Skip to main content
IMA Fungus logoLink to IMA Fungus
. 2018 Sep 26;9:299–332. doi: 10.5598/imafungus.2018.09.02.06

Novel primers improve species delimitation in Cercospora

Mounes Bakhshi 1, Mahdi Arzanlou 2, Asadollah Babai-ahari 2, Johannes Z Groenewald 3, Pedro W Crous 3,4,5
PMCID: PMC6317581  PMID: 30622885

Abstract

The genus Cercospora includes many important plant pathogens that are commonly associated with leaf spot diseases on a wide range of cultivated and wild plant species. Due to the lack of useful morphological features and high levels of intraspecific variation, host plant association has long been a decisive criterion for species delimitation in Cercospora. Because several taxa have broader host ranges, reliance on host data in Cercospora taxonomy has proven problematic. Recent studies have revealed multi-gene DNA sequence data to be highly informative for species identification in Cercospora, especially when used in a concatenated alignment. In spite of this approach, however, several species complexes remained unresolved as no single gene proved informative enough to act as DNA barcoding locus for the genus. Therefore, the aims of the present study were firstly to improve species delimitation in the genus Cercospora by testing additional genes and primers on a broad set of species, and secondly to find the best DNA barcoding gene(s) for species delimitation. Novel primers were developed for tub2 and rpb2 to supplement previously published primers for these loci. To this end, 145 Cercospora isolates from the Iranian mycobiota together with 25 additional reference isolates preserved in the Westerdijk Fungal Biodiversity Institute were subjected to an eight-gene (ITS, tef1, actA, cmdA, his3, tub2, rpb2 and gapdh) analysis. Results from this study provided new insights into DNA barcoding in Cercospora, and revealed gapdh to be a promising gene for species delimitation when supplemented with cmdA, tef1 and tub2. The robust eight-gene phylogeny revealed several novel clades within the existing Cercospora species complexes, such as C. apii, C. armoraciae, C. beticola, C. cf. flagellaris and Cercospora sp. G. The C. apii s. lat. isolates are distributed over three clades, namely C. apii s. str., C. plantaginis and C. uwebrauniana sp. nov. The C. armoraciae s. lat. isolates are distributed over two clades, C. armoraciae s. str. and C. bizzozeriana. The C. beticola s. lat. isolates are distributed over two clades, namely C. beticola s. str. and C. gamsiana, which is newly described.

Keywords: Bar codes, biodiversity, Cercospora apii complex, host specificity, multi-gene phylogeny, new taxa

INTRODUCTION

Fungi belonging to the genus Cercospora (Mycosphaerellaceae, Capnodiales) are common etiological agents of leaf spots, but some also cause necrotic lesions on flowers, fruits, bracts, seeds and pedicels of many woody and herbaceous plants in a range of climates worldwide (Ellis 1976, Crous & Braun 2003, Agrios 2005, Groenewald et al. 2013, Bakhshi et al. 2015a).

Cercospora is a species-rich genus of cercosporoid fungi that was established by Fresenius (1863) for passalora-like species with pluriseptate conidia. During the course of the next 100 years, the concept of Cercospora had been continuously widened (Saccardo 1880, Solheim 1930) and all kinds of superficially similar species, with or without conspicuous conidiogenous loci, with hyaline or pigmented conidia, formed singly or in chains, were assigned to this genus (Braun et al. 2013). In 1954, the genus was monographed by Chupp (1954), who treated 1419 Cercospora species while applying this broad generic concept. He also stated that species of Cercospora were generally host-specific and used this argument as the basis of formulating the concept that each plant host genus or family would have its own Cercospora species. The number of Cercospora species increased rapidly to more than 3000, which led Pollack (1987) to publish her annotated list of Cercospora names. Since the introduction of the genus, several attempts to split Cercospora s. lat. into smaller generic units have been made by applying a combination of characters such as conidiomatal structure, mycelium, conidiophores, conidiogenous cells, and conidia (e.g. Deighton 1973, 1979, 1983, Ellis 1971, 1976, Braun 1995, 1998). Crous & Braun (2003) published an annotated list of the names published in Cercospora and Passalora and used the structure of conidiogenous loci and hila as well as the absence or presence of pigmentation in conidiophores and conidia in their revision. They recognised 659 names in Cercospora, with a further 281 species names reduced to synonymy with C. apii s. lat., since they were morphologically not or barely distinguishable from C. apii s. str. Braun et al. (2013, 2014, 2015a, b, 2016) published a series of papers in a stepwise approach at plant family level in order to update the monograph of Cercospora and allied genera.

Scientific advances in DNA sequencing and supplementary software to store, share and compare the emerging molecular data have revolutionised the procedures underpinning the discovery and identification of fungal taxa, including the cercosporoid fungi (Crous & Groenewald 2005, Groenewald et al. 2013, Bakhshi et al. 2015a, Nguanhom et al. 2015, Guatimosim et al. 2017). Numerous molecular studies of Cercospora species have been conducted based on ITS nrDNA data as well as multi-gene approaches (Stewart et al. 1999, Crous et al. 2000, 2004b, 2009a, b, Goodwin et al. 2001, Tessmann et al. 2001, Pretorius et al. 2003, Groenewald et al. 2005, 2006, 2013, Montenegro-Calderón et al. 2011, Bakhshi et al. 2012b, 2015a, Nguanhom et al. 2015, Soares et al. 2015, Albu et al. 2016, Guatimosim et al. 2017, Guillin et al. 2017). A comprehensive and detailed molecular examination of Cercospora s. str. based on a multi-locus DNA sequence dataset of five genomic loci including the ITS (ITS1, 5.8S nrRNA gene and ITS2), together with parts of four protein coding genes, viz. translation elongation factor 1-alpha (tef1), actin (actA), calmodulin (cmdA) and histone H3 (his3) was conducted by Groenewald et al. (2013). The main conclusion of this study was that C<i>.</i> apii s. lat. could not be confirmed as a plurivorous monophyletic species, and that several lineages originally referred to C. apii s. lat., or considered close to this complex based on morphology (Crous & Braun 2003), were separated as distinct phylogenetic species. Hence, speciation within Cercospora s. str. is more complicated than formerly assumed, and far from being resolved. To date, multi-locus DNA sequence analyses combined with ecology, morphology and cultural characteristics, referred to as the Consolidated Species Concept (Quaedvlieg et al. 2014), proved the most effective method for the delimitation of Cercospora species (Groenewald et al. 2010, 2013).

At a higher taxonomic level, among the genera of cercosporoid fungi, the monophyly of Cercospora s. str. has until recently been tested based on phylogenetic association of taxa with the type species of Cercospora, C. apii (Groenewald et al. 2013, Bakhshi et al. 2015a, Braun & Crous 2016). Bakhshi et al. (2015b) recovered some cercospora-like isolates from Ammi majus, and in their subsequent multi-gene phylogenetic study (28S nrDNA, ITS, actA, tef1 and his3), elucidated these isolates to represent a new genus, Neocercospora, clustering in a clade in Mycosphaerellaceae apart from Cercospora s. str., suggesting that cercospora-like morphologies are not necessarily part of a single monophyletic genus. This finding led to the conclusion that identification and descriptions of new cercospora-like taxa should be avoided without support of molecular sequence data, not only at species but also at generic level.

Species of Cercospora are known to be widely distributed, occurring on a broad range of plant hosts in many climate zones of Iran (Bakhshi et al. 2012, Hesami et al. 2012, Pirnia et al. 2012), where the biodiversity of the genus has recently received much attention (Bakhshi et al. 2015a, b). The most inclusive study was that of Bakhshi et al. (2015a), who compared 161 Cercospora isolates, recovered from 74 host species from Iran based on DNA sequence data of five genomic loci (ITS, tef1, actA, cmdA and his3), host, cultural, and morphological data, revealing a rich species diversity. However, the problem concerning species delimitation in Cercospora due to the high level of conservation among DNA sequences of commonly used loci, (i.e. ITS, tef1, actA, cmdA, and his3), could not be resolved. Furthermore, cryptic clades in several species complexes remained unresolved in the five-gene phylogenetic tree, for example C. apii, C. armoraciae, C. cf. flagellaris, and Cercospora sp. G (Groenewald et al. 2013, Bakhshi et al. 2015a). Therefore, the aim of the present study was to assess three additional potential candidate gene regions including the partial β-tubulin (tub2) gene, part of the second largest subunit of RNA-polymerase II (rpb2) gene, and part of the glyceraldehyde-3-phosphate dehydrogenase (gapdh) gene, in order to firstly generate an eight-gene DNA dataset to resolve cryptic taxa within these species complexes, and secondly to identify the best barcoding gene(s) for species resolution in Cercospora.

MATERIAL AND METHODS

Specimens and isolates

A total of 170 strains, including 145 previously identified as Cercospora species in Bakhshi et al. (2015a), as well as 25 other related strains formerly identified by Groenewald et al. (2013), were studied. Isolates used in this study (Table 1) are maintained in the collection of the Westerdijk Fungal Biodiversity Institute (CBS), Utrecht, The Netherlands, the working collection of Pedro Crous (CPC; housed at CBS), the culture collection of the Iranian Research Institute of Plant Protection (IRAN C), Tehran, Iran, and the culture collection of Tabriz University (CCTU), Tabriz, Iran. Type material of the new species recognized is preserved in the Fungal Herbarium of the Iranian Research Institute of Plant Protection (IRAN F).

Table 1.

Collection details and GenBank accession numbers of isolates included in this study. Ex-type isolates and newly generated sequences are highlighted in bold.

Species Culture accession number (s)1 Host Host Family Origion Collector GenBank accession numbers2
ITS tef1 actA cmdA his3 tub2 rpb2 gapdh
Cercospora althaeina CCTU 1028 Althaea rosea Malvaceae Iran, Guilan, Sowme`eh Sara M. Bakhshi KJ886394 KJ886233 KJ885911 KJ885750 KJ886072 MH496336 MH511833 MH496166
CCTU 1001 Althaea rosea Malvaceae Iran, Guilan, Talesh M. Bakhshi KJ886392 KJ886231 KJ885909 KJ885748 KJ886070 MH496337 MH511834 MH496167
CCTU 1026 Althaea rosea Malvaceae Iran, Guilan, Talesh M. Bakhshi KJ886393 KJ886232 KJ885910 KJ885749 KJ886071 MH496338 MH511835 MH496168
CCTU 1152 Althaea rosea Malvaceae Iran, Guilan, Talesh M. Bakhshi KJ886396 KJ886235 KJ885913 KJ885752 KJ886074 MH496339 MH511836 MH496169
CBS 248.67; CPC 5117 (TYPE) Althaea rosea Malvaceae Romania, Fundulea O. Constantinescu JX143530 JX143284 JX143038 JX142792 JX142546 MH496340 _ MH496170
CCTU 1194; IRAN 2674C Malva sylvestris Malvaceae Iran, East Azerbaijan, Kaleybar M. Arzanlou KJ886397 KJ886236 KJ885914 KJ885753 KJ886075 MH496341 MH511837 MH496171
CCTU 1071 Malva sylvestris Malvaceae Iran, Guilan, Talesh M. Bakhshi KJ886395 KJ886234 KJ885912 KJ885751 KJ886073 MH496342 MH511838 MH496172
Cercospora apii CBS 116455; CPC 11556 (TYPE) Apium graveolens Apiaceae Germany, Heilbron K. Schrameyer AY840519 AY840486 AY840450 AY840417 AY840384 MH496343 _ MH496173
CBS 536.71; CPC 5087 Apium graveolens Apiaceae Romania, Bucuresti O. Constantinescu AY752133 AY752166 AY752194 AY752225 AY752256 MH496344 MH511839 MH496174
CCTU 1069 Cynanchum acutum Apocynaceae Iran, Ardabil, Moghan M. Bakhshi KJ886410 KJ886249 KJ885927 KJ885766 KJ886088 MH496345 MH511840 MH496175
CCTU 1086; CBS 136037; IRAN 2655C Cynanchum acutum Apocynaceae Iran, Ardabil, Moghan M. Bakhshi KJ886411 KJ886250 KJ885928 KJ885767 KJ886089 MH496346 MH511841 MH496176
CCTU 1215 Cynanchum acutum Apocynaceae Iran, Ardabil, Moghan M. Bakhshi KJ886412 KJ886251 KJ885929 KJ885768 KJ886090 MH496347 MH511842 MH496177
CCTU 1219; CBS 136155 Cynanchum acutum Apocynaceae Iran, Ardabil, Moghan M. Bakhshi KJ886413 KJ886252 KJ885930 KJ885769 KJ886091 MH496348 MH511843 MH496178
CPC 5112 Molucella laevis Lamiaceae New zealand, Auckland C.F. Hill DQ233321 DQ233347 DQ233373 DQ233399 DQ233425 MH496349 MH511844 MH496179
CBS 110813; CPC 5110; 01-3 Molucella laevis Lamiaceae U.S.A., California S.T. Koike AY156918 DQ233345 DQ233371 DQ233397 DQ233423 MH496350 MH511845 MH496180
Cercospora armoraciae CBS 250.67; CPC 5088 (TYPE) Armoracia rusticana (= A. lapathifolia) Brassicaceae Romania, Fundulea O. Constantinescu JX143545 JX143299 JX143053 JX142807 JX142561 MH496351 _ MH496181
Cercospora beticola CPC 12028 Beta vulgaris Chenopodiaceae Egypt M. Hasem DQ233336 DQ233362 DQ233388 DQ233414 DQ233437 MH496352 MH511846 MH496182
CPC 12029 Beta vulgaris Chenopodiaceae Egypt M. Hasem DQ233337 DQ233363 DQ233389 DQ233415 DQ233438 MH496353 MH511847 MH496183
CCTU 1135 Beta vulgaris Chenopodiaceae Iran, Guilan, Astara M. Bakhshi KJ886432 KJ886271 KJ885949 KJ885788 KJ886110 MH496354 MH511848 MH496184
CBS 116456; CPC 11557 (TYPE) Beta vulgaris Chenopodiaceae Italy, Ravenna V. Rossi AY840527 AY840494 AY840458 AY840425 AY840392 MH496355 KT216555 MH496185
CCTU 1057; IRAN 2651C Chenopodium sp. Chenopodiaceae Iran, Ardabil, Moghan M. Bakhshi KJ886424 KJ886263 KJ885941 KJ885780 KJ886102 MH496356 MH511849 MH496186
CCTU 1065 Chenopodium sp. Chenopodiaceae Iran, Ardabil, Moghan M. Bakhshi KJ886425 KJ886264 KJ885942 KJ885781 KJ886103 MH496357 MH511850 MH496187
CCTU 1087 Chenopodium sp. Chenopodiaceae Iran, Ardabil, Moghan M. Bakhshi KJ886427 KJ886266 KJ885944 KJ885783 KJ886105 MH496358 MH511851 MH496188
CCTU 1089; CPC 24911 Plantago lanceolata Plantaginaceae Iran, Ardabil, Moghan M. Bakhshi KJ886429 KJ886268 KJ885946 KJ885785 KJ886107 MH496359 MH511852 MH496189
CCTU 1108 Plantago lanceolata Plantaginaceae Iran, Zanjan, Tarom M. Bakhshi KJ886430 KJ886269 KJ885947 KJ885786 KJ886108 MH496360 MH511853 MH496190
CCTU 1088; CBS 138582 Sonchus asper Asteraceae Iran, Ardabil, Moghan M. Bakhshi KJ886428 KJ886267 KJ885945 KJ885784 KJ886106 MH496361 MH511854 MH496191
Cercospora bizzozeriana CCTU 1013 ? ? Iran, East Azerbaijan, Mianeh M. Torbati KJ886414 KJ886253 KJ885931 KJ885770 KJ886092 MH496362 MH511855 MH496192
CCTU 1022; CBS 136028 ? ? Iran, East Azerbaijan, Mianeh M. Torbati KJ886415 KJ886254 KJ885932 KJ885771 KJ886093 MH496363 MH511856 MH496193
CCTU 1127; CBS 136133 Capparis spinosa Capparidaceae Iran, Khuzestan, Ahvaz E. Mohammadian KJ886420 KJ886259 KJ885937 KJ885776 KJ886098 MH496364 MH511857 MH496194
CCTU 1117; CBS 136132 Cardaria draba Brassicaceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886418 KJ886257 KJ885935 KJ885774 KJ886096 MH496365 MH511858 MH496195
CCTU 1234 Cardaria draba Brassicaceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886419 KJ886258 KJ885936 KJ885775 KJ886097 MH496366 MH511859 MH496196
CCTU 1107 ? ? Iran, Zanjan, Tarom M. Bakhshi KJ886417 KJ886256 KJ885934 KJ885773 KJ886095 MH496367 MH511860 MH496197
CBS 258.67; CPC 5061 (TYPE) Cardaria draba Brassicaceae Romania, Fundulea O. Constantinescu JX143546 JX143300 JX143054 JX142808 JX142562 MH496368 _ MH496198
CBS 540.71; IMI 161110; CPC 5060 Cardaria draba Brassicaceae Romania, Hagieni O. Constantinescu JX143548 JX143302 JX143056 JX142810 JX142564 MH496369 _ MH496199
CCTU 1040; CBS 136131 Tanacetum balsamita Asteraceae Iran, Zanjan, Tarom M. Bakhshi KJ886416 KJ886255 KJ885933 KJ885772 KJ886094 MH496370 MH511861 MH496200
Cercospora chenopodii CCTU 1060; IRAN 2652C Chenopodium album Chenopodiaceae Iran, Guilan, Bandar-e Anzali M. Bakhshi KJ886438 KJ886277 KJ885955 KJ885794 KJ886116 MH496371 MH511862 MH496201
CCTU 1163 Chenopodium album Chenopodiaceae Iran, Guilan, Lahijan M. Bakhshi KJ886440 KJ886279 KJ885957 KJ885796 KJ886118 MH496372 MH511863 MH496202
CCTU 1033 Chenopodium album Chenopodiaceae Iran, Guilan, Talesh M. Bakhshi KJ886437 KJ886276 KJ885954 KJ885793 KJ886115 MH496373 MH511864 MH496203
Cercospora convolvulicola CCTU 1083; CBS 136126 (TYPE) Convolvulus arvensis Convolvulaceae Iran, Ardabil, Moghan M. Bakhshi KJ886441 KJ886280 KJ885958 KJ885797 KJ886119 MH496374 MH511865 MH496204
CCTU 1083.2 Convolvulus arvensis Convolvulaceae Iran, Ardabil, Moghan M. Bakhshi KJ886442 KJ886281 KJ885959 KJ885798 KJ886120 MH496375 MH511866 MH496205
Cercospora conyzae-canadensis CCTU 1008 Conyza canadensis Asteraceae Iran, Guilan, Talesh M. Bakhshi KJ886443 KJ886282 KJ885960 KJ885799 KJ886121 MH496376 MH511867 MH496206
CCTU 1119; CBS 135978 (TYPE) Conyza canadensis Asteraceae Iran, Guilan, Talesh M. Bakhshi KJ886445 KJ886284 KJ885962 KJ885801 KJ886123 MH496377 MH511868 MH496207
CCTU 1105; IRAN 2657C Conyza canadensis Asteraceae Iran, Zanjan, Tarom M. Bakhshi KJ886444 KJ886283 KJ885961 KJ885800 KJ886122 MH496378 MH511869 MH496208
Cercospora cylindracea CCTU 1016 Cichorium intybus Asteraceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886446 KJ886285 KJ885963 KJ885802 KJ886124 MH496379 MH511870 MH496209
CCTU 1114 Cichorium intybus Asteraceae Iran, Zanjan, Tarom M. Bakhshi KJ886450 KJ886289 KJ885967 KJ885806 KJ886128 MH496380 MH511871 MH496210
CCTU 1081; CBS 138580; IRAN 2654C (TYPE) Lactuca serriola Asteraceae Iran, Ardabil, Moghan M. Bakhshi KJ886449 KJ886288 KJ885966 KJ885805 KJ886127 MH496381 MH511872 MH496211
CCTU 1207 Lactuca serriola Asteraceae Iran, Ardabil, Moghan M. Bakhshi KJ886453 KJ886292 KJ885970 KJ885809 KJ886131 MH496382 MH511873 MH496212
CCTU 1044; CBS 136021 Lactuca serriola Asteraceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886447 KJ886286 KJ885964 KJ885803 KJ886125 MH496383 MH511874 MH496213
CCTU 1183 Lactuca serriola Asteraceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886451 KJ886290 KJ885968 KJ885807 KJ886129 MH496384 MH511875 MH496214
CCTU 1189 Lactuca serriola Asteraceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886452 KJ886291 KJ885969 KJ885808 KJ886130 MH496385 MH511876 MH496215
CCTU 1049 Lactuca serriola Asteraceae Iran, Zanjan, Tarom M. Bakhshi KJ886448 KJ886287 KJ885965 KJ885804 KJ886126 MH496386 MH511877 MH496216
Cercospora cf. flagellaris clade 1 CPC 5441 Amaranthus sp. Amaranthaceae Fiji C.F. Hill JX143611 JX143370 JX143124 JX142878 JX142632 MH496387 MH511878 MH496217
CCTU 1159; CBS 136148 Arachis hypogaea Fabaceae Iran, Guilan, Lahijan M. Bakhshi KJ886493 KJ886332 KJ886010 KJ885849 KJ886171 MH496388 MH511879 MH496218
CCTU 1162; IRAN 2670C Citrullus lanatus Cucurbitaceae Iran, Guilan, Lahijan M. Bakhshi KJ886496 KJ886335 KJ886013 KJ885852 KJ886174 MH496389 MH511880 MH496219
CBS 132653; CPC 10884 Dysphania ambrosioides (≡ Chenopodium ambrosioides) Chenopodiaceae South Korea, Jeju H.D. Shin JX143603 JX143361 JX143115 JX142869 JX142623 MH496390 MH511881 MH496220
CCTU 1007; CBS 136031 Hydrangea sp. Hydrangeaceae Iran, Guilan, Talesh M. Bakhshi KJ886456 KJ886295 KJ885973 KJ885812 KJ886134 MH496391 MH511882 MH496221
CCTU 1027; CBS 136034 Lepidium sativum Brassicaceae Iran, Guilan, Chamkhaleh M. Bakhshi KJ886459 KJ886298 KJ885976 KJ885815 KJ886137 MH496392 MH511883 MH496222
CCTU 1128; CBS 136141; IRAN 2661C Phaseolus vulgaris Fabaceae Iran, Guilan, Astara M. Bakhshi KJ886476 KJ886315 KJ885993 KJ885832 KJ886154 MH496393 MH511884 MH496223
CCTU 1168; IRAN 2715C Phaseolus vulgaris Fabaceae Iran, Guilan, Kiashahr M. Bakhshi KJ886499 KJ886338 KJ886016 KJ885855 KJ886177 MH496394 MH511885 MH496224
CPC 1051 Populus deltoides Salicaceae South Africa P.W. Crous AY260069 JX143367 JX143121 JX142875 JX142629 MH496395 MH511886 MH496225
CCTU 1171 Raphanus sativus Brassicaceae Iran, Guilan, Kiashahr M. Bakhshi KJ886500 KJ886339 KJ886017 KJ885856 KJ886178 MH496396 MH511887 MH496226
CCTU 1120 Raphanus sativus Brassicaceae Iran, Guilan, Talesh M. Bakhshi KJ886475 KJ886314 KJ885992 KJ885831 KJ886153 MH496397 MH511888 MH496227
CCTU 1031; CBS 136036; IRAN 2648C Urtica dioica Urticaceae Iran, Guilan, Sowme`eh Sara M. Bakhshi KJ886461 KJ886300 KJ885978 KJ885817 KJ886139 MH496398 MH511889 MH496228
Cercospora cf. flagellaris clade 2 CCTU 1204 Abutilon theophrasti Malvaceae Iran, Ardabil, Moghan M. Bakhshi KJ886505 KJ886344 KJ886022 KJ885861 KJ886183 MH496399 MH511890 MH496229
CCTU 1198; CBS 136151 Acer velutinum Aceraceae Iran, Mazandaran, Ramsar M. Bakhshi KJ886504 KJ886343 KJ886021 KJ885860 KJ886182 MH496400 MH511891 MH496230
CBS 132667; CPC 11643 Celosia argentea var. cristata (≡ C. cristata) Amaranthaceae South Korea, Hoengseong H.D. Shin JX143604 JX143362 JX143116 JX142870 JX142624 MH496401 MH511892 MH496231
CCTU 1115; CBS 136139; IRAN 2659C Cercis siliquastrum Caesalpinaceae Iran, Guilan, Astara M. Bakhshi KJ886473 KJ886312 KJ885990 KJ885829 KJ886151 MH496402 MH511893 MH496232
CCTU 1195 Datura stramonium Solanaceae Iran, Guilan, Talesh M. Bakhshi KJ886503 KJ886342 KJ886020 KJ885859 KJ886181 MH496403 MH511894 MH496233
CCTU 1059; CBS 136136 Ecballium elaterium Cucurbitaceae Iran, Ardabil, Moghan M. Bakhshi KJ886464 KJ886303 KJ885981 KJ885820 KJ886142 MH496404 MH511895 MH496234
CCTU 1216; IRAN 2717C Ecballium elaterium Cucurbitaceae Iran, Ardabil, Moghan M. Bakhshi KJ886510 KJ886349 KJ886027 KJ885866 KJ886188 MH496405 MH511896 MH496235
CCTU 1223; CBS 136154; IRAN 2683C Eclipta prostrata Asteraceae Iran, Guilan, Talesh M. Bakhshi KJ886512 KJ886351 KJ886029 KJ885868 KJ886190 MH496406 MH511897 MH496236
CCTU 1068 Xanthium spinosum Asteraceae Iran, Ardabil, Moghan M. Bakhshi KJ886466 KJ886305 KJ885983 KJ885822 KJ886144 MH496407 MH511898 MH496237
CCTU 1085 Xanthium strumarium Asteraceae Iran, Ardabil, Moghan M. Bakhshi KJ886471 KJ886310 KJ885988 KJ885827 KJ886149 MH496408 MH511899 MH496238
Cercospora cf. flagellaris clade 3 CCTU 1172 Oenothera biennis Onagraceae Iran, Guilan, Talesh M. Bakhshi KJ886501 KJ886340 KJ886018 KJ885857 KJ886179 MH496409 MH511900 MH496239
CCTU 1154; CBS 136147 Abutilon theophrasti Malvaceae Iran, Guilan, Rasht M. Bakhshi KJ886489 KJ886328 KJ886006 KJ885845 KJ886167 MH496410 MH511901 MH496240
CCTU 1072; IRAN 2653C Amaranthus blitoides Amaranthaceae Iran, Ardabil, Moghan M. Bakhshi KJ886468 KJ886307 KJ885985 KJ885824 KJ886146 MH496411 MH511902 MH496241
CCTU 1064 Amaranthus retroflexus Amaranthaceae Iran, Ardabil, Moghan M. Bakhshi KJ886465 KJ886304 KJ885982 KJ885821 KJ886143 MH496412 MH511903 MH496242
CCTU 1021; CBS 136033 Amaranthus retroflexus Amaranthaceae Iran, Guilan, Fuman M. Bakhshi KJ886458 KJ886297 KJ885975 KJ885814 KJ886136 MH496413 MH511904 MH496243
CCTU 1084; CBS 136156 Amaranthus sp. Amaranthaceae Iran, Ardabil, Moghan M. Bakhshi KJ886470 KJ886309 KJ885987 KJ885826 KJ886148 MH496414 MH511905 MH496244
CCTU 1167; CBS 136150 Anubias sp. Araceae Iran, Guilan, Kiashahr M. Bakhshi KJ886498 KJ886337 KJ886015 KJ885854 KJ886176 MH496415 MH511906 MH496245
CBS 143.51; CPC 5055 Bromus sp. Poaceae M.D. Whitehead JX143607 JX143365 JX143119 JX142873 JX142627 MH496416 MH511907 MH496246
CCTU 1150 Buxus microphylla Buxaceae Iran, Guilan, Fuman M. Bakhshi KJ886488 KJ886327 KJ886005 KJ885844 KJ886166 MH496417 MH511908 MH496247
CCTU 1140; CBS 136143; IRAN 2666C Calendula officinalis Asteraceae Iran, Guilan, Astara M. Bakhshi KJ886481 KJ886320 KJ885998 KJ885837 KJ886159 MH496418 MH511909 MH496248
CBS 115482; A207 Bs+; CPC 4410 Citrus sp. Rutaceae South Africa, Messina M.C. Pretorius AY260070 DQ835095 DQ835114 DQ835141 DQ835168 MH496419 MH511910 MH496249
CCTU 1029; CBS 136035; IRAN 2647C Cucurbita maxima Cucurbitaceae Iran, Guilan, Rudsar M. Bakhshi KJ886460 KJ886299 KJ885977 KJ885816 KJ886138 MH496420 MH511911 MH496250
CCTU 1136 Cucurbita pepo Cucurbitaceae Iran, Guilan, Astara M. Bakhshi KJ886478 KJ886317 KJ885995 KJ885834 KJ886156 MH496421 MH511912 MH496251
CCTU 1143; CBS 136145 Datura stramonium Solanaceae Iran, Guilan, Talesh M. Bakhshi KJ886484 KJ886323 KJ886001 KJ885840 KJ886162 MH496422 MH511913 MH496252
CCTU 1209; CBS 136152 Glycine max Fabaceae Iran, Ardabil, Moghan M. Bakhshi KJ886506 KJ886345 KJ886023 KJ885862 KJ886184 MH496423 MH511914 MH496253
CCTU 1210; IRAN 2679C Glycine max Fabaceae Iran, Ardabil, Moghan M. Bakhshi KJ886507 KJ886346 KJ886024 KJ885863 KJ886185 MH496424 MH511915 MH496254
CCTU 1211 Glycine max Fabaceae Iran, Ardabil, Moghan M. Bakhshi KJ886508 KJ886347 KJ886025 KJ885864 KJ886186 MH496425 MH511916 MH496255
CCTU 1218; IRAN 2682C Hibiscus trionum Malvaceae Iran, Ardabil, Moghan M. Bakhshi KJ886511 KJ886350 KJ886028 KJ885867 KJ886189 MH496426 MH511917 MH496256
CCTU 1006; CBS 136030 Impatiens balsamina Balsaminaceae Iran, Guilan, Talesh M. Bakhshi KJ886455 KJ886294 KJ885972 KJ885811 KJ886133 MH496427 MH511918 MH496257
CCTU 1130; CBS 136142 Olea europaea Oleaceae Iran, Zanjan, Tarom M. Torbati KJ886477 KJ886316 KJ885994 KJ885833 KJ886155 MH496428 MH511919 MH496258
CCTU 1010; CBS 136032 Pelargonium hortorum Geraniaceae Iran, Guilan, Talesh M. Bakhshi KJ886457 KJ886296 KJ885974 KJ885813 KJ886135 MH496429 MH511920 MH496259
CCTU 1138; IRAN 2664C Phaseolus vulgaris Fabaceae Iran, Guilan, Astara M. Bakhshi KJ886479 KJ886318 KJ885996 KJ885835 KJ886157 MH496430 MH511921 MH496260
CCTU 1139; IRAN 2665C Phaseolus vulgaris Fabaceae Iran, Guilan, Astara M. Bakhshi KJ886480 KJ886319 KJ885997 KJ885836 KJ886158 MH496431 MH511922 MH496261
CCTU 1155.11 Phaseolus vulgaris Fabaceae Iran, Guilan, Fuman M. Bakhshi KJ886490 KJ886329 KJ886007 KJ885846 KJ886168 MH496432 MH511923 MH496262
CCTU 1161; IRAN 2669C Phaseolus vulgaris Fabaceae Iran, Guilan, Lahijan M. Bakhshi KJ886495 KJ886334 KJ886012 KJ885851 KJ886173 MH496433 MH511924 MH496263
CCTU 1175; IRAN 2673C Phaseolus vulgaris Fabaceae Iran, Guilan, Sowme`eh Sara M. Bakhshi KJ886502 KJ886341 KJ886019 KJ885858 KJ886180 MH496434 MH511925 MH496264
CCTU 1142; IRAN 2667C Phaseolus vulgaris Fabaceae Iran, Guilan, Talesh M. Bakhshi KJ886483 KJ886322 KJ886000 KJ885839 KJ886161 MH496435 MH511926 MH496265
CCTU 1118; CBS 136140; IRAN 2660C Populus deltoides Salicaceae Iran, Guilan, Astara M. Bakhshi KJ886474 KJ886313 KJ885991 KJ885830 KJ886152 MH496436 MH511927 MH496266
CCTU 1075 Raphanus sativus Brassicaceae Iran, Guilan, Sowme`eh Sara M. Bakhshi KJ886469 KJ886308 KJ885986 KJ885825 KJ886147 MH496437 MH511928 MH496267
CCTU 1212; CBS 136153; IRAN 2680C Silybum marianum Asteraceae Iran, Ardabil, Moghan M. Bakhshi KJ886509 KJ886348 KJ886026 KJ885865 KJ886187 MH496438 MH511929 MH496268
CCTU 1141; CBS 136144 Tagetes patula Asteraceae Iran, Guilan, Rudsar M. Bakhshi KJ886482 KJ886321 KJ885999 KJ885838 KJ886160 MH496439 MH511930 MH496269
CCTU 1147 Urtica dioica Urticaceae Iran, Guilan, Masal M. Bakhshi KJ886486 KJ886325 KJ886003 KJ885842 KJ886164 MH496440 MH511931 MH496270
CCTU 1160; CBS 136149 Vicia faba Fabaceae Iran, Guilan, Astara M. Bakhshi KJ886494 KJ886333 KJ886011 KJ885850 KJ886172 MH496441 MH511932 MH496271
CCTU 1158; IRAN 2668C Xanthium strumarium Asteraceae Iran, Guilan, Langarud M. Bakhshi KJ886492 KJ886331 KJ886009 KJ885848 KJ886170 MH496442 MH511933 MH496272
CCTU 1156 Xanthium strumarium Asteraceae Iran, Guilan, Rasht M. Bakhshi KJ886491 KJ886330 KJ886008 KJ885847 KJ886169 MH496443 MH511934 MH496273
CCTU 1005; IRAN 2644C Xanthium strumarium Asteraceae Iran, Guilan, Talesh M. Bakhshi KJ886454 KJ886293 KJ885971 KJ885810 KJ886132 MH496444 MH511935 MH496274
CCTU 1048; CBS 136029 Xanthium strumarium Asteraceae Iran, Zanjan, Tarom M. Bakhshi KJ886462 KJ886301 KJ885979 KJ885818 KJ886140 MH496445 MH511936 MH496275
Cercospora gamsiana CBS 144962; CCTU 1074; CPC 24909 (TYPE) Malva neglecta Malvaceae Iran, Ardabil, Moghan M. Bakhshi KJ886426 KJ886265 KJ885943 KJ885782 KJ886104 MH496446 MH511937 MH496276
CCTU 1035 Malva sylvestris Malvaceae Iran, Zanjan, Tarom M. Bakhshi KJ886423 KJ886262 KJ885940 KJ885779 KJ886101 MH496447 MH511938 MH496277
CCTU 1109 Malva sylvestris Malvaceae Iran, Zanjan, Tarom M. Bakhshi KJ886431 KJ886270 KJ885948 KJ885787 KJ886109 MH496448 MH511939 MH496278
CCTU 1199; CBS 136128; IRAN 2675C Rumex crispus Polygonaceae Iran, Mazandaran, Ramsar M. Bakhshi KJ886433 KJ886272 KJ885950 KJ885789 KJ886111 MH496449 MH511940 MH496279
CCTU 1205; CBS 136127; IRAN 2677C Sesamum indicum Pedaliaceae Iran, Ardabil, Moghan M. Bakhshi KJ886435 KJ886274 KJ885952 KJ885791 KJ886113 MH496450 MH511941 MH496280
CCTU 1208; IRAN 2678C Sonchus sp. Asteraceae Iran, Ardabil, Moghan M. Bakhshi KJ886436 KJ886275 KJ885953 KJ885792 KJ886114 MH496451 MH511942 MH496281
Cercospora cf. gossypii CCTU 1070; CBS 136137 Gossypium herbaceum Malvaceae Iran, Ardabil, Moghan M. Bakhshi KJ886467 KJ886306 KJ885984 KJ885823 KJ886145 MH496452 MH511943 MH496282
CCTU 1055; IRAN 2650C Hibiscus trionum Malvaceae Iran, Ardabil, Moghan M. Bakhshi KJ886463 KJ886302 KJ885980 KJ885819 KJ886141 MH496453 MH511944 MH496283
Cercospora iranica CCTU 1196; CBS 136123 Hydrangea sp. Hydrangeaceae Iran, Mazandaran, Ramsar M. Bakhshi KJ886515 KJ886354 KJ886032 KJ885871 KJ886193 MH496454 MH511945 MH496284
CCTU 1137; CBS 136124 (TYPE) Vicia faba Fabaceae Iran, Guilan, Astara M. Bakhshi KJ886513 KJ886352 KJ886030 KJ885869 KJ886191 MH496455 MH511946 MH496285
Cercospora plantaginis CCTU 1082; CBS 138728 Plantago lanceolata Plantaginaceae Iran, Ardabil, Moghan M. Bakhshi KJ886402 KJ886241 KJ885919 KJ885758 KJ886080 MH496456 MH511947 MH496286
CCTU 1095 Plantago lanceolata Plantaginaceae Iran, East Azerbaijan, Horand M. Bakhshi KJ886403 KJ886242 KJ885920 KJ885759 KJ886081 MH496457 MH511948 MH496287
CCTU 1041; CPC 24910 Plantago lanceolata Plantaginaceae Iran, Guilan, Chaboksar M. Bakhshi KJ886400 KJ886239 KJ885917 KJ885756 KJ886078 MH496458 MH511949 MH496288
CCTU 1179; IRAN 2716C Plantago lanceolata Plantaginaceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886404 KJ886243 KJ885921 KJ885760 KJ886082 MH496459 MH511950 MH496289
CCTU 1047 Plantago lanceolata Plantaginaceae Iran, Zanjan, Tarom M. Bakhshi KJ886401 KJ886240 KJ885918 KJ885757 KJ886079 MH496460 MH511951 MH496290
CBS 252.67; CPC 5084 (TYPE) Plantago lanceolata Plantaginaceae Romania, Domnesti O. Constantinescu DQ233318 DQ233342 DQ233368 DQ233394 DQ233420 MH496461 _ MH496291
Cercospora pseudochenopodii CCTU 1176 Chenopodium album Chenopodiaceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886518 KJ886357 KJ886035 KJ885874 KJ886196 MH496462 MH511952 MH496292
CCTU 1045 Chenopodium sp. Chenopodiaceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886517 KJ886356 KJ886034 KJ885873 KJ886195 MH496463 MH511953 MH496293
CCTU 1038; CBS 136022; IRAN 2649C (TYPE) Chenopodium sp. Chenopodiaceae Iran, Zanjan, Tarom M. Bakhshi KJ886516 KJ886355 KJ886033 KJ885872 KJ886194 MH496464 MH511954 MH496294
Cercospora cf. richardiicola CCTU 1004 Bidens tripartita Asteraceae Iran, Guilan, Talesh M. Bakhshi KJ886519 KJ886358 KJ886036 KJ885875 KJ886197 MH496465 MH511955 MH496295
Cercospora rumicis CCTU 1123 Rumex crispus Polygonaceae Iran, Guilan, Talesh M. Bakhshi KJ886521 KJ886360 KJ886038 KJ885877 KJ886199 MH496466 MH511956 MH496296
CCTU 1129; IRAN 2662C Rumex crispus Polygonaceae Iran, Guilan, Talesh M. Bakhshi KJ886522 KJ886361 KJ886039 KJ885878 KJ886200 MH496467 MH511957 MH496297
CCTU 1121 Urtica dioica Urticaceae Iran, Guilan, Talesh M. Bakhshi KJ886520 KJ886359 KJ886037 KJ885876 KJ886198 MH496468 MH511958 MH496298
Cercospora solani CCTU 1043; CBS 136038 Solanum nigrum Solanaceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886523 KJ886362 KJ886040 KJ885879 KJ886201 MH496469 MH511959 MH496299
CCTU 1050 Solanum nigrum Solanaceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886524 KJ886363 KJ886041 KJ885880 KJ886202 MH496470 MH511960 MH496300
Cercospora sorghicola CCTU 1173; CBS 136448; IRAN 2672C (TYPE) Sorghum halepense Poaceae Iran, Guilan, Kiashahr M. Bakhshi KJ886525 KJ886364 KJ886042 KJ885881 KJ886203 MH496471 MH511961 MH496301
Cercospora sp. G clade 1 CCTU 1197 Bidens tripartita Asteraceae Iran, Guilan, Talesh M. Bakhshi KJ886540 KJ886379 KJ886057 KJ885896 KJ886218 MH496472 MH511962 MH496302
CCTU 1015; CBS 136024; IRAN 2645C Plantago major Plantaginaceae Iran, Guilan, Talesh M. Bakhshi KJ886528 KJ886367 KJ886045 KJ885884 KJ886206 MH496473 MH511963 MH496303
CPC 5438 Salvia viscosa Lamiaceae New Zealand, Manurewa C.F. Hill JX143682 JX143442 JX143196 JX142950 JX142704 MH496474 _ MH496304
Cercospora sp. G clade 2 CCTU 1058 Helminthotheca echioides Asteraceae Iran, Ardabil, Moghan M. Bakhshi KJ886534 KJ886373 KJ886051 KJ885890 KJ886212 MH496475 MH511964 MH496305
CCTU 1090 Abutilon theophrasti Malvaceae Iran, Ardabil, Moghan M. Bakhshi KJ886536 KJ886375 KJ886053 KJ885892 KJ886214 MH496476 MH511965 MH496306
CCTU 1079; CBS 136025 Amaranthus retroflexus Amaranthaceae Iran, Ardabil, Moghan M. Bakhshi KJ886535 KJ886374 KJ886052 KJ885891 KJ886213 MH496477 MH511966 MH496307
CCTU 1054 Amaranthus sp. Amaranthaceae Iran, Ardabil, Moghan M. Bakhshi KJ886533 KJ886372 KJ886050 KJ885889 KJ886211 MH496478 MH511967 MH496308
CCTU 1122 Amaranthus sp. Amaranthaceae Iran, Guilan, Talesh M. Bakhshi KJ886538 KJ886377 KJ886055 KJ885894 KJ886216 MH496479 MH511968 MH496309
CBS 115518; CPC 5360 Bidens frondosa Asteraceae New Zealand, Kopuku C.F. Hill JX143681 JX143441 JX143195 JX142949 JX142703 MH496480 _ MH496310
CCTU 1030; CBS 136026 Bidens tripartita Asteraceae Iran, Guilan, Talesh M. Bakhshi KJ886530 KJ886369 KJ886047 KJ885886 KJ886208 MH496481 MH511969 MH496311
CCTU 1002 Celosia cristata Amaranthaceae Iran, Guilan, Talesh M. Bakhshi KJ886527 KJ886366 KJ886044 KJ885883 KJ886205 MH496482 MH511970 MH496312
CCTU 1053; CBS 136027 Cichorium intybus Asteraceae Iran, Guilan, Sowme`eh Sara M. Bakhshi KJ886532 KJ886371 KJ886049 KJ885888 KJ886210 MH496483 MH511971 MH496313
CCTU 1144; CBS 136130 Cucurbita maxima Cucurbitaceae Iran, Guilan, Masal M. Bakhshi KJ886539 KJ886378 KJ886056 KJ885895 KJ886217 MH496484 MH511972 MH496314
CCTU 1046 Plantago major Plantaginaceae Iran, Zanjan, Tarom M. Bakhshi KJ886531 KJ886370 KJ886048 KJ885887 KJ886209 MH496485 MH511973 MH496315
CCTU 1116 Plantago major Plantaginaceae Iran, Zanjan, Tarom M. Bakhshi KJ886537 KJ886376 KJ886054 KJ885893 KJ886215 MH496486 MH511974 MH496316
CCTU 1020; CBS 136023 Sorghum halepense Poaceae Iran, Guilan, Talesh M. Bakhshi KJ886529 KJ886368 KJ886046 KJ885885 KJ886207 MH496487 MH511975 MH496317
Cercospora sp. T CCTU 1148; CBS 136125 Coreopsis sp. Asteraceae Iran, Guilan, Rasht M. Bakhshi KJ886541 KJ886380 KJ886058 KJ885897 KJ886219 MH496488 MH511976 MH496318
Cercospora uwebrauniana CCTU 1200; CBS 138581 (TYPE) Heliotropium europaeum Boraginaceae Iran, Ardabil, Moghan M. Bakhshi KJ886408 KJ886247 KJ885925 KJ885764 KJ886086 MH496489 MH511977 MH496319
CCTU 1134 Heliotropium europaeum Boraginaceae Iran, Guilan, Astara M. Bakhshi KJ886407 KJ886246 KJ885924 KJ885763 KJ886085 MH496490 MH511978 MH496320
Cercospora violae CCTU 1025; IRAN 2646C Viola sp. Violaceae Iran, Mazandaran, Nowshahr M. Bakhshi KJ886543 KJ886382 KJ886060 KJ885899 KJ886221 MH496491 MH511979 MH496321
CBS 251.67; CPC 5079 (TYPE) Viola tricolor Violaceae Romania, Cazanele Dunarii O. Constantinescu JX143737 JX143496 JX143250 JX143004 JX142758 MH496492 _ MH496322
Cercospora zebrina CCTU 1039 Alhagi camelorum Fabaceae Iran, Zanjan, Tarom M. Bakhshi KJ886545 KJ886384 KJ886062 KJ885901 KJ886223 MH496493 MH511980 MH496323
CBS 108.22; CPC 5091 Medicago arabica (= M. maculata) Fabaceae E.F. Hopkins JX143744 JX143503 JX143257 JX143011 JX142765 MH496494 _ MH496324
CCTU 1225 Medicago sativa Fabaceae Iran, East Azerbaijan, Marand M. Bakhshi KJ886550 KJ886389 KJ886067 KJ885906 KJ886228 MH496495 MH511981 MH496325
CCTU 1180 Medicago sativa Fabaceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886547 KJ886386 KJ886064 KJ885903 KJ886225 MH496496 MH511982 MH496326
CCTU 1110; IRAN 2658C Medicago sativa Fabaceae Iran, Zanjan, Tarom M. Bakhshi KJ886546 KJ886385 KJ886063 KJ885902 KJ886224 MH496497 MH511983 MH496327
CCTU 1012; CBS 136129 Medicago sp. Fabaceae Iran, Guilan, Talesh M. Bakhshi KJ886544 KJ886383 KJ886061 KJ885900 KJ886222 MH496498 MH511984 MH496328
CCTU 1181 Trifolium repens Fabaceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886548 KJ886387 KJ886065 KJ885904 KJ886226 MH496499 MH511985 MH496329
CBS 113070; CPC 5367 Trifolium repens Fabaceae New Zealand, Blockhouse Bay C.F. Hill JX143745 JX143507 JX143261 JX143015 JX142769 MH496500 _ MH496330
CBS 118790; IMI 262766; WA 2030; WAC 7973 Trifolium subterraneum Fabaceae Australia M.J. Barbetti JX143748 JX143510 JX143264 JX143018 JX142772 MH496501 _ MH496331
CBS 129.39; CPC 5078 Trifolium subterraneum Fabaceae U.S.A., Wisconsin JX143750 JX143512 JX143266 JX143020 JX142774 MH496502 _ MH496332
CCTU 1185 Vicia sp. Fabaceae Iran, West Azerbaijan, Khoy M. Arzanlou KJ886549 KJ886388 KJ886066 KJ885905 KJ886227 MH496503 MH511986 MH496333
CCTU 1239; CBS 135977 Vitis vinifera Vitaceae Iran, East Azerbaijan, Kaleybar M. Arzanlou KJ886551 KJ886390 KJ886068 KJ885907 KJ886229 MH496504 MH511987 MH496334
Cercospora cf. zinniae CCTU 1003 Zinnia elegans Asteraceae Iran, Guilan, Talesh M. Bakhshi KJ886552 KJ886391 KJ886069 KJ885908 KJ886230 MH496505 MH511988 MH496335

1CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CCTU: Culture Collection of Tabriz University, Tabriz, Iran; CPC: Culture collection of Pedro Crous, housed at CBS; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; IRAN: Iranian Fungal Culture Collection, Iranian Research Institute of Plant Protection, Tehran, Iran; WAC: Department of Agriculture Western Australia Plant Pathogen Collection, Perth, Australia.

2ITS: internal transcribed spacers and intervening 5.8S nrDNA; tef1: partial translation elongation factor 1-alpha gene, actA: partial actin gene, cmdA: partial calmodulin gene, his3: partial histone H3 gene, tub2: partial beta-tubulin gene, rpb2: partial RNA polymerase II gene, gapdh: partial glyceraldehyde-3-phosphate dehydrogenase gene.

DNA extraction and PCR amplification

DNA samples comprised those previously extracted by Bakhshi et al. (2015a) and Groenewald et al. (2013). Three additional partial nuclear genes were targeted for PCR amplification and sequencing, namely, glyceraldehyde-3-phosphate dehydrogenase (gapdh), RNA polymerase II second largest subunit (rpb2), and β-tubulin (tub2), using corresponding primer sets (Table 2). PCR amplifications were performed in a total volume of 12.5 μL on a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA). The gapdh PCR mixture consisted of 5–10 ng genomic DNA, 1 × PCR buffer (Bioline, London), 2 mM MgCl2 (Bioline), 50 μM of each dNTP, 0.5 μL BSA (10 mg/ml) (Promega, Madison, WI), 0.28 μM of each primer and 0.5 units GoTaq® Flexi DNA polymerase (Promega). The tub2 PCR mixture contained 5–10 ng genomic DNA, 1 × PCR buffer, 2 mM MgCl2, 40 μM of each dNTP, 0 μL / 0.5 μL BSA, 0.25 μM of each primer and 0.5 units GoTaq® Flexi DNA polymerase using respectively the BT-1F/BT-1R (this study) or T1 (O’Donnell & Cigelnik 1997)/β-Sandy-R (Stukenbrock et al. 2012) primer sets. The rpb2 gene was amplified in three parts with three primer sets. Part three was only amplified in some selected species in order to design a new reverse primer for amplification of part two. The rpb2 PCR mixtures using the fRPB2-5F (Liu et al. 1999)/fRPB2-414R (Quaedvlieg et al. 2011) primer set consisted of 5–10 ng genomic DNA, 1 × PCR buffer, 2 mM MgCl2, 40 μM of each dNTP, 0.5 μL BSA, 0.2 μM of each primer and 0.5 units GoTaq® Flexi DNA polymerase. The PCR mixtures using RPB2-C5F/RPB2-C8R (this study) and fRPB2-7cF/fRPB2-11aR primer sets (Liu et al. 1999) were the same as gapdh.

Table 2.

Primer combinations used during this study for amplification and sequencing.

Locus Primer Primer sequence 5’ to 3’ Annealing temperature (°C) Orientation Reference
Beta-tubulin (tub2) T1 AAC ATG CGT GAG ATT GTA AGT 48 Forward O’Donnell & Cigelnik 1997
β-Sandy-R GCR CGN GGV ACR TAC TTG TT 48 Reverse Stukenbrock et al. 2012
BT-1F GTC CWC ACC GCC CCT GAT 56 Forward This study
BT-1R CTT GTT RCC RGA AGC CTR TGS 56 Reverse This study
RNA polymerase II second largest subunit (rpb2) fRPB2-5F GAY GAY MGW GAT CAY TTY GG 47 Forward Liu et al. 1999
fRPB2-414R ACM ANN CCC CAR TGN GWR TTR TG 47 Reverse Quaedvlieg et al. 2011
fRPB2-7cF ATG GGY AAR CAA GCY ATG GG 49 Forward Liu et al. 1999
fRPB2-11aR GCR TGG ATC TTR TCR TCS ACC 49 Reverse Liu et al. 1999
RPB2-C5F TGG GGA GAY CAR AAR AAA GC 60→58→56 Forward This study
RPB2-C8R ACG GAA TCT TCC TGG TTG TA 60→58→56 Reverse This study
Glyceraldehyde-3-phosphate dehydrogenase (gapdh) Gpd1-LM ATT GGC CGC ATC GTC TTC CGC AA 60→58→53 Forward Myllys et al. 2002
Gpd2-LM CCC ACT CGT TGT CGT ACC A 60→58→53 Reverse Myllys et al. 2002

To obtain the partial tub2 and rpb2 (using the fRPB2-5F/fRPB2-414R and fRPB2-7cF/fRPB2-11aR primer sets) sequences, PCR amplification conditions were set as follows: an initial denaturation temperature of 94 °C for 3 min, followed by 40 (tub2) or 45 (rpb2) cycles of denaturation temperature of 94 °C for 30 s, primer annealing at the temperature stipulated in Table 2 for 30 s, primer extension at 72 °C for 45 s and a final extension step at 72 °C for 5 min.

A touchdown PCR protocol was used to amplify the partial gapdh (using the Gpd1-LM/Gpd2-LM primer set (Myllys et al. 2002)) and rpb2 (using the RPB2-C5F/RPB2-C8R primer set) sequences: initial denaturation (94 °C, 5 min), five amplification cycles (94 °C, 45 s; 60 °C, 45 s; 72 °C, 90 s), five amplification cycles (94 °C, 45 s; 58 °C, 45 s; 72 °C, 90 s), 30 amplification cycles (94 °C, 45 s; 53 °C (gapdh) or 56 °C (rpb2), 45 s; 72 °C, 90 s) and a final extension step (72 °C, 5 min). PCR products were visualised by electrophoresis using a 1.2 % agarose gel, stained with GelRed<sup>TM</sup> (Biotium, Hayward, CA) and viewed under ultra-violet light. Size estimates were made using a HyperLadder<sup>TM</sup> I molecular marker (Bioline).

Sequencing and phylogenetic analyses

The resulting PCR fragments were sequenced in both directions using the same primers used for amplification (Table 2) and the BigDye Terminator Cycle Sequencing Kit v. 3.1 (Applied Biosystems, Foster City, CA), following the manufacturer's instructions. DNA sequencing amplicons were purified through Sephadex G-50 Superfine columns (SigmaAldrich, St Louis, MO) in 96-well MultiScreen HV plates (Millipore, Billerica, MA) as outlined by the manufacturer and analysed with an ABI Prism 3730xl Automated DNA analyser (Life Technologies Europe BV, Applied Biosystems<sup>TM</sup>, Bleiswijk, The Netherlands).

The raw DNA sequences of tub2, gapdh and rpb2 were edited using MEGA v. 6 (Tamura et al. 2013) and forward and reverse sequences for each isolate were assembled manually to generate consensus sequences. Two parts of the rpb2 gene (part amplified with the fRPB2-5F/fRPB2-414R primer set + part amplified with the RPB2-C5F/RPB2-C8R primer set) were compiled manually using MEGA v. 6. The assembled consensus sequences were initially aligned with MEGA v. 6 and optimised with the multiple sequence alignment online interface of MAFFT using default settings (http://mafft.cbrc.jp/alignment/server/) (Katoh & Standley 2013), and adjusted manually where necessary. In addition, sequences of the same isolates corresponding to the ITS locus (including ITS1, 5.8S, ITS2), together with parts of four protein coding genes, viz. translation elongation factor 1-alpha (tef1), actin (actA), calmodulin (cmdA) and histone H3 (his3), were retrieved from the NCBIs GenBank nucleotide database and included in the analyses, after separate alignment as described above. Sequences of Cercospora sorghicola (CBS 136448 = IRAN 2672C) were used as outgroup. Evolutionary models for phylogenetic analyses were selected independently for each locus using MrModeltest v. 2.3 (Nylander 2004) under the Akaike Information Criterion (AIC) (Table 3). The individual alignments of the different loci were subsequently concatenated with Mesquite v. 2.75 (Maddison & Maddison 2011) prior to being subjected to a combined multi-gene analysis. Given the different sizes of the data partitions, they could not be properly used in statistical tests for (in)congruency. Phylogenetic reconstruction was performed using Bayesian inference (BI) Markov Chain Monte Carlo (MCMC) algorithm in MrBayes v. 3.2.2 (Ronquist et al. 2012). Two simultaneous MCMC analyses, each consisting of four Markov chains, were run from random trees until the average standard deviation of split frequencies reached a value of 0.01, with trees saved every 100 generations and the heating parameter was set to 0.15. Burn-in phase was set to 25 % and the posterior probabilities (Rannala & Yang 1996) were calculated from the remaining trees. The resulting phylogenetic tree was generated with Geneious v. 5.6.7 (Drummond et al. 2012).

Table 3.

Phylogenetic data and the substitution models used in the phylogenetic analysis, per locus. Abbreviations of loci follow Table 1.

Locus ITS tef1 actA cmdA his3 tub2 rpb2 gapdh
Number of characters 470 291 187 248 358 415 1229 869
Unique site patterns 16 75 48 66 63 105 259 231
Substitution model used SYM-gamma K80-gamma K80-gamma K80-gamma HKY-gamma GTR-gamma GTR-gamma GTR-I-gamma

Number of generations (n) 2 405 000
Total number of trees (n) 4 812
Sampled trees (n) 3 610

All new sequences generated in this study were deposited in NCBIs GenBank nucleotide database (www.ncbi.nlm.nih.gov; Table 1) and the alignment and phylogenetic trees in TreeBASE S22944 (www.TreeBASE.org).

Morphology

Morphological descriptions are based on structures from dried material. Diseased leaf tissues were viewed under a Nikon® SMZ1500 stereo-microscope and taxonomically informative morphological structures (stromata, conidiophores and conidia) were picked up from lesions with a sterile dissecting needle and mounted on glass slides in clear lactic acid. Structures were examined under a Nikon Eclipse 80i light microscope, and photographed using a mounted Nikon digital sight DS-f1 high definition colour camera.

Thirty measurements were made at ×1000 for each microscopic structure, and 95 % conӿdence intervals were derived for the measurements with extreme values given in parentheses. Colony macro-morphology on MEA was determined after 1 mo at 25 °C in the dark in duplicate and colony colour was described using the mycological colour charts of Rayner (1970). Nomenclatural novelties and descriptions were deposited in MycoBank (www.mycobank.org; Crous et al. 2004). The naming system for tentatively applied names used by Groenewald et al. (2013) and Bakhshi et al. (2015a) is continued in this manuscript to simplify comparison between the studies.

Identification of the best-performing DNA barcode

The dataset of the eight loci, ITS, tef1, actA, cmdA, his3, tub2, rpb2 and gapdh, was individually tested for two factors: Kimura-2-parameter (K2P) values (barcode gap) and molecular phylogenetic resolution (clade recovery). Inter- and intraspecific distances of eight loci were calculated for each single-locus sequence data alignment, using MEGA v. 6.0 with the Kimura-2-parameter distance values using the pairwise deletion model. Microsoft Excel 2010 was subsequently used to sort these distance values into distribution bins (from distance 0–0.1 with intervals of 0.01 between bins) and the frequency of entries for each individual bin was then plotted against the Kimura-2-parameter distance of each bin.

In addition, Bayesian analyses using the corresponding nucleotide substitution models (Table 3) were applied to each data partition to check the stability and robustness of each species clade (clade recovery) under the different loci (data not shown, trees deposited in TreeBASE S22944) (Table 4). The clade recovery and Kimura-2-parameter values for each locus were calculated after applying the consolidated species concept to the results of eight-gene phylogenetic tree.

Table 4.

Summary of clade support (Bayesian posterior probabilities (PP) values) for each species and locus or combination of loci. Green cells represent the PP values of species which are supported as distinct species, purple cells represent the PP values of species which are indistinct from one other species; while white cells represent species which cannot be distinguished from several other species for the given locus or combination of loci. The K2P inter-/intraspecies variation ratio as well as the number of species in the three different coloured categories are indicated per locus below the table. Abbreviations of loci follow Table 1.

graphic file with name ima-9-299-t004.jpg

Allele group designation

The isolates in each of the Cercospora species complexes, including C. apii, C. armoraciae, C. beticola, C. cf. flagellaris, and Cercospora sp. G, were compared using the individual alignments of the eight single loci in MEGA v. 6. Allele groups were established for each locus based on sequence identity, i.e. each sequence with one or more nucleotide difference from the other sequence was regarded as a different allele.

RESULTS

DNA amplification and phylogenetic analysis

New primers were designed for rpb2 and tub2 in this study (Table 2) and proved to be effective for the selected Cercospora species. Approximately 400, 1000, and 1200 bp were obtained for tub2, gapdh and rpb2 loci, respectively. The final concatenated eight-locus alignment contained 169 ingroup taxa and a total of 4 099 characters including alignment gaps were processed. The gene boundaries were 1–470 bp for ITS, 475–765 bp for tef1, 770–956 bp for actA, 961–1 208 bp for cmdA, 1 213–1 570 bp for his3, 1 575–1 989 bp for tub2, 1 994–3 222 bp for rpb2, and 3 227–4 099 bp for gapdh. For the total alignment, 28 characters which were artificially introduced as spacers to separate the loci, were excluded from the phylogenetic analyses. The alignment contained 863 unique site patterns (Table 3).

The Bayesian analysis lasted 2 405 000 generations and generated 4 812 trees from which the first 1 202 trees (25 %), representing the burn-in phase of the analyses, were discarded, and the remaining trees (3 610) were used for calculating posterior probabilities (PP) values in the phylogenetic tree (50 % majority rule consensus tree) (Fig. 1).

Fig. 1.

Fig. 1.

Fig. 1.

Fig. 1.

Consensus phylogram (50 % majority rule) of 3 610 trees resulting from a Bayesian analysis of the combined eight-gene sequence alignment using MrBayes v. 3.2.2. The scale bar indicates 0.02 expected changes per site. Hosts and country of origin are indicated in green and black text, respectively. The tree was rooted to Cercospora sorghicola (isolate CBS 136448 = IRAN 2672C).

TAXONOMY

Species delimitation in the genus Cercospora in this study follows the Consolidated Species Concept accepted in recent revisions of the taxonomy of cercosporoid fungi (e.g. Groenewald et al. 2013, Crous et al. 2013, Bakhshi et al. 2015a, Videira et al. 2017). Twenty-eight lineages of Cercospora were resolved based on the clustering and support in the Bayesian tree obtained from the combined ITS, tef1, actA, cmdA, his3, tub2, rpb2, and gapdh alignment (Fig. 1, Table 4). Of these, 15 species including C. althaeina, C. chenopodii, C. convolvulicola, C. conyzae-canadensis, C. cylindracea, C. iranica, C. pseudochenopodii, C. cf. richardiicola, C. rumicis, C. solani, C. sorghicola, Cercospora sp. T, C. violae, C. zebrina, and C. cf. zinnia, were the same as those also accepted before in the five-gene phylogenetic tree (ITS, tef1, actA, cmdA, and his3) (Bakhshi et al. 2015a). However, the eight-gene phylogenetic tree separated strains previously recognised as C. apii, C. armoraciae, C. beticola, C. cf. flagellaris, and Cercospora sp. G, based on five-gene phylogenetic tree (Groenewald et al. 2013, Bakhshi et al. 2015a) into at least three, two, two, four and two well-supported clades respectively (Fig. 1). Some of these clades are supported by the host range or morphological characters of the isolates and are therefore described as new below.

Cercospora apii complex

The 16 isolates previously recognised as C. apii based on five-gene phylogenetic tree (Groenewald et al. 2013, Bakhshi et al. 2015a) are assigned here to three lineages based on the eight-gene phylogenetic tree, host association, and morphology, including C. apii s. str., C. uwebrauniana sp. nov., and C. plantaginis (Fig. 1, part 2). The results of allele group designation for the isolates in this complex detected one, four, two, two, four, three, four and two allele groups for the ITS, tef1, actA, cmdA, his3, tub2, rpb2, and gapdh sequences, respectively (Table 5).

Table 5.

Results from allele group designation per locus for Cercospora apii s. lat. isolates in this study. Abbreviations of loci and collection accession numbers follow Table 1.

Species Culture accession number Host Allele group per locus
ITS tef1 actA cmdA his3 tub2 rpb2 gapdh
C. apii s. str. CCTU 1069 Cynanchum acutum I II I I II I IV I
CCTU 1086; CBS 136037; IRAN 2655C Cynanchum acutum I II I I II I I I
CCTU 1215 Cynanchum acutum I II I I II I I I
CCTU 1219; CBS 136155 Cynanchum acutum I II I I II I II I
CBS 536.71; CPC 5087 Apium graveolens I II I I II I I I
CBS 116455; CPC 11556 (TYPE) Apium graveolens I I I I I I _ I
CBS 110813; CPC 5110 Molucella laevis I II I II II I I I
CPC 5112 Molucella laevis I II I II II I I I
C. plantaginis CCTU 1041; CPC 24910 Plantago lanceolata I II I II III I I II
CCTU 1047 Plantago lanceolata I II I II II II I II
CCTU 1082; CBS 138728 Plantago lanceolata I II I II III II I II
CCTU 1095 Plantago lanceolata I II I II III II I II
CCTU 1179 Plantago lanceolata I II II II II I III II
CBS 252.67; CPC 5084 (TYPE) Plantago lanceolata I III II II III II _ II
C. uwebrauniana CCTU 1134 Heliotropium europaeum I IV I II IV III I I
CCTU 1200; CBS 138581 (TYPE) Heliotropium europaeum I IV I II IV III I I

Cercospora apiiFresen., Beitr. Mykol. 3: 91 (1863).

Sensu Groenewald et al., Phytopathology 95: 954 (2005).

(Fig. 2)

Fig. 2.

Fig. 2.

Cercospora apii (CBS 136037). A.Leaf spots. B–C. Fasciculate conidiophores. D–H.Conidia. Bars = 10 μm.

Type: Germany: Oestrich, on Apium graveolens (Apiaceae), Fuckel, Fungi rhen. 117, in HAL (lectotype designated by Groenewald et al. 2005); Heilbronn, Landwirtschaftsamt, on A. graveolens, 10 Aug. 2004, K. Schrameyer (CBS 116455 = CPC 11556 – epitype designated by Groenewald et al. 2005).

Description: Leaf spots amphigenous, distinct, circular to subcircular, 1–9 mm diam, white-grey in centre, surrounded by a dark purple-brown border. Mycelium internal. Caespituli amphigenous, brown. Conidiophores aggregated in moderately dense fascicles (4–15), arising from the upper cells of a well-developed brown stroma, to 50 μm wide; conidiophores brown, becoming pale brown towards the apex, 1−6-septate, straight to variously curved, unbranched, uniform in wide, (45−)80–95(−125) × 4–5.5 μm. Conidiogenous cells integrated, lateral or terminal, unbranched, brown, smooth, proliferating sympodially, 20–40 × 3.5–5 μm, multi-local; loci thickened, darkened, refractive, apical or lateral, 2–3.5 μm diam. Conidia solitary, smooth, obclavate-cylindrical to acicular, straight to slightly curved, hyaline, distinctly 3–9(−15)-septate, apex subacute or subobtusely rounded, base subtruncate to obconically truncate, (30–)65–80(−115) × 3–5 μm; hila thickened, darkened, refractive, 2–3.5 μm diam.

Note: This clade includes the ex-epitype strain of C. apii (isolate CBS 116455 = CPC 11556), therefore we fixed the application of C. apii s. str. to this clade.

Specimens examined: Germany: Heilbron, Landwirtschaftsamt, on A. graveolens, K. Schrameyer (CBS 116455 = CPC 11556 −ex-epitype culture). – Iran: Ardabil Province: Moghan, on leaves of Cynanchum acutum (Apocynaceae), Oct. 2011, M. Bakhshi (IRAN 17016F, IRAN 17017F, CCTU 1069, CCTU 1086 = IRAN 2655C = CBS 136037); Moghan, on leaves of C. acutum, Oct. 2012, M. Bakhshi (IRAN 17018F, IRAN 17019F, CCTU 1215, CCTU 1219 = CBS 136155). – New Zealand: Auckland, on M. laevis, C.F. Hill (CPC 5112). – Romania: Bucuresti, on A. graveolens, 2 Oct. 1969, O. Constantinescu (CBS 536.71 = CPC 5087). – USA: California: on Moluccella laevis (Lamiaceae), S.T. Koike (CBS 110813 = CPC 5110).

Cercospora plantaginisSacc., Michelia 1: 267 (1878).

(Fig. 3)

Fig. 3.

Fig. 3.

Cercospora plantaginis (CPC 24910). A.Leaf spots. B–C.Fasciculate conidiophores. D–J. Conidia. Bars = 10 μm.

Type: Italy: Selva, on Plantago lanceolata (Plantaginaceae), Sep. 1873, P.A. Saccardo (PAD, s.n. – holotype, according to Art. 9.1, Note 1). – Romania: Domnesti, on P. lanceolata, 3 Aug. 1965, O. Constantinescu (CBS 252.67 – epitype designated here, MBT 383093, preserved as a metabolically inactive culture).

Description: Leaf spots amphigenous, circular to subcircular, 1–4 mm diam, white to grey with distinct raised brown borders. Mycelium internal. Caespituli amphigenous, brown. Conidiophores aggregated in loose fascicles, arising from a moderately developed, intraepidermal and substomatal, dark brown stroma, to 30 μm diam; conidiophores brown at the base, becoming paler towards the apex, 2–10-septate, straight to geniculate-sinuous due to sympodial proliferation, simple, uniform in width, somewhat constricted at the proliferating point, (45−)60–85 × 4–5 μm. Conidiogenous cells integrated, terminal or lateral, pale brown to brown, proliferating sympodially, 8–25 × 3.5–5 μm, multi-local; loci distinctly thickened, darkened and somewhat refractive, apical or formed on shoulders caused by sympodial proliferation, 2–3 μm diam. Conidia solitary, subcylindrical, filiform to acicular, straight to mildly curved, hyaline, (40−)60–70(−105) × 2–3.5 μm, (4−)8–13(−17)-septate, with subobtuse to subacute apices and truncate bases; hila thickened, darkened, refractive, 1.5–2.5 μm diam.

Notes: Based on the results of the eight-gene phylogenetic tree, all isolates obtained from P. lanceolata from five different provinces in Iran together with a European isolate from this host plant, previously recognised as C. apii based on a five-gene phylogenetic tree (Groenewald et al. 2013, Bakhshi et al. 2015a), cluster separately from the other isolates in this clade (Fig. 1, part 2). Three species of Cercospora, including C. apii, C. pantoleuca and C. plantaginis, have been reported from Plantago (Crous & Braun 2003, https://nt.ars-grin.gov/fungaldatabases/). This species is morphologically close to C. plantaginis described from Italy on P. lanceolata (Chupp 1954). Since one European isolate from P. lanceolata in Romania (CBS 252.67 = CPC 5084) also resides in this clade, we designate an epitype here for this species, and fix the application of the name C. plantaginis to this clade.

Additional specimens examined: Iran: Guilan Province: Chaboksar, on P. lanceolata, Jul. 2012, M. Bakhshi (IRAN 17076F, CCTU 1041 = CPC 24910). Zanjan Province: Tarom, Pasar, on P. lanceolata, Sep. 2011, M. Bakhshi (IRAN 17078F, CCTU 1047). Ardabil Province: Moghan, on P. lanceolata, Sep. 2011, M. Bakhshi (CCTU 1082 = CBS 138728). East Azerbaijan Province: Arasbaran, Horand, on P. lanceolata, Oct. 2011, M. Bakhshi (CCTU 1095). West Azerbaijan Province: Khoy, Firouragh, on P. lanceolata, Sep. 2012, M. Arzanlou (IRAN 17077F, CCTU 1179 = IRAN 2716C).

Cercospora uwebrauniana M. Bakhshi & Crous, sp. nov.

MycoBank MB827521

(Fig. 4)

Fig. 4.

Fig. 4.

Cercospora uwebrauniana (CBS 138581). A. Leaf spots. B–C. Fasciculate conidiophores. D–I. Conidia. Bars = 10 μm.

Etymology: Named in honour of Uwe Braun, who has published extensively on the genus Cercospora, and also provided a modern treatment for allied genera of Mycosphaerellaceae.

Diagnosis: Differs from C. taurica in the cylindrical conidia with truncate or subtruncate bases and somewhat shorter and wider conidia, (23−)38–48(−70) × 4.5–8 μm vs 40–110 × (2.5−)4–6(−7) μm in C. taurica.

Type: Iran: Ardabil Province: Moghan, on Heliotropium europaeum (Boraginaceae), Oct. 2012, M. Bakhshi (IRAN 16864F – holotype; CCTU 1200 = CBS 138581 – ex-type culture).

Description: Leaf spots distinct, circular to irregular, 3–10 mm, grey-brown to dark brown, surrounded by brown margin. Mycelium internal. Caespituli amphigenous, brown. Conidiophores in moderately dense fascicles, arising from the upper cells of a moderately developed, intraepidermal and substomatal, brown stroma, to 40 μm wide; conidiophores straight to slightly geniculate, pale brown to brown, unbranched, regular in width, (60−)115–145(−230) × 3.5–5.5 μm, 2–9-septate. Conidiogenous cells integrated, terminal, brown, proliferating sympodially, 15–35 × 3.5–5.5 μm, mostly mono-local, sometimes multi-local; loci distinctly thickened, darkened, refractive, apical or formed on the shoulders caused by geniculation, 2–3.5 μm. Conidia solitary, hyaline, subcylindrical to cylindrical, straight or slightly curved, truncate to subtruncate at the base, obtuse to rounded at the apex, (23−)38–48(−70) × 4.5–8 μm, (0−)3–4(−9)-septate; hila thickened, darkened, refractive, 1.5–3 μm diam.

Notes: Two isolates, obtained from H. europaeum in different provinces in Iran, clustered in a small clade within C. apii s. str. (Fig. 1, part 2). This independent clade is supported by tef1, his3 and tub2 from C. apii s. str. Morphologically, these two strains are completely distinct from their most closely related species in the phylogenetic tree, namely C. apii (conidia acicular, subacute or subobtusely rounded at the apex, (30−)65–80(−115) × 3–5 μm), C. beticola (conidia subacute to acute apex, (40−)90–140(−300) × 2–5 μm), C. gamsiana (conidia subobtuse at the apex, (27−)49–62(−100) × 2–4 μm) and C. plantaginis (conidia subobtuse to subacute apices, (40−)60–70(−105) × 2–3.5 μm), by the obtuse to rounded apex, wider and shorter conidia ((23−)38–48(−70) × 4.5–8 μm), and are regarded as a separate species, appearing to be confined to H. europaeum.

Presently, three species of Cercospora have been described from Heliotropium, C. apii, C. heliotropiicola, and C. taurica (Crous & Braun 2003, https://nt.ars-grin.gov/fungaldatabases/). Cercospora uwebrauniana differs from C. taurica in the cylindrical conidia with truncate or subtruncate bases and somewhat shorter and wider conidia, (23−)38–48(−70) × 4.5–8 μm vs 40–110 × (2.5−)4–6(−7) μm in C. taurica (Braun 2002). In addition, C. taurica has obclavate-cylindrical conidia with obconically truncate bases and rather wider conidiophores, 4–9 μm diam (Braun 2002). Cercospora heliotropiicola is morphologically quite distinct from C. uwebrauniana in having acicular or subulate, much thinner (2–3 μm wide) and longer (to 300 μm long) conidia with subobtuse or acute apex (Pons & Sutton 1996).

Additional specimen examined: Iran: Guilan Province: Astara, on H. europaeum, Jun. 2012, M. Bakhshi (IRAN 17096F, CCTU 1134).

Cercospora armoraciae complex

The 10 isolates previously recognised as C. armoraciae based on a five-gene phylogenetic tree (Groenewald et al. 2013, Bakhshi et al. 2015a) are assigned to two lineages here, based on the eight-gene phylogenetic tree, including C. armoraciae s. str. and C. bizzozeriana (Fig. 1, part 1). The results of allele group designation for the isolates in this complex revealed one, three, one, two, seven, three, three and two allele groups for the ITS, tef1, actA, cmdA, his3, tub2, rpb2 and gapdh sequences, respectively (Table 6).

Table 6.

Results from allele group designation per locus for Cercospora armoraciae s. lat. isolates in this study. Abbreviations of loci and collection accession numbers follow Table 1.

Species Culture accession number Host Allele group per locus
ITS tef1 actA cmdA his3 tub2 rpb2 gapdh
C. armoraciae s. str. CBS 250.67; CPC 5088 (TYPE) Armoracia rusticana (= A. lapathifolia) I I I I I I _ II
C. bizzozeriana CCTU 1013 ? I II I I III I I I
CCTU 1022; CBS 136028 ? I II I I III I I I
CCTU 1040; CBS 136131 Tanacetum balsamita I III I II VI I II I
CCTU 1107 ? I II I I VII I I I
CCTU 1117; CBS 136132 Cardaria draba I II I I V I I I
CCTU 1234 Cardaria draba I II I I V III I I
CCTU 1127; CBS 136133 Capparis spinosa I II I I IV II III I
CBS 540.71; CPC 5060 Cardaria draba I II I I II I _ I
CBS 258.67; CPC 5061 (TYPE) Cardaria draba I II I I II I _ I

Cercospora armoraciae Sacc., Nuovo Giorn. Bot. Ital. 8: 188 (1876).

Note: This clade includes the ex-type culture of C. armoraciae (CBS 250.67).

Cercospora bizzozeriana Sacc. & Berl., Malpighia 2: 248 (1888).

(Fig. 5)

Fig. 5.

Fig. 5.

Cercospora bizzozeriana (CBS 136132). A–B. Leaf spots. C. Fasciculate conidiophores. D–J. Conidia. Bars = 10 μm.

Type: Italy: Padova, on Lepidium latifolium (Brassicaceae), (Berlese, Malpighia 1: tab. XIV, fig. 23, 1887 – lectotype, designated here, MBT 383343); Romania: Fundulea, on Cardaria draba, isol. by O. Constantinescu [deposited in the CBS culture collection in 1967] (CBS 258.67 – epitype designated here, MBT 383154, preserved as a metabolically inactive culture).

Notes: Type material of C. bizzozeriana is not preserved in Saccardo's herbarium (see Gola 1930). Therefore, the original illustration published by Saccardo & Berlese (in Berlese 1888) is designated as lectotype (according to Art. 9.3 and 9.4). Berlese's article “Fungi veneti novi vel critici” was split into several parts published in Malpighia 1 (1887) and 2 (1888). The description of C. bizzozeriana was published in vol 2, but with reference to tab. XIV, fig. 23 already issued in vol. 1.

Description: Leaf spots amphigenous, circular, 1–5 mm, white to white-grey with grey to black dots (stroma with conidiophores) and definite brown border. Mycelium internal. Caespituli amphigenous, brown. Conidiophores aggregated in dense fascicles, arising from a well-developed, brown stroma, to 75 μm diam; conidiophores brown, 1–5-septate, straight to geniculate-sinuous due to sympodial proliferation, simple, sometimes branched, uniform in width, sometimes constricted at the proliferating point, (30−)50–60(−80) × 4–7 μm. Conidiogenous cells integrated, terminal or lateral, pale brown to brown, proliferating sympodially, 10–25 × 3–6 μm, multi-local; loci distinctly thickened, darkened and somewhat refractive, apical, lateral or formed on shoulders caused by geniculation, 1.5–3 μm diam. Conidia solitary, obclavate-cylindrical, straight to slightly curved, hyaline, (20−)60–80(−125) × 3–6 μm, 2–10-septate, with obtuse apices and subtruncate or obconically truncate bases; hila thickened, darkened, refractive, 1.5–3 μm diam.

Notes: Isolates obtained from different host species including Tanacetum balsamita, Capparis spinosa and Cardaria draba clustered in a clade distinct from the ex-type isolate of C. armoraciae, and are regarded as a separate taxon. In addition, five isolates obtained from Car. draba (three from Iran and two from Romania) all cluster in this clade. Until now, three species of Cercospora are known from these host species, including C. bizzozeriana, C. chrysanthemi and C. capparis (Crous & Braun 2003, https://nt.ars-grin.gov/fungaldatabases/). Cercospora chrysanthemi is in the C. apii s. lat. complex (Crous & Braun 2003). Cercospora capparis differs from this species by the narrower (4–5.5 μm diam) conidiophores and 3–5 μm diam conidia (Chupp 1954). The species is morphologically close to C. bizzozeriana which was described from Italy on Car. draba (Chupp 1954). Since two European isolates from Car. draba in Romania also reside in this clade, we designate an epitype here (ex-epitype culture CBS 258.67 = CPC 5061) for this species, and fix the application of C. bizzozeriana to this clade.

Additional specimens examined: Iran: West Azerbaijan Province: Khoy, Firouragh, on leaves of Car. draba, Nov. 2011, M. Arzanlou (CCTU 1117 = CBS 136132); Khoy, Firouragh, on leaves of Car. draba, Oct. 2012, M. Arzanlou (IRAN 17027F, CCTU 1234). Zanjan Province: Tarom, Haroun Abad, on leaves of Tanacetum balsamita (Asteraceae), Sep. 2011, M. Bakhshi (IRAN 17029F, CCTU 1040 = CBS 136131); Tarom, Mamalan, Oct. 2011, M. Bakhshi (IRAN 17028F, CCTU 1107); Mianeh, Oct. 2012, M. Torbati (IRAN 17025F, IRAN 17026F, CCTU 1013, CCTU 1022 = CBS 136028). Khuzestan Province: Ahvaz, on leaves of Capparis spinosa (Capparidaceae), Dec. 2011, E. Mohammadian (CCTU 1127 = CBS 136133). – Romania: Hagieni, on Car. draba, O. Constantinescu (CBS 540.71 = IMI 161110 = CPC 5060).

Cercospora beticola complex

The 16 isolates previously recognised as C<i>.</i> beticola based on a five-gene phylogenetic analysis (Groenewald et al. 2013, Bakhshi et al. 2015a), are assigned to two lineages based on the eight-gene phylogenetic analysis (Fig. 1, part 2). One, one, one, one, one, two, three and four allele groups were distinguished for the ITS, tef1, actA, cmdA, his3, tub2, rpb2 and gapdh sequences, respectively (Table 7).

Table 7.

Results from allele group designation per locus for Cercospora beticola s. lat. isolates in this study. Abbreviations of loci and collection accession numbers follow Table 1.

Species Culture accession number Host Allele group per locus
ITS tef1 actA cmdA his3 tub2 rpb2 gapdh
C. beticola CCTU 1057; IRAN 2651C Chenopodium sp. I I I I I I II III
CCTU 1065 Chenopodium sp. I I I I I I II II
CCTU 1087 Chenopodium sp. I I I I I I II III
CCTU 1088; CBS 138582 Sonchus asper I I I I I I II III
CCTU 1089; CPC 24911 Plantago lanceolata I I I I I II II II
CCTU 1108 Plantago lanceolata I I I I I I II II
CBS 116456; CPC 11557 (TYPE) Beta vulgaris I I I I I I I I
CCTU 1135 Beta vulgaris I I I I I I II III
CPC 12028 Beta vulgaris I I I I I I II III
CPC 12029 Beta vulgaris I I I I I I II III
C. gamsiana CCTU 1035 Malva sylvestris I I I I I I III IV
CBS 144962; CCTU 1074; CPC 24909 (TYPE) Malva neglecta I I I I I I III IV
CCTU 1109 Malva sylvestris I I I I I I III IV
CCTU 1199; CBS 136128; IRAN 2675C Rumex crispus I I I I I I II IV
CCTU 1205; CBS 136127; IRAN 2677C Sesamum indicum I I I I I I II IV
CCTU 1208; IRAN 2678C Sonchus sp. I I I I I I II IV

Cercospora beticolaSacc., Nuovo Giorn. Bot. Ital. 8: 189 (1876).

Sensu Groenewald et al., Phytopathology 95: 954 (2005).

(Fig. 6)

Fig. 6.

Fig. 6.

Cercospora beticola (CCTU 1135). A. Leaf spots. B. Fasciculate conidiophores. C–G. Conidia. Bars = 10 μm.

Type: Italy: Vittorio (Treviso), on Beta vulgaris (Chenopodiaceae), Sep. 1897, P.A. Saccardo, Fungi ital. no. 197 (PAD – neotype designated by Groenewald et al. 2005); Ravenna, on B. vulgaris, 10 Jul. 2003, V. Rossi (CBS 116456 = CPC 11557 – epitype designated by Groenewald et al. 2005).

Description: Leaf spots amphigenous, distinct, circular to subcircular, 1–7 mm diam, white-grey, with grey dots (stroma with conidiophores), surrounded by distinct brown border. Mycelium internal. Caespituli amphigenous, brown. Conidiophores aggregated in loose to dense fascicles, emerging through stomatal openings or erumpent through the cuticle, arising from the upper cells of a moderately to well-developed brown stroma, to 110 μm diam; conidiophores brown, becoming paler towards apex, 2–8-septate, thick-walled, straight to geniculate-sinuous, unbranched, uniform in width, (30−)80–110(−185) × 4–5(−6) μm. Conidiogenous cells integrated, terminal or lateral, unbranched, brown, smooth, proliferating sympodially, 10–30 × 3.5–5.5 μm, mostly multi-local, sometimes mono-local; loci apical or formed on shoulders caused by geniculation, thickened, darkened, refractive, 1.5–2 μm diam. Conidia solitary, subcylindrical, filiform to acicular, straight to variously curved, hyaline, 3–15(−29)-septate, apex subacute to acute, base truncate to subtruncate, (40−)90–140(−300) × 2–5 μm; hila thickened, darkened, refractive, 1.5–2.5 μm diam.

Note: This clade includes the ex-epitype culture of C. beticola (CBS 116456 = CPC 11557), therefore we fixed the application of the name C. beticola s. str. to this clade.

Additional specimens examined: Egypt, on B. vulgaris, 15 Apr. 2004, M. Hasem (CPC 12028, CPC 12029). – Iran: Guilan Province: Talesh, Khotbeh Sara, on leaves of B. vulgaris, Jun. 2012, M. Bakhshi (IRAN 17020F, CCTU 1135). Zanjan Province: Tarom, Mamalan, on P. lanceolata, Oct. 2011, M. Bakhshi (IRAN 17023F, CCTU 1108). Ardabil Province: Moghan, on P. lanceolata, Oct. 2011, M. Bakhshi (CCTU 1089 = CPC 24911); Moghan, on Chenopodium sp. (Chenopodiaceae), Oct. 2011, M. Bakhshi (IRAN 17021F, IRAN 17022F, CCTU 1057 = IRAN 2651C, CCTU 1065, CCTU 1087); Moghan, on Sonchus asper (Asteraceae), Oct. 2011, M. Bakhshi (IRAN 17024F, CCTU 1088 = CBS 138582).

Cercospora gamsiana M. Bakhshi & Crous, sp. nov.

MycoBank MB827522

(Fig. 7)

Fig. 7.

Fig. 7.

Cercospora gamsiana (CPC 24909 = CBS 144962). A. Leaf spots. B–C. Fasciculate conidiophores. D–H. Conidia. Bars = 10 μm.

Etymology: Dedicated to the recently deceased Walter Gams to honour his contribution to mycology.

Diagnosis: Morphologically distinct from species of the C. apii complex in the irregularly constricted, often conical and attenuated at the apex conidiophores, and conidia with long obconically truncate bases; sporulation is restricted to the terminal part of conidiophores.

Type: Iran: Ardabil Province: Moghan, on leaves of Malva neglecta (Malvaceae), Oct. 2011, M. Bakhshi (IRAN 17011F – holotype; CBS 144962 = CCTU 1074 = CPC 24909– ex-type culture).

Description: Leaf spots amphigenous, circular to irregular, 3–8 mm diam, grey to brown. Mycelium internal. Caespituli amphigenous, brown. Conidiophores aggregated in moderately dense fascicles, arising from a well-developed, intraepidermal and substomatal, brown stroma, to 45 μm diam; conidiophores pale brown, 1–5-septate, geniculate-sinuous, irregularly constricted, unbranched, moderately thin-walled, irregular in width, often conical and attenuated at the apex, sporulation is restricted at the terminal part of conidiophores, 45–60(−110) × 4–5 μm. Conidiogenous cells integrated, terminal, pale brown to olivaceous-brown, proliferating sympodially, 10–25 × 3.5–5 μm, uni- or multi-local; loci distinctly thickened, darkened and somewhat refractive, apical, circumspersed, 1.5–2 μm diam. Conidia solitary, subcylindrical to obclavate or somewhat narrowed towards the tip, straight to slightly curved, hyaline, thin-walled, (27−)49–62(−100) × 2–4 μm, distinctly 3–10-septate, subobtuse at the apex and long obconically truncate at the base; hila distinctly thickened, darkened, refractive, 1.5–2.5 μm diam.

Notes: Until now, 14 species names in Cercospora have been introduced from these host species, including C. apii, C. althaeina, C. beticola, C. hyalospora (C. apii s. lat. complex), C. malvarum (C. apii s. lat. complex), C. malvicola, C. sigesbeckiae, C. peckiana (C. apii s. lat. complex), C. rumicis, C. sonchi (C. apii s. lat. complex), C. sonchicola (C. apii s. lat. complex), C. sonchifolia, C. sesami (C. apii s. lat. complex), and C. sesamigena (Crous & Braun 2003, https://nt.ars-grin.gov/fungaldatabases/). Cercospora gamsiana is phylogenetically clearly distinguishable from C. apii, C. althaeina, C. beticola, C. sigesbeckiae and C. rumicis (Bakhshi et al. 2015a) (Fig. 1, part 2). It is morphologically well distinguished from species of the C. apii complex and other species of Cercospora by its irregularly constricted, thin-walled, often conical and attenuated at the apex conidiophores and, conidia with long obconically truncate bases; sporulation is restricted at the terminal part of conidiophores.

Additional specimens examined: Iran: Zanjan Province: Tarom, Zehtar Abad, on leaves of Malva sylvestris, Sep. 2011, M. Bakhshi (CCTU 1035); Tarom, Mamalan, on leaves of M. sylvestris, Oct. 2011, M. Bakhshi (CCTU 1109). Ardabil Province: Moghan, on leaves of Sonchus sp., Oct. 2012, M. Bakhshi (IRAN 17072F, CCTU 1208 = IRAN 2678C); Moghan, on leaves of Sesamum indicum (Pedaliaceae), Oct. 2012, M. Bakhshi (CCTU 1205 = IRAN 2677C = CBS 136127). Guilan Province: Ramsar, on leaves of Rumex crispus (Polygonaceae), Sep. 2012, M. Bakhshi (CCTU 1199 = IRAN 2675C = CBS 136128).

Cercospora cf. flagellaris complex

The 61 isolates previously recognised as C. cf. flagellaris based on a five-gene phylogenetic tree (Groenewald et al. 2013, Bakhshi et al. 2015a) cluster into at least four distinct phylogenetic clades based on the eight-gene phylogenetic tree including C. cf. gossypii, C. cf. flagellaris clades 1, 2 and 3 (Fig. 1, part 3). Three, four, six, seven, seven, seven, two and nine allele groups were distinguished for the ITS, tef1, actA, cmdA, his3, tub2, rpb2 and gapdh sequences, respectively (Table 8).

Table 8.

Results from allele group designation per locus for Cercospora cf. flagellaris isolates in this study. Abbreviations of loci and collection accession numbers follow Table 1.

Species Culture accession number Host Allele group per locus
ITS tef1 actA cmdA his3 tub2 rpb2 gapdh
Cercospora cf. gossypii CCTU 1055; IRAN 2650C Hibiscus trionum I I I III III I II IV
CCTU 1070; CBS 136137 Gossypium herbaceum I I I III III I II IV
Cercospora cf. flagellaris clade 1 CCTU 1007; CBS 136031 Hydrangea sp. II I I I I I II V
CCTU 1027; CBS 136034 Lepidium sativum I I I I I I I V
CCTU 1031; CBS 136036; IRAN 2648C Urtica dioica II I II I I I II V
CCTU 1120 Raphanus sativus II I I I I I II V
CCTU 1128; CBS 136141; IRAN 2661C Phaseolus vulgaris II I I I I I II V
CCTU 1159; CBS 136148 Arachis hypogaea II I I I I I II V
CCTU 1162; IRAN 2670C Citrullus lanatus II I I I I I I V
CCTU 1168 Phaseolus vulgaris II I I II I I I V
CCTU 1171 Raphanus sativus II I I I I I II V
CPC 1051 Populus deltoides II I III II I I II V
CBS 132653; CPC 10884 Dysphania ambrosioides II I I III VII VI II VII
CPC 5441 Amaranthus sp. I III V III IV III I VI
Cercospora cf. flagellaris clade 2 CCTU 1059; CBS 136136 Ecballium elaterium II I I I I I I VIII
CCTU 1068 Xanthium spinosum II IV III III III I II VIII
CCTU 1085 Xanthium strumarium II I I III V V II VIII
CCTU 1115; CBS 136139; IRAN 2659C Cercis siliquastrum II I I I I I I VIII
CCTU 1195 Datura stramonium I I I I I I II IX
CCTU 1198; CBS 136151 Acer velutinum II I I II I I II IX
CCTU 1204 Abutilon theophrasti I I I II I I II IX
CCTU 1216 Ecballium elaterium II I I I I I II VIII
CCTU 1223; CBS 136154; IRAN 2683C Eclipta prostrata I I I II I I II VIII
CBS 132667; CPC 11643 Celosia argentea var. cristata (≡ C. cristata) III I VI III III I II VIII
Cercospora cf. flagellaris clade 3 CCTU 1005; IRAN 2644C Xanthium strumarium II I II I I I II I
CCTU 1006; CBS 136030 Impatiens balsamina II I I I I II II I
CCTU 1010; CBS 136032 Pelargonium hortorum II I I I I I I I
CCTU 1021; CBS 136033 Amaranthus retroflexus II I I I I I I II
CCTU 1029; CBS 136035; IRAN 2647C Cucurbita maxima I I I VI I I II II
CCTU 1048; CBS 136029 Xanthium strumarium II I I I I I I I
CCTU 1064 Amaranthus retroflexus II I II I I I II II
CCTU 1072; IRAN 2653C Amaranthus blitoides II I I I I I II I
CCTU 1075 Raphanus sativus I I I VII I II II I
CCTU 1084; CBS 136156 Amaranthus sp. II I I I I II I I
CCTU 1118; CBS 136140; IRAN 2660C Populus deltoides II I II II I I I II
CCTU 1130; CBS 136142 Olea europaea II I I I I I II I
CCTU 1136 Cucurbita pepo II I I I I I II I
CCTU 1138; IRAN 2664C Phaseolus vulgaris I I I II I I II II
CCTU 1139; IRAN 2665C Phaseolus vulgaris I I II I I I II I
CCTU 1140; CBS 136143; IRAN 2666C Calendula officinalis II I II I I I II II
CCTU 1141; CBS 136144 Tagetes patula I I II I I VII II II
CCTU 1142; IRAN 2667C Phaseolus vulgaris II II III IV II I I I
CCTU 1143; CBS 136145 Datura stramonium II I I I I I I I
CCTU 1147 Urtica dioica I I I II I I I II
CCTU 1150 Buxus microphylla II I I II I I II II
CCTU 1154; CBS 136147 Abutilon theophrasti II I I I I I I II
CCTU 1155.11 Phaseolus vulgaris II I I I I I I I
CCTU 1156 Xanthium strumarium II I II II I I I II
CCTU 1158; IRAN 2668C Xanthium strumarium II I I I I I I I
CCTU 1160; CBS 136149 Vicia faba II I I I I I II I
CCTU 1161; IRAN 2669C Phaseolus vulgaris II I I I I I II I
CCTU 1167; CBS 136150 Anubias sp. II I II I I I I I
CCTU 1172 Oenothera biennis I I I V I I I I
CCTU 1175; IRAN 2673C Phaseolus vulgaris II I I II I I I I
CCTU 1209; CBS 136152 Glycine max II I II I I I II I
CCTU 1210; IRAN 2679C Glycine max II I II I I I II II
CCTU 1211 Glycine max II I I I I I I I
CCTU 1212; CBS 136153; IRAN 2680C Silybum marianum II I I I I I II II
CCTU 1218; IRAN 2682C Hibiscus trionum I I I I I I I I
CBS 115482; CPC 4410 Citrus sp. II I IV III VI IV I III
CBS 143.51; CPC 5055 Bromus sp. II I I I I IV II I

Cercospora cf. gossypiiLall et al., Indian Phytopath. 14: 116 (1962) [“1961”].(Fig. 8)

Fig. 8.

Fig. 8.

Cercospora cf. gossypii (CBS 136137). A. Leaf spots. B–C. Fasciculate conidiophores. D–F. Conidia. Bars = 10 μm.

Description: Leaf spots amphigenous, circular to subcircular, 1–4 mm diam, with grey-brown centre and purple-brown margins. Mycelium internal. Caespituli amphigenous, brown. Conidiophores aggregated in dense fascicles, arising from the upper cells of a well-developed, intraepidermal and substomatal, brown stroma, to 65 μm diam; conidiophores pale brown to brown, simple, rarely branched, 1–4-septate, straight or flexuous caused by sympodial proliferation, almost uniform in width, often constricted at proliferating point, (35−)60–75(−110) × 4–5 μm. Conidiogenous cells terminal or integrated, pale brown, smooth, proliferating sympodially, 10–45 × 3.5–5 μm, multi-local; loci thickened, darkened, refractive, apical, lateral, circumspersed, 1.5–2.5 μm diam. Conidia solitary, smooth, subcylindrical to obclavate, straight or mildly curved, successively tapering towards the apex, hyaline, 1–7-septate, apex subacute to subobtuse, base truncate to short obconically truncate, (30−)65–90(−160) × 2–4 μm; hila distinctly thickened, darkened, refractive, 1–2 μm diam.

Notes: This clade includes two isolates obtained from G. herbaceum and Hib. trionum, both in the Malvaceae (Fig. 1, part 3). Cercospora althaeina, C. fagopyri, C. malayensis (C. apii s. lat.), C. gossypii, C. gossypiicola, C. gossypina and C. lhuillieri (C. apii s. lat.) are six Cercospora species which have been reported until now on Gossypium and Hibiscus host genera (Crous & Braun 2003, https://nt.ars-grin.gov/fungaldatabases/). This species is phylogenetically distinct from C. althaeina (Fig. 1) and C. fagopyri (Groenewald et al. 2013, Bakhshi et al. 2015a). Cercospora gossypina is distinguished from this species in that it induces wider leaf spots (0.5–10 mm), and has unbranched, longer and wider conidiophores (75–250 × 4–6.5 μm) (Hsieh & Goh 1990). Cercospora malayensis is distinguished from C. cf. gossypii in that it has elliptical, yellow to tan leaf spots; unbranched, 1–8-septate conidiophores and mostly terminal conidiogenous cells and somewhat longer conidia (50–270 × 2.5–4 μm) (Little 1987). Cercospora gossypiicola (Narayan et al. 2001) and C. lhuillieri (Montegut 1967) resemble C. apii (with acicular conidia), but are different. They do not have stromata, and form less conidiophores per fascicle. The description of C. gossypii (Lall et al. 1961) is rather close to this taxon. The type of C. gossypii is from India. Thus, fresh material is needed from India to resolve the application of the name C. gossypii.

Specimens examined: Iran: Ardabil Province: Moghan, on Gossypium herbaceum (Malvaceae), Oct. 2011, M. Bakhshi (IRAN 17073F, CCTU 1070 = CBS 136137); Moghan, on Hibiscus trionum (Malvaceae), Oct. 2011, M. Bakhshi (IRAN 17074F, CCTU 1055 = IRAN 2650C).

Cercospora cf. flagellarisEllis & G. Martin, Am. Nat. 16: 1003 (1882).

Clade 1; Clade 2; Clade 3

In view of the overlap between the morphological characters of these three clades, we provide a single over-arching description here.

Description: Mycelium internal. Caespituli amphigenous, brown. Conidiophores aggregated in loose to dense fascicles, arising from a weakly to well-developed, intraepidermal and substomatal, brown stroma; conidiophores pale brown to brown, 2–18-septate, straight, sinuous to distinctly geniculate, flexuous, simple, unbranched or rarely branched, uniform or irregular in width, sometimes constricted at septa and proliferating point, (75–)130–165(–300) × 4–5.5 μm in clade 1; (30–)80–120(–210) × 3.5–5.5 μm in clade 2; (25–)60–95(–230) × 3.5–5.5 μm in clade 3. Conidiogenous cells integrated, terminal, proliferating sympodially, mono- or multi-local; loci thickened, darkened, apical, lateral or circumspersed, 1.5–2.5 μm diam. Conidia solitary, hyaline, subcylindrical, filiform to obclavate, straight to slightly curved, with truncate to obconically truncate base and subacute to subobtuse apices, (60–)125–170(–300) × 3–5 μm, 5–20-septate in clade 1; (25–)60–95(–260) × 2.5–4.5 μm, (2–)8–11(–25)-septate in clade 2; (30–)100–155(–320) × 2–5 μm, (2–)10–14(–28)-septate in clade 3; hila distinctly thickened, darkened, refractive, 1–2 μm diam.

Notes: Screening the remaining isolates of C. cf. flagellaris, with three more genomic loci in this study (tub2, rpb2 and gapdh), clusters them into at least three distinct clades in the eight-gene phylogenetic tree (Fig. 1, part 3); clade 1 is sister to C. cf. gossypii; clade 3 is sister to C. convolvulicola and clade 2 is sister to the clade including C. cf. flagellaris clade 3 and C. convolvulicola. However, there is a high level of variation in morphological characteristics between different isolates of these three clades. In addition, several isolates originating from diverse hosts and families reside in these three clades and there is also overlap between host ranges among them. Different names can therefore be applied to these clades, and therefore we prefer to simply regard them as distinct phylogenetic species for now. To resolve their taxonomy, fresh collections authentic for the names (based on host and country) need to be recollected and included in future studies.

Cercospora cf. flagellaris Clade 1

Specimens examined: Fiji: on Amaranthus sp. (Amaranthaceae), C.F. Hill (CPC 5441). – Iran: Guilan Province: Talesh, Khotbeh Sara, on leaves of Phaseolus vulgaris (Fabaceae), Oct. 2012, M. Bakhshi (CCTU 1128 = IRAN 2661C = CBS 136141); Talesh, Jamakuh, on leaves of Raphanus sativus (Brassicaceae), Nov. 2011, M. Bakhshi (IRAN 17042F, CCTU 1120); Talesh, Dulbin, on Hydrangea sp. (Hydrangeaceae), Jul. 2011, M. Bakhshi (IRAN 17039F, CCTU 1007 = CBS 136031). Guilan Province: Kiashahr, on leaves of Ph. vulgaris, Aug. 2012, M. Bakhshi (CCTU 1168 = IRAN 2715C); Kiashahr, on leaves of R. sativus, Aug. 2012, M. Bakhshi (IRAN 17041F, CCTU 1171); Kiashahr, on leaves of Arachis hypogea (Fabaceae), Aug. 2012, M. Bakhshi (CCTU 1159 = CBS 136148); Sowme`eh Sara, Dowgur, on leaves of Urtica dioica (Urticaceae), Jun. 2012, M. Bakhshi (IRAN 17043F, CCTU 1031 = IRAN 2648C = CBS 136036); Chamkhaleh, on leaves of Lepidium sativum (Brassicaceae), Jun. 2012, M. Bakhshi (IRAN 17040F, CCTU 1027 = CBS 136034); Lahijan, Rudboneh, on leaves of Citrullus lanatus (Cucurbitaceae), Aug. 2012, M. Bakhshi (IRAN 17038F, CCTU 1162 = IRAN 2670C). – South Africa: Limpopo Province: Messina, 30 Apr. 1995, on Populus deltoides (Salicaceae), P.W. Crous (CPC 1051). – South Korea: Jeju, on Dysphania ambrosioides (syn. Chenopodium ambrosioides) (Chenopodiaceae), 12 Nov. 2003, H.D. Shin (CBS 132653 = CPC 10884) (as C. chenopodii-ambrosioidis).

Cercospora cf. flagellaris Clade 2

Specimens examined: Iran: Ardabil Province: Moghan, on leaves of Xanthium spinosum (Astraceae), Oct. 2011, M. Bakhshi (IRAN 17049F, CCTU 1068); Moghan, on leaves of Xanthium strumarium (Asteraceae), Oct. 2011, M. Bakhshi (IRAN 17050F, CCTU 1085); Moghan, on leaves of Ecballium elaterium (Cucurbitaceae), Oct. 2011, M. Bakhshi (IRAN 17047F, CCTU 1059 = CBS 136136); Moghan, on leaves of E. elaterium, Oct. 2012, M. Bakhshi (IRAN 17048F, CCTU 1216 = IRAN 2717C); Moghan, on leaves of Abutilon theophrasti (Malvaceae), Oct. 2012, M. Bakhshi (IRAN 17044F, CCTU 1204). Guilan Province: Astara, on leaves of Cercis siliquastrum (Caesalpinaceae), Oct. 2012, M. Bakhshi (CCTU 1115 = IRAN 2659C = CBS 136139); Talesh, Khotbeh Sara, on leaves of Eclipta prostrata (Astraceae), Oct. 2012, M. Bakhshi (CCTU 1223 = IRAN 2683C = CBS 136154); Talesh, on leaves of Datura stramonium (Solanaceae), Oct. 2012, M. Bakhshi (IRAN 17046F, CCTU 1195). Mazandaran Province: Ramsar, on leaves of Acer velutinum (Aceraceae), Sep. 2012, M. Bakhshi (IRAN 17045F, CCTU 1198 = CBS 136151). – South Korea: Hoengseong, on Celosia argentea var. cristata (syn. C. cristata) (Amaranthaceae), 11 Oct. 2004, H.D. Shin (CBS 132667 = CPC 11643).

Cercospora cf. flagellaris Clade 3

Specimens examined: Iran: Guilan Province: Rudsar, on leaves of Cucurbita maxima (Cucurbitaceae), Oct. 2012, M. Bakhshi (CCTU 1029 = IRAN 2647C = CBS 136035); Rudsar, Korjehposht, on leaves of Tagetes patula (Asteraceae), Aug. 2012, M. Bakhshi (IRAN 17065F, CCTU 1141 = CBS 136144); Talesh, Khotbeh Sara, on leaves of Cucurbita pepo (Cucurbitaceae), Jun. 2012, M. Bakhshi (CCTU 1136); Khotbeh Sara, on leaves of Vicia faba (Fabaceae), Oct. 2012, M. Bakhshi (IRAN 17067F, CCTU 1160 = CBS 136149); Khotbeh Sara, on leaves of Calendula officinalis (Asteraceae), Jun. 2012, M. Bakhshi (IRAN 17058F, CCTU 1140 = IRAN 2666C = CBS 136143); Talesh, Khalif Abad, on Ph. vulgaris, Jul. 2012, M. Bakhshi (CCTU 1142 = IRAN 2667C); Talesh, Dulbin, on leaves of X. strumarium, Jul. 2011, M. Bakhshi (IRAN 17069F, CCTU 1005 = IRAN 2644C); Dulbin, on leaves of Impatiens balsamina (Balsaminaceae), Jul. 2011, M. Bakhshi (IRAN 17062F, CCTU 1006 = CBS 136030); Dulbin, on leaves of Pelargonium hortorum (Geraniaceae), Aug. 2011, M. Bakhshi (CCTU 1010 = CBS 136032); Talesh, Jowkandan, on leaves of Po. deltoides, Oct. 2012, M. Bakhshi (CCTU 1118 = IRAN 2660C = CBS 136140); Talesh, Jowkandan, on leaves of Oenothera biennis (Onagraceae), Oct. 2012, M. Bakhshi (IRAN 17051F, CCTU 1172); Talesh, on leaves of D. stramonium, Oct. 2012, M. Bakhshi (IRAN 17059F, CCTU 1143 = CBS 136145); Guilan Province: Astara, Chubar, on leaves of Ph. vulgaris, Jun. 2012, M. Bakhshi (CCTU 1138 = IRAN 2664C, CCTU 1139 = IRAN 2665C); Rasht, Khomam, on leaves of X. strumarium, Aug. 2012, M. Bakhshi (IRAN 17068F, CCTU 1156); Khomam, on leaves of Ab. theophrasti, Aug. 2012, M. Bakhshi (IRAN 17052F, CCTU 1154 = CBS 136147); Langarud, Otaqvar, on leaves of X. strumarium, Aug. 2012, M. Bakhshi (CCTU 1158 = IRAN 2668C); Lahijan, Rudboneh, on leaves of Ph. vulgaris, Aug. 2012, M. Bakhshi (CCTU 1161 = IRAN 2669C); Guilan Province: Fuman, on leaves of Ph. vulgaris, Aug. 2012, M. Bakhshi (CCTU 1155.11); Fuman, on leaves of Buxus microphylla (Buxaceae), Jul. 2012, M. Bakhshi (IRAN 17057F, CCTU 1150); Fuman, on leaves of Amaranthus retroflexus, Sep. 2011, M. Bakhshi (IRAN 17054F, CCTU 1021 = CBS 136033); Sowme`eh Sara, Dowgur, on leaves of Ph. vulgaris, Aug. 2012, M. Bakhshi (CCTU 1175 = IRAN 2673C); Sowme`eh Sara, Bahambar, on leaves of R. sativus, Aug. 2012, M. Bakhshi (IRAN 17063F, CCTU 1075); Kiashahr, on leaves of Anubias sp. (Araceae), Oct. 2012, M. Bakhshi (IRAN 17056F, CCTU 1167 = CBS 136150); Masal, on leaves of U. dioica, Aug. 2012, M. Bakhshi (IRAN 17066F, CCTU 1147). Zanjan Province: Tarom, Pasar, on leaves of X. strumarium, Sep. 2011, M. Bakhshi (IRAN 17070F, CCTU 1048 = CBS 136029); Tarom, on leaves of Olea europaea (Oleaceae), Nov. 2011, M. Torbati (CCTU 1130 = CBS 136142). Ardabil Province: Moghan, on leaves of Silybum marianum (Astraceae), Oct. 2012, M. Bakhshi (IRAN 17064F, CCTU 1212 = IRAN 2680C = CBS 136153); Moghan, on leaves of A. retroflexus, Oct. 2011, M. Bakhshi (IRAN 17053F, CCTU 1064); Moghan, on leaves of Amaranthus sp., Oct. 2011, M. Bakhshi (IRAN 17055F, CCTU 1084 = CBS 136156); Moghan, on leaves of Amaranthus blitoides, Oct. 2011, M. Bakhshi (CCTU 1072 = IRAN 2653C); Moghan, on leaves of Glycine max (Fabaceae), Oct. 2012, M. Bakhshi (IRAN 17060F, CCTU 1209 = CBS 136152, CCTU 1210 = IRAN 2679C, CCTU 1211); Moghan, on leaves of Hib. trionum, Oct. 2012, M. Bakhshi (IRAN 17061F, CCTU 1218 = IRAN 2682C). – South Africa: Limpopo Province: Messina, on Citrus sp. (Rutaceae), M.C. Pretorius (CBS 115482 = CPC 4410). Unknown, on Bromus sp. (Poaceae), M.D. Whitehead (CBS 143.51 = CPC 5055).

Cercospora sp. G complex

The 16 isolates previously recognised as Cercospora sp. G based on a five-gene phylogenetic tree (Groenewald et al. 2013, Bakhshi et al. 2015a) cluster into two distinct phylogenetic clades based on the eight-gene phylogenetic tree (Fig. 1, part 1). One, four, one, two, two, two, three and two allele groups were detected for the ITS, tef1, actA, cmdA, his3, tub2, rpb2 and gapdh sequences, respectively (Table 9).

Table 9.

Results from allele group designation per locus for Cercospora sp. G isolates in this study. Abbreviations of loci and collection accession numbers follow Table 1.

Species Culture accession number Host Allele group per locus
ITS tef1 actA cmdA his3 tub2 rpb2 gapdh
Cercospora sp. G clade 1 CCTU 1015; CBS 136024; IRAN 2645C Plantago major IV I I I I III II
CCTU 1197 Bidens tripartita I IV I I I I I II
CPC 5438 Salvia viscosa I II I I II II _ II
Cercospora sp. G clade 2 CCTU 1002 Celosia cristata I I I I I I I I
CCTU 1020; CBS 136023 Sorghum halepense I I I I I I II I
CCTU 1030; CBS 136026 Bidens tripartita I III I I II I I I
CCTU 1046 Plantago major I I I I I I I I
CCTU 1053; CBS 136027 Cichorium intybus I III I I II I I I
CCTU 1054 Amaranthus sp. I I I I I I I I
CCTU 1058 Helminthotheca echioides I I I I I I I I
CCTU 1079; CBS 136025 Amaranthus retroflexus I I I I I I I I
CCTU 1090 Abutilon theophrasti I I I I I I I I
CCTU 1116 Plantago major I I I I I I I I
CCTU 1122 Amaranthus sp. I I I I I I I I
CCTU 1144; CBS 136130 Cucurbita maxima I I I II I I I I
CBS 115518; CPC 5360 Bidens frondosa I IV I I I I _ I

Cercospora sp. G Clade 1

Description: Mycelium internal. Caespituli amphigenous, brown. Conidiophores aggregated in loose fascicles, arising from a moderately developed, intraepidermal and substomatal, brown stroma, to 35 μm diam; conidiophores pale brown to brown, 2–11-septate, straight to flexuous, simple, unbranched, uniform in width, (55–)110–150(–260) × 3.5–5 μm. Conidiogenous cells integrated, terminal, proliferating sympodially, mono- and multi-local; loci thickened, darkened, apical or formed on shoulders caused by sympodial proliferation, 1.5–2.5 μm diam. Conidia solitary, hyaline, subcylindrical, filiform to obclavate, straight to slightly curved, with truncate to obconically truncate base and subacute to subobtuse apices, (40–)75–100(–165) × 2–4 μm, 4–15-septate; hila distinctly thickened, darkened, refractive, 1–2 μm diam.

Specimens examined: Iran: Guilan Province: Talesh, Dulbin, on leaves of Plantago major, Jul. 2011, M. Bakhshi (IRAN 17085F, CCTU 1015 = IRAN 2645C = CBS 136024); Talesh, Kishonben, on leaves of Bidens tripartita (Asteraceae), Sept. 2012, M. Bakhshi (IRAN 17084F, CCTU 1197). – New Zealand: Manurewa, on Salvia viscosa (Lamiaceae), C.F. Hill (CPC 5438) (as C. salviicola).

Cercospora sp. G Clade 2

Description: Mycelium internal. Caespituli amphigenous, brown. Conidiophores aggregated in loose to dense fascicles, arising from a weakly to well-developed, intraepidermal and substomatal, brown stroma, to 50 μm diam; conidiophores pale brown to brown, 3–11-septate, straight to flexuous, simple, unbranched, uniform in width, (30–)65–105(–240) × 2.5–5 μm. Conidiogenous cells integrated, terminal, proliferating sympodially, 10–30 × 2.5–5 μm, mono- or multi-local; loci distinctly thickened, darkened and somewhat refractive, apical or formed on shoulders caused by sympodial proliferation, 1.5–2.5 μm diam. Conidia solitary, subcylindrical, filiform to obclavate, straight to slightly curved, hyaline, (25–)75–110(–200) × 3.5–5.5 μm, (3–)8–15(–20)-septate, with subacute to subobtuse apices and truncate to obconically truncate bases; hila thickened, darkened, refractive, 1–2 μm diam.

Notes: Isolates of Cercospora sp. G clustered in two distinct clades with high posterior probability in the eight-gene phylogenetic tree (Fig. 1, part 1). However, several isolates from diverse host families cluster in these two clades, to which different names can be applied. Moreover, there is also overlap between host ranges of the two clades. On the other hand, there is no morphological basis to divide them into two distinct species. Based on the gene loci screened in the present study, we were unable to resolve the taxonomy of these isolates and for now prefer to treat them as unresolved phylogenetic species. As with C. cf. flagellaris, in order to resolve their taxonomy, fresh collections from the same host and country as the original material need to be recollected and included in future studies.

Specimens examined: Iran: Zanjan Province: Tarom, Pasar, on leaves of P. major, Oct. 2011, M. Bakhshi (CCTU 1046); Tarom, Pasar, on leaves of P. major, Nov. 2011, M. Bakhshi (IRAN 17093F, CCTU 1116). Guilan Province: Talesh, Kishonben, on leaves of Bi. tripartita, Oct. 2012, M. Bakhshi (IRAN 17091F, CCTU 1030 = CBS 136026); Talesh, on leaves of Sorghum halepense (Poaceae), Sep. 2011, M. Bakhshi (IRAN 17094F, CCTU 1020 = CBS 136023); Talesh, Dolbin, on leaves of Celosia cristata, Jul. 2011, M. Bakhshi (IRAN 17092F, CCTU 1002). Ardabil Province: Moghan, on leaves of A. retroflexus, Oct. 2011, M. Bakhshi (IRAN 17088F, CCTU 1079 = CBS 136025); Moghan, on leaves of Amaranthus sp., Oct. 2011, M. Bakhshi (IRAN 17089F, CCTU 1054); Moghan, on leaves of Helminthotheca echioides (Asteraceae), Oct. 2011, M. Bakhshi (IRAN 17086F, CCTU 1058); Moghan, on leaves of Ab. theophrasti, Oct. 2012, M. Bakhshi (IRAN 17087F, CCTU 1090). Guilan Province: Talesh, Jamakuh, on leaves of Amaranthus sp., Nov. 2011, M. Bakhshi (IRAN 17090F, CCTU 1122); Masal, on leaves of Cu. maxima, Jul. 2012, M. Bakhshi (CCTU 1144 = CBS 136130); Sowme`eh Sara, Dowgur, on leaves of Cichorium intybus (Asteraceae), Jun. 2012, M. Bakhshi (CCTU 1053 = CBS 136027). – New Zealand: Kopuku, on Bidens frondosa (Asteraceae), C.F. Hill (CBS 115518 = CPC 5360).

Identification of the best-performing DNA barcode

Kimura-2-parameter values

The Kimura-2-parameter distribution graphs (Fig. 9) visualise the inter- and intraspecific distances per locus corresponding to the barcoding gap (Hebert et al. 2003, Schoch et al. 2012). A useful barcoding locus should have no overlap between the inter- and intraspecific K2P distances and generally should have an average interspecific distance that is at least ten times as high as the average intraspecific distance of that locus (Quaedvlieg et al. 2012, Verkley et al. 2013, Stielow et al. 2015).

Fig. 9.

Fig. 9.

Frequency distributions of the Kimura-2-parameter distance (barcoding gap) for the eight loci.

The eight tested loci showed varying degrees of overlap in their K2P distribution between inter- and intraspecific variation graphs (Fig. 9). In this dataset, the average interspecific variation in ITS dataset was very low (0.002) compared to its intraspecific variation (0.0005), leading to a very low inter- to intraspecific variation ratios of 4:1 for this locus (Fig. 9, Table 4). This low ratio is far below the recommended 10:1 ratio, indicating a general lack of natural variation within the ITS locus, making it ill-suited for effective identification of the individual species of Cercospora. Due to the presence of introns in the seven protein coding loci, these genes provide much higher interspecific variation than the more conserved ITS locus. These protein coding genes had K2P inter- to intraspecific variation ratios of 127:1 for tef1, 76:1 for cmdA, 74:1 for rpb2, 71:1 for tub2, 44:1 for gapdh, 15:1 for actA and 13:1 for his3 (Table 4), making them all suitable for reliable species resolution of Cercospora spp. As the tef1, cmdA, rpb2, tub2 and gapdh have the largest barcoding gap, these loci should give the highest species resolution. However, all of these genes do have overlap between the inter- and intraspecific K2P distances (as is evident in the graphs of Fig. 9), suggesting that no one of them can serve as a single ideal barcoding locus for Cercospora spp.

Molecular phylogenetic resolution (clade recovery)

Based on the results of the individual gene tree assessments, no single gene region was found which could reliably distinguish all species, and occurrences of the same sequence(s) shared between multiple species were observed in each locus.

The ITS phylogeny had low resolution and was only able to distinguish C. chenopodii, C. solani and C. sorghicola from the other included species. The remaining loci had different levels of resolution. The gapdh region was more effective and could resolve 61 % of 28 lineages, whereas his3, tub2, actA, tef1, cmdA and rpb2 had respectively 48, 43, 43, 39, 32 and 32 % clade recovery. Based on the gapdh region, we were able to distinguish 17 of the 28 species clades, including C. althaeina, C. armoraciae, C. bizzozeriana, C. chenopodii, C. conyzae-canadensis, C. cf. flagellaris clade 1, C. cf. flagellaris clade 2, C. cf. gossypii, C. pseudochenopodii, C. cf. richardiicola, C. rumicis, C. solani, C. sorghicola, Cercospora sp. G clade 1, Cercospora sp. G clade 2, C. violae and C. cf. zinnia; whereas, 13 species clades including C. althaeina, C. chenopodii, C. conyzae-canadensis, C. cylindracea, C. pseudochenopodii, C. cf. richardiicola, C. rumicis, C. solani, C. sorghicola, C. uwebrauniana, C. violae, C. zebrina and C. cf. zinniae were distinguished in the his3 phylogeny; 12 species clades including C. althaeina, C. chenopodii, C. conyzae-canadensis, C. cylindracea, C. iranica, C. pseudochenopodii, C. cf. richardiicola, C. solani, C. sorghicola, Cercospora sp. T, C. uwebrauniana and C. cf. zinniae were distinguished in the tub2 phylogeny; 12 species clades including C. althaeina, C. chenopodii, C. convolvulicola, C. conyzae-canadensis, C. cylindracea, C. pseudochenopodii, C. cf. richardiicola, C. solani, C. sorghicola, C. violae, C. zebrina and C. cf. zinniae were distinguished in the actA phylogeny; 11 species clades including C. bizzozeriana, C. chenopodii, C. conyzae-canadensis, C. pseudochenopodii, C. cf. richardiicola, C. rumicis, C. solani, C. sorghicola, C. uwebrauniana, C. violae and C. cf. zinniae were distinguished in the tef1 phylogeny; nine species clades including C. convolvulicola, C. conyzae-canadensis, C. iranica, C. cf. richardiicola, C. solani, C. sorghicola, Cercospora sp. T, C. violae and C. cf. zinniae were distinguished in the cmdA phylogeny; and nine species clades including C. bizzozeriana, C. chenopodii, C. conyzae-canadensis, C. pseudochenopodii, C. cf. richardiicola, C. solani, C. sorghicola, C. zebrina and C. cf. zinniae were distinguished in the rpb2 phylogeny.

Therefore, the gapdh phylogeny displayed a high resolution and had the highest clade recovery and was responsible for resolving most of the cryptic taxa within C. apii, C. armoraciae, C. beticola, Cercospora sp. G, and C. cf. flagellaris.

DISCUSSION

In this study, we re-assessed species of the genus Cercospora using a combined approach based on the evaluation of an eight-gene molecular DNA sequence dataset, host, and morphological data (in those cases where morphological variation was present). In recent years, the rapid advance of molecular techniques has brought about the possibility of a more precise species delimitation and a better consideration of the evolution of fungi. It is well-known that many fungal taxa based on morphology or on sequence data of the commonly used fungal barcode ITS region of the nrDNA operon (Schoch et al. 2012) hide cryptic species complexes when molecular data from multiple gene regions are considered (Lombard et al. 2010, Cabral et al. 2012, Crous et al. 2013, Groenewald et al. 2013, Quaedvlieg et al. 2013, Woudenberg et al. 2013). This is most likely an underestimation for many fungal taxa. For instance, the Colletotrichum acutatum species complex, once considered to be a single species, has been shown to include at least 31 cryptic taxa (Damm et al. 2012). In the present study, phylogenetic inference also revealed cryptic species complexes that could not be distinguished based on geography, host association, morphology, or ITS sequence data alone.

Before this study, Groenewald et al. (2013) and Bakhshi et al. (2015a) inferred phylogenies of Cercospora based on sequence data of five genomic loci (ITS, tef1, actA, cmdA and his3). Their results showed the importance of all five loci in a combined analysis for Cercospora taxonomy (Groenewald et al. 2013, Bakhshi et al. 2015a). Despite this, the sequences of these five loci were too conserved in Cercospora, and it was not possible to identify a single gene as the best DNA barcoding locus. In addition, several species complexes remained unresolved (Groenewald et al. 2013, Bakhshi et al. 2015a). To overcome these deficiencies, three more potential candidate gene regions, tub2, rpb2, and gapdh, were amplified and sequenced for Cercospora isolates previously investigated by Bakhshi et al. (2015a) and some related reference isolates investigated by Groenewald et al. (2013). Phylogenetic performance of the eight loci (ITS, tef1, actA, cmdA, his3, tub2, rpb2 and gapdh) were assessed based on the inter-/intraspecific distance ratio and clade recovery. With the final classification presented here, none of the genes we analysed provides an effective barcode on its own across the entire genus. However, gapdh emerged as a strong candidate for improved species delimitation in Cercospora and provides better insight, especially into species complexes. Groenewald et al. (2013) evaluated this gene in the Cercospora sp. Q species complex and their results also showed high variation in this gene. The performance of gapdh in species delimitation has been also reported in other fungal groups, including Alternaria (Woudenberg et al. 2013) and the Colletotrichum gloeosporioides species complex (Weir et al. 2012). Additionally, when using the gapdh gene, cmdA sequences are crucial to distinguish some species of Cercospora. We therefore recommend gapdh as the gene for species delimitation in Cercospora. However, it needs to be combined with cmdA, tef1 and tub2 to obtain a robust species identification. In addition, data from the ITS, actA, rpb2, and his3, have been useful, and were at times necessary, to provide clear evidence of multi-gene phylogenetic concordance to separate cryptic species.

The amplification of gapdh with the available primers was not, however, easy, and we need to design new primer sets for gapdh in Cercospora derived from the sequences generated. On the other hand, lack of ex-type or reliable sequences in public databases is a serious problem in the accurate molecular identification of Cercospora species, and it is essential to also amplify at least the gapdh and tub2 genes for all of the reference isolates used by Groenewald et al. (2013) in the future.

One of the main goals of this project was to generate an eight-gene DNA dataset for species of the genus Cercospora. In this regard, one of the achievements of this research was that the sequencing of additional loci revealed new clades within some taxa which were found to actually represented a species complex (in the eight-gene phylogenetic tree) rather than a single species, while the five-gene phylogenetic tree (Bakhshi et al. 2015a) was unable to resolve them. The phylogenetic tree based on the combined eight-gene dataset resolved at least four, three, two, two and two well-supported clades respectively within the species complexes C. cf. flagellaris, C. apii, C. beticola, C. armoraciae, and Cercospora sp. G.

Some of the species revealed by the eight-gene phylogeny in this study can be distinguished based on their morphology or host range. For example, as explained in the notes for C. uwebrauniana, characteristics of the conidia in this species, which clustered in the C. apii complex based on the five-gene phylogenetic tree (see Bakhshi et al. 2015a), are clearly distinguishable from those of C. apii. However, some species cannot be separated using morphological characters. For instance, the C. cf. flagellaris species complex included at least three distinct clades and there is considerable overlap between morphological features and host ranges of the clades 1, 2, and 3. In addition, pursuant to high levels of intraspecific variation in these three clades, the distinction between these clades is only possible based on molecular data. It is conceivable that some members of these three clades represent new species, yet to be described. This is also true for the Cercospora sp. G species complex.

Another problem arises because many morphological features change according to the host plant and different weather conditions. Such differences in morphological characters under different conditions have also been seen in other groups of fungi, such as Colletotrichum species (Weir et al. 2012). Because we do not yet have access to sequence data of most species of the Cercospora, we have chosen to consider these clades as different clades of C. cf. flagellaris and Cercospora sp. G rather than introduce new species names. Recent molecular studies on the Cercospora species associated with Cercospora leaf blight and purple seed stain on soybean, have revealed several Cercospora species, including C. cf. flagellaris as one of the most important agents (Bakhshi et al. 2015a, Soares et al. 2015, Albu et al. 2016). In this regard, Guillin et al. (2017) studied the genetic entanglement between Cercospora species infecting soybean and provided evidence that revealed interspecific gene flow played a significant role in the evolutionary dynamics of Cercospora species. Taking into consideration the shared host range that exists between different clades of C. cf. flagellaris, our data also provide more support for this hypothesis.

Furthermore, we found that all of the isolates of C. apii obtained from Plantago lanceolata from different localities clustered in clade 2 of this species in the eight-gene phylogenetic tree. Additionally, isolates of C. beticola and C. apii which intermix with P. lanceolata, had a common allele in gapdh. Thus, it seems that the gapdh gene might play a role in pathogenicity or host range, and has the potential to reflect this phylogenetically; however, that remains to be tested.

This study emphasises the complex nature of the evolutionary pathways that have been traversed within the genus Cercospora. Speciation has taken place much more prolifically than had previously been suspected in this genus, and it seems likely that the C. apii sensu Crous & Braun (2003) species complex is still rapidly evolving. The emergence of new species is doubtlessly encouraged by the opportunities for mixing gene pools that are provided by modern global agricultural practices, and indiscriminate use of fungicides combined with imperfect phytosanitary regulation.

The present study provides the first eight-gene phylogenetic overview of Cercospora species. We hope that this dataset will provide a stable platform to accommodate the numerous undescribed species that still await description, and the recollection and epitypification of already named species. Moreover, it seems that Cercospora should still be subjected to a more detailed analysis based on yet additional gene loci to provide a more vigorous phylogenetic basis for species delimitation.

Acknowledgments

We gratefully acknowledge the Iran National Science Foundation (INSF), Research Deputy of the Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Westerdijk Fungal Biodiversity Institute, Research Deputy of the University of Tabriz, and Studienstiftung für mykologische Systematik und Ökologie for financial support. We thank Mieke Starink-Willemse, for her invaluable technical support and assistance in sequencing of some of the isolates. Uwe Braun (Martin Luther University, Halle, Germany) is thanked for comments pertaining to typification of several of the Cercospora spp. studied here.

REFERENCES

  1. Agrios GN. (2005) Plant Pathology. 5th edn New York: Academic Press. [Google Scholar]
  2. Albu S, Schneider R, Price P, Doyle V. (2016) Cercospora cf. flagellaris and Cercospora cf. sigesbeckiae are associated with Cercospora leaf blight and purple seed stain on soybean in North America. Phytopathology 106: 1376–85. [DOI] [PubMed] [Google Scholar]
  3. Bakhshi M, Arzanlou M, Babai-Ahari A. (2012a) Comprehensive check list of Cercosporoid fungi from Iran. Plant Pathology and Quarantine 2: 44–55. [Google Scholar]
  4. Bakhshi M, Arzanlou M, Babai-Ahari A. (2012b) Morphological and molecular characterization of Cercospora zebrina from black bindweed in Iran. Plant Pathology and Quarantine 2: 125–130. [Google Scholar]
  5. Bakhshi M, Arzanlou M, Babai-ahari A, Groenewald JZ, Braun U, Crous PW. (2015a) Application of the consolidated species concept to Cercospora spp. from Iran. Persoonia 34: 65–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bakhshi M, Arzanlou M, Babai-Ahari A, Groenewald JZ, Crous PW. (2015b) Is morphology in Cercospora a reliable reflection of generic affinity? Phytotaxa 213: 22–34. [Google Scholar]
  7. Berlese AN. (1888) Fungi Veneti novi vel critici. Malpighia 2: 241–250. [Google Scholar]
  8. Braun U. (2002) Miscellaneous notes on some micromycetes (II). Schlechtendalia 8: 33–38. [Google Scholar]
  9. Braun U, Crous PW. (2016) (2415) Proposal to conserve the name Cercospora (Ascomycota: Mycosphaerellaceae) with a conserved type. Taxon 65: 185. [Google Scholar]
  10. Braun U, Crous PW, Nakashima C. (2014) Cercosporoid fungi (Mycosphaerellaceae) 2. Species on monocots (Acoraceae to Xyridaceae, excluding Poaceae). IMA Fungus 5: 203–390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Braun U, Crous PW, Nakashima C. (2015a) Cercosporoid fungi (Mycosphaerellaceae) 3. Species on monocots (Poaceae, true grasses). IMA Fungus 6: 25–97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Braun U, Crous PW, Nakashima C. (2015b) Cercosporoid fungi (Mycosphaerellaceae) 4. Species on dicots (Acanthaceae to Amaranthaceae). IMA Fungus 6: 373–469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Braun U, Crous PW, Nakashima C. (2016) Cercosporoid fungi (Mycosphaerellaceae) 5. Species on dicots (Anacardiaceae to Annonaceae). IMA Fungus 7: 161–216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Braun U, Nakashima C, Crous PW. (2013) Cercosporoid fungi (Mycosphaerellaceae) 1. Species on other fungi, Pteridophyta and Gymnospermae. IMA Fungus 4: 265–345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cabral A, Rego C, Nascimento T, Oliveira H, Groenewald JZ, Crous PW. (2012) Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology 116: 62–80. [DOI] [PubMed] [Google Scholar]
  16. Chupp C. (1954) A Monograph of the Fungus Genus Cercospora. Ithaca, NY: C. Chupp. [Google Scholar]
  17. Crous PW, Aptroot A, Kang JC, Braun U, Wingfield MJ. (2000) The genus Mycosphaerella and its anamorphs. Studies in Mycology 45: 107–121. [Google Scholar]
  18. Crous PW, Braun U. (2003) Mycosphaerella and its Anamorphs: 1. Names published in Cercospora and Passalora. [CBS Biodiversity Series no. 1.] Utrecht: Centraalbureau voor Schimmelcultures. [Google Scholar]
  19. Crous PW, Braun U, Hunter GC, Wingfield MJ, Verkley GJM, et al. (2013) Phylogenetic lineages in Pseudocercospora. Studies in Mycology 75: 37–114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G. (2004a) MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19–22. [Google Scholar]
  21. Crous PW, Groenewald JZ. (2005) Hosts, species and genotypes: opinions versus data. Australasian Plant Pathology 34: 463–470. [Google Scholar]
  22. Crous PW, Groenewald JZ, Mansilla JP, Hunter GC, Wingfield MJ. (2004b) Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. Studies in Mycology 50: 195–214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C. et al. (2009a) Phylogenetic lineages in the Capnodiales. Studies in Mycology 64: 17–47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC. et al. (2009b) Unravelling Mycosphaerella: do you believe in genera? Persoonia 23: 99–118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Damm U, Cannon PF, Woudenberg JHC, Johnston PR, Weir BS, et al. (2012) The Colletotrichum boninense species complex. Studies in Mycology 73: 1–36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Deighton FC. (1973) Studies on Cercospora and allied genera. IV. Cercosporella Sacc., Pseudocercosporella gen. nov. and Pseudocercosporidium gen. nov. Mycological Papers 133: 1–62. [Google Scholar]
  27. Deighton FC. (1979) Studies on Cercospora and allied genera VII. New species and redispositions. Mycological Papers 144: 1–156. [Google Scholar]
  28. Deighton FC. (1983) Studies on Cercospora and allied genera. VIII. Further notes on Cercoseptoria and some new species and redispositions. Mycological Papers 151: 1–13. [Google Scholar]
  29. Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, et al. (2012) Geneious. Version 5.6, http://www.geneious.com. [Google Scholar]
  30. Ellis MB. (1971) Dematiaceous Hyphomycetes. Kew: Commonwealth Mycological Institute. [Google Scholar]
  31. Ellis MB. (1976) More Dematiaceous Hyphomycetes. Kew: Commonwealth Mycological Institute. [Google Scholar]
  32. Fresenius G. (1863) Beiträge zur Mykologie. Vol. 3. Frankfurt: H.L. Brönner. [Google Scholar]
  33. Gola G. (1930) L’Erbario Micologico di P. A. Saccardo. Catalogo. Tipografia Editrice Antoniana, Padova. [Google Scholar]
  34. Goodwin SB, Dunkle LD, Zismann VL. (2001) Phylogenetic analysis of Cercospora and Mycosphaerella based on the internal transcribed spacer region of ribosomal DNA. Phytopathology 91: 648–658. [DOI] [PubMed] [Google Scholar]
  35. Groenewald JZ, Groenewald M, Braun U, Crous PW. (2010) Cercospora speciation and host range. In: Cercospora Leaf Spot of Sugar Beet and related species (Lartey RT, Weiland J, Panella L, Crous PW, Windels C, eds): 21–37. St Paul, MN: American Phytopathological Society Press. [Google Scholar]
  36. Groenewald JZ, Nakashima C, Nishikawa J, Shin HD, Park JH, et al. (2013) Species concepts in Cercospora: spotting the weeds among the roses. Studies in Mycology 75: 115–170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Groenewald M, Groenewald JZ, Braun U, Crous PW. (2006) Host range of Cercospora apii and C. beticola and description of C. apiicola, a novel species from celery. Mycologia 98: 275–285. [DOI] [PubMed] [Google Scholar]
  38. Groenewald M, Groenewald JZ, Crous PW. (2005) Distinct species exist within the Cercospora apii morphotype. Phytopathology 95: 951–959. [DOI] [PubMed] [Google Scholar]
  39. Guillin EA, de Oliveira LO, Grijalba PE, Gottlieb AM. (2017) Genetic entanglement between Cercospora species associating soybean purple seed stain. Mycological Progress 16: 593–603. [Google Scholar]
  40. Guatimosim E, Schwartsburd PB, Barreto RW, Crous PW. (2017) Novel fungi from an ancient niche: cercosporoid and related sexual morphs on ferns. Persoonia 37: 106–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Hebert PDN, Cywinska A, Ball SL, Dewaard JR. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B 270: 313–321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Hesami S, Khodaparast S, Zare R. (2012) New reports on Cercospora and Pseudocercospora from Guilan province. Rostaniha 13: 95–100. [Google Scholar]
  43. Hsieh W-H-, Goh T-K- (1990) Cercospora and Similar Fungi from Taiwan. Taiwan, Taipei: Maw Chang Book Company. [Google Scholar]
  44. Katoh K, Standley DM. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Lall G, Gill HS, Munjal RL. (1961) Some Cercospora species from India–V. Indian Phytopathology 14: 115–119. [Google Scholar]
  46. Lartey R, Caesar-TonThat T, Caesar A, Shelver W, Sol N, Bergman J. (2005) Safflower: a new host of Cercospora beticola. Plant Disease 89: 797–801. [DOI] [PubMed] [Google Scholar]
  47. Little S. (1987) Cercospora malayensis. CMI Descriptions of Pathogenic Fungi and Bacteria 916: 1–2. [Google Scholar]
  48. Liu YJ, Whelen S, Hall BD. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16: 1799–1808. [DOI] [PubMed] [Google Scholar]
  49. Lombard L, Crous PW, Wingfield BD, Wingfield MJ. (2010) Species concepts in Calonectria (Cylindrocladium). Studies in Mycology 66: 1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Maddison WP, Maddison DR. (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org. [Google Scholar]
  51. Montegut J. (1967) Étude systématique des principales espèces. Coton et Fibres Tropicales 22: 451. [Google Scholar]
  52. Montenegro-Calderón JG, Martínez-Álvarez JA, Vieyra-Hernández MT, Rangel-Macías LI, Razzo-Soria T, et al. (2011) Molecular identification of two strains of Cercospora rodmanii isolated from water hyacinth present in Yuriria lagoon, Guanajuato, Mexico and identification of new hosts for several other strains. Fungal Biology 115: 1151–1162. [DOI] [PubMed] [Google Scholar]
  53. Myllys L, Stenroos S, Thell A. (2002) New genes for phylogenetic studies of lichenized fungi: glyceraldehyde-3-phosphate dehydrogenase and beta-tubulin genes. Lichenologist 34: 237–246. [Google Scholar]
  54. Narayan S, Kharwar RN, Singh RK. (2001) Some novel taxa of hyphomycete genus Cercospora causing foliar spots in India. Indian Phytopathology 54: 351–357. [Google Scholar]
  55. Nylander JAA. (2004) MrModeltest. Version 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. [Google Scholar]
  56. O'Donnell K, Cigelnik E. (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103–116. [DOI] [PubMed] [Google Scholar]
  57. Pirnia M, Zare R, Zamanizadeh HR, Khodaparast A. (2012) New records of cercosporoid hyphomycetes from Iran. Mycotaxon 120: 157–169. [Google Scholar]
  58. Pollack FG. (1987) An annotated compilation of Cercospora names. Mycological Memoirs 12: 1–212. [Google Scholar]
  59. Pretorius MC, Crous PW, Groenewald JZ, Braun U. (2003) Phylogeny of some cercosporoid fungi from Citrus. Sydowia 55: 286–305. [Google Scholar]
  60. Pons N, Sutton BC. (1996) Cercospora and similar fungi on Heliotropium weeds. Mycological Research 100: 815–820. [Google Scholar]
  61. Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ, et al. (2014) Introducing the Consolidated Species Concept to resolve species in the Teratosphaeriaceae. Persoonia 33: 1–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Quaedvlieg W, Groenewald JZ, De Jesús Yáñez-Morales M, Crous PW. (2012) DNA barcoding of Mycosphaerella species of quarantine importance to Europe. Persoonia 29: 101–115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Quaedvlieg W, Kema G, Groenewald JZ, Verkley GJM, Seifbarghi S, et al. (2011) Zymoseptoria gen. nov.: a new genus to accommodate septoria-like species occurring on graminicolous hosts. Persoonia 26: 57–69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Quaedvlieg W, Verkley GJM, Shin H-D-, Barreto RW, Alfenas AC, et al. (2013) Sizing up Septoria. Studies in Mycology 75: 307–390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Rannala B, Yang Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43: 304–311. [DOI] [PubMed] [Google Scholar]
  66. Rayner RW. (1970) A Mycological Colour Chart. Kew: Commonwealth Mycological Institute. [Google Scholar]
  67. Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Saccardo PA. (1880) Conspectus generum fungorum italiae inferiorum nempe ad Sphaeropsideae, Melanconieas et Hyphomyceteas pertinentium systemate sporologico dispositorum. Michelia 2: 1–38. [Google Scholar]
  69. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, et al. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, USA 109: 6241–6246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Soares APG, Guillin EA, Borges LL, Da Silva AC, De Almeida ÁM, et al. (2015) More Cercospora species infect soybeans across the Americas than meets the eye. PloS One 10: e0133495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Solheim WG. (1930) Morphological studies of the genus Cercospora. Illinois Biological Monographs 12: 1–85. [Google Scholar]
  72. Stewart EL, Liu Z, Crous PW, Szabo LJ. (1999) Phylogenetic relationships among some cercosporoid anamorphs of Mycosphaerella based on rDNA sequence analysis. Mycological Research 103: 1491–1499. [Google Scholar]
  73. Stielow JB, Lévesque CA, Seifert KA, Meyer W, Irinyi L, et al. (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35: 242–263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Stukenbrock EH, Quaedvlieg W, Javan-Nikhah M, Zala M, Crous PW, McDonald BA. (2012) Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the Septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola). Mycologia 104: 1397–1407. [DOI] [PubMed] [Google Scholar]
  75. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725–2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Tessmann DJ, Charudattan R, Kistler HC, Rosskopf EN. (2001) A molecular characterization of Cercospora species pathogenic to water hyacinth and emendation of C. piaropi. Mycologia 93: 323–334. [Google Scholar]
  77. Verkley GJM, Quaedvlieg W, Shin H-D-, Crous PW. (2013) A new approach to species delimitation in Septoria. Studies in Mycology 75: 213–305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Videira SIR, Groenewald JZ, Nakashima C, Braun U, Barreto RW, et al. (2017) Mycosphaerellaceae – chaos or clarity? Studies in Mycology 87: 257–421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Weir BS, Johnston PR, Damm U. (2012) The Colletotrichum gloeosporioides species complex. Studies in Mycology 73: 115–180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Woudenberg JHC, Groenewald JZ, Binder M, Crous PW. (2013) Alternaria redefined. Studies in Mycology 75: 171–212. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from IMA Fungus are provided here courtesy of The International Mycological Association

RESOURCES