O52b 123.6 (2) N8a—C9a—H16a 111.65
O51b—N5b—C5b 118.57 (18) C10a—C9a—H91a 109.47
O52b—N5b—C5b 117.83 (18) C10a—C9a—H92a 109.47
C2b—C1b—C6b 120.82 (17) C13a—C9a—C12a 99.9 (15)
C2b—C1b—C11b 119.6 (2) C13a—C9a—H91a 168.74
C6b—C1b—C11b 119.51 (18) C13a—C9a—H14a 137.56
O2b—C2b—C1b 121.84 (19) C12a—C9a—H92a 126.91
O2b—C2b—C3b 120.77 (19) C12a—C9a—H16a 127.82
H61b—C2b—C1b 121.37 H91a—C9a—H92a 111.59
H61b—C2b—C3b 121.37 H14a—C9a—H16a 126.91
C1b—C2b—C3b 117.3 (2) H14a—C9a—H17a 129.78
N3b—C3b—C2b 120.4 (2) H16a—C9a—H17a 77.55
N3b—C3b—C4b 117.12 (18) C9a—C10a—C11a 109.8 (3)
C2b—C3b—C4b 122.44 (18) C11a—C10a—C13a 122.2 (6)
C3b—C4b—C5b 118.75 (18) C11a—C10a—H10a 109.47
C3b—C4b—H4b 120.62 C11a—C10a—H11a 109.47
C5b—C4b—H4b 120.62 C11a—C10a—H17a 132.02
N5b—C5b—C4b 118.74 (17) C13a—C10a—H11a 116.43
N5b—C5b—C6b 119.80 (17) C13a—C10a—H15a 108.54
C4b—C5b—C6b 121.5 (2) C12a—C10a—H17a 124.07
O21b—C6b—C1b 118.4 (3) H10a—C10a—H11a 109.16
O21b—C6b—C5b 122.4 (3) H10a—C10a—H15a 132.06
H6b—C6b—C1b 120.41 H11a—C10a—H17a 117.48
H6b—C6b—C5b 120.41 H15a—C10a—H17a 127.34
C1b—C6b—C5b 119.17 (18) N1a—C11a—C10a 111.6 (2)
O11b—C11b—O12b 123.9 (2) N1a—C11a—C12a 112.2 (4)
O11b—C11b—C1b 119.4 (2) N1a—C11a—H12a 108.1 (11)
O12b—C11b—C1b 116.70 (19) N1a—C11a—H13a 107.3 (12)
C2a—N1a—C7a 121.83 (17) C10a—C11a—H12a 120.7 (10)
C2a—N1a—C11a 116.29 (16) C10a—C11a—H13a 105.2 (10)
C7a—N1a—C11a 121.87 (16) C12a—C11a—H13a 131.8 (11)
C7a—N8a—C9a 121.9 (2) H12a—C11a—H13a 102.9 (15)
C7a—N8a—C13a 122.3 (5) N8a—C13a—C9a 75.8 (15)
C7a—N8a—H8a 119.53 (19) N8a—C13a—C10a 114.0 (9)
C9a—N8a—C13a 22.6 (5) N8a—C13a—C12a 104.5 (8)
C9a—N8a—H8a 118.5 (2) N8a—C13a—H10a 113.12
C13a—N8a—H8a 114.3 (5) N8a—C13a—H92a 112.32
N1a—C2a—C3a 114.01 (15) N8a—C13a—H16a 109.47
N1a—C2a—H21a 109.47 N8a—C13a—H17a 109.47
N1a—C2a—H22a 109.47 C9a—C13a—H10a 130.08
C3a—C2a—H21a 109.47 C9a—C13a—H17a 167.66
C3a—C2a—H22a 109.47 C10a—C13a—H92a 129.79
H21a—C2a—H22a 104.52 C10a—C13a—H16a 129.35
C2a—C3a—C4a 114.39 (18) C12a—C13a—H92a 113.84
C2a—C3a—H31a 109.47 C12a—C13a—H16a 109.47
C2a—C3a—H32a 109.47 C12a—C13a—H17a 109.47
C4a—C3a—H31a 109.47 H10a—C13a—H91a 126.53
C4a—C3a—H32a 109.47 H10a—C13a—H92a 130.35
H31a—C3a—H32a 104.05 H10a—C13a—H16a 135.32
C3a—C4a—C5a 114.58 (18) H92a—C13a—H17a 107.21
C3a—C4a—H41a 109.47 H16a—C13a—H17a 114.05
C3a—C4a—H42a 109.47 C9a—C12a—C11a 119.1 (6)
C5a—C4a—H41a 109.47 C9a—C12a—H11a 111.16
C5a—C4a—H42a 109.47 C9a—C12a—H15a 119.13
H41a—C4a—H42a 103.83 C10a—C12a—H91a 125.59
C4a—C5a—C6a 114.44 (16) C10a—C12a—H14a 169.66
C4a—C5a—H51a 109.47 C11a—C12a—C13a 109.6 (7)
C4a—C5a—H52a 109.47 C11a—C12a—H91a 130.75
C6a—C5a—H51a 109.47 C11a—C12a—H14a 109.47
C6a—C5a—H52a 109.47 C11a—C12a—H15a 109.47
H51a—C5a—H52a 104 C13a—C12a—H14a 109.47
C5a—C6a—C7a 112.99 (17) C13a—C12a—H15a 109.47
C5a—C6a—H61a 109.47 H91a—C12a—H11a 130.35
C5a—C6a—H62a 109.47 H91a—C12a—H15a 118.71
C7a—C6a—H61a 109.47 H11a—C12a—H14a 133.54
C7a—C6a—H62a 109.47 H14a—C12a—H15a 109.31
H61a—C6a—H62a 105.71 O21b—H21b—O11b 167.3 (3)
N1a—C7a—N8a 121.93 (19) H6b—H21b—O11b 152.98
N1a—C7a—C6a 120.45 (16) O2b—H2b—O12b 166.81 (13)
N8a—C7a—C6a 117.59 (17) H61b—H2b—O12b 150.18
N8a—C9a—C10a 107.3 (3)

1-Aza-8-azoniabicyclo[5.4.0]undec-7-ene 4-aminobenzoate (WADXOR). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N8a—H8a···O11b 0.9604 (17) 1.9329 (15) 2.864 (2) 162.83 (11)
C10a—H10a···O32bi 0.99 2.44 3.248 (4) 138
C2a—H21a···O31bii 0.99 2.48 3.275 (3) 137
C6a—H62a···O21biii 0.99 2.44 3.152 (6) 128
C10a—H11a···O21biv 0.99 2.47 3.033 (7) 116
O21b—H21b···O11b 1.303 (6) 1.1454 (16) 2.433 (6) 167.3 (3)
O11b—H21b···O21b 1.1454 (16) 1.303 (6) 2.433 (6) 167.3 (3)
O12b—H2b···O2b 1.3846 (15) 1.103 (2) 2.471 (2) 166.81 (13)

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+3/2; (iii) x−1, y, z; (iv) x−1/2, −y+3/2, z+1/2.

4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (YAXPOE). Crystal data

C26H29N2+·C7H3N2O7 F(000) = 1256
Mr = 596.63 Dx = 1.341 Mg m3
Monoclinic, P21/c Melting point: 383 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 14.5648 (3) Å Cell parameters from 9909 reflections
b = 12.9374 (3) Å θ = 2.3–28.3°
c = 16.1619 (3) Å µ = 0.10 mm1
β = 103.900 (1)° T = 200 K
V = 2956.22 (11) Å3 Block, yellow
Z = 4 0.51 × 0.26 × 0.17 mm

4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (YAXPOE). Data collection

Bruker APEXII CCD diffractometer 7344 independent reflections
Radiation source: fine-focus sealed tube 5724 reflections with I > 3σ(I)
Graphite monochromator Rint = 0.015
φ and ω scans θmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −19→19
Tmin = 0.932, Tmax = 1.000 k = −17→17
29552 measured reflections l = −21→15

4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (YAXPOE). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F > 3σ(F)] = 0.054 Hydrogen site location: difference Fourier map
wR(F) = 0.190 H atoms treated by a mixture of independent and constrained refinement
S = 1.80 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0063999998I2)
7344 reflections (Δ/σ)max = 0.044
399 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.28 e Å3
120 constraints

4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (YAXPOE). Special details

Refinement. Number of fixed parameters 6

4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (YAXPOE). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.25627 (8) 0.71181 (9) 0.31343 (7) 0.0246 (3)
H71 0.30128 0.669474 0.349979 0.035 (4)*
N2 0.10023 (8) 0.56683 (9) 0.26575 (7) 0.0233 (3)
C1 0.29865 (11) 0.95151 (12) 0.41661 (10) 0.0334 (5)
H1a 0.245898 0.980932 0.377422 0.0401*
C2 0.33463 (11) 0.86695 (12) 0.39170 (10) 0.0322 (5)
H2 0.386765 0.835478 0.430202 0.0386*
C3 0.29839 (12) 0.81754 (12) 0.30656 (10) 0.0333 (5)
H3a 0.350521 0.811391 0.27725 0.04*
H3b 0.250048 0.862741 0.270514 0.04*
C4 0.17112 (10) 0.71678 (11) 0.34935 (9) 0.0281 (4)
H4a 0.123241 0.762704 0.313566 0.0337*
H4b 0.189039 0.745897 0.40767 0.0337*
C5 0.12943 (10) 0.61031 (11) 0.35226 (9) 0.0271 (4)
H5a 0.07387 0.614805 0.377337 0.0326*
H5b 0.177161 0.564522 0.388386 0.0326*
C6 0.18571 (10) 0.55563 (11) 0.23345 (9) 0.0262 (4)
H6a 0.231171 0.509606 0.271816 0.0315*
H6b 0.168931 0.5233 0.176272 0.0315*
C7 0.23149 (10) 0.65944 (12) 0.22789 (9) 0.0282 (4)
H7a 0.289537 0.649813 0.207068 0.0338*
H7b 0.187639 0.703827 0.186493 0.0338*
C8 0.05326 (9) 0.46528 (10) 0.26756 (8) 0.0230 (4)
H8 0.099282 0.417266 0.304542 0.0276*
C11 0.33145 (11) 1.00535 (12) 0.49876 (10) 0.0326 (5)
C12 0.41578 (13) 0.97941 (14) 0.55685 (10) 0.0391 (5)
H12 0.454927 0.926517 0.543205 0.047*
C13 0.44278 (15) 1.03053 (17) 0.63457 (11) 0.0502 (6)
H13 0.499799 1.011658 0.674094 0.0603*
C14 0.38752 (17) 1.10810 (17) 0.65451 (12) 0.0554 (7)
H14 0.40688 1.143158 0.707495 0.0665*
C15 0.30389 (15) 1.13552 (16) 0.59798 (13) 0.0516 (7)
H15 0.265849 1.18931 0.61197 0.0619*
C16 0.27570 (13) 1.08400 (13) 0.52053 (11) 0.0397 (5)
H16 0.217882 1.102436 0.481949 0.0476*
C21 −0.03166 (9) 0.47504 (10) 0.30647 (8) 0.0240 (4)
C22 −0.04272 (11) 0.40385 (12) 0.36763 (10) 0.0315 (5)
H22 0.003276 0.351198 0.385315 0.0378*
C23 −0.12077 (12) 0.40899 (13) 0.40333 (11) 0.0388 (5)
H23 −0.127745 0.359826 0.445056 0.0466*
C24 −0.18805 (12) 0.48544 (13) 0.37818 (11) 0.0385 (5)
H24 −0.241677 0.488365 0.401911 0.0461*
C25 −0.17687 (11) 0.55719 (12) 0.31859 (11) 0.0351 (5)
H25 −0.222711 0.610174 0.301738 0.0421*
C26 −0.09910 (10) 0.55304 (11) 0.28271 (9) 0.0286 (4)
H26 −0.091899 0.603396 0.241958 0.0344*
C31 0.02520 (10) 0.41880 (11) 0.17810 (9) 0.0248 (4)
C32 0.06690 (11) 0.32720 (12) 0.16027 (10) 0.0331 (5)
H32 0.112496 0.2938 0.204043 0.0397*
C33 0.04254 (13) 0.28416 (13) 0.07918 (11) 0.0392 (5)
H33 0.071842 0.221893 0.067798 0.047*
C34 −0.02351 (12) 0.33108 (13) 0.01557 (10) 0.0379 (5)
H34 −0.039638 0.301886 −0.039979 0.0455*
C35 −0.06672 (12) 0.42142 (14) 0.03267 (10) 0.0385 (5)
H35 −0.113709 0.453238 −0.01092 0.0461*
C36 −0.04162 (11) 0.46550 (12) 0.11316 (10) 0.0321 (5)
H36 −0.070483 0.528311 0.123929 0.0386*
O1 0.63327 (8) 0.37352 (10) 0.53505 (8) 0.0392 (4)
O2 0.58197 (10) 0.44006 (14) 0.67133 (9) 0.0614 (6)
O3 0.43608 (10) 0.48129 (12) 0.65684 (9) 0.0549 (5)
O4 0.19464 (9) 0.32143 (13) 0.44743 (10) 0.0569 (5)
O5 0.22764 (11) 0.24248 (13) 0.34091 (10) 0.0631 (6)
O6 0.54745 (10) 0.23529 (12) 0.30214 (8) 0.0518 (5)
O7 0.66627 (9) 0.28940 (12) 0.40564 (9) 0.0507 (5)
N3 0.49861 (10) 0.43835 (11) 0.63197 (9) 0.0379 (4)
N4 0.25133 (10) 0.29121 (12) 0.40756 (10) 0.0428 (5)
C9 0.57563 (13) 0.27360 (13) 0.37128 (12) 0.0398 (6)
C41 0.54458 (10) 0.35627 (11) 0.50735 (10) 0.0298 (4)
C42 0.50987 (11) 0.30564 (12) 0.42622 (10) 0.0314 (5)
C43 0.41587 (11) 0.28489 (12) 0.39522 (10) 0.0329 (5)
H43 0.395087 0.249901 0.342348 0.0394*
C44 0.35106 (10) 0.31453 (12) 0.44039 (10) 0.0313 (4)
C45 0.37850 (10) 0.36477 (12) 0.51759 (10) 0.0305 (4)
H45 0.332901 0.38543 0.547596 0.0366*
C46 0.47336 (11) 0.38456 (11) 0.55054 (9) 0.0290 (4)
H7 0.676841 0.321683 0.458063 0.030 (4)*

4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (YAXPOE). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0221 (6) 0.0282 (6) 0.0236 (5) −0.0039 (4) 0.0055 (4) −0.0028 (4)
N2 0.0209 (5) 0.0268 (6) 0.0227 (5) −0.0035 (4) 0.0063 (4) −0.0032 (4)
C1 0.0300 (8) 0.0358 (8) 0.0314 (7) −0.0037 (6) 0.0017 (6) −0.0003 (6)
C2 0.0301 (7) 0.0308 (7) 0.0334 (7) −0.0076 (6) 0.0033 (6) 0.0004 (6)
C3 0.0391 (8) 0.0304 (7) 0.0318 (7) −0.0113 (6) 0.0111 (6) −0.0022 (6)
C4 0.0216 (6) 0.0331 (7) 0.0302 (7) −0.0026 (5) 0.0075 (5) −0.0076 (5)
C5 0.0248 (7) 0.0337 (7) 0.0241 (6) −0.0051 (5) 0.0082 (5) −0.0053 (5)
C6 0.0232 (6) 0.0304 (7) 0.0265 (6) −0.0032 (5) 0.0088 (5) −0.0047 (5)
C7 0.0285 (7) 0.0344 (7) 0.0223 (6) −0.0060 (6) 0.0073 (5) −0.0045 (5)
C8 0.0197 (6) 0.0247 (6) 0.0245 (6) 0.0003 (5) 0.0054 (5) 0.0010 (5)
C11 0.0357 (8) 0.0306 (7) 0.0307 (7) −0.0080 (6) 0.0064 (6) 0.0006 (6)
C12 0.0398 (9) 0.0415 (9) 0.0337 (8) −0.0067 (7) 0.0042 (7) 0.0007 (7)
C13 0.0523 (11) 0.0604 (12) 0.0319 (8) −0.0142 (9) −0.0018 (8) 0.0005 (8)
C14 0.0691 (14) 0.0629 (13) 0.0354 (9) −0.0230 (10) 0.0149 (9) −0.0159 (8)
C15 0.0584 (12) 0.0455 (10) 0.0562 (11) −0.0106 (9) 0.0242 (10) −0.0151 (8)
C16 0.0392 (9) 0.0350 (8) 0.0444 (9) −0.0049 (7) 0.0090 (7) −0.0039 (7)
C21 0.0213 (6) 0.0250 (6) 0.0255 (6) −0.0020 (5) 0.0050 (5) −0.0024 (5)
C22 0.0311 (7) 0.0329 (8) 0.0325 (7) 0.0030 (6) 0.0114 (6) 0.0046 (6)
C23 0.0426 (9) 0.0390 (9) 0.0413 (9) 0.0005 (7) 0.0228 (7) 0.0058 (7)
C24 0.0344 (8) 0.0391 (8) 0.0493 (9) −0.0028 (6) 0.0245 (7) −0.0078 (7)
C25 0.0278 (7) 0.0336 (8) 0.0447 (9) 0.0044 (6) 0.0104 (6) −0.0058 (6)
C26 0.0269 (7) 0.0271 (7) 0.0323 (7) 0.0015 (5) 0.0079 (6) 0.0002 (5)
C31 0.0226 (6) 0.0253 (6) 0.0282 (6) −0.0049 (5) 0.0093 (5) −0.0016 (5)
C32 0.0327 (8) 0.0296 (7) 0.0367 (8) 0.0017 (6) 0.0076 (6) −0.0021 (6)
C33 0.0437 (9) 0.0299 (8) 0.0463 (9) −0.0014 (7) 0.0154 (8) −0.0097 (7)
C34 0.0452 (9) 0.0381 (9) 0.0313 (8) −0.0104 (7) 0.0109 (7) −0.0090 (6)
C35 0.0387 (9) 0.0451 (9) 0.0283 (7) −0.0015 (7) 0.0017 (7) −0.0024 (7)
C36 0.0316 (8) 0.0337 (8) 0.0310 (7) 0.0020 (6) 0.0073 (6) −0.0020 (6)
O1 0.0242 (6) 0.0466 (7) 0.0449 (6) −0.0022 (5) 0.0046 (5) 0.0065 (5)
O2 0.0364 (7) 0.0954 (12) 0.0457 (8) 0.0021 (7) −0.0029 (6) −0.0243 (7)
O3 0.0459 (8) 0.0698 (9) 0.0453 (7) 0.0153 (7) 0.0038 (6) −0.0171 (6)
O4 0.0239 (6) 0.0732 (10) 0.0713 (9) 0.0049 (6) 0.0067 (6) −0.0008 (8)
O5 0.0465 (8) 0.0774 (11) 0.0531 (8) −0.0103 (7) −0.0120 (7) −0.0150 (7)
O6 0.0595 (9) 0.0612 (9) 0.0400 (7) 0.0066 (7) 0.0226 (6) −0.0026 (6)
O7 0.0391 (7) 0.0619 (9) 0.0567 (8) 0.0007 (6) 0.0223 (6) −0.0035 (6)
N3 0.0355 (7) 0.0405 (8) 0.0347 (7) 0.0038 (6) 0.0023 (6) −0.0023 (6)
N4 0.0303 (7) 0.0466 (8) 0.0442 (8) −0.0012 (6) −0.0056 (6) 0.0040 (6)
C9 0.0393 (9) 0.0352 (8) 0.0491 (10) 0.0046 (7) 0.0190 (8) 0.0095 (7)
C41 0.0232 (7) 0.0277 (7) 0.0368 (7) 0.0028 (5) 0.0038 (6) 0.0099 (6)
C42 0.0330 (8) 0.0293 (7) 0.0345 (7) 0.0049 (6) 0.0133 (6) 0.0074 (6)
C43 0.0370 (8) 0.0322 (8) 0.0284 (7) 0.0011 (6) 0.0059 (6) 0.0030 (6)
C44 0.0238 (7) 0.0334 (8) 0.0333 (7) 0.0012 (5) 0.0000 (6) 0.0037 (6)
C45 0.0255 (7) 0.0325 (7) 0.0333 (7) 0.0060 (6) 0.0067 (6) 0.0030 (6)
C46 0.0282 (7) 0.0282 (7) 0.0282 (7) 0.0018 (5) 0.0017 (6) 0.0016 (5)

4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (YAXPOE). Geometric parameters (Å, º)

N1—H71 0.9448 (11) C16—H16 0.95
N1—C3 1.5141 (19) C21—C22 1.388 (2)
N1—C4 1.492 (2) C21—C26 1.3962 (19)
N1—C7 1.5036 (18) C22—H22 0.95
N2—C5 1.4718 (17) C22—C23 1.395 (3)
N2—C6 1.4682 (19) C23—H23 0.95
N2—C8 1.4848 (17) C23—C24 1.383 (2)
C1—H1a 0.95 C24—H24 0.95
C1—C2 1.317 (2) C24—C25 1.375 (3)
C1—C11 1.474 (2) C25—H25 0.95
C2—H2 0.95 C25—C26 1.392 (2)
C2—C3 1.494 (2) C26—H26 0.95
C3—H3a 0.99 C31—C32 1.393 (2)
C3—H3b 0.99 C31—C36 1.3867 (19)
H3a—H3b 1.5869 C32—H32 0.95
C4—H4a 0.99 C32—C33 1.389 (2)
C4—H4b 0.99 C33—H33 0.95
C4—C5 1.511 (2) C33—C34 1.370 (2)
H4a—H4b 1.6058 C34—H34 0.95
C5—H5a 0.99 C34—C35 1.386 (3)
C5—H5b 0.99 C35—H35 0.95
H5a—H5b 1.6091 C35—C36 1.387 (2)
C6—H6a 0.99 C36—H36 0.95
C6—H6b 0.99 O1—C41 1.2810 (17)
C6—C7 1.512 (2) O2—N3 1.2281 (18)
H6a—H6b 1.6016 O3—N3 1.215 (2)
C7—H7a 0.99 O4—N4 1.227 (2)
C7—H7b 0.99 O5—N4 1.224 (2)
H7a—H7b 1.6014 O6—C9 1.201 (2)
C8—H8 1 O7—C9 1.319 (2)
C8—C21 1.522 (2) O7—H7 0.9238 (15)
C8—C31 1.5282 (19) N3—C46 1.456 (2)
C11—C12 1.396 (2) N4—C44 1.453 (2)
C11—C16 1.399 (3) C9—C42 1.512 (3)
C12—H12 0.95 C41—C42 1.444 (2)
C12—C13 1.390 (2) C41—C46 1.430 (2)
C13—H13 0.95 C42—C43 1.367 (2)
C13—C14 1.372 (3) C43—H43 0.95
C14—H14 0.95 C43—C44 1.379 (2)
C14—C15 1.382 (3) C44—C45 1.378 (2)
C15—H15 0.95 C45—H45 0.95
C15—C16 1.390 (3) C45—C46 1.380 (2)
H71—N1—C3 109.70 (10) C15—C16—H16 119.61
H71—N1—C4 107.37 (11) C8—C21—C22 118.95 (12)
H71—N1—C7 106.90 (11) C8—C21—C26 122.30 (13)
C3—N1—C4 112.27 (12) C22—C21—C26 118.75 (14)
C3—N1—C7 110.59 (11) C21—C22—H22 119.72
C4—N1—C7 109.82 (10) C21—C22—C23 120.56 (14)
C5—N2—C6 107.42 (10) H22—C22—C23 119.72
C5—N2—C8 110.41 (11) C22—C23—H23 119.9
C6—N2—C8 110.71 (11) C22—C23—C24 120.20 (16)
H1a—C1—C2 116.52 H23—C23—C24 119.9
H1a—C1—C11 116.52 C23—C24—H24 120.2
C2—C1—C11 126.96 (14) C23—C24—C25 119.60 (17)
C1—C2—H2 118.03 H24—C24—C25 120.2
C1—C2—C3 123.95 (13) C24—C25—H25 119.64
H2—C2—C3 118.03 C24—C25—C26 120.72 (15)
N1—C3—C2 112.26 (13) H25—C25—C26 119.64
N1—C3—H3a 109.47 C21—C26—C25 120.16 (14)
N1—C3—H3b 109.47 C21—C26—H26 119.92
C2—C3—H3a 109.47 C25—C26—H26 119.92
C2—C3—H3b 109.47 C8—C31—C32 119.98 (11)
H3a—C3—H3b 106.54 C8—C31—C36 121.61 (13)
N1—C4—H4a 109.47 C32—C31—C36 118.41 (13)
N1—C4—H4b 109.47 C31—C32—H32 119.64
N1—C4—C5 110.53 (12) C31—C32—C33 120.73 (13)
H4a—C4—H4b 108.39 H32—C32—C33 119.64
H4a—C4—C5 109.47 C32—C33—H33 119.85
H4b—C4—C5 109.47 C32—C33—C34 120.30 (16)
N2—C5—C4 110.21 (12) H33—C33—C34 119.85
N2—C5—H5a 109.47 C33—C34—H34 120.18
N2—C5—H5b 109.47 C33—C34—C35 119.65 (15)
C4—C5—H5a 109.47 H34—C34—C35 120.18
C4—C5—H5b 109.47 C34—C35—H35 119.87
H5a—C5—H5b 108.72 C34—C35—C36 120.25 (14)
N2—C6—H6a 109.47 H35—C35—C36 119.88
N2—C6—H6b 109.47 C31—C36—C35 120.65 (15)
N2—C6—C7 110.93 (12) C31—C36—H36 119.67
H6a—C6—H6b 107.97 C35—C36—H36 119.68
H6a—C6—C7 109.47 C41—O1—H7 101.64 (10)
H6b—C6—C7 109.47 C9—O7—H7 112.68 (16)
N1—C7—C6 110.95 (12) O2—N3—O3 123.16 (15)
N1—C7—H7a 109.47 O2—N3—C46 118.72 (15)
N1—C7—H7b 109.47 O3—N3—C46 118.10 (13)
C6—C7—H7a 109.47 O4—N4—O5 122.91 (15)
C6—C7—H7b 109.47 O4—N4—C44 118.79 (14)
H7a—C7—H7b 107.95 O5—N4—C44 118.29 (16)
N2—C8—H8 108.39 O6—C9—O7 122.64 (19)
N2—C8—C21 111.04 (11) O6—C9—C42 122.44 (16)
N2—C8—C31 110.45 (11) O7—C9—C42 114.91 (15)
H8—C8—C21 107.41 O1—C41—C42 120.00 (15)
H8—C8—C31 108.03 O1—C41—C46 125.00 (14)
C21—C8—C31 111.38 (10) C42—C41—C46 115.00 (13)
C1—C11—C12 122.33 (15) C9—C42—C41 121.64 (14)
C1—C11—C16 119.24 (13) C9—C42—C43 116.80 (14)
C12—C11—C16 118.42 (15) C41—C42—C43 121.55 (16)
C11—C12—H12 119.81 C42—C43—H43 119.87
C11—C12—C13 120.37 (17) C42—C43—C44 120.27 (14)
H12—C12—C13 119.81 H43—C43—C44 119.87
C12—C13—H13 119.82 N4—C44—C43 120.01 (14)
C12—C13—C14 120.37 (17) N4—C44—C45 118.40 (15)
H13—C13—C14 119.82 C43—C44—C45 121.59 (13)
C13—C14—H14 119.8 C44—C45—H45 120.57
C13—C14—C15 120.40 (18) C44—C45—C46 118.86 (15)
H14—C14—C15 119.8 H45—C45—C46 120.57
C14—C15—H15 120.17 N3—C46—C41 120.55 (13)
C14—C15—C16 119.7 (2) N3—C46—C45 116.73 (14)
H15—C15—C16 120.17 C41—C46—C45 122.71 (13)
C11—C16—C15 120.77 (16) O1—H7—O7 148.96 (9)
C11—C16—H16 119.61

4-(Diphenylmethyl)-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate (YAXPOE). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H71···O1i 0.9448 (11) 1.9544 (11) 2.8126 (15) 150.01 (8)
N1—H71···O2i 0.9448 (11) 2.3020 (16) 3.032 (2) 133.62 (8)
C3—H3a···O6ii 0.99 2.40 3.340 (2) 159
C5—H5a···C21 0.99 2.47 2.8777 (19) 104
C6—H6b···C31 0.99 2.50 2.8974 (19) 104
O7—H7···O1 0.9238 (15) 1.6675 (13) 2.505 (2) 148.96 (9)
O7—H7···C41 0.9238 (15) 2.2985 (16) 2.827 (2) 115.91 (9)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+1/2.

Funding Statement

This work was funded by Ministerstvo Školství, Mládeže a Tělovýchovy grant NPU I – LO1603.

References

  1. Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338. [DOI] [PubMed]
  2. Dayananda, A. S., Yathirajan, H. S., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o1165–o1166. [DOI] [PMC free article] [PubMed]
  3. Dean, J. A. (1987). Handbook of Organic Chemistry, pp. 8–46 New York, NY: McGraw-Hill Book Co.
  4. Fu, X., Liu, X., Sun, P., Zhang, S., Yang, Q., Wei, Q., Xie, G., Chen, S. & Fan, X. (2015). J. Anal. Appl. Pyrolysis, 114, 79–90.
  5. Gao, X., Zhang, H., Wen, X., Liu, B., Jin, S. & Wang, D. (2015). J. Mol. Struct. 1093, 82–95.
  6. Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023–1028. [DOI] [PubMed]
  7. Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, pp. 81–147. New York: Oxford University Press.
  8. Gilli, P., Pretto, L., Bertolasi, V. & Gilli, G. (2009). Acc. Chem. Res. 34, 34–44. [DOI] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1194–o1195. [DOI] [PMC free article] [PubMed]
  11. Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2950–o2951. [DOI] [PMC free article] [PubMed]
  12. Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o2747. [DOI] [PMC free article] [PubMed]
  13. Hosmane, R. S. & Liebman, J. F. (2009). Struct. Chem. 20, 693–697.
  14. Huang, F., Song, W.-D. & Li, S.-D. (2007). Acta Cryst. E63, m388–m389.
  15. Jeffrey, G. A. (1995). Crystallogr. Rev. 4, 213–254.
  16. Jin, S., Lin, Z., Wang, D., Chen, G., Ji, Z., Huang, T. & Zhou, Y. (2015a). J. Chem. Crystallogr. 45, 159–168.
  17. Jin, S., Wang, D., Linhe, Q., Fu, M., Wu, S. & Ren, J. (2013). J. Chem. Crystallogr. 43, 258–265.
  18. Jin, S., Zhang, H., Liu, H., Wen, X., Li, M. & Wang, D. (2015b). J. Mol. Struct. 1096, 157–170.
  19. Jones, C. L., Wilson, C. C. & Thomas, L. H. (2014). CrystEngComm, 16, 5849–5858.
  20. Khan, I. M., Ahmad, A. & Ullah, M. F. (2013). Spectrochim. Acta A, 102, 82–87. [DOI] [PubMed]
  21. Malathy, S., Nirmalram, J. S. & Muthiah, P. T. (2015). Acta Cryst. E71, 618–620. [DOI] [PMC free article] [PubMed]
  22. Müller, P. (2009). Crystallogr. Rev. 15, 57–83.
  23. Ng, S. W., Naumov, P., Drew, M. G. B., Wojciechowski, G. & Brzezinski, B. (2001). J. Mol. Struct. 595, 29–37.
  24. Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.
  25. Rajkumar, M. & Chandramohan, A. (2017). J. Mol. Struct. 1134, 762–769.
  26. Senthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069–1074.
  27. Senthil Kumar, V. S., Kuduva, S. S. & Desiraju, G. R. (2002). Acta Cryst. E58, o865–o866.
  28. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  29. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  30. Singh, N., Khan, I. M., Ahmad, A. & Javed, S. (2014). J. Mol. Liq. 191, 142–150.
  31. Smith, G., Bott, R. C. & Wermuth, U. D. (2001a). Acta Cryst. E57, o640–o642.
  32. Smith, G. & Lynch, D. E. (2016). Acta Cryst. E72, 382–386. [DOI] [PMC free article] [PubMed]
  33. Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1995). Aust. J. Chem. 48, 1133–1149.
  34. Smith, G. & Wermuth, U. D. (2014). Acta Cryst. E70, 430–434. [DOI] [PMC free article] [PubMed]
  35. Smith, G., Wermuth, U. D., Bott, R. C., Healy, P. C. & White, J. M. (2002a). Aust. J. Chem. 55, 349–356.
  36. Smith, G., Wermuth, U. D., Bott, R. C., White, J. M. & Willis, A. C. (2001b). Aust. J. Chem. 54, 165–170.
  37. Smith, G., Wermuth, U. D. & Healy, P. C. (2002b). Acta Cryst. E58, o845–o847.
  38. Smith, G., Wermuth, U. D. & Healy, P. C. (2005a). Acta Cryst. E61, o746–o748. [DOI] [PubMed]
  39. Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o610–o613.
  40. Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003a). Aust. J. Chem. 56, 707–713.
  41. Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264–277.
  42. Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2011). J. Chem. Crystallogr. 41, 1649–1662.
  43. Smith, G., Wermuth, U. D. & White, J. M. (2001c). Acta Cryst. E57, o1036–o1038.
  44. Smith, G., Wermuth, U. D. & White, J. M. (2003b). Acta Cryst. E59, o1977–o1979.
  45. Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. E61, o1836–o1838.
  46. Sobczyk, L., Grabowski, S. J. & Krygowski, T. M. (2005). Chem. Rev. 105, 3513–3560. [DOI] [PubMed]
  47. Song, W.-D., Guo, X.-X. & Yu, L. (2007). Acta Cryst. E63, o1890–o1891.
  48. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  49. Sridhar, B., Nanubolu, J. B. & Ravikumar, K. (2013). Acta Cryst. C69, 1164–1169. [DOI] [PubMed]
  50. Subashini, A., Samuel, E., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4049. [DOI] [PMC free article] [PubMed]
  51. Wang, S.-T., Che, G.-B., Liu, C.-B., Wang, X. & Liu, L. (2012). Acta Cryst. E68, m76. [DOI] [PMC free article] [PubMed]
  52. Wei, S., Jin, S., Hu, Z., Zhou, Y. & Zhou, Y. (2012). Acta Cryst. E68, o3117. [DOI] [PMC free article] [PubMed]
  53. Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o318–o319. [DOI] [PMC free article] [PubMed]
  54. Zhang, C.-L. & Jian, F.-F. (2009). Acta Cryst. E65, m1521. [DOI] [PMC free article] [PubMed]
  55. Zhang, J., Jin, S., Tao, L., Liu, B. & Wang, D. (2014). J. Mol. Struct. 1072, 208–220.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, DUJZAK, JEVNAA, NUQVEB, QIQJAD, SEDKET, VABZIJ, WADXOR, YAXPOE, LUDFUL, SAFGUD, TIYZIM, TUJPEV. DOI: 10.1107/S2056989018011544/su5452sup1.cif

e-74-01344-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018011544/su5452Isup2.hkl

e-74-01344-Isup2.hkl (189.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018011544/su5452IIsup3.hkl

e-74-01344-IIsup3.hkl (160.7KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989018011544/su5452IIIsup4.hkl

e-74-01344-IIIsup4.hkl (173.2KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989018011544/su5452IVsup5.hkl

e-74-01344-IVsup5.hkl (327.8KB, hkl)

Structure factors: contains datablock(s) V. DOI: 10.1107/S2056989018011544/su5452Vsup6.hkl

e-74-01344-Vsup6.hkl (313.5KB, hkl)

Structure factors: contains datablock(s) I Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018011544/su5452Isup2.hkl

e-74-01344-Isup2.hkl (189.6KB, hkl)

Structure factors: contains datablock(s) VI. DOI: 10.1107/S2056989018011544/su5452VIsup7.hkl

e-74-01344-VIsup7.hkl (221.2KB, hkl)

Structure factors: contains datablock(s) VII. DOI: 10.1107/S2056989018011544/su5452VIIsup8.hkl

e-74-01344-VIIsup8.hkl (122KB, hkl)

Structure factors: contains datablock(s) VIII. DOI: 10.1107/S2056989018011544/su5452VIIIsup9.hkl

e-74-01344-VIIIsup9.hkl (276.4KB, hkl)

Structure factors: contains datablock(s) IX. DOI: 10.1107/S2056989018011544/su5452IXsup10.hkl

e-74-01344-IXsup10.hkl (167.4KB, hkl)

Structure factors: contains datablock(s) X. DOI: 10.1107/S2056989018011544/su5452Xsup11.hkl

e-74-01344-Xsup11.hkl (137.8KB, hkl)

Structure factors: contains datablock(s) XI. DOI: 10.1107/S2056989018011544/su5452XIsup12.hkl

e-74-01344-XIsup12.hkl (302.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018011544/su5452NUQVEBsup13.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452QIQJADsup14.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452SEDKETsup15.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452TIYZIMsup16.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452TUJPEVsup17.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452VABZIJsup18.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452WADXORsup19.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452YAXPOEsup20.cml

Supporting information file. DOI: 10.1107/S2056989018011544/su5452sup21.pdf

e-74-01344-sup21.pdf (3.9MB, pdf)

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES