Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(3):341–356. doi: 10.1111/j.1582-4934.2002.tb00513.x

Targeting apoptosis in neurological disease using the herpes simplex virus

Dana Perkins 1,
PMCID: PMC6740271  PMID: 12417051

Abstract

Herpes Simplex Viruses type 1 (HSV‐1) and 2 (HSV‐2) cause central nervous system (CNS) disease ranging from benign aseptic meningitis to fatal encephalitis. In adults, CNS infection with HSV‐2 is most often associated with aseptic meningitis while HSV‐1 frequently produces severe, focal encephalitis associated with high mortality and morbidity. Recent studies suggested that the distinct neurological outcome of CNS infection with the two viruses may be due to their distinct modulation of apoptotic cell death: HSV‐1 triggers neuronal apoptosis, while HSV‐2 is neuroprotective. Apoptosis also occurs in the etiology of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Down's syndrome, and determines the loss of specific neuronal populations and the decline in cognitive functions. Notwithstanding, the therapy of these disorders may rely on the use of replication‐defective HSV‐1 vectors to deliver anti‐apoptotic transgenes to the CNS. However, the recent discovery of a neuroprotective activity innate to the HSV‐2 genome (the ICP10 PK gene) suggests that: i) ICP10 PK may constitute a novel therapeutic approach by targeting both the apoptotic cell death and the cognitive decline, and ii) HSV‐2 may be more suitable than HSV‐1 as a vector for targeting neuronal disease.

Keywords: herpes simplex, apoptosis, Alzheimer's, ICP10 PK, neurodegeneration

References

  • 1. Aurelian L., Herpes simplex viruses In: Specter S., Hodinka R.L., Young S.A., eds., Clinical Virology Manual, 3rd ed., ASM Press, Washington , DC , 2000, pp. 384–409. [Google Scholar]
  • 2. Roizman B., Sears A.E., Herpes simplex viruses and their replication In Fields B.N., Knipe D.M., Howley P.M., eds., Fields' Virology, 3rd ed., Lippincott‐Raven Publishers, PA , 1996, pp. 2231–2295. [Google Scholar]
  • 3. Smith C.C., Wymer J.P., Luo J., Aurelian L., Genomic sequences homologous to the protein kinase region of the bifunctional herpes simplex virus type 2 protein ICP10. Virus Genes, 5: 215–225, 1991. [DOI] [PubMed] [Google Scholar]
  • 4. Chou J., Roizman B., The gamma134.5 gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shut off of protein synthesis characteristic of programmed cell death in neuronal cells. Proc. Natl. Acad. Sci. USA, 89: 3266–3270, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Benndorf R., Sun X., Gilmont R.R., Biederman K.J., Molloy M.P., Goodmurphy C.W., Cheng H., Andrews P.C., Welsh M.J., HSP22– a new member of the small heat shock protein superfamily interacts with mimic of phosphorylated HSP27 ((3D)HSP20). J. Biol. Chem., 276: 26753–26761, 2001. [DOI] [PubMed] [Google Scholar]
  • 6. Whitley R.J., Kimberlin D.W., Roizman B., Herpes simplex viruses. Clin. Inf. Dis., 26: 541–555, 1998. [DOI] [PubMed] [Google Scholar]
  • 7. Whitley R.J., Kimberlin D.W., Viral encephalitis. Pediatric Rev., 20: 192–198, 1999. [DOI] [PubMed] [Google Scholar]
  • 8. Klapper P.E., Cleator G.M., Longson M., Mild forms of herpes encephalitis. J. Neurol. Neurosurg. Psychiatry, 47: 1247–50, 1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Damasio A.R., van Hoesen G.W., The limbic system and the localization of herpes simplex encephalitis, J. Neurol. Neurosurg. Psych., 48: 297–301, 1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Esiri M.M., Herpes simplex encephalitis, J. Neurol. Sci., 54: 209–226, 1982. [DOI] [PubMed] [Google Scholar]
  • 11. Tomlinson A.H., Esiri M.M., Herpes simplex encephalitis. J. Neurol. Sci., 60: 473–484, 1983. [DOI] [PubMed] [Google Scholar]
  • 12. Craig C.P., Nahmias A.J., Different patterns of neurologic involvement with herpes simplex virus types 1 and 2: isolation of herpes simplex virus type 2 from the buffy coat of two adults with meningitis. J. Infect. Dis., 127: 365–372, 1973. [DOI] [PubMed] [Google Scholar]
  • 13. Kristensson K., Vahlne A., Persson L., Lycke E., Neural spread of herpes simplex virus types 1 and 2 in mice after corneal or subcutaneous (footpad) inoculation. J. Neurol. Sci., 35: 331–340, 1978. [DOI] [PubMed] [Google Scholar]
  • 14. Corey L., Fife K., Benedetti J.K., Winter C., Fahnlander A., Connor J., Hintz M.A., Holmes K.K., Intravenous acyclovir for the treatment of primary genital herpes. Ann. Intern. Med., 98: 914–921, 1983. [DOI] [PubMed] [Google Scholar]
  • 15. Ball M.J., Limbic predilection in Alzheimer dementia: is reactivated herpes virus involved. Can. J. Neurol. Sci., 9: 303–6, 1982. [DOI] [PubMed] [Google Scholar]
  • 16. Honig L.S., Rosenberg R.N., Apoptosis and neurologic disease. Am. J. Med., 108: 317–330, 2000. [DOI] [PubMed] [Google Scholar]
  • 17. Leissring M.A., Sugarman M.C., LaFerla F.M., Herpes simplex virus infections and Alzheimer's disease. Drugs & Aging, 13: 193–8, 1998. [DOI] [PubMed] [Google Scholar]
  • 18. Dobson C.B., Itzhaki R.F., Herpes simplex virus type 1 and Alzheimer's disease. Neurobiol. Aging, 20: 457–65, 1999. [DOI] [PubMed] [Google Scholar]
  • 19. Cribbs D.H., Azizeh B.Y., Cotman C.W., LaFerla F.M., Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homo logy to the Alzheimer's Aβ peptide. Biochemistry, 39: 5988–5994, 2000. [DOI] [PubMed] [Google Scholar]
  • 20. Marques A.R., Straus S.E., Lack of association between HSV‐1 DNA in the brain, Alzheimer's disease and apolipoprotein E4. J. NeuroVirol., 7: 82–83, 2001. [DOI] [PubMed] [Google Scholar]
  • 21. Roberts G.W., Taylor G.R., Carter G.I., Johnson J.A., Bloxham C., Brown R., Crow T.J., Herpes simplex virus: a role in the aetiology of Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry, 49: 216–9, 1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Huang Q., Vonsattel J.P., Schaffer P.A., Martuza R.L., Breakfield X.O., DiFiglia M., Introduction of a foreign gene (Escherichia coli lacZ) into rat neostriatal neurons using herpes simplex virus mutants: a light and electron microscopy study. Exp. Neurol., 115: 303–316, 1992. [DOI] [PubMed] [Google Scholar]
  • 23. Al‐Rikabi A.C., Al‐Sohaibani M.O., Janijoon A., Al‐Rayess M.M., Metastatic deposits of a high grade malignant glioma in cervical lymph nodes diagnosed by fine needle aspiration (FNA) cytology‐ case report and literature review. Cytopathology, 8: 421–27, 1997. [DOI] [PubMed] [Google Scholar]
  • 24. Hsu E., Keene D., Ventureyra E., Matzinger M.A., Jimenez C., Wang H.S., Grimard L., Bone marrow metastasis in astrocytic gliomata. J. NeuroOncol., 37: 285–293, 1998. [DOI] [PubMed] [Google Scholar]
  • 25. Mineta T., Rabkin S.D., Yazaki T., Hunter W.D., Martuza R.L., Attenuated multi‐mutated herpes simplex virus‐1 for the treatment of malignant gliomas. Nature Med., 1: 938–943, 1995. [DOI] [PubMed] [Google Scholar]
  • 26. Colombo F., Zamusso M., Casentini L., Cavaggioni A., Franchin E., Calvi P., Palu G. Gene stereotactic neuro surgery for recurrent malignant gliomas. Stereotact. Funct. Neurosurg., 68: 245–251, 1997. [DOI] [PubMed] [Google Scholar]
  • 27. Parker J.N., Gillespie G.Y., Love C.E., Randall S., Whitley R.J., Markert J.M., Engineered herpes simplex virus expressing IL‐12 in the treatment of experimental murine brain tumors. Proc. Natl. Acad. Sci. USA, 97: 2208–2213, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Moriuchi S., Oligino T., Krisky D., Marconi P., Fink D., Cohen J., Glorioso J.C., Enhanced tumor cell killing in the presence of ganciclovir by herpes simplex virus type 1 vector‐directed co‐expression of human tumor necrosis factor‐alpha and herpes simplex virus thymidine kinase. Cancer Res., 58: 5731–37, 1998. [PubMed] [Google Scholar]
  • 29. Rosenfeld N.R., Meneses P., Dalman J.C., Drobnjak M., Cordon‐Cardo C., Kaplitt M.G., Gene transfer of wild‐type p53 results in restoration of tumor suppressor function in a medulloblastoma cell line. Neurology, 45: 1533–9, 1995. [DOI] [PubMed] [Google Scholar]
  • 30. Im S.A., Gomez‐Manzano C., Fueyo J., Liu T.J., Ke L.D., Kim J.S., Lee H.Y., Steck P.A., Kyritsis A.P., Yung W.K., Antiangiogenesis treatment for gliomas: transfer of antisense‐vascular endothelial growth factor inhibits tumor growth in vivo , Cancer Res., 59: 895–900, 1999. [PubMed] [Google Scholar]
  • 31. Freeman S.M., Whartenby K.A., Freeman J.L., Abboud C.N., Marrogi A.J., In situ use of suicide genes for cancer therapy. Seminars Oncol., 23: 31–45, 1996. [PubMed] [Google Scholar]
  • 32. Linnik M.D., Zahos P., Geschwind M.D., Federoff H.J., Expression of bcl‐2 from a defective herpes simplex virus‐1 vector limits neuronal death in focal cerebral ischemia. Stroke, 26: 1670–1674, 1995. [DOI] [PubMed] [Google Scholar]
  • 33. Antonavich F.J., Federoff H.J., Davis J.N., Bcl‐2 transduction, using a herpes simplex virus amplicon, protects hippocampal neurons from transient global ischemia. Exp. Neurol., 156: 130–137, 1999. [DOI] [PubMed] [Google Scholar]
  • 34. Dumas T., McLaughlin J., Ho D., Meier T., Sapolsky R., Delivery of herpes simplex virus amplicon‐based vectors to the dentate gyrus does not alter hippocampal synaptic transmission in vivo , Gene Ther., 6: 1679–84, 1999. [DOI] [PubMed] [Google Scholar]
  • 35. McLaughlin J., Roozendaal B., Dumas T., Gupta A., Ajilore O., Hsieh J., Ho D., Lawrence M., McGaugh J.L., Sapolsky R., Sparing of neuronal functon post‐seizure with gene therapy. Proc. Natl. Acad. Sci. USA, 97: 12804–09, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Tomac A., Lindqvist E., Lin L.F.H., Ogren S.O., Young D., Hoffer B.J., Olson L., Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo , Nature, 373: 335–339, 1995. [DOI] [PubMed] [Google Scholar]
  • 37. Maysinger D., Herrera‐Marschitz M., Goiny M., Ungerstedt U., Cuello A.C., Effects of nerve growth factor on cortical and striatal acetylcholine and dopamine release in rats with devascularizing lesions. Brain Res., 577: 300–305, 1992. [DOI] [PubMed] [Google Scholar]
  • 38. Hefti F., Knusel B., Neurotrophic factors and neurodegenerative diseases In Hefti F., Brachet P., Will B., and Christen Y., eds., Growth factors and Alzheimer's disease, Springer‐Verlag Berlin Heidelberk, NY , 1990, pp 1–240. [Google Scholar]
  • 39. Johnson Webb S., Harrison D.J., Wyllie A.H., Apoptosis: an overview of the process and its relevance in disease. Adv. Pharmacol., 41: 1–31, 1997. [DOI] [PubMed] [Google Scholar]
  • 40. Mignotte B., Vayssiere J.‐L., Mitochondria and apoptosis. Eur. J. Biochem., 252: 1–15, 1998. [DOI] [PubMed] [Google Scholar]
  • 41. Hengartner M.O., The biochemistry of apoptosis. Nature, 407: 770–776, 2000. [DOI] [PubMed] [Google Scholar]
  • 42. Lazebnik Y.A., Kaufmann S.H., Desnoyers S., Poirier G.G., Earnshaw W.C., Cleavage of poly (ADP‐ribose) polymerase by a proteinase with properties like ICE. Nature, 371: 346–347, 1994. [DOI] [PubMed] [Google Scholar]
  • 43. Janicke R.U., Ng P., Sprengart M.L., Porter A.G., Caspase‐3 is required for alpha‐fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem., 273: 15540–15545, 1998. [DOI] [PubMed] [Google Scholar]
  • 44. Strasser A., Huang D.C.S., Vaux D.L., The role of bcl‐2/ced‐9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. Biochem. Bioph. Acta, 1333:F151–F178, 1997. [DOI] [PubMed] [Google Scholar]
  • 45. Tsujimoto Y., 1998. Prevention of neuronal cell death by Bcl‐2 In: Kumar S., ed., Apoptosis: mechanisms and role in disease, Springer‐Verlag; Berlin Heidelberg , 1998, pp. 137–155. [DOI] [PubMed] [Google Scholar]
  • 46. Chittenden T., Mammalian Bcl‐2 family genes In Wilson J.W., Booth C., Potten C.S., eds., Apoptosis genes, Kluwer Acad. Publishers, 1998, pp. 37–83. [Google Scholar]
  • 47. Hu Y., Benedict M.A., Wu D., Inohara N., Nunez G., Bcl‐xL interacts with Apaf‐1 and inhibits Apaf‐1–dependent caspase‐9 activation. Proc. Natl. Acad. Sci. USA, 95: 4386–4391, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Boise L.H., Gonzales‐Garcia M., Postema C.E., Ding L., Lindsten T., Turka L.A., Mao X., Nunez G., Thomson C.B., Bcl‐x, a bcl‐2–related gene that functions as a dominant regulator of apoptotic cell death. Cell, 74: 597–608, 1993. [DOI] [PubMed] [Google Scholar]
  • 49. Takayama S., Sato T., Krajewski S., Kochel K., Irie S., Millan J.A., Reed J.C., Cloning and functional analysis of BAG‐1: a novel Bcl‐2 binding protein with anti‐cell death activity. Cell, 80: 279–284, 1995. [DOI] [PubMed] [Google Scholar]
  • 50. Bardelli A., Longati P., Albero D., Goruppi S., Schneider C., Ponzetto C., Comoglio P.M., HGF receptor associates with the anti‐apoptotic protein BAG‐1 and prevents cell death. J. Biol. Chem., 271: 16850–16855, 1996. [PMC free article] [PubMed] [Google Scholar]
  • 51. Schulz J.B., Bremen D., Reed J.C., Lommatzsch J., Takayama S., Wullner U., Loschmann P.‐A., Klockgether T., Weller M., Cooperative interception of neuronal apoptosis by Bcl‐2 and Bag‐1 expression: prevention of caspase activation and reduced production of reactive oxygen species. J. Neurochem., 69: 2075–2086, 1997. [DOI] [PubMed] [Google Scholar]
  • 52. Clevenger C.V., Thickman K., Ngo W., Chang W.‐P., Takayama S., Reed J.C., Role of Bag‐1 in the survival and proliferation of the cytokine‐ dependent lymphocyte lines, Ba/F3 and Nb2. Mol. Endocrinol., 11: 608–618, 1997. [DOI] [PubMed] [Google Scholar]
  • 53. Durten‐van Oorchot A.A.A.M., den Hollander A., Takayama S., Reed, J.C. , van der Eb A.J., Noteborn M.H.M., Bag‐1 inhibits p53–induced but not apoptin‐induced apoptosis. Apoptosis, 2: 395–402, 1997. [DOI] [PubMed] [Google Scholar]
  • 54. Takayama S., Bimston D.N., Matsuzawa S., Freeman B.C., Aime‐Sempe C., Xie I., Morimoto R.J., Reed J.C., Bag‐1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J., 16: 4887–4896, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Takayama S., Krajewski S., Krajewska M., Kitada S., Zapata S., Zapata J.M., Kochel K., Knee D., Scudiero D., Tudor G., Miller G.J., Miyashita T., Yamada M., Reed J.C., Expression and location of Hsp70/Hsc‐binding anti‐apoptotic Bag‐1 and its variants in normal tissues and tumor cell lines. Cancer Res., 58: 3116–3131, 1998. [PubMed] [Google Scholar]
  • 56. Hayashi T., Sakai K.‐i., Sasaki, C. , Itoyama Y., Abe K., Loss of Bag‐1 immunoreactivity inrat brain after transient middle cerebral artery occlusion. Brain Res., 852: 496–500, 2000. [DOI] [PubMed] [Google Scholar]
  • 57. Junying Y., Yankner B.A., Apoptosis in the nervous system. Nature, 407: 802–809, 2000. [DOI] [PubMed] [Google Scholar]
  • 58. Kim T.W., Tanzi R.E., Presenilins and Alzheimer's disease. Curr. Opin. Neurobiol., 7: 683–688, 1997. [DOI] [PubMed] [Google Scholar]
  • 59. Sawa A., Neuronal cell death in Down's syndrome, J. Neural. Transm., Suppl. 57: 87–97, 1999. [DOI] [PubMed] [Google Scholar]
  • 60. Richards S.‐J., Waters J.J., Wischik C., Sparkman D.R., White C.L. III, Beyreuther K., Masters C., Abraham C.R. and Dunnett S.B., A new model for studying the neuropathology of Alzheimer's disease derived from transplantation of trisomy 16 CNS tissues In Iqbal K., McLachlan R., Winblad R. and Wisniewski H.M., eds., Alzheimer's disease: basic mechanisms, diagnostic and therapeutic strategies, John Wiley & Sons Ltd., 1991, pp. 478–497. [Google Scholar]
  • 61. Thal L.J., Clinical trials in Alzheimer Disease In Terry R.D., Katzman R., Bick K.L. and Sisodia S.S., eds., Alzheimer Disease, 2nd edition, Lippincott Williams & Wilkins, Philadelphia , 1999, pp. 423–439. [Google Scholar]
  • 62. Thal L.J., Clinical trials in Alzheimer Disease: Methodological considerations In Khachaturian Z.S. and Radebaugh T.S., eds., Alzheimer's disease: Causes, Diagnosis, Treatment and Care, CRC Press, Inc, 1996, pp. 239–247. [Google Scholar]
  • 63. Sedlak B.J., Therapeutics for neurodegenerative diseases. Gen. Engineering News, 21: 13–14, 2001. [Google Scholar]
  • 64. Sano M., Ernesto C., Thomas R.G., Klauber M.R., Schafer K., Grundman M., Woodburry P., Growdun J., Cotman C.W., Pfeiffer E., Schneider L.S., Thal L.J., A controlled trial of selegiline, [alpha]‐tocopherol, or both as treatment for Alzheimer's disease: the Alzheimer's Disease Cooperative Study. N. Engl. J. Med., 336: 1216–1222, 1997. [DOI] [PubMed] [Google Scholar]
  • 65. English J.D., Sweatt J.D., A requirement for the mitogen‐activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem., 272: 19103–19106, 1997. [DOI] [PubMed] [Google Scholar]
  • 66. Hardwick M.J., Virus‐induced apoptosis. Adv. Pharmacol., 41: 295–336, 1997. [DOI] [PubMed] [Google Scholar]
  • 67. Galvan V., Roizman B., Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell‐type‐dependent manner, Proc. Natl. Acad. Sci USA, 95: 3931–3936, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Koyama A.H., Akari H., Adachi A., Goshima F., Nishiyama Y., Induction of apoptsis in Hep‐2 cells by infection with herpes simplex virus type 2. Arch. Virol., 143: 2435–2441, 1998. [DOI] [PubMed] [Google Scholar]
  • 69. Koyama A.H., Fukomori T., Fujita M., Irie H., Adachi A., Physiological significance of apoptosis in animal virus infection. Microbes Inf., 2: 1111–1117, 2000. [DOI] [PubMed] [Google Scholar]
  • 70. Leopardi R., Van Sant C., Roizman B., The herpes simplex virus 1 protein kinase US 3 is required for protection from apoptosis induced by the virus. Proc. Natl. Acad. Sci USA, 94: 7891–7896, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Munger J., Roizman B., The US3 protein kinase of herpes simplex virus type 1 mediates the posttranslational modification of BAD and prevents BAD‐induced programmed cell death in the absence of other viral proteins. Proc. Natl. Acad. Sci. USA, 98: 10410–10415, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Aubert M., Blaho J.A., The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J. Virol., 73: 2803–2813, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Aubert M., O'Toole J., Blaho J.A., Induction and prevention of apoptosis in human Hep‐2 cells by herpes simplex virus type 1. J. Virol., 73: 10359–10370, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Jerome K.R., Fox R., Chen Z., Sears A.E., Lee H.‐ Y., Corey L., Herpes simplex virus inhibits apoptosis through the action of two genes, US5 and US3. J. Virol., 73: 8950–8957, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Perng G.‐C., Jones C., Ciacci‐Zanella J., Stone M., Henderson G., Yukht, A. , Slanina S.M., Hofman F.M., Ghiasi H., Nesburn A.B, Wechsler S.L., Virus‐induced neuronal apoptosis blocked by the herpes simplex virus latency‐associated transcript. Science, 287: 1500–1503, 2000. [DOI] [PubMed] [Google Scholar]
  • 76. Hata S., Koyama A.H., Shiota H., Adachi A., Goshima F., Nishiyama Y., Anti‐apoptotic activity of herpes simplex virus type 2: the role of US3 protein kinase gene. Microbes. Inf., 1: 601–607, 1999. [DOI] [PubMed] [Google Scholar]
  • 77. Perkins D., Pereira E.F.R., Gober M., Yarowsky P.J., Aurelian L., The herpes simplex virus type 2 R1 PK (ICP10 PK) blocks apoptosis in hippocampal neurons involving activation of the MEK/MAPK survival pathway. J. Virol., 76: 1435–1449, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Perkins D., Yu Y., Bambrick L., Yarowsky P.J., Aurelian L., Expression of the Herpes Simplex Virus Type 2 Protein ICP10 PK protects neurons from apoptosis due to serum deprivation or genetic defects. Exp. Neurol., 174: 118–122, 2002. [DOI] [PubMed] [Google Scholar]
  • 79. Asano S., Honda T., Goshima F., Watanabe D., Miyake Y., Sugiura Y., Nishiyama Y., US3 protein kinase of herpes simplex virus type 2 plays a role in protecting corneal epithelial cells from apoptosis in infected mice. J. Gen. Virol., 80: 51–56, 1999. [DOI] [PubMed] [Google Scholar]
  • 80. Jacobson J.G., Leib D.A., Goldstein D.J., Bogard C.L., Schaffer P.A., Weller S.K., Coens D.M., A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology, 173: 276–283, 1989. [DOI] [PubMed] [Google Scholar]
  • 81. Aurelian L., Herpes simplex virus type 2: unique bio logical properties include neoplastic potential mediated by the PK domain of the large subunit of ribonucleotide reductase. Front. Biosci., 3: d237–d249, 1998. [DOI] [PubMed] [Google Scholar]
  • 82. Ingemarson R., Lankinen H., The herpes simplex virus type 1 ribonucleotide reductase is a tight complex of the type α2β2 composed of 40K and 140 K proteins, of which the latter shows multiple forms due to proteolysis. Virology, 156: 417–422, 1987. [DOI] [PubMed] [Google Scholar]
  • 83. Nikas I., McLauchlan J., Davison A.J., Taylor W.R., Clements J.B., Structural features of ribonucleotide reductase. Proteins: structure, function and genetics, 1: 376–384, 1986. [DOI] [PubMed] [Google Scholar]
  • 84. Chung T.D., Wymer J.P., Smith C.C., Kulka M., Aurelian L., Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). J. Virol., 63: 3389–3398, 1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Luo J., Aurelian L., The transmembrane helical segment but not the invariant lysine is required for the kinase activity of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). J. Biol. Chem., 267: 9645–9653, 1992. [PubMed] [Google Scholar]
  • 86. Smith C.C., Luo J.H., Hunter J.C.R., Ordonez J.V., Aurelian L., The transmembrane domain of the large subunit of HSV‐2 ribonucleotide reductase (ICP10) is required for protein kinase activity and transformation‐related signaling pathways that result in ras activation. Virology, 200: 598–612, 1994. [DOI] [PubMed] [Google Scholar]
  • 87. Hunter J.C.R., Smith C.C., Bose D., Kulka M., Broderick R., Aurelian L., Intracellular internalization and signaling pathways triggered by the large subunit of HSV‐2 ribonucleotide reductase (ICP10). Virology, 210: 345–360, 1995. [DOI] [PubMed] [Google Scholar]
  • 88. Smith C.C., Nelson J., Aurelian L., Gober M., Goswami B.B., Ras‐GAP binding/phosphorylation by HSV‐2 RR1PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. J. Virol., 74: 10417–10429, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Perlman D., Halverson H.O., A putative signal peptide recognition site and sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Biol., 167: 391–409, 1983. [DOI] [PubMed] [Google Scholar]
  • 90. Conner J., Cooper J., Furlong J., Clements J.B., An autophosphorylating but not transphosphorylating activity is associated with the unique N‐terminus of the herpes simplex virus type 1 ribonucleotide reductase large subunit. J. Virol., 66: 7511–7516, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Tian Q., Taupin J.L., Elledge S., Robertson M., Anderson P., Fas‐activated serine/threonine kinase (FAST) phosphorylates TIA‐1 during Fas‐mediated apoptosis. J. Exp. Med., 182: 865–874, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Bailey C.H., Bartsch D., Kandel E.R., Toward a molecular definition of long term memory storage. Proc. Natl. Acad. Sci USA, 93: 13445–13452, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Silva A.J., Kogan J.H., Frankland P.W., Kida S., CREB and memory. Annu. Rev. Neurosci., 21: 127–148, 1998. [DOI] [PubMed] [Google Scholar]
  • 94. Atkins C.M., Selcher J.C., Petraitis J.J., Trzaskos J.M., Sweatt J.D., The MAPK cascade is required for mammalian associative learning. Nature Neurosci., 1: 602–609, 1998. [DOI] [PubMed] [Google Scholar]
  • 95. Berman D.E., Hazvi S., Rosenblum K., Seger R., Dudai Y., Specific and differential activation of mitogen‐activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat. J. Neurosci., 18: 10037–10044, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Blum S., Moore A.N., Adams F., Dash P.K., A mitogen‐activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long‐term spatial memory. J. Neurosci., 19: 3535–3544, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES