Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Keywords: G-quadruplex thermodynamics and kinetics, multiquadruplexes, G-quadruplex-specific ligands and proteins, RNA G-quadruplexes, hybrid DNA–RNA G-quadruplexes, telomeric G-quadruplexes, G-quadruplexes in oncogene promoters
Footnotes
Original Russian Text © N. G. Dolinnaya, A. M. Ogloblina, M. G. Yakubovskaya, 2016, published in Uspekhi Biologicheskoi Khimii, 2016, Vol. 56, pp. 53–154.
References
- 1.Xu Y., Suzuki Y., Ito K., Komiyama M. Telomeric repeat-containing RNA structure in living cells. Proc. Natl. Acad. Sci. USA. 2010;107:14579–14584. doi: 10.1073/pnas.1001177107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Huppert J. L., Bugaut A., Kumari S., Balasubramanian S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 2008;36:6260–6268. doi: 10.1093/nar/gkn511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Bochman M. L., Paeschke K., Zakian V. A. DNA secondary structures: stability and function of Gquadruplex structures. Nat. Rev. Genet. 2012;13:770–780. doi: 10.1038/nrg3296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Lipps H. J., Rhodes D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol. 2009;19:414–422. doi: 10.1016/j.tcb.2009.05.002. [DOI] [PubMed] [Google Scholar]
- 5.Valton A. L., Hassan-Zadeh V., Lema I., Boggetto N., Alberti P., Saintome C., Riou J. F., Prioleau M. N. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J. 2014;33:732–746. doi: 10.1002/embj.201387506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Foulk M. S., Urban J. M., Casella C., Gerbi S. A. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins. Genome Res. 2015;25:725–735. doi: 10.1101/gr.183848.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Paeschke K., Juranek S., Simonsson T., Hempel A., Rhodes D., Lipps H. J. Telomerase recruitment by the telomere end binding protein-beta facilitates G-quadruplex DNA unfolding in ciliates. Nat. Struct. Mol. Biol. 2008;15:598–604. doi: 10.1038/nsmb.1422. [DOI] [PubMed] [Google Scholar]
- 8.Balasubramanian S., Hurley L. H., Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy. Nat. Rev. Drug Discov. 2011;10:261–275. doi: 10.1038/nrd3428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Kruisselbrink E., Guryev V., Brouwer K., Pontier D. B., Cuppen E., Tijsterman M. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr. Biol. 2008;18:900–905. doi: 10.1016/j.cub.2008.05.013. [DOI] [PubMed] [Google Scholar]
- 10.Beaume N., Pathak R., Yadav V. K., Kota S., Misra H. S., Gautam H. K., Chowdhury S. Genomewide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation. Nucleic Acids Res. 2013;41:76–89. doi: 10.1093/nar/gks1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Cahoon L. A., Seifert H. S. An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science. 2009;325:764–767. doi: 10.1126/science.1175653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Tarsounas M., Tijsterman M. Genomes and G-quadruplexes: for better or for worse. J. Mol. Biol. 2013;425:4782–4789. doi: 10.1016/j.jmb.2013.09.026. [DOI] [PubMed] [Google Scholar]
- 13.Schiavone D., Guilbaud G., Murat P., Papadopoulou C., Sarkies P., Prioleau M. N., Balasubramanian S., Sale J. E. Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells. EMBO J. 2014;33:2507–2520. doi: 10.15252/embj.201488398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Beaudoin J. D., Perreault J. P. 5′-UTR Gquadruplex structures acting as translational repressors. Nucleic Acids Res. 2010;38:7022–7036. doi: 10.1093/nar/gkq557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Beaudoin J. D., Perreault J. P. Exploring mRNA 3′-UTR G-quadruplexes: evidence of roles in both alternative polyadenylation and mRNA shortening. Nucleic Acids Res. 2013;41:5898–5911. doi: 10.1093/nar/gkt265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Haider S. M., Neidle S., Parkinson G. N. A structural analysis of G-quadruplex/ligand interactions. Biochimie. 2011;93:1239–1251. doi: 10.1016/j.biochi.2011.05.012. [DOI] [PubMed] [Google Scholar]
- 17.Bryan T. M., Baumann P. G-Quadruplex DNA: Methods and Protocols, Methods in Molecular Biology Series. 2010. p. 276. [Google Scholar]
- 18.Yatsunyk L. A., Bryan T. M., Johnson F. B. G-ruption: the third international meeting on G-quadruplex and G-assembly. Biochimie. 2012;94:2475–2483. doi: 10.1016/j.biochi.2012.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Wu Y., Brosh R. M. Jr. G-quadruplex nucleic acids and human disease. FEBS J. 2010;277:3470–3488. doi: 10.1111/j.1742-4658.2010.07760.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Simone R., Fratta P., Neidle S., Parkinson G. N., Isaacs A. M. G-quadruplexes: emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett. 2015;589:1653–1668. doi: 10.1016/j.febslet.2015.05.003. [DOI] [PubMed] [Google Scholar]
- 21.Yatsunyk L. A., Mendoza O., Mergny J. L. “Nano-oddities”: unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices. Acc. Chem. Res. 2014;47:1836–1844. doi: 10.1021/ar500063x. [DOI] [PubMed] [Google Scholar]
- 22.Largy E., Marchand A., Amrane S., Gabelica V., Mergny J. L. Quadruplex turncoats: cationdependent folding and stability of quadruplex-DNA double switches. J. Am. Chem. Soc. 2016;138:2780–2792. doi: 10.1021/jacs.5b13130. [DOI] [PubMed] [Google Scholar]
- 23.Rajendran A., Endo M., Hidaka K., Tran P. L., Mergny J. L., Sugiyama H. Controlling the stoichiometry and strand polarity of a tetramolecular G-quadruplex structure by using a DNA origami frame. Nucleic Acids Res. 2013;41:8738–8747. doi: 10.1093/nar/gkt592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Kogut M., Kleist C., Czub J. Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad–a common structural unit of G-quadruplex DNA. Nucleic Acids Res. 2016;44:3020–3030. doi: 10.1093/nar/gkw160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Chung W. J., Heddi B., Schmitt E., Lim K. W., Mechulam Y., Phan A. T. Structure of a lefthanded DNA G-quadruplex. Proc. Natl. Acad. Sci. USA. 2015;112:2729–2733. doi: 10.1073/pnas.1418718112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Bugaut A., Balasubramanian S. A sequenceindependent study of the influence of short loop lengths on the stability and topology of intramolecular DNA Gquadruplexes. Biochemistry. 2008;47:689–697. doi: 10.1021/bi701873c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Reshetnikov R. V., Kopylov A. M., Golovin A. V. Classification of G-quadruplex DNA on the basis of the quadruplex twist angle and planarity of G-quartets. Acta Naturae. 2010;2:72–81. [PMC free article] [PubMed] [Google Scholar]
- 28.Kim B. G., Shek Y. L., Chalikian T. V. Polyelectrolyte effects in G-quadruplexes. Biophys. Chem. 2013;184:95–100. doi: 10.1016/j.bpc.2013.10.003. [DOI] [PubMed] [Google Scholar]
- 29.Gaynutdinov T. I., Neumann R. D., Panyutin I. G. Structural polymorphism of intramolecular quadruplex of human telomeric DNA: effect of cations, quadruplex-binding drugs and flanking sequences. Nucleic Acids Res. 2008;36:4079–4087. doi: 10.1093/nar/gkn351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Reshetnikov R. V., Sponer J., Rassokhina O. I., Kopylov A. M., Tsvetkov P. O., Makarov A. A., Golovin A. V. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process. Nucleic Acids Res. 2011;39:9789–9802. doi: 10.1093/nar/gkr639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Saintome C., Amrane S., Mergny J. L., Alberti P. The exception that confirms the rule: a higherorder telomeric G-quadruplex structure more stable in sodium than in potassium. Nucleic Acids Res. 2016;44:2926–2935. doi: 10.1093/nar/gkw003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Sket P., Virgilio A., Esposito V., Galeone A., Plavec J. Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes. Nucleic Acids Res. 2012;40:11047–11057. doi: 10.1093/nar/gks851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Podbevsek P., Sket P., Plavec J. Stacking and not solely topology of T3 loops controls rigidity and ammonium ion movement within d(G4T3G4)2 G-quadruplex. J. Am. Chem. Soc. 2008;130:14287–14293. doi: 10.1021/ja8048282. [DOI] [PubMed] [Google Scholar]
- 34.De Rache A., Mergny J. L. Assessment of selectivity of G-quadruplex ligands via an optimised FRET melting assay. Biochimie. 2015;115:194–202. doi: 10.1016/j.biochi.2015.06.002. [DOI] [PubMed] [Google Scholar]
- 35.Kim B. G., Evans H. M., Dubins D. N., Chalikian T. V. Effects of salt on the stability of a G-quadruplex from the human c-MYC promoter. Biochemistry. 2015;54:3420–3430. doi: 10.1021/acs.biochem.5b00097. [DOI] [PubMed] [Google Scholar]
- 36.Zhang D., Huang T., Lukeman P. S., Paukstelis P. J. Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad. Nucleic Acids Res. 2014;42:13422–13429. doi: 10.1093/nar/gku1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Liu W., Zhu H., Zheng B., Cheng S., Fu Y., Li W., Lau T. C., Liang H. Kinetics and mechanism of G-quadruplex formation and conformational switch in a G-quadruplex of PS2.M induced by Pb2+ Nucleic Acids Res. 2012;40:4229–4236. doi: 10.1093/nar/gkr1310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Martin-Hidalgo M., Rivera J. M. Metalloresponsive switching between hexadecameric and octameric supramolecular G-quadruplexes. Chem. Commun. (Camb.) 2011;47:12485–12487. doi: 10.1039/c1cc14965b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Gray R. D., Chaires J. B. Linkage of cation binding and folding in human telomeric quadruplex DNA. Biophys. Chem. 2011;159:205–209. doi: 10.1016/j.bpc.2011.06.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Sattin G., Artese A., Nadai M., Costa G., Parrotta L., Alcaro S., Palumbo M., Richter S. N. Conformation and stability of intramolecular telomeric Gquadruplexes: sequence effects in the loops. PLoS One. 2013;8:e84113. doi: 10.1371/journal.pone.0084113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Tippana R., Xiao W., Myong S. G-quadruplex conformation and dynamics are determined by loop length and sequence. Nucleic Acids Res. 2014;42:8106–8114. doi: 10.1093/nar/gku464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Guedin A., De Cian A., Gros J., Lacroix L., Mergny J. L. Sequence effects in single-base loops for quadruplexes. Biochimie. 2008;90:686–696. doi: 10.1016/j.biochi.2008.01.009. [DOI] [PubMed] [Google Scholar]
- 43.Do N. Q., Lim K. W., Teo M. H., Heddi B., Phan A. T. Stacking of G-quadruplexes: NMR structure of a G-rich oligonucleotide with potential anti-HIV and anticancer activity. Nucleic Acids Res. 2011;39:9448–9457. doi: 10.1093/nar/gkr539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Ogloblina A. M., Bannikova V. A., Khristich A. N., Oretskaya T. S., Yakubovskaya M. G., Dolinnaya N. G. Parallel G-quadruplexes formed by guanine-rich microsatellite repeats inhibit human topoisomerase I. Biochemistry (Moscow) 2015;80:1026–1038. doi: 10.1134/S0006297915080088. [DOI] [PubMed] [Google Scholar]
- 45.Qin Y., Hurley L. H. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie. 2008;90:1149–1171. doi: 10.1016/j.biochi.2008.02.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Kwok C. K., Sherlock M. E., Bevilacqua P. C. Effect of loop sequence and loop length on the intrinsic fluorescence of G-quadruplexes. Biochemistry. 2013;52:3019–3021. doi: 10.1021/bi400139e. [DOI] [PubMed] [Google Scholar]
- 47.Lim K. W., Amrane S., Bouaziz S., Xu W., Mu Y., Patel D. J., Luu K. N., Phan A. T. Structure of the human telomere in K+ solution: a stable basket-type Gquadruplex with only two G-tetrad layers. J. Am. Chem. Soc. 2009;131:4301–4309. doi: 10.1021/ja807503g. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Sengar A., Heddi B., Phan A. T. Formation of G-quadruplexes in poly-G sequences: structure of a propeller-type parallel-stranded G-quadruplex formed by a G15 stretch. Biochemistry. 2014;53:7718–7723. doi: 10.1021/bi500990v. [DOI] [PubMed] [Google Scholar]
- 49.Cang X., Sponer J., Cheatham T. E. 3rd. Explaining the varied glycosidic conformational, G-tract length and sequence preferences for anti-parallel Gquadruplexes. Nucleic Acids Res. 2011;39:4499–4512. doi: 10.1093/nar/gkr031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Olsen C. M., Lee H. T., Marky L. A. Unfolding thermodynamics of intramolecular G-quadruplexes: base sequence contributions of the loops. J. Phys. Chem. B. 2009;113:2587–2595. doi: 10.1021/jp806853n. [DOI] [PubMed] [Google Scholar]
- 51.Chen B., Liang J., Tian X., Liu X. Gquadruplex structure: a target for anticancer therapy and a probe for detection of potassium. Biochemistry (Moscow) 2008;73:853–861. doi: 10.1134/S0006297908080026. [DOI] [PubMed] [Google Scholar]
- 52.Dailey M. M., Miller M. C., Bates P. J., Lane A. N., Trent J. O. Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence. Nucleic Acids Res. 2010;38:4877–4888. doi: 10.1093/nar/gkq166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Borbone N., Amato J., Oliviero G., D’Atri V., Gabelica V., De Pauw E., Piccialli G., Mayol L. d(CGGTGGT) forms an octameric parallel G-quadruplex via stacking of unusual G(:C):G(:C):G(:C):G(:C) octads. Nucleic Acids Res. 2011;39:7848–7857. doi: 10.1093/nar/gkr489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.D’Atri V., Borbone N., Amato J., Gabelica V., D’Errico S., Piccialli G., Mayol L., Oliviero G. DNAbased nanostructures: the effect of the base sequence on octamer formation from d(XGGYGGT) tetramolecular Gquadruplexes. Biochimie. 2014;99:119–128. doi: 10.1016/j.biochi.2013.11.020. [DOI] [PubMed] [Google Scholar]
- 55.Kuryavyi V., Cahoon L. A., Seifert H. S., Patel D. J. RecA-binding pilE G4 sequence essential for pilin antigenic variation forms monomeric and 5′-end-stacked dimeric parallel G-quadruplexes. Structure. 2012;20:2090–2102. doi: 10.1016/j.str.2012.09.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Adrian M., Ang D. J., Lech C. J., Heddi B., Nicolas A., Phan A. T. Structure and conformational dynamics of a stacked dimeric G-quadruplex formed by the human CEB1 minisatellite. J. Am. Chem. Soc. 2014;136:6297–6305. doi: 10.1021/ja4125274. [DOI] [PubMed] [Google Scholar]
- 57.Phan A. T. Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J. 2010;277:1107–1117. doi: 10.1111/j.1742-4658.2009.07464.x. [DOI] [PubMed] [Google Scholar]
- 58.Phan A. T., Do N. Q. Engineering of interlocked DNA G-quadruplexes as a robust scaffold. Nucleic Acids Res. 2013;41:2683–2688. doi: 10.1093/nar/gks1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Todd A. K., Neidle S. Mapping the sequences of potential guanine quadruplex motifs. Nucleic Acids Res. 2011;39:4917–4927. doi: 10.1093/nar/gkr104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Yadav V. K., Abraham J. K., Mani P., Kulshrestha R., Chowdhury S. QuadBase: genome-wide database of G4 DNA-occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res. 2008;36:D381. doi: 10.1093/nar/gkm781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Kikin O., Zappala Z., D’Antonio L., Bagga P. S. GRSDB2 and GRS_UTRdb: databases of quadruplex forming G-rich sequences in pre-mRNAs and mRNAs. Nucleic Acids Res. 2008;36:D141. doi: 10.1093/nar/gkm982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Huppert J. L., Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:406–413. doi: 10.1093/nar/gkl1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Todd A. K., Neidle S. The relationship of potential G-quadruplex sequences in cis-upstream regions of the human genome to SP1-binding elements. Nucleic Acids Res. 2008;36:2700–2704. doi: 10.1093/nar/gkn078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Huppert J. L. Hunting G-quadruplexes. Biochimie. 2008;90:1140–1148. doi: 10.1016/j.biochi.2008.01.014. [DOI] [PubMed] [Google Scholar]
- 65.Maizels N., Gray L. T. The G4 genome. PLoS Genet. 2013;9:e1003468. doi: 10.1371/journal.pgen.1003468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Neidle S. Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J. 2010;277:1118–1125. doi: 10.1111/j.1742-4658.2009.07463.x. [DOI] [PubMed] [Google Scholar]
- 67.Amrane S., Adrian M., Heddi B., Serero A., Nicolas A., Mergny J. L., Phan A. T. Formation of pearl-necklace monomorphic G-quadruplexes in the human CEB25 minisatellite. J. Am. Chem. Soc. 2012;134:5807–5816. doi: 10.1021/ja208993r. [DOI] [PubMed] [Google Scholar]
- 68.Sawaya S., Bagshaw A., Buschiazzo E., Kumar P., Chowdhury S., Black M. A., Gemmell N. Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One. 2013;8:e54710. doi: 10.1371/journal.pone.0054710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Lexa M., Kejnovsky E., Steflova P., Konvalinova H., Vorlickova M., Vyskot B. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons. Nucleic Acids Res. 2014;42:968–978. doi: 10.1093/nar/gkt893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Brooks T. A., Kendrick S., Hurley L. Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J. 2010;277:3459–3469. doi: 10.1111/j.1742-4658.2010.07759.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Du Z., Zhao Y., Li N. Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription. Genome Res. 2008;18:233–241. doi: 10.1101/gr.6905408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Besnard E., Babled A., Lapasset L., Milhavet O., Parrinello H., Dantec C., Marin J. M., Lemaitre J. M. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 2012;19:837–844. doi: 10.1038/nsmb.2339. [DOI] [PubMed] [Google Scholar]
- 73.Cayrou C., Coulombe P., Puy A., Rialle S., Kaplan N., Segal E., Mechali M. New insights into replication origin characteristics in metazoans. Cell Cycle. 2012;11:658–667. doi: 10.4161/cc.11.4.19097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Katapadi V. K., Nambiar M., Raghavan S. C. Potential G-quadruplex formation at breakpoint regions of chromosomal translocations in cancer may explain their fragility. Genomics. 2012;100:72–80. doi: 10.1016/j.ygeno.2012.05.008. [DOI] [PubMed] [Google Scholar]
- 75.Mani P., Yadav V. K., Das S. K., Chowdhury S. Genome-wide analyses of recombination prone regions predict role of DNA structural motif in recombination. PLoS One. 2009;4:e4399. doi: 10.1371/journal.pone.0004399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Kuryavyi V., Patel D. J. Solution structure of a unique G-quadruplex scaffold adopted by a guanosine-rich human intronic sequence. Structure. 2010;18:73–82. doi: 10.1016/j.str.2009.10.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Zizza P., Cingolani C., Artuso S., Salvati E., Rizzo A., D’Angelo C., Porru M., Pagano B., Amato J., Randazzo A., Novellino E., Stoppacciaro A., Gilson E., Stassi G., Leonetti C., Biroccio A. Intragenic G-quadruplex structure formed in the human CD133 and its biological and translational relevance. Nucleic Acids Res. 2016;44:1579–1590. doi: 10.1093/nar/gkv1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Du Z., Zhao Y., Li N. Genome-wide colonization of gene regulatory elements by G4 DNA motifs. Nucleic Acids Res. 2009;37:6784–6798. doi: 10.1093/nar/gkp710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Dong D. W., Pereira F., Barrett S. P., Kolesar J. E., Cao K., Damas J., Yatsunyk L. A., Johnson F. B., Kaufman B. A. Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints. BMC Genomics. 2014;15:677. doi: 10.1186/1471-2164-15-677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Huppert J. L. Structure, location and interactions of G-quadruplexes. FEBS J. 2010;277:3452–3458. doi: 10.1111/j.1742-4658.2010.07758.x. [DOI] [PubMed] [Google Scholar]
- 81.Martadinata H., Phan A. T. Structure of human telomeric RNA (TERRA): stacking of two Gquadruplex blocks in K+ solution. Biochemistry. 2013;52:2176–2183. doi: 10.1021/bi301606u. [DOI] [PubMed] [Google Scholar]
- 82.Mirihana Arachchilage G., Dassanayake A. C., Basu S. A potassium ion-dependent RNA structural switch regulates human pre-miRNA 92b maturation. Chem. Biol. 2015;22:262–272. doi: 10.1016/j.chembiol.2014.12.013. [DOI] [PubMed] [Google Scholar]
- 83.Jayaraj G. G., Pandey S., Scaria V., Maiti S. Potential G-quadruplexes in the human long non-coding transcriptome. RNA Biol. 2012;9:81–86. doi: 10.4161/rna.9.1.18047. [DOI] [PubMed] [Google Scholar]
- 84.Frees S., Menendez C., Crum M., Bagga P. S. QGRS-Conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs. Hum. Genomics. 2014;8:8. doi: 10.1186/1479-7364-8-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Zybailov B. L., Sherpa M. D., Glazko G. V., Raney K. D., Glazko V. I. G4-quadruplexes and genome instability. Mol. Biol. (Moscow) 2013;47:197–204. doi: 10.1134/S0026893313020180. [DOI] [PubMed] [Google Scholar]
- 86.Zhang C., Liu H. H., Zheng K. W., Hao Y. H., Tan Z. DNA G-quadruplex formation in response to remote downstream transcription activity: long-range sensing and signal transducing in DNA double helix. Nucleic Acids Res. 2013;41:7144–7152. doi: 10.1093/nar/gkt443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Agrawal P., Lin C., Mathad R. I., Carver M., Yang D. The major G-quadruplex formed in the human BCL-2 proximal promoter adopts a parallel structure with a 13-nt loop in K+ solution. J. Am. Chem. Soc. 2014;136:1750–1753. doi: 10.1021/ja4118945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Davis L., Maizels N. G4 DNA: at risk in the genome. EMBO J. 2011;30:3878–3879. doi: 10.1038/emboj.2011.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Eddy J., Vallur A. C., Varma S., Liu H., Reinhold W. C., Pommier Y., Maizels N. G4 motifs correlate with promoter-proximal transcriptional pausing in human genes. Nucleic Acids Res. 2011;39:4975–4983. doi: 10.1093/nar/gkr079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Capra J. A., Paeschke K., Singh M., Zakian V. A. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput. Biol. 2010;6:e1000861. doi: 10.1371/journal.pcbi.1000861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Kwok C. K., Ding Y., Shahid S., Assmann S. M., Bevilacqua P. C. A stable RNA G-quadruplex within the 5′-UTR of Arabidopsis thaliana ATR mRNA inhibits translation. Biochem. J. 2015;467:91–102. doi: 10.1042/BJ20141063. [DOI] [PubMed] [Google Scholar]
- 92.Chambers V. S., Marsico G., Boutell J. M. D., Antonio M., Smith G. P., Balasubramanian S. Highthroughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015;33:877–881. doi: 10.1038/nbt.3295. [DOI] [PubMed] [Google Scholar]
- 93.Guedin A., Gros J., Alberti P., Mergny J. L. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res. 2010;38:7858–7868. doi: 10.1093/nar/gkq639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Mukundan V. T., Phan A. T. Bulges in Gquadruplexes: broadening the definition of G-quadruplexforming sequences. J. Am. Chem. Soc. 2013;135:5017–5028. doi: 10.1021/ja310251r. [DOI] [PubMed] [Google Scholar]
- 95.Beaudoin J. D., Jodoin R., Perreault J. P. New scoring system to identify RNA G-quadruplex folding. Nucleic Acids Res. 2014;42:1209–1223. doi: 10.1093/nar/gkt904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Pandey S., Agarwala P., Maiti S. Effect of loops and G-quartets on the stability of RNA G-quadruplexes. J. Phys. Chem. B. 2013;117:6896–6905. doi: 10.1021/jp401739m. [DOI] [PubMed] [Google Scholar]
- 97.Bedrat A., Lacroix L., Mergny J. L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Du X., Wojtowicz D., Bowers A. A., Levens D., Benham C. J., Przytycka T. M. The genomewide distribution of non-B DNA motifs is shaped by operon structure and suggests the transcriptional importance of non-B DNA structures in Escherichia coli. Nucleic Acids Res. 2013;41:5965–5977. doi: 10.1093/nar/gkt308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Amrane S., Kerkour A., Bedrat A., Vialet B., Andreola M. L., Mergny J. L. Topology of a DNA Gquadruplex structure formed in the HIV-1 promoter: a potential target for anti-HIV drug development. J. Am. Chem. Soc. 2014;136:5249–5252. doi: 10.1021/ja501500c. [DOI] [PubMed] [Google Scholar]
- 100.Piekna-Przybylska D., Sullivan M. A., Sharma G., Bambara R. A. U3 region in the HIV-1 genome adopts a G-quadruplex structure in its RNA and DNA sequence. Biochemistry. 2014;53:2581–2593. doi: 10.1021/bi4016692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Perrone R., Nadai M., Frasson I., Poe J. A., Butovskaya E., Smithgall T. E., Palumbo M., Palu G., Richter S. N. A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J. Med. Chem. 2013;56:6521–6530. doi: 10.1021/jm400914r. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Norseen J., Johnson F. B., Lieberman P. M. Role for G-quadruplex RNA binding by Epstein–Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J. Virol. 2009;83:10336–10346. doi: 10.1128/JVI.00747-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Murat P., Zhong J., Lekieffre L., Cowieson N. P., Clancy J. L., Preiss T., Balasubramanian S., Khanna R., Tellam J. G-quadruplexes regulate Epstein–Barr virus-encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol. 2014;10:358–364. doi: 10.1038/nchembio.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Tluckova K., Marusic M., Tothova P., Bauer L., Sket P., Plavec J., Viglasky V. Human papillomavirus G-quadruplexes. Biochemistry. 2013;52:7207–7216. doi: 10.1021/bi400897g. [DOI] [PubMed] [Google Scholar]
- 105.Musumeci D., Riccardi C., Montesarchio D. G-quadruplex forming oligonucleotides as antiHIV agents. Molecules. 2015;20:17511–17532. doi: 10.3390/molecules200917511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Vorlickova M., Kejnovska I., Sagi J., Renciuk D., Bednarova K., Motlova J., Kypr J. Circular dichroism and guanine quadruplexes. Methods. 2012;57:64–75. doi: 10.1016/j.ymeth.2012.03.011. [DOI] [PubMed] [Google Scholar]
- 107.Olsen C. M., Marky L. A. Monitoring the temperature unfolding of G-quadruplexes by UV and circular dichroism spectroscopies and calorimetry techniques. Methods Mol. Biol. 2010;608:147–158. doi: 10.1007/978-1-59745-363-9_10. [DOI] [PubMed] [Google Scholar]
- 108.Karsisiotis A. I., Hessari N. M., Novellino E., Spada G. P., Randazzo A., Webba da Silva M. Topological characterization of nucleic acid G-quadruplexes by UV absorption and circular dichroism. Angew. Chem. Int. Ed. Engl. 2011;50:10645–10648. doi: 10.1002/anie.201105193. [DOI] [PubMed] [Google Scholar]
- 109.Tran P. L., Mergny J. L., Alberti P. Stability of telomeric G-quadruplexes. Nucleic Acids Res. 2011;39:3282–3294. doi: 10.1093/nar/gkq1292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Shek Y. L., Noudeh G. D., Nazari M., Heerklotz H., Abu-Ghazalah R. M., Dubins D. N., Chalikian T. V. Folding thermodynamics of the hybrid-1 type intramolecular human telomeric G-quadruplex. Biopolymers. 2014;101:216–227. doi: 10.1002/bip.22317. [DOI] [PubMed] [Google Scholar]
- 111.Petraccone L., Spink C., Trent J. O., Garbett N. C., Mekmaysy C. S., Giancola C., Chaires J. B. Structure and stability of higher-order human telomeric quadruplexes. J. Am. Chem. Soc. 2011;133:20951–20961. doi: 10.1021/ja209192a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Russo Krauss I., Pica A., Merlino A., Mazzarella L., Sica F. Duplex-quadruplex motifs in a peculiar structural organization cooperatively contribute to thrombin binding of a DNA aptamer. Acta Crystallogr. D Biol. Crystallogr. 2013;69:2403–2411. doi: 10.1107/S0907444913022269. [DOI] [PubMed] [Google Scholar]
- 113.Sun D., Hurley L. H. The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J. Med. Chem. 2009;52:2863–2874. doi: 10.1021/jm900055s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Sun D., Guo K., Shin Y. J. Evidence of the formation of G-quadruplex structures in the promoter region of the human vascular endothelial growth factor gene. Nucleic Acids Res. 2011;39:1256–1265. doi: 10.1093/nar/gkq926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Mendoza O., Gueddouda N. M., Boule J. B., Bourdoncle A., Mergny J. L. A fluorescencebased helicase assay: application to the screening of Gquadruplex ligands. Nucleic Acids Res. 2015;43:e71. doi: 10.1093/nar/gkv193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Kreig A., Calvert J., Sanoica J., Cullum E., Tipanna R., Myong S. G-quadruplex formation in double strand DNA probed by NMM and CV fluorescence. Nucleic Acids Res. 2015;43:7961–7970. doi: 10.1093/nar/gkv749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Long X., Parks J. W., Bagshaw C. R., Stone M. D. Mechanical unfolding of human telomere Gquadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy. Nucleic Acids Res. 2013;41:2746–2755. doi: 10.1093/nar/gks1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Ray S., Bandaria J. N., Qureshi M. H., Yildiz A., Balci H. G-quadruplex formation in telomeres enhances POT1/TPP1 protection against RPA binding. Proc. Natl. Acad. Sci. USA. 2014;111:2990–2995. doi: 10.1073/pnas.1321436111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Palacky J., Vorlickova M., Kejnovska I., Mojzes P. Polymorphism of human telomeric quadruplex structure controlled by DNA concentration: a Raman study. Nucleic Acids Res. 2013;41:1005–1016. doi: 10.1093/nar/gks1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Zhang X., Xu C. X. D., Felice R., Sponer J., Islam B., Stadlbauer P., Ding Y., Mao L., Mao Z. W., Qin P. Z. Conformations of human telomeric G-quadruplex studied using a nucleotide-independent nitroxide label. Biochemistry. 2016;55:360–372. doi: 10.1021/acs.biochem.5b01189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Singh V., Azarkh M., Drescher M., Hartig J. S. Conformations of individual quadruplex units studied in the context of extended human telomeric DNA. Chem. Commun. (Camb.) 2012;48:8258–8260. doi: 10.1039/c2cc32012f. [DOI] [PubMed] [Google Scholar]
- 122.Haider S., Neidle S. Molecular modeling and simulation of G-quadruplexes and quadruplex–ligand complexes. Methods Mol. Biol. 2010;608:17–37. doi: 10.1007/978-1-59745-363-9_2. [DOI] [PubMed] [Google Scholar]
- 123.Husby J., Todd A. K., Platts J. A., Neidle S. Small-molecule G-quadruplex interactions: systematic exploration of conformational space using multiple molecular dynamics. Biopolymers. 2013;99:989–1005. doi: 10.1002/bip.22340. [DOI] [PubMed] [Google Scholar]
- 124.Islam B., Stadlbauer P., Neidle S., Haider S., Sponer J. Can we execute reliable MM-PBSA free energy computations of relative stabilities of different guanine quadruplex folds. J. Phys. Chem. B. 2016;120:2899–2912. doi: 10.1021/acs.jpcb.6b01059. [DOI] [PubMed] [Google Scholar]
- 125.Collie G. W., Parkinson G. N., Neidle S., Rosu F., De Pauw E., Gabelica V. Electrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structures. J. Am. Chem. Soc. 2010;132:9328–9334. doi: 10.1021/ja100345z. [DOI] [PubMed] [Google Scholar]
- 126.Adrian M., Heddi B., Phan A. T. NMR spectroscopy of G-quadruplexes. Methods. 2012;57:11–24. doi: 10.1016/j.ymeth.2012.05.003. [DOI] [PubMed] [Google Scholar]
- 127.Lim K. W., Ng V. C., Martin-Pintado N., Heddi B., Phan A. T. Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Res. 2013;41:10556–10562. doi: 10.1093/nar/gkt771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Lane A. N., Chaires J. B., Gray R. D., Trent J. O. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res. 2008;36:5482–5515. doi: 10.1093/nar/gkn517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Chaires J. B. Human telomeric G-quadruplex: thermodynamic and kinetic studies of telomeric quadruplex stability. FEBS J. 2010;277:1098–1106. doi: 10.1111/j.1742-4658.2009.07462.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Stegle O., Payet L., Mergny J. L., MacKay D. J., Leon J. H. Predicting and understanding the stability of G-quadruplexes. Bioinformatics. 2009;25:i374. doi: 10.1093/bioinformatics/btp210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Lane A. N. The stability of intramolecular DNA G-quadruplexes compared with other macromolecules. Biochimie. 2012;94:277–286. doi: 10.1016/j.biochi.2011.08.004. [DOI] [PubMed] [Google Scholar]
- 132.Kankia B. I. Self-dissociative primers for nucleic acid amplification and detection based on DNA quadruplexes with intrinsic fluorescence. Anal. Biochem. 2011;409:59–65. doi: 10.1016/j.ab.2010.10.011. [DOI] [PubMed] [Google Scholar]
- 133.Heddi B., Martin-Pintado N., Serimbetov Z., Kari T. M., Phan A. T. G-quadruplexes with (4n–1) guanines in the G-tetrad core: formation of a G-triad water complex and implication for small-molecule binding. Nucleic Acids Res. 2016;44:910–916. doi: 10.1093/nar/gkv1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Cerofolini L., Amato J., Giachetti A., Limongelli V., Novellino E., Parrinello M., Fragai M., Randazzo A., Luchinat C. G-triplex structure and formation propensity. Nucleic Acids Res. 2014;42:13393–13404. doi: 10.1093/nar/gku1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Virgilio A., Petraccone L., Esposito V., Citarella G., Giancola C., Galeone A. The abasic site lesions in the human telomeric sequence d[TA(G)3(T)2(A)3(G)3]: a thermodynamic point of view. Biochim. Biophys. Acta. 2012;1820:2037–2043. doi: 10.1016/j.bbagen.2012.09.011. [DOI] [PubMed] [Google Scholar]
- 136.Harkness R. W. T., Mittermaier A. K. G-register exchange dynamics in guanine quadruplexes. Nucleic Acids Res. 2016;44:3481–3494. doi: 10.1093/nar/gkw190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Mathias J., Okyere R., Lomidze L., Gvarjaladze D., Musier-Forsyth K., Kankia B. Thermal stability of quadruplex primers for highly versatile isothermal DNA amplification. Biophys. Chem. 2014;185:14–18. doi: 10.1016/j.bpc.2013.10.008. [DOI] [PubMed] [Google Scholar]
- 138.Hatzakis E., Okamoto K., Yang D. Thermodynamic stability and folding kinetics of the major G-quadruplex and its loop isomers formed in the nuclease hypersensitive element in the human c-Myc promoter: effect of loops and flanking segments on the stability of parallel-stranded intramolecular G-quadruplexes. Biochemistry. 2010;49:9152–9160. doi: 10.1021/bi100946g. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Piazza A., Adrian M., Samazan F., Heddi B., Hamon F., Serero A., Lopes J., Teulade-Fichou M. P., Phan A. T., Nicolas A. Short loop length and high thermal stability determine genomic instability induced by Gquadruplex-forming minisatellites. EMBO J. 2015;34:1718–1734. doi: 10.15252/embj.201490702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Mathad R. I., Hatzakis E., Dai J., Yang D. c-MYC promoter G-quadruplex formed at the 5′-end of NHE III1 element: insights into biological relevance and parallel-stranded G-quadruplex stability. Nucleic Acids Res. 2011;39:9023–9033. doi: 10.1093/nar/gkr612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Selvam S., Yu Z. B., Mao H. B. Exploded view of higher order G-quadruplex structures through click-chemistry assisted single-molecule mechanical unfolding. Nucleic Acids Res. 2016;44:45–55. doi: 10.1093/nar/gkv1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Kuryavyi V., Phan A. T., Patel D. J. Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter. Nucleic Acids Res. 2010;38:6757–6773. doi: 10.1093/nar/gkq558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Zhou J., Tateishi-Karimata H., Mergny J. L., Cheng M., Feng Z., Miyoshi D., Sugimoto N., Li C. Reevaluation of the stability of G-quadruplex structures under crowding conditions. Biochimie. 2016;121:204–208. doi: 10.1016/j.biochi.2015.12.012. [DOI] [PubMed] [Google Scholar]
- 144.Nagatoishi S., Isono N., Tsumoto K., Sugimoto N. Hydration is required in DNA G-quadruplex–protein binding. ChemBioChem. 2011;12:1822–1826. doi: 10.1002/cbic.201100264. [DOI] [PubMed] [Google Scholar]
- 145.Miyoshi D., Fujimoto T., Sugimoto N. Molecular crowding and hydration regulating of Gquadruplex formation. Top. Curr. Chem. 2013;330:87–110. doi: 10.1007/128_2012_335. [DOI] [PubMed] [Google Scholar]
- 146.You H., Zeng X., Xu Y., Lim C. J., Efremov A. K., Phan A. T., Yan J. Dynamics and stability of polymorphic human telomeric G-quadruplex under tension. Nucleic Acids Res. 2014;42:8789–8795. doi: 10.1093/nar/gku581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Gray R. D., Li J., Chaires J. B. Energetics and kinetics of a conformational switch in G-quadruplex DNA. J. Phys. Chem. B. 2009;113:2676–2683. doi: 10.1021/jp809578f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Buscaglia R., Gray R. D., Chaires J. B. Thermodynamic characterization of human telomere quadruplex unfolding. Biopolymers. 2013;99:1006–1018. doi: 10.1002/bip.22247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Boncina M., Lah J., Prislan I., Vesnaver G. Energetic basis of human telomeric DNA folding into Gquadruplex structures. J. Am. Chem. Soc. 2012;134:9657–9663. doi: 10.1021/ja300605n. [DOI] [PubMed] [Google Scholar]
- 150.Gray R. D., Trent J. O., Chaires J. B. Folding and unfolding pathways of the human telomeric Gquadruplex. J. Mol. Biol. 2014;426:1629–1650. doi: 10.1016/j.jmb.2014.01.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.David Wilson W., Paul A. Kinetics and structures on the molecular path to the quadruplex form of the human telomere. J. Mol. Biol. 2014;426:1625–1628. doi: 10.1016/j.jmb.2014.02.001. [DOI] [PubMed] [Google Scholar]
- 152.Li W., Hou X. M., Wang P. Y., Xi X. G., Li M. Direct measurement of sequential folding pathway and energy landscape of human telomeric G-quadruplex structures. J. Am. Chem. Soc. 2013;135:6423–6426. doi: 10.1021/ja4019176. [DOI] [PubMed] [Google Scholar]
- 153.Koirala D., Ghimire C., Bohrer C., Sannohe Y., Sugiyama H., Mao H. Long-loop G-quadruplexes are misfolded population minorities with fast transition kinetics in human telomeric sequences. J. Am. Chem. Soc. 2013;135:2235–2241. doi: 10.1021/ja309668t. [DOI] [PubMed] [Google Scholar]
- 154.Stadlbauer P., Trantirek L., Cheatham T. E. 3, Koca J., Sponer J. Triplex intermediates in folding of human telomeric quadruplexes probed by microsecondscale molecular dynamics simulations. Biochimie. 2014;105:22–35. doi: 10.1016/j.biochi.2014.07.009. [DOI] [PubMed] [Google Scholar]
- 155.Gray R. D., Chaires J. B. Kinetics and mechanism of K+- and Na+-induced folding of models of human telomeric DNA into G-quadruplex structures. Nucleic Acids Res. 2008;36:4191–4203. doi: 10.1093/nar/gkn379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Zhang A. Y., Balasubramanian S. The kinetics and folding pathways of intramolecular G-quadruplex nucleic acids. J. Am. Chem. Soc. 2012;134:19297–19308. doi: 10.1021/ja309851t. [DOI] [PubMed] [Google Scholar]
- 157.You H., Wu J., Shao F., Yan J. Stability and kinetics of c-MYC promoter G-quadruplexes studied by single-molecule manipulation. J. Am. Chem. Soc. 2015;137:2424–2427. doi: 10.1021/ja511680u. [DOI] [PubMed] [Google Scholar]
- 158.Stadlbauer P., Kuhrova P., Banas P., Koca J., Bussi G., Trantirek L., Otyepka M., Sponer J. Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations. Nucleic Acids Res. 2015;43:9626–9644. doi: 10.1093/nar/gkv994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Bessi I., Jonker H. R., Richter C., Schwalbe H. Involvement of long-lived intermediate states in the complex folding pathway of the human telomeric Gquadruplex. Angew. Chem. Int. Ed. Engl. 2015;54:8444–8448. doi: 10.1002/anie.201502286. [DOI] [PubMed] [Google Scholar]
- 160.Prislan I., Lah J., Milanic M., Vesnaver G. Kinetically governed polymorphism of d(G(4)T(4)G(3)) quadruplexes in K+ solutions. Nucleic Acids Res. 2011;39:1933–1942. doi: 10.1093/nar/gkq867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Yu Z., Gaerig V., Cui Y., Kang H., Gokhale V., Zhao Y., Hurley L. H., Mao H. Tertiary DNA structure in the single-stranded hTERT promoter fragment unfolds and refolds by parallel pathways via cooperative or sequential events. J. Am. Chem. Soc. 2012;134:5157–5164. doi: 10.1021/ja210399h. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Abraham Punnoose J., Cui Y., Koirala D., Yangyuoru P. M., Ghimire C., Shrestha P., Mao H. Interaction of G-quadruplexes in the full-length 3′ human telomeric overhang. J. Am. Chem. Soc. 2014;136:18062–18069. doi: 10.1021/ja510079u. [DOI] [PubMed] [Google Scholar]
- 163.Dhakal S., Yu Z., Konik R., Cui Y., Koirala D., Mao H. G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. Biophys. J. 2012;102:2575–2584. doi: 10.1016/j.bpj.2012.04.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Dhakal S., Cui Y., Koirala D., Ghimire C., Kushwaha S., Yu Z., Yangyuoru P. M., Mao H. Structural and mechanical properties of individual human telomeric G-quadruplexes in molecularly crowded solutions. Nucleic Acids Res. 2013;41:3915–3923. doi: 10.1093/nar/gkt038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Bergues-Pupo A. E., Arias-Gonzalez J. R., Moron M. C., Fiasconaro A., Falo F. Role of the central cations in the mechanical unfolding of DNA and RNA Gquadruplexes. Nucleic Acids Res. 2015;43:7638–7647. doi: 10.1093/nar/gkv690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166.De Messieres M., Chang J. C., Brawn-Cinani B., Porta A. Single-molecule study of G-quadruplex disruption using dynamic force spectroscopy. Phys. Rev. Lett. 2012;109:058101. doi: 10.1103/PhysRevLett.109.058101. [DOI] [PubMed] [Google Scholar]
- 167.Ghimire C., Park S., Iida K., Yangyuoru P., Otomo H., Yu Z., Nagasawa K., Sugiyama H., Mao H. Direct quantification of loop interaction and pi-pi stacking for G-quadruplex stability at the submolecular level. J. Am. Chem. Soc. 2014;136:15537–15544. doi: 10.1021/ja503585h. [DOI] [PubMed] [Google Scholar]
- 168.Long X., Stone M. D. Kinetic partitioning modulates human telomere DNA G-quadruplex structural polymorphism. PLoS One. 2013;8:e83420. doi: 10.1371/journal.pone.0083420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.Arora A., Nair D. R., Maiti S. Effect of flanking bases on quadruplex stability and Watson–Crick duplex competition. FEBS J. 2009;276:3628–3640. doi: 10.1111/j.1742-4658.2009.07082.x. [DOI] [PubMed] [Google Scholar]
- 170.Mendoza O., Elezgaray J., Mergny J. L. Kinetics of quadruplex to duplex conversion. Biochimie. 2015;118:225–233. doi: 10.1016/j.biochi.2015.09.031. [DOI] [PubMed] [Google Scholar]
- 171.Kuo M. H., Wang Z. F., Tseng T. Y., Li M. H., Hsu S. T., Lin J. J., Chang T. C. Conformational transition of a hairpin structure to G-quadruplex within the WNT1 gene promoter. J. Am. Chem. Soc. 2015;137:210–218. doi: 10.1021/ja5089327. [DOI] [PubMed] [Google Scholar]
- 172.Gupta A., Lee L. L., Roy S., Tanious F. A., Wilson W. D., Ly D. H., Armitage B. A. Strand invasion of DNA quadruplexes by PNA: comparison of homologous and complementary hybridization. ChemBioChem. 2013;14:1476–1484. doi: 10.1002/cbic.201300263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 173.Lv B., Li D., Zhang H., Lee J. Y., Li T. DNA gyrase-driven generation of a G-quadruplex from plasmid DNA. Chem. Commun. (Camb.) 2013;49:8317–8319. doi: 10.1039/c3cc44675a. [DOI] [PubMed] [Google Scholar]
- 174.Zhabinskaya D., Benham C. J. Theoretical analysis of competing conformational transitions in superhelical DNA. PLoS Comput. Biol. 2012;8:e1002484. doi: 10.1371/journal.pcbi.1002484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175.Selvam S., Koirala D., Yu Z., Mao H. Quantification of topological coupling between DNA superhelicity and G-quadruplex formation. J. Am. Chem. Soc. 2014;136:13967–13970. doi: 10.1021/ja5064394. [DOI] [PubMed] [Google Scholar]
- 176.Brazier J. A., Shah A., Brown G. D. I-motif formation in gene promoters: unusually stable formation in sequences complementary to known G-quadruplexes. Chem. Commun. (Camb.) 2012;48:10739–10741. doi: 10.1039/c2cc30863k. [DOI] [PubMed] [Google Scholar]
- 177.Kendrick S., Kang H. J., Alam M. P., Madathil M. M., Agrawal P., Gokhale V., Yang D., Hecht S. M., Hurley L. H. The dynamic character of the BCL2 promoter i-motif provides a mechanism for modulation of gene expression by compounds that bind selectively to the alternative DNA hairpin structure. J. Am. Chem. Soc. 2014;136:4161–4171. doi: 10.1021/ja410934b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178.Bhavsar-Jog Y. P., Van Dornshuld E., Brooks T. A., Tschumper G. S., Wadkins R. M. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry. 2014;53:1586–1594. doi: 10.1021/bi401523b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179.Reilly S. M., Morgan R. K., Brooks T. A., Wadkins R. M. Effect of interior loop length on the thermal stability and pKa of i-motif DNA. Biochemistry. 2015;54:1364–1370. doi: 10.1021/bi5014722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 180.Konig S. L., Huppert J. L., Sigel R. K., Evans A. C. Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences. Nucleic Acids Res. 2013;41:7453–7461. doi: 10.1093/nar/gkt476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181.Rajendran A., Nakano S., Sugimoto N. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem. Commun. (Camb.) 2010;46:1299–1301. doi: 10.1039/b922050j. [DOI] [PubMed] [Google Scholar]
- 182.Cui J., Waltman P., Le V. H., Lewis E. A. The effect of molecular crowding on the stability of human c-MYC promoter sequence i-motif at neutral pH. Molecules. 2013;18:12751–12767. doi: 10.3390/molecules181012751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Cui Y., Kong D., Ghimire C., Xu C., Mao H. Mutually exclusive formation of G-quadruplex and i-motif is a general phenomenon governed by steric hindrance in duplex DNA. Biochemistry. 2016;55:2291–2299. doi: 10.1021/acs.biochem.6b00016. [DOI] [PubMed] [Google Scholar]
- 184.Kang H. J., Kendrick S., Hecht S. M., Hurley L. H. The transcriptional complex between the BCL2 imotif and hnRNP LL is a molecular switch for control of gene expression that can be modulated by small molecules. J. Am. Chem. Soc. 2014;136:4172–4185. doi: 10.1021/ja4109352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.Lim K. W., Phan A. T. Structural basis of DNA quadruplex-duplex junction formation. Angew. Chem. Int. Ed. Engl. 2013;52:8566–8569. doi: 10.1002/anie.201302995. [DOI] [PubMed] [Google Scholar]
- 186.Lim K. W., Khong Z. J., Phan A. T. Thermal stability of DNA quadruplex-duplex hybrids. Biochemistry. 2014;53:247–257. doi: 10.1021/bi401161a. [DOI] [PubMed] [Google Scholar]
- 187.Lim K. W., Nguyen T. Q., Phan A. T. Joining of multiple duplex stems at a single quadruplex loop. J. Am. Chem. Soc. 2014;136:17969–17973. doi: 10.1021/ja5078816. [DOI] [PubMed] [Google Scholar]
- 188.Lim K. W., Jenjaroenpun P., Low Z. J., Khong Z. J., Ng Y. S., Kuznetsov V. A., Phan A. T. Duplex stem-loop-containing quadruplex motifs in the human genome: a combined genomic and structural study. Nucleic Acids Res. 2015;43:5630–5646. doi: 10.1093/nar/gkv355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189.Spiridonova V. A., Barinova K. V., Glinkina K. A., Melnichuk A. V., Gainutdynov A. A., Safenkova I. V., Dzantiev B. B. A family of DNA aptamers with varied duplex region length that forms complexes with thrombin and prothrombin. FEBS Lett. 2015;589:2043–2049. doi: 10.1016/j.febslet.2015.06.020. [DOI] [PubMed] [Google Scholar]
- 190.Dolinnaya N. G., Yuminova A. V., Spiridonova V. A., Arutyunyan A. M., Kopylov A. M. Coexistence of G-quadruplex and duplex domains within the secondary structure of 31-mer DNA thrombin-binding aptamer. J. Biomol. Struct. Dyn. 2012;30:524–531. doi: 10.1080/07391102.2012.687518. [DOI] [PubMed] [Google Scholar]
- 191.Yu H., Gu X., Nakano S., Miyoshi D., Sugimoto N. Beads-on-a-string structure of long telomeric DNAs under molecular crowding conditions. J. Am. Chem. Soc. 2012;134:20060–20069. doi: 10.1021/ja305384c. [DOI] [PubMed] [Google Scholar]
- 192.Martadinata H., Heddi B., Lim K. W., Phan A. T. Structure of long human telomeric RNA (TERRA): G-quadruplexes formed by four and eight UUAGGG repeats are stable building blocks. Biochemistry. 2011;50:6455–6461. doi: 10.1021/bi200569f. [DOI] [PubMed] [Google Scholar]
- 193.Bauer L., Tluckova K., Tohova P., Viglasky V. G-quadruplex motifs arranged in tandem occurring in telomeric repeats and the insulin-linked polymorphic region. Biochemistry. 2011;50:7484–7492. doi: 10.1021/bi2003235. [DOI] [PubMed] [Google Scholar]
- 194.Hansel R., Lohr F., Trantirek L., Dotsch V. High-resolution insight into G-overhang architecture. J. Am. Chem. Soc. 2013;135:2816–2824. doi: 10.1021/ja312403b. [DOI] [PubMed] [Google Scholar]
- 195.Selvam S., Yu Z., Mao H. Exploded view of higher order G-quadruplex structures through clickchemistry assisted single-molecule mechanical unfolding. Nucleic Acids Res. 2016;44:45–55. doi: 10.1093/nar/gkv1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 196.Kankia B., Gvarjaladze D., Rabe A., Lomidze L., Metreveli N., Musier-Forsyth K. Stable domain assembly of a monomolecular DNA quadruplex: implications for DNA-based nanoswitches. Biophys. J. 2016;110:2169–2175. doi: 10.1016/j.bpj.2016.04.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 197.Wang H., Nora G. J., Ghodke H., Opresko P. L. Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-quadruplex unfolding. J. Biol. Chem. 2011;286:7479–7489. doi: 10.1074/jbc.M110.205641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Rajendran A., Endo M., Hidaka K., Sugiyama H. Direct and single-molecule visualization of the solution-state structures of G-hairpin and G-triplex intermediates. Angew. Chem. Int. Ed. Engl. 2014;53:4107–4112. doi: 10.1002/anie.201308903. [DOI] [PubMed] [Google Scholar]
- 199.Payet L., Huppert J. L. Stability and structure of long intramolecular G-quadruplexes. Biochemistry. 2012;51:3154–3161. doi: 10.1021/bi201750g. [DOI] [PubMed] [Google Scholar]
- 200.Chen Y., Agrawal P., Brown R. V., Hatzakis E., Hurley L., Yang D. The major G-quadruplex formed in the human platelet-derived growth factor receptor beta promoter adopts a novel broken-strand structure in K+ solution. J. Am. Chem. Soc. 2012;134:13220–13223. doi: 10.1021/ja305764d. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 201.Bugaut A., Alberti P. Understanding the stability of DNA G-quadruplex units in long human telomeric strands. Biochimie. 2015;113:125–133. doi: 10.1016/j.biochi.2015.04.003. [DOI] [PubMed] [Google Scholar]
- 202.Vy Thi Le T., Han S., Chae J., Park H. J. Gquadruplex binding ligands: from naturally occurring to rationally designed molecules. Curr. Pharm. Des. 2012;18:1948–1972. doi: 10.2174/138161212799958431. [DOI] [PubMed] [Google Scholar]
- 203.Rodriguez R., Miller K. M., Forment J. V., Bradshaw C. R., Nikan M., Britton S., Oelschlaegel T., Xhemalce B., Balasubramanian S., Jackson S. P. Smallmolecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 2012;8:301–310. doi: 10.1038/nchembio.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 204.Rizzo A., Salvati E., Biroccio A. Methods of studying telomere damage induced by quadruplex–ligand complexes. Methods. 2012;57:93–99. doi: 10.1016/j.ymeth.2012.02.010. [DOI] [PubMed] [Google Scholar]
- 205.Muller S., Kumari S., Rodriguez R., Balasubramanian S. Small-molecule-mediated Gquadruplex isolation from human cells. Nat. Chem. 2010;2:1095–1098. doi: 10.1038/nchem.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 206.Kwok C. K., Balasubramanian S. Targeted detection of G-quadruplexes in cellular RNAs. Angew. Chem. Int. Ed. Engl. 2015;54:6751–6754. doi: 10.1002/anie.201500891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 207.Largy E., Granzhan A., Hamon F., Verga D., Teulade-Fichou M. P. Visualizing the quadruplex: from fluorescent ligands to light-up probes. Top. Curr. Chem. 2013;330:111–177. doi: 10.1007/128_2012_346. [DOI] [PubMed] [Google Scholar]
- 208.Monchaud D., Teulade-Fichou M. P. A hitchhiker’s guide to G-quadruplex ligands. Org. Biomol. Chem. 2008;6:627–636. doi: 10.1039/B714772B. [DOI] [PubMed] [Google Scholar]
- 209.Di Leva F. S., Novellino E., Cavalli A., Parrinello M., Limongelli V. Mechanistic insight into ligand binding to G-quadruplex DNA. Nucleic Acids Res. 2014;42:5447–5455. doi: 10.1093/nar/gku247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 210.Ou T. M., Lu Y. J., Tan J. H., Huang Z. S., Wong K. Y., Gu L. Q. G-quadruplexes: targets in anticancer drug design. ChemMedChem. 2008;3:690–713. doi: 10.1002/cmdc.200700300. [DOI] [PubMed] [Google Scholar]
- 211.Il’inskii N. S., Varizhuk A. M., Beniaminov A. D., Puzanov M. A., Shchelkina A. K., Kaliuzhnyi D. N. G-quadruplex ligands: mechanisms of anticancer action and target binding. Mol. Biol. (Moscow) 2014;48:891–907. [PubMed] [Google Scholar]
- 212.Douarre C., Mergui X., Sidibe A., Gomez D., Alberti P., Mailliet P., Trentesaux C., Riou J. F. DNA damage signaling induced by the G-quadruplex lig- and 12459 is modulated by PPM1D/WIP1 phosphatase. Nucleic Acids Res. 2013;41:3588–3599. doi: 10.1093/nar/gkt073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 213.Piazza A., Boule J. B., Lopes J., Mingo K., Largy E., Teulade-Fichou M. P., Nicolas A. Genetic instability triggered by G-quadruplex interacting PhenDC compounds in Saccharomyces cerevisiae. Nucleic Acids Res. 2010;38:4337–4348. doi: 10.1093/nar/gkq136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 214.Chung W. J., Heddi B., Tera M., Iida K., Nagasawa K., Phan A. T. Solution structure of an intramolecular (3 + 1) human telomeric G-quadruplex bound to a telomestatin derivative. J. Am. Chem. Soc. 2013;135:13495–13501. doi: 10.1021/ja405843r. [DOI] [PubMed] [Google Scholar]
- 215.Bazzicalupi C., Ferraroni M., Bilia A. R., Scheggi F., Gratteri P. The crystal structure of human telomeric DNA complexed with berberine: an interesting case of stacked ligand to G-tetrad ratio higher than 1: 1. Nucleic Acids Res. 2013;41:632–638. doi: 10.1093/nar/gks1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 216.Clark G. R., Pytel P. D., Squire C. J. The high-resolution crystal structure of a parallel intermolecular DNA G-4 quadruplex/drug complex employing syn glycosyl linkages. Nucleic Acids Res. 2012;40:5731–5738. doi: 10.1093/nar/gks193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Lavrado J., Borralho P. M., Ohnmacht S. A., Castro R. E., Rodrigues C. M., Moreira R., dos Santos D. J., Neidle S., Paulo A. Synthesis, G-quadruplex stabilization, docking studies, and effect on cancer cells of indolo[3,2-b]quinolines with one, two, or three basic side chains. ChemMedChem. 2013;8:1648–1661. doi: 10.1002/cmdc.201300288. [DOI] [PubMed] [Google Scholar]
- 218.Koirala D., Dhakal S., Ashbridge B., Sannohe Y., Rodriguez R., Sugiyama H., Balasubramanian S., Mao H. A single-molecule platform for investigation of interactions between G-quadruplexes and smallmolecule ligands. Nat. Chem. 2011;3:782–787. doi: 10.1038/nchem.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 219.Jain A. K., Bhattacharya S. Interaction of Gquadruplexes with nonintercalating duplex-DNA minor groove binding ligands. Bioconjug. Chem. 2011;22:2355–2368. doi: 10.1021/bc200268a. [DOI] [PubMed] [Google Scholar]
- 220.Hamon F., Largy E., Guedin-Beaurepaire A., RouchonDagois M., Sidibe A., Monchaud D., Mergny J. L., Riou J. F., Nguyen C. H., Teulade-Fichou M. P. An acyclic oligoheteroaryle that discriminates strongly between diverse G-quadruplex topologies. Angew. Chem. Int. Ed. Engl. 2011;50:8745–8749. doi: 10.1002/anie.201103422. [DOI] [PubMed] [Google Scholar]
- 221.Sabharwal N. C., Savikhin V., Turek-Herman J. R., Nicoludis J. M., Szalai V. A., Yatsunyk L. A. N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes. FEBS J. 2014;281:1726–1737. doi: 10.1111/febs.12734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 222.Dhamodharan V., Harikrishna S., Bhasikuttan A. C., Pradeepkumar P. I. Topology specific stabilization of promoter over telomeric G-quadruplex DNAs by bisbenzimidazole carboxamide derivatives. ACS Chem. Biol. 2015;10:821–833. doi: 10.1021/cb5008597. [DOI] [PubMed] [Google Scholar]
- 223.Wang J., Chen Y., Ren J., Zhao C., Qu X. G-Quadruplex binding enantiomers show chiral selective interactions with human telomere. Nucleic Acids Res. 2014;42:3792–3802. doi: 10.1093/nar/gkt1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 224.Yu Q., Liu Y., Wang C., Sun D., Yang X., Liu Y., Liu J. Chiral ruthenium(II) polypyridyl complexes: stabilization of G-quadruplex DNA, inhibition of telomerase activity and cellular uptake. PLoS One. 2012;7:e50902. doi: 10.1371/journal.pone.0050902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 225.Zhao A., Zhao C., Ren J., Qu X. Enantioselective targeting left-handed Z-G-quadruplex. Chem. Commun. (Camb.) 2015;52:1365–1368. doi: 10.1039/C5CC08401F. [DOI] [PubMed] [Google Scholar]
- 226.Boncina M., Podlipnik C., Piantanida I., Eilmes J., Teulade-Fichou M. P., Vesnaver G., Lah J. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes. Nucleic Acids Res. 2015;43:10376–10386. doi: 10.1093/nar/gkv1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 227.Waller Z. A., Howell L. A., Macdonald C. J., O’Connell M. A., Searcey M. Identification and characterisation of a G-quadruplex forming sequence in the promoter region of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) Biochem. Biophys. Res. Commun. 2014;447:128–132. doi: 10.1016/j.bbrc.2014.03.117. [DOI] [PubMed] [Google Scholar]
- 228.Wang Z. F., Li M. H., Chen W. W., Hsu S. T., Chang T. C. A novel transition pathway of ligandinduced topological conversion from hybrid forms to parallel forms of human telomeric G-quadruplexes. Nucleic Acids Res. 2016;44:3958–3968. doi: 10.1093/nar/gkw145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 229.McLuckie K. I., Waller Z. A., Sanders D. A., Alves D., Rodriguez R., Dash J., McKenzie G. J., Venkitaraman A. R., Balasubramanian S. G-quadruplexbinding benzo[a]phenoxazines down-regulate c-KIT expression in human gastric carcinoma cells. J. Am. Chem. Soc. 2011;133:2658–2663. doi: 10.1021/ja109474c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 230.Alzeer J., Luedtke N. W. pH-mediated fluorescence and G-quadruplex binding of amido phthalocyanines. Biochemistry. 2010;49:4339–4348. doi: 10.1021/bi9020583. [DOI] [PubMed] [Google Scholar]
- 231.Lin S., He B., Yang C., Leung C. H., Mergny J. L., Ma D. L. Luminescence switch-on assay of interferon-gamma using a G-quadruplex-selective iridium(III) complex. Chem. Commun. (Camb.) 2015;51:16033–16036. doi: 10.1039/C5CC06655G. [DOI] [PubMed] [Google Scholar]
- 232.Guo Y., Zhou L., Xu L., Zhou X., Hu J., Pei R. Multiple types of logic gates based on a single Gquadruplex DNA strand. Sci. Rep. 2014;4:7315. doi: 10.1038/srep07315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 233.Gabelica V., Maeda R., Fujimoto T., Yaku H., Murashima T., Sugimoto N., Miyoshi D. Multiple and cooperative binding of fluorescence light-up probe thioflavin T with human telomere DNA G-quadruplex. Biochemistry. 2013;52:5620–5628. doi: 10.1021/bi4006072. [DOI] [PubMed] [Google Scholar]
- 234.Doria F., Nadai M., Folini M. D., Antonio M., Germani L., Percivalle C., Sissi C., Zaffaroni N., Alcaro S., Artese A., Richter S. N., Freccero M. Hybrid ligand-alkylating agents targeting telomeric Gquadruplex structures. Org. Biomol. Chem. 2012;10:2798–2806. doi: 10.1039/c2ob06816h. [DOI] [PubMed] [Google Scholar]
- 235.Di Antonio M., Biffi G., Mariani A., Raiber E. A., Rodriguez R., Balasubramanian S. Selective RNA versus DNA G-quadruplex targeting by in situ click chemistry. Angew. Chem. Int. Ed. Engl. 2012;51:11073–11078. doi: 10.1002/anie.201206281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 236.Morris M. J., Wingate K. L., Silwal J., Leeper T. C., Basu S. The porphyrin TmPyP4 unfolds the extremely stable G-quadruplex in MT3-MMP mRNA and alleviates its repressive effect to enhance translation in eukaryotic cells. Nucleic Acids Res. 2012;40:4137–4145. doi: 10.1093/nar/gkr1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 237.Faudale M., Cogoi S., Xodo L. E. Photoactivated cationic alkyl-substituted porphyrin binding to g4-RNA in the 5′-UTR of KRAS oncogene represses translation. Chem. Commun. (Camb.) 2012;48:874–876. doi: 10.1039/C1CC15850C. [DOI] [PubMed] [Google Scholar]
- 238.Alcaro S., Costa G., Distinto S., Moraca F., Ortuso F., Parrotta L., Artese A. The polymorphisms of DNA G-quadruplex investigated by docking experiments with telomestatin enantiomers. Curr. Pharm. Des. 2012;18:1873–1879. doi: 10.2174/138161212799958495. [DOI] [PubMed] [Google Scholar]
- 239.Li Q., Xiang J. F., Yang Q. F., Sun H. X., Guan A. J., Tang Y. L. G4LDB: a database for discovering and studying G-quadruplex ligands. Nucleic Acids Res. 2013;41:D1115. doi: 10.1093/nar/gks1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 240.Le D. D. D., Antonio M., Chan L. K., Balasubramanian S. G-quadruplex ligands exhibit differential G-tetrad selectivity. Chem. Commun. (Camb.) 2015;51:8048–8050. doi: 10.1039/C5CC02252E. [DOI] [PubMed] [Google Scholar]
- 241.Kaluzhny D. N., Mamaeva O. K., Beniaminov A. D., Shchyolkina A. K., Livshits M. A. The thermodynamics of binding of low-molecular-weight ligands at extreme tetrads of telomeric G-quadruplexes. Biophysics. 2016;61:28–33. doi: 10.1134/S0006350916010103. [DOI] [Google Scholar]
- 242.Gai W., Yang Q., Xiang J., Jiang W., Li Q., Sun H., Guan A., Shang Q., Zhang H., Tang Y. A dual-site simultaneous binding mode in the interaction between parallel-stranded G-quadruplex [d(TGGGGT)]4 and cyanine dye 2,2′-diethyl-9-methyl-selenacarbocyanine bromide. Nucleic Acids Res. 2013;41:2709–2722. doi: 10.1093/nar/gks1328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 243.Li Q., Xiang J., Li X., Chen L., Xu X., Tang Y., Zhou Q., Li L., Zhang H., Sun H., Guan A., Yang Q., Yang S., Xu G. Stabilizing parallel G-quadruplex DNA by a new class of ligands: two non-planar alkaloids through interaction in lateral grooves. Biochimie. 2009;91:811–819. doi: 10.1016/j.biochi.2009.03.007. [DOI] [PubMed] [Google Scholar]
- 244.Giancola C., Pagano B. Energetics of ligand binding to G-quadruplexes. Top. Curr. Chem. 2013;330:211–242. doi: 10.1007/128_2012_347. [DOI] [PubMed] [Google Scholar]
- 245.Kaluzhny D., Ilyinsky N., Shchekotikhin A., Sinkevich Y., Tsvetkov P. O., Tsvetkov V., Veselovsky A., Livshits M., Borisova O., Shtil A., Shchyolkina A. Disordering of human telomeric G-quadruplex with novel antiproliferative anthrathiophenedione. PLoS One. 2011;6:e27151. doi: 10.1371/journal.pone.0027151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 246.McLuckie K. I. D., Antonio M., Zecchini H., Xian J., Caldas C., Krippendorff B. F., Tannahill D., Lowe C., Balasubramanian S. G-quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J. Am. Chem. Soc. 2013;35:9640–9643. doi: 10.1021/ja404868t. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 247.Campbell N. H., Patel M., Tofa A. B., Ghosh R., Parkinson G. N., Neidle S. Selectivity in lig- and recognition of G-quadruplex loops. Biochemistry. 2009;48:1675–1680. doi: 10.1021/bi802233v. [DOI] [PubMed] [Google Scholar]
- 248.Luo D., Mu Y. All-atomic simulations on human telomeric G-quadruplex DNA binding with thioflavin T. J. Phys. Chem. B. 2015;119:4955–4967. doi: 10.1021/acs.jpcb.5b01107. [DOI] [PubMed] [Google Scholar]
- 249.Cummaro A., Fotticchia I., Franceschin M., Giancola C., Petraccone L. Binding properties of human telomeric quadruplex multimers: a new route for drug design. Biochimie. 2011;93:1392–1400. doi: 10.1016/j.biochi.2011.04.005. [DOI] [PubMed] [Google Scholar]
- 250.Petraccone L. Higher-order quadruplex structures. Top. Curr. Chem. 2013;330:23–46. doi: 10.1007/128_2012_350. [DOI] [PubMed] [Google Scholar]
- 251.Zhu L. N., Wu B., Kong D. M. Specific recognition and stabilization of monomeric and multimeric G-quadruplexes by cationic porphyrin TMPipEOPP under molecular crowding conditions. Nucleic Acids Res. 2013;41:4324–4335. doi: 10.1093/nar/gkt103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 252.Zhao C., Wu L., Ren J., Xu Y., Qu X. Targeting human telomeric higher-order DNA: dimeric G-quadruplex units serve as preferred binding site. J. Am. Chem. Soc. 2013;135:18786–18789. doi: 10.1021/ja410723r. [DOI] [PubMed] [Google Scholar]
- 253.Georgiades S. N. A., Karim N. H., Suntharalingam K., Vilar R. Interaction of metal complexes with G-quadruplex DNA. Angew. Chem. Int. Ed. Engl. 2010;49:4020–4034. doi: 10.1002/anie.200906363. [DOI] [PubMed] [Google Scholar]
- 254.Ralph S. F. Quadruplex DNA: a promising drug target for the medicinal inorganic chemist. Curr. Top. Med. Chem. 2011;11:572–590. doi: 10.2174/156802611794785208. [DOI] [PubMed] [Google Scholar]
- 255.Zheng K. W., Zhang D., Zhang L. X., Hao Y. H., Zhou X., Tan Z. Dissecting the strand folding orientation and formation of G-quadruplexes in single- and double-stranded nucleic acids by ligand-induced photocleavage footprinting. J. Am. Chem. Soc. 2011;133:1475–1483. doi: 10.1021/ja108972e. [DOI] [PubMed] [Google Scholar]
- 256.Di Antonio M., Rodriguez R., Balasubramanian S. Experimental approaches to identify cellular Gquadruplex structures and functions. Methods. 2012;57:84–92. doi: 10.1016/j.ymeth.2012.01.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 257.Di Antonio M., Doria F., Richter S. N., Bertipaglia C., Mella M., Sissi C., Palumbo M., Freccero M. Quinone methides tethered to naphthalene diimides as selective G-quadruplex alkylating agents. J. Am. Chem. Soc. 2009;131:13132–13141. doi: 10.1021/ja904876q. [DOI] [PubMed] [Google Scholar]
- 258.Hampel S. M., Sidibe A., Gunaratnam M., Riou J. F., Neidle S. Tetrasubstituted naphthalene diimide ligands with selectivity for telomeric G-quadruplexes and cancer cells. Bioorg. Med. Chem. Lett. 2010;20:6459–6463. doi: 10.1016/j.bmcl.2010.09.066. [DOI] [PubMed] [Google Scholar]
- 259.Tseng T. Y., Wang Z. F., Chien C. H., Chang T. C. In-cell optical imaging of exogenous G-quadruplex DNA by fluorogenic ligands. Nucleic Acids Res. 2013;41:10605–10618. doi: 10.1093/nar/gkt814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 260.Haudecoeur R., Stefan L., Denat F., Monchaud D. A model of smart G-quadruplex ligand. J. Am. Chem. Soc. 2013;135:550–553. doi: 10.1021/ja310056y. [DOI] [PubMed] [Google Scholar]
- 261.Bare G. A., Liu B., Sherman J. C. Synthesis of a single G-quartet platform in water. J. Am. Chem. Soc. 2013;135:11985–11989. doi: 10.1021/ja405100z. [DOI] [PubMed] [Google Scholar]
- 262.Laguerre A., Stefan L., Larrouy M., Genest D., Novotna J., Pirrotta M., Monchaud D. A twice-as-smart synthetic G-quartet: PyroTASQ is both a smart quadruplex ligand and a smart fluorescent probe. J. Am. Chem. Soc. 2014;136:12406–12414. doi: 10.1021/ja506331x. [DOI] [PubMed] [Google Scholar]
- 263.Laguerre A., Hukezalie K., Winckler P., Katranji F., Chanteloup G., Pirrotta M., Perrier-Cornet J. M., Wong J. M., Monchaud D. Visualization of RNAquadruplexes in live cells. J. Am. Chem. Soc. 2015;137:8521–8525. doi: 10.1021/jacs.5b03413. [DOI] [PubMed] [Google Scholar]
- 264.Sissi C., Gatto B., Palumbo M. The evolving world of protein-G-quadruplex recognition: a medicinal chemist’s perspective. Biochimie. 2011;93:1219–1230. doi: 10.1016/j.biochi.2011.04.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 265.De Cian A., Lacroix L., Douarre C., Temime-Smaali N., Trentesaux C., Riou J. F., Mergny J. L. Targeting telomeres and telomerase. Biochimie. 2008;90:131–155. doi: 10.1016/j.biochi.2007.07.011. [DOI] [PubMed] [Google Scholar]
- 266.Bochman M. L., Sabouri N., Zakian V. A. Unwinding the functions of the Pif1 family helicases. DNA Repair (Amst.) 2010;9:237–249. doi: 10.1016/j.dnarep.2010.01.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 267.Biffi G., Tannahill D., Balasubramanian S. An intramolecular G-quadruplex structure is required for binding of telomeric repeat-containing RNA to the telomeric protein TRF2. J. Am. Chem. Soc. 2012;134:11974–11976. doi: 10.1021/ja305734x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 268.Chakraborty P., Grosse F. Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair (Amst.) 2011;10:654–665. doi: 10.1016/j.dnarep.2011.04.013. [DOI] [PubMed] [Google Scholar]
- 269.Gonzalez V., Guo K., Hurley L., Sun D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J. Biol. Chem. 2009;284:23622–23635. doi: 10.1074/jbc.M109.018028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 270.Fan G., Lin Y. X., Yang L., Gao F. P., Zhao Y. X., Qiao Z. Y., Zhao Q., Fan Y. S., Chen Z., Wang H. Co-self-assembled nanoaggregates of BODIPY amphiphiles for dual colour imaging of live cells. Chem. Commun. (Camb.) 2015;51:12447–12450. doi: 10.1039/C5CC04757A. [DOI] [PubMed] [Google Scholar]
- 271.Von Hacht A., Seifert O., Menger M., Schutze T., Arora A., Konthur Z., Neubauer P., Wagner A., Weise C., Kurreck J. Identification and characterization of RNA guanine-quadruplex binding proteins. Nucleic Acids Res. 2014;42:6630–6644. doi: 10.1093/nar/gku290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 272.Chiarella S., De Cola A., Scaglione G. L., Carletti E., Graziano V., Barcaroli D. L., Sterzo C. D., Matteo A. D., Ilio C., Falini B., Arcovito A., De Laurenzi V., Federici L. Nucleophosmin mutations alter its nucleolar localization by impairing G-quadruplex binding at ribosomal DNA. Nucleic Acids Res. 2013;41:3228–3239. doi: 10.1093/nar/gkt001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 273.Cogoi S., Shchekotikhin A. E., Xodo L. E. HRAS is silenced by two neighboring G-quadruplexes and activated by MAZ, a zinc-finger transcription factor with DNA unfolding property. Nucleic Acids Res. 2014;42:8379–8388. doi: 10.1093/nar/gku574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 274.Raiber E. A., Kranaster R., Lam E., Nikan M., Balasubramanian S. A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res. 2012;40:1499–1508. doi: 10.1093/nar/gkr882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 275.Wolfe A. L., Singh K., Zhong Y., Drewe P., Rajasekhar V. K., Sanghvi V. R., Mavrakis K. J., Jiang M., Roderick J. E., Van der Meulen J., Schatz J. H., Rodrigo C. M., Zhao C., Rondou P., De Stanchina E., Teruya-Feldstein J., Kelliher M. A., Speleman F., Porco J. A., Jr, Pelletier J., Ratsch G., Wendel H. G. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature. 2014;513:65–70. doi: 10.1038/nature13485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 276.Tosoni E., Frasson I., Scalabrin M., Perrone R., Butovskaya E., Nadai M., Palu G., Fabris D., Richter S. N. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res. 2015;43:8884–8897. doi: 10.1093/nar/gkv897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 277.Brosh R. M. Jr. DNA helicases involved in DNA repair and their roles in cancer. Nat. Rev. Cancer. 2013;13:542–558. doi: 10.1038/nrc3560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 278.Wickramasinghe C. M., Arzouk H., Frey A., Maiter A., Sale J. E. Contributions of the specialised DNA polymerases to replication of structured DNA. DNA Repair (Amst.) 2015;29:83–90. doi: 10.1016/j.dnarep.2015.01.004. [DOI] [PubMed] [Google Scholar]
- 279.Eddy S., Maddukuri L., Ketkar A., Zafar M. K., Henninger E. E., Pursell Z. F., Eoff R. L. Evidence for the kinetic partitioning of polymerase activity on G-quadruplex DNA. Biochemistry. 2015;54:3218–3230. doi: 10.1021/acs.biochem.5b00060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 280.Li Q. J., Tong X. J., Duan Y. M., Zhou J. Q. Characterization of the intramolecular G-quadruplex promoting activity of Est1. FEBS Lett. 2013;587:659–665. doi: 10.1016/j.febslet.2013.01.024. [DOI] [PubMed] [Google Scholar]
- 281.Paeschke K., Juranek S., Rhodes D., Lipps H. J. Cell cycle-dependent regulation of telomere tethering in the nucleus. Chromosome Res. 2008;16:721–728. doi: 10.1007/s10577-008-1222-x. [DOI] [PubMed] [Google Scholar]
- 282.Paeschke K., Bochman M. L., Garcia P. D., Cejka P., Friedman K. L., Kowalczykowski S. C., Zakian V. A. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature. 2013;497:458–462. doi: 10.1038/nature12149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 283.Gray L. T., Vallur A. C., Eddy J., Maizels N. G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat. Chem. Biol. 2014;10:313–318. doi: 10.1038/nchembio.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 284.Kang H. J., Le T. V., Kim K., Hur J., Kim K. K., Park H. J. Novel interaction of the Z-DNA binding domain of human ADAR1 with the oncogenic c-Myc promoter G-quadruplex. J. Mol. Biol. 2014;426:2594–2604. doi: 10.1016/j.jmb.2014.05.001. [DOI] [PubMed] [Google Scholar]
- 285.Phan A. T., Kuryavyi V., Darnell J. C., Serganov A., Majumdar A., Ilin S., Raslin T., Polonskaia A., Chen C., Clain D., Darnell R. B., Patel D. J. Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat. Struct. Mol. Biol. 2011;18:796–804. doi: 10.1038/nsmb.2064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 286.Gallo A. L., Sterzo C., Mori M. D., Matteo A., Bertini I., Banci L., Brunori M., Federici L. Structure of nucleophosmin DNA-binding domain and analysis of its complex with a G-quadruplex sequence from the c-MYC promoter. J. Biol. Chem. 2012;287:26539–26548. doi: 10.1074/jbc.M112.371013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 287.Hayashi T., Oshima H., Mashima T., Nagata T., Katahira M., Kinoshita M. Binding of an RNA aptamer and a partial peptide of a prion protein: crucial importance of water entropy in molecular recognition. Nucleic Acids Res. 2014;42:6861–6875. doi: 10.1093/nar/gku382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 288.Heddi B., Cheong V. V., Martadinata H., Phan A. T. Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: solution structure of a peptide–quadruplex complex. Proc. Natl. Acad. Sci. USA. 2015;112:9608–9613. doi: 10.1073/pnas.1422605112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 289.Vasilyev N., Polonskaia A., Darnell J. C., Darnell R. B., Patel D. J., Serganov A. Crystal structure reveals specific recognition of a G-quadruplex RNA by a beta-turn in the RGG motif of FMRP. Proc. Natl. Acad. Sci. USA. 2015;112:E5391. doi: 10.1073/pnas.1515737112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 290.Takahama K., Oyoshi T. Specific binding of modified RGG domain in TLS/FUS to G-quadruplex RNA: tyrosines in RGG domain recognize 2′-OH of the riboses of loops in G-quadruplex. J. Am. Chem. Soc. 2013;135:18016–18019. doi: 10.1021/ja4086929. [DOI] [PubMed] [Google Scholar]
- 291.Boyer A. S., Grgurevic S., Cazaux C., Hoffmann J. S. The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity. J. Mol. Biol. 2013;425:4767–4781. doi: 10.1016/j.jmb.2013.09.022. [DOI] [PubMed] [Google Scholar]
- 292.Haeusler A. R., Donnelly C. J., Periz G., Simko E. A., Shaw P. G., Kim M. S., Maragakis N. J., Troncoso J. C., Pandey A., Sattler R., Rothstein J. D., Wang J. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature. 2014;507:195–200. doi: 10.1038/nature13124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 293.Ivanov P., O’Day E., Emara M. M., Wagner G., Lieberman J., Anderson P. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc. Natl. Acad. Sci. USA. 2014;111:18201–18206. doi: 10.1073/pnas.1407361111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 294.Paeschke K., Capra J. A., Zakian V. A. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell. 2011;145:678–691. doi: 10.1016/j.cell.2011.04.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 295.Castillo Bosch P., Segura-Bayona S., Koole W., Van Heteren J. T., Dewar J. M., Tijsterman M., Knipscheer P. FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J. 2014;33:2521–2533. doi: 10.15252/embj.201488663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 296.Aguilera A., Garcia-Muse T. Causes of genome instability. Annu. Rev. Genet. 2013;47:1–32. doi: 10.1146/annurev-genet-111212-133232. [DOI] [PubMed] [Google Scholar]
- 297.Lopes J., Piazza A., Bermejo R., Kriegsman B., Colosio A., Teulade-Fichou M. P., Foiani M., Nicolas A. G-quadruplex-induced instability during leading-strand replication. EMBO J. 2011;30:4033–4046. doi: 10.1038/emboj.2011.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 298.Ribeyre C., Lopes J., Boule J. B., Piazza A., Guedin A., Zakian V. A., Mergny J. L., Nicolas A. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 2009;5:e1000475. doi: 10.1371/journal.pgen.1000475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 299.Lormand J. D., Buncher N., Murphy C. T., Kaur P., Lee M. Y., Burgers P., Wang H., Kunkel T. A., Opresko P. L. DNA polymerase delta stalls on telomeric lagging strand templates independently from G-quadruplex formation. Nucleic Acids Res. 2013;41:10323–10333. doi: 10.1093/nar/gkt813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 300.Sarkies P., Reams C., Simpson L. J., Sale J. E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell. 2010;40:703–713. doi: 10.1016/j.molcel.2010.11.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 301.Byrd A. K., Raney K. D. A parallel quadruplex DNA is bound tightly but unfolded slowly by pif1 helicase. J. Biol. Chem. 2015;290:6482–6494. doi: 10.1074/jbc.M114.630749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 302.Duan X. L., Liu N. N., Yang Y. T., Li H. H., Li M., Dou S. X., Xi X. G. G-quadruplexes significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding. J. Biol. Chem. 2015;290:7722–7735. doi: 10.1074/jbc.M114.628008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 303.Chen M. C., Murat P., Abecassis K., Ferre-D’Amare A. R., Balasubramanian S. Insights into the mechanism of a G-quadruplex-unwinding DEAH-box helicase. Nucleic Acids Res. 2015;43:2223–2231. doi: 10.1093/nar/gkv051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 304.Qin W., Lam J. W., Yang Z., Chen S., Liang G., Zhao W., Kwok H. S., Tang B. Z. Red emissive AIE luminogens with high hole-transporting properties for efficient non-doped OLEDs. Chem. Commun. (Camb.) 2015;51:7321–7324. doi: 10.1039/C5CC01690H. [DOI] [PubMed] [Google Scholar]
- 305.Wu W. Q., Hou X. M., Li M., Dou S. X., Xi X. G. BLM unfolds G-quadruplexes in different structural environments through different mechanisms. Nucleic Acids Res. 2015;43:4614–4626. doi: 10.1093/nar/gkv361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 306.Qureshi M. H., Ray S., Sewell A. L., Basu S., Balci H. Replication protein A unfolds G-quadruplex structures with varying degrees of efficiency. J. Phys. Chem. B. 2012;116:5588–5594. doi: 10.1021/jp300546u. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 307.Ray S., Qureshi M. H., Malcolm D. W., Budhathoki J. B., Celik U., Balci H. RPA-mediated unfolding of systematically varying G-quadruplex structures. Biophys. J. 2013;104:2235–2245. doi: 10.1016/j.bpj.2013.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 308.Hwang H., Kreig A., Calvert J., Lormand J., Kwon Y., Daley J. M., Sung P., Opresko P. L., Myong S. Telomeric overhang length determines structural dynamics and accessibility to telomerase and ALT-associated proteins. Structure. 2014;22:842–853. doi: 10.1016/j.str.2014.03.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 309.Zhuang X. Y., Yao Y. G. Mitochondrial dysfunction and nuclear-mitochondrial shuttling of TERT are involved in cell proliferation arrest induced by G-quadruplex ligands. FEBS Lett. 2013;587:1656–1662. doi: 10.1016/j.febslet.2013.04.010. [DOI] [PubMed] [Google Scholar]
- 310.Shuai L., Deng M., Zhang D., Zhou Y., Zhou X. Quadruplex-duplex motifs as new topoisomerase I inhibitors. Nucleosides Nucleotides Nucleic Acids. 2010;29:841–853. doi: 10.1080/15257770.2010.530635. [DOI] [PubMed] [Google Scholar]
- 311.Ogloblina A. M., Bannikova V. A., Khristich A. N., Oretskaya T. S., Yakubovskaya M. G., Dolinnaya N. G. Parallel G-quadruplexes formed by guaninerich microsatellite repeats inhibit human topoisomerase I. Biochemistry (Moscow) 2015;80:1026–1038. doi: 10.1134/S0006297915080088. [DOI] [PubMed] [Google Scholar]
- 312.Gao J., Zybailov B. L., Byrd A. K., Griffin W. C., Chib S., Mackintosh S. G., Tackett A. J., Raney K. D. Yeast transcription co-activator Sub1 and its human homolog PC4 preferentially bind to G-quadruplex DNA. Chem. Commun. (Camb.) 2015;51:7242–7244. doi: 10.1039/C5CC00742A. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 313.Metifiot M., Amrane S., Litvak S., Andreola M. L. G-quadruplexes in viruses: function and potential therapeutic applications. Nucleic Acids Res. 2014;42:12352–12366. doi: 10.1093/nar/gku999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 314.Tan J., Vonrhein C., Smart O. S., Bricogne G., Bollati M., Kusov Y., Hansen G., Mesters J. R., Schmidt C. L., Hilgenfeld R. The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes. PLoS Pathog. 2009;5:e1000428. doi: 10.1371/journal.ppat.1000428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 315.Mukundan V. T., Do N. Q., Phan A. T. HIV-1 integrase inhibitor T30177 forms a stacked dimeric Gquadruplex structure containing bulges. Nucleic Acids Res. 2011;39:8984–8991. doi: 10.1093/nar/gkr540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 316.Metifiot M., Amrane S., Mergny J. L., Andreola M. L. Anticancer molecule AS1411 exhibits low nanomolar antiviral activity against HIV-1. Biochimie. 2015;118:173–175. doi: 10.1016/j.biochi.2015.09.009. [DOI] [PubMed] [Google Scholar]
- 317.Fernando H., Rodriguez R., Balasubramanian S. Selective recognition of a DNA G-quadruplex by an engineered antibody. Biochemistry. 2008;47:9365–9371. doi: 10.1021/bi800983u. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 318.Biffi G., Tannahill D., McCafferty J., Balasubramanian S. Quantitative visualization of DNA Gquadruplex structures in human cells. Nat. Chem. 2013;5:182–186. doi: 10.1038/nchem.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 319.Biffi G. D., Antonio M., Tannahill D., Balasubramanian S. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat. Chem. 2014;6:75–80. doi: 10.1038/nchem.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 320.Lam E. Y., Beraldi D., Tannahill D., Balasubramanian S. G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun. 2013;4:1796. doi: 10.1038/ncomms2792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 321.Fernando H., Sewitz S., Darot J., Tavare S., Huppert J. L., Balasubramanian S. Genome-wide analysis of a G-quadruplex-specific single-chain antibody that regulates gene expression. Nucleic Acids Res. 2009;37:6716–6722. doi: 10.1093/nar/gkp740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 322.Bryan T. M., Baumann P. G-quadruplexes: from guanine gels to chemotherapeutics. Mol. Biotechnol. 2011;49:198–208. doi: 10.1007/s12033-011-9395-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 323.Yang D., Okamoto K. Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med. Chem. 2010;2:619–646. doi: 10.4155/fmc.09.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 324.Sekaran V., Soares J., Jarstfer M. B. Telomere maintenance as a target for drug discovery. J. Med. Chem. 2014;57:521–538. doi: 10.1021/jm400528t. [DOI] [PubMed] [Google Scholar]
- 325.Gunes C., Rudolph K. L. The role of telomeres in stem cells and cancer. Cell. 2013;152:390–393. doi: 10.1016/j.cell.2013.01.010. [DOI] [PubMed] [Google Scholar]
- 326.Smith J. S., Chen Q., Yatsunyk L. A., Nicoludis J. M., Garcia M. S., Kranaster R., Balasubramanian S., Monchaud D., Teulade-Fichou M. P., Abramowitz L., Schultz D. C., Johnson F. B. Rudimentary Gquadruplex-based telomere capping in Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 2011;18:478–485. doi: 10.1038/nsmb.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 327.Hasegawa D., Okabe S., Okamoto K., Nakano I., ShinYa K., Seimiya H. G-quadruplex ligandinduced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells. Biochem. Biophys. Res. Commun. 2016;471:75–81. doi: 10.1016/j.bbrc.2016.01.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 328.Chen Z., Zheng K. W., Hao Y. H., Tan Z. Reduced or diminished stabilization of the telomere Gquadruplex and inhibition of telomerase by small chemical ligands under molecular crowding condition. J. Am. Chem. Soc. 2009;131:10430–10438. doi: 10.1021/ja9010749. [DOI] [PubMed] [Google Scholar]
- 329.Heddi B., Phan A. T. Structure of human telomeric DNA in crowded solution. J. Am. Chem. Soc. 2011;133:9824–9833. doi: 10.1021/ja200786q. [DOI] [PubMed] [Google Scholar]
- 330.Wang Z. F., Chang T. C. Molecular engineering of G-quadruplex ligands based on solvent effect of polyethylene glycol. Nucleic Acids Res. 2012;40:8711–8720. doi: 10.1093/nar/gks578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 331.Buscaglia R., Miller M. C., Dean W. L., Gray R. D., Lane A. N., Trent J. O., Chaires J. B. Polyethylene glycol binding alters human telomere Gquadruplex structure by conformational selection. Nucleic Acids Res. 2013;41:7934–7946. doi: 10.1093/nar/gkt440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 332.Miller M. C., Buscaglia R., Chaires J. B., Lane A. N., Trent J. O. Hydration is a major determinant of the G-quadruplex stability and conformation of the human telomere 3′-sequence of d(AG3(TTAG3)3) J. Am. Chem. Soc. 2010;132:17105–17107. doi: 10.1021/ja105259m. [DOI] [PubMed] [Google Scholar]
- 333.Petraccone L., Malafronte A., Amato J., Giancola C. G-quadruplexes from human telomeric DNA: how many conformations in PEG containing solutions. J. Phys. Chem. B. 2012;116:2294–2305. doi: 10.1021/jp209170v. [DOI] [PubMed] [Google Scholar]
- 334.Kejnovska I., Vorlickova M., Brazdova M., Sagi J. Stability of human telomere quadruplexes at high DNA concentrations. Biopolymers. 2014;101:428–438. doi: 10.1002/bip.22400. [DOI] [PubMed] [Google Scholar]
- 335.Lannan F. M., Mamajanov I., Hud N. V. Human telomere sequence DNA in water-free and highviscosity solvents: G-quadruplex folding governed by Kramers rate theory. J. Am. Chem. Soc. 2012;134:15324–15330. doi: 10.1021/ja303499m. [DOI] [PubMed] [Google Scholar]
- 336.Noer S. L., Preus S., Gudnason D., Aznauryan M., Mergny J. L., Birkedal V. Folding dynamics and conformational heterogeneity of human telomeric Gquadruplex structures in Na+ solutions by single molecule FRET microscopy. Nucleic Acids Res. 2016;44:464–471. doi: 10.1093/nar/gkv1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 337.Petraccone L., Garbett N. C., Chaires J. B., Trent J. O. An integrated molecular dynamics (MD) and experimental study of higher order human telomeric quadruplexes. Biopolymers. 2010;93:533–548. doi: 10.1002/bip.21392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 338.Wang Q., Liu J. Q., Chen Z., Zheng K. W., Chen C. Y., Hao Y. H., Tan Z. G-quadruplex formation at the 3′-end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase. Nucleic Acids Res. 2011;39:6229–6237. doi: 10.1093/nar/gkr164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 339.Marusic M., Veedu R. N., Wengel J., Plavec J. G-rich VEGF aptamer with locked and unlocked nucleic acid modifications exhibits a unique G-quadruplex fold. Nucleic Acids Res. 2013;41:9524–9536. doi: 10.1093/nar/gkt697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 340.Martin-Pintado N., Yahyaee-Anzahaee M., Deleavey G. F., Portella G., Orozco M., Damha M. J., Gonzalez C. Dramatic effect of furanose C2′ substitution on structure and stability: directing the folding of the human telomeric quadruplex with a single fluorine atom. J. Am. Chem. Soc. 2013;135:5344–5347. doi: 10.1021/ja401954t. [DOI] [PubMed] [Google Scholar]
- 341.Sagi J. G-quadruplexes incorporating modified constituents: a review. J. Biomol. Struct. Dyn. 2014;32:477–511. doi: 10.1080/07391102.2013.775074. [DOI] [PubMed] [Google Scholar]
- 342.Hellman L. M., Spear T. J., Koontz C. J., Melikishvili M., Fried M. G. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6alkylguanine-DNA alkyltransferase. Nucleic Acids Res. 2014;42:9781–9791. doi: 10.1093/nar/gku659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 343.Virgilio A., Esposito V., Mayol L., Giancola C., Petraccone L., Galeone A. The oxidative damage to the human telomere: effects of 5-hydroxymethyl-2′-deoxyuridine on telomeric G-quadruplex structures. Org. Biomol. Chem. 2015;13:7421–7429. doi: 10.1039/C5OB00748H. [DOI] [PubMed] [Google Scholar]
- 344.Konvalinova H., Dvorakova Z., Renciuk D., Bednarova K., Kejnovska I., Trantirek L., Vorlickova M., Sagi J. Diverse effects of naturally occurring base lesions on the structure and stability of the human telomere DNA quadruplex. Biochimie. 2015;118:15–25. doi: 10.1016/j.biochi.2015.07.013. [DOI] [PubMed] [Google Scholar]
- 345.Cheong V. V., Heddi B., Lech C. J., Phan A. T. Xanthine and 8-oxoguanine in G-quadruplexes: formation of a G.G.X.O. tetrad. Nucleic Acids Res. 2015;43:10506–10514. doi: 10.1093/nar/gkv826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 346.Babinsky M., Fiala R., Kejnovska I., Bednarova K., Marek R., Sagi J., Sklenar V., Vorlickova M. Loss of loop adenines alters human telomere d[AG3(TTAG3)3] quadruplex folding. Nucleic Acids Res. 2014;42:14031–14041. doi: 10.1093/nar/gku1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 347.Hsu S. T., Varnai P., Bugaut A., Reszka A. P., Neidle S., Balasubramanian S. A G-rich sequence within the c-kit oncogene promoter forms a parallel Gquadruplex having asymmetric G-tetrad dynamics. J. Am. Chem. Soc. 2009;131:13399–13409. doi: 10.1021/ja904007p. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 348.Islam B., Stadlbauer P., Krepl M., Koca J., Neidle S., Haider S., Sponer J. Extended molecular dynamics of a c-kit promoter quadruplex. Nucleic Acids Res. 2015;43:8673–8693. doi: 10.1093/nar/gkv785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 349.Zidanloo S. G. H., Colagar A., Ayatollahi H., Raoof J. B. Downregulation of the WT1 gene expression via TMPyP4 stabilization of promoter G-quadruplexes in leukemia cells. Tumour Biol. 2016;37:9967–9977. doi: 10.1007/s13277-016-4881-9. [DOI] [PubMed] [Google Scholar]
- 350.Agrawal P., Hatzakis E., Guo K., Carver M., Yang D. Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res. 2013;41:10584–10592. doi: 10.1093/nar/gkt784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 351.Salvati E., Zizza P., Rizzo A., Iachettini S., Cingolani C., D’Angelo C., Porru M., Randazzo A., Pagano B., Novellino E., Pisanu M. E., Stoppacciaro A., Spinella F., Bagnato A., Gilson E., Leonetti C., Biroccio A. Evidence for G-quadruplex in the promoter of vegfr-2 and its targeting to inhibit tumor angiogenesis. Nucleic Acids Res. 2014;42:2945–2957. doi: 10.1093/nar/gkt1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 352.Tong X., Lan W., Zhang X., Wu H., Liu M., Cao C. Solution structure of all parallel G-quadruplex formed by the oncogene RET promoter sequence. Nucleic Acids Res. 2011;39:6753–6763. doi: 10.1093/nar/gkr233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 353.Viglasky V. Platination of telomeric sequences and nuclease hypersensitive elements of human c-myc and PDGF-A promoters and their ability to form G-quadruplexes. FEBS J. 2009;276:401–409. doi: 10.1111/j.1742-4658.2008.06782.x. [DOI] [PubMed] [Google Scholar]
- 354.Qin Y., Fortin J. S., Tye D., Gleason-Guzman M., Brooks T. A., Hurley L. H. Molecular cloning of the human platelet-derived growth factor receptor beta (PDGFR-beta) promoter and drug targeting of the Gquadruplex-forming region to repress PDGFR-beta expression. Biochemistry. 2010;49:4208–4219. doi: 10.1021/bi100330w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 355.Shen W., Gorelick R. J., Bambara R. A. HIV-1 nucleocapsid protein increases strand transfer recombination by promoting dimeric G-quartet formation. J. Biol. Chem. 2011;286:29838–29847. doi: 10.1074/jbc.M111.262352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 356.Farhath M. M., Thompson M., Ray S., Sewell A., Balci H., Basu S. G-quadruplex-enabling sequence within the human tyrosine hydroxylase promoter differentially regulates transcription. Biochemistry. 2015;54:5533–5545. doi: 10.1021/acs.biochem.5b00209. [DOI] [PubMed] [Google Scholar]
- 357.Lim K. W., Lacroix L., Yue D. J., Lim J. K., Lim J. M., Phan A. T. Coexistence of two distinct Gquadruplex conformations in the hTERT promoter. J. Am. Chem. Soc. 2010;132:12331–12342. doi: 10.1021/ja101252n. [DOI] [PubMed] [Google Scholar]
- 358.Chaires J. B., Trent J. O., Gray R. D., Dean W. L., Buscaglia R., Thomas S. D., Miller D. M. An improved model for the hTERT promoter quadruplex. PLoS One. 2014;9:e115580. doi: 10.1371/journal.pone.0115580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 359.Schonhoft J. D., Bajracharya R., Dhakal S., Yu Z., Mao H., Basu S. Direct experimental evidence for quadruplex–quadruplex interaction within the human ILPR. Nucleic Acids Res. 2009;37:3310–3320. doi: 10.1093/nar/gkp181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 360.Chen Y., Yang D. Sequence, stability, and structure of G-quadruplexes and their interactions with drugs, Curr. Protoc. Nucleic Acid Chem., Chap. 17. Unit. 2012;17:15. doi: 10.1002/0471142700.nc1705s50. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 361.Wei D., Parkinson G. N., Reszka A. P., Neidle S. Crystal structure of a c-kit promoter quadruplex reveals the structural role of metal ions and water molecules in maintaining loop conformation. Nucleic Acids Res. 2012;40:4691–4700. doi: 10.1093/nar/gks023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 362.Sun H., Xiang J., Shi Y., Yang Q., Guan A., Li Q., Yu L., Shang Q., Zhang H., Tang Y., Xu G. A newly identified G-quadruplex as a potential target regulating Bcl-2 expression. Biochim. Biophys. Acta. 2014;1840:3052–3057. doi: 10.1016/j.bbagen.2014.07.014. [DOI] [PubMed] [Google Scholar]
- 363.Sheu S. Y., Huang C. H., Zhou J. K., Yang D. Y. Relative stability of G-quadruplex structures: interactions between the human Bcl2 promoter region and derivatives of carbazole and diphenylamine. Biopolymers. 2014;101:1038–1050. doi: 10.1002/bip.22497. [DOI] [PubMed] [Google Scholar]
- 364.Onel B., Carver M., Wu G., Timonina D., Kalarn S., Larriva M., Yang D. A new G-quadruplex with hairpin loop immediately upstream of the human BCL2 P1 promoter modulates transcription. J. Am. Chem. Soc. 2016;138:2563–2570. doi: 10.1021/jacs.5b08596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 365.Selvam S., Yu Z., Mao H. Exploded view of higher order G-quadruplex structures through clickchemistry assisted single-molecule mechanical unfolding. Nucleic Acids Res. 2016;44:45–55. doi: 10.1093/nar/gkv1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 366.Podbevsek P., Plavec J. KRAS promoter oligonucleotide with decoy activity dimerizes into a unique topology consisting of two G-quadruplex units. Nucleic Acids Res. 2016;44:917–925. doi: 10.1093/nar/gkv1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 367.Cogoi S., Zorzet S., Rapozzi V., Geci I., Pedersen E. B., Xodo L. E. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice. Nucleic Acids Res. 2013;41:4049–4064. doi: 10.1093/nar/gkt127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 368.Agarwal T., Roy S., Kumar S., Chakraborty T. K., Maiti S. In the sense of transcription regulation by G-quadruplexes: asymmetric effects in sense and antisense strands. Biochemistry. 2014;53:3711–3718. doi: 10.1021/bi401451q. [DOI] [PubMed] [Google Scholar]
- 369.Holder I. T., Hartig J. S. A matter of location: influence of G-quadruplexes on Escherichia coli gene expression. Chem. Biol. 2014;21:1511–1521. doi: 10.1016/j.chembiol.2014.09.014. [DOI] [PubMed] [Google Scholar]
- 370.Cui Y., Koirala D., Kang H., Dhakal S., Yangyuoru P., Hurley L. H., Mao H. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL. Nucleic Acids Res. 2014;42:5755–5764. doi: 10.1093/nar/gku185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 371.Baral A., Kumar P., Halder R., Mani P., Yadav V. K., Singh A., Das S. K., Chowdhury S. Quadruplex-single nucleotide polymorphisms (QuadSNP) influence gene expression difference among individuals. Nucleic Acids Res. 2012;40:3800–3811. doi: 10.1093/nar/gkr1258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 372.Ji X., Sun H., Zhou H., Xiang J., Tang Y., Zhao C. Research progress of RNA quadruplex. Nucleic Acid Ther. 2011;21:185–200. doi: 10.1089/nat.2010.0272. [DOI] [PubMed] [Google Scholar]
- 373.Mullen M. A., Assmann S. M., Bevilacqua P. C. Toward a digital gene response: RNA G-quadruplexes with fewer quartets fold with higher cooperativity. J. Am. Chem. Soc. 2012;134:812–815. doi: 10.1021/ja2096255. [DOI] [PubMed] [Google Scholar]
- 374.Jodoin R., Bauer L., Garant J. M. M., Laaref A., Phaneuf F., Perreault J. P. The folding of 5′UTR human G-quadruplexes possessing a long central loop. RNA. 2014;20:1129–1141. doi: 10.1261/rna.044578.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 375.Arora A., Suess B. An RNA G-quadruplex in the 3′-UTR of the proto-oncogene PIM1 represses translation. RNA Biol. 2011;8:802–805. doi: 10.4161/rna.8.5.16038. [DOI] [PubMed] [Google Scholar]
- 376.Endoh T., Kawasaki Y., Sugimoto N. Suppression of gene expression by G-quadruplexes in open reading frames depends on G-quadruplex stability. Angew. Chem. Int. Ed. Engl. 2013;52:5522–5526. doi: 10.1002/anie.201300058. [DOI] [PubMed] [Google Scholar]
- 377.Xu S., Li Q., Xiang J., Yang Q., Sun H., Guan A., Wang L., Liu Y., Yu L., Shi Y., Chen H., Tang Y. Directly lighting up RNA G-quadruplexes from test tubes to living human cells. Nucleic Acids Res. 2015;43:9575–9586. doi: 10.1093/nar/gkv1040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 378.Luke B., Lingner J. TERRA: telomeric repeat-containing RNA. EMBO J. 2009;28:2503–2510. doi: 10.1038/emboj.2009.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 379.Collie G. W., Sparapani S., Parkinson G. N., Neidle S. Structural basis of telomeric RNA quadruplex–acridine ligand recognition. J. Am. Chem. Soc. 2011;133:2721–2728. doi: 10.1021/ja109767y. [DOI] [PubMed] [Google Scholar]
- 380.Zhang D. H., Fujimoto T., Saxena S., Yu H. Q., Miyoshi D., Sugimoto N. Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors. Biochemistry. 2010;49:4554–4563. doi: 10.1021/bi1002822. [DOI] [PubMed] [Google Scholar]
- 381.Collie G. W., Haider S. M., Neidle S., Parkinson G. N. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res. 2010;38:5569–5580. doi: 10.1093/nar/gkq259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 382.Tang C. F., Shafer R. H. Engineering the quadruplex fold: nucleoside conformation determines both folding topology and molecularity in guanine quadruplexes. J. Am. Chem. Soc. 2006;128:5966–5973. doi: 10.1021/ja0603958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 383.Joachimi A., Benz A., Hartig J. S. A comparison of DNA and RNA quadruplex structures and stabilities. Bioorg. Med. Chem. 2009;17:6811–6815. doi: 10.1016/j.bmc.2009.08.043. [DOI] [PubMed] [Google Scholar]
- 384.Zhang A. Y., Bugaut A., Balasubramanian S. A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology. Biochemistry. 2011;50:7251–7258. doi: 10.1021/bi200805j. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 385.Reddy K., Zamiri B., Stanley S. Y., Macgregor R. B. Jr., Pearson C. E. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA Gquadruplex structures. J. Biol. Chem. 2013;288:9860–9866. doi: 10.1074/jbc.C113.452532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 386.Dethoff E. A., Chugh J., Mustoe A. M., AlHashimi H. M. Functional complexity and regulation through RNA dynamics. Nature. 2012;482:322–330. doi: 10.1038/nature10885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 387.Bugaut A., Murat P., Balasubramanian S. An RNA hairpin to G-quadruplex conformational transition. J. Am. Chem. Soc. 2012;134:19953–19956. doi: 10.1021/ja308665g. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 388.Halder K., Largy E., Benzler M., Teulade-Fichou M. P., Hartig J. S. Efficient suppression of gene expression by targeting 5′-UTR-based RNA quadruplexes with bisquinolinium compounds. ChemBioChem. 2011;12:1663–1668. doi: 10.1002/cbic.201100228. [DOI] [PubMed] [Google Scholar]
- 389.Nagata T., Sakurai Y., Hara Y., Mashima T., Kodaki T., Katahira M. ‘Intelligent’ ribozyme whose activity is altered in response to K+ as a result of quadruplex formation. FEBS J. 2012;279:1456–1463. doi: 10.1111/j.1742-4658.2012.08538.x. [DOI] [PubMed] [Google Scholar]
- 390.Hu Y., Wang F., Lu C. H., Girsh J., Golub E., Willner I. Switchable enzyme/DNAzyme cascades by the reconfiguration of DNA nanostructures. Chemistry. 2014;20:16203–16209. doi: 10.1002/chem.201404122. [DOI] [PubMed] [Google Scholar]
- 391.Yamaoki Y., Nagata T., Mashima T., Katahira M. K+-responsive off-to-on switching of hammerhead ribozyme through dual G-quadruplex formation requiring no heating and cooling treatment. Biochem. Biophys. Res. Commun. 2015;468:27–31. doi: 10.1016/j.bbrc.2015.10.173. [DOI] [PubMed] [Google Scholar]
- 392.Martadinata H., Phan A. T. Formation of a stacked dimeric G-quadruplex containing bulges by the 5′terminal region of human telomerase RNA (hTERC) Biochemistry. 2014;53:1595–1600. doi: 10.1021/bi4015727. [DOI] [PubMed] [Google Scholar]
- 393.Bugaut A., Balasubramanian S. 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. 2012;40:4727–4741. doi: 10.1093/nar/gks068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 394.Millevoi S., Moine H., Vagner S. G-quadruplexes in RNA biology. Wiley Interdiscip. Rev. RNA. 2012;3:495–507. doi: 10.1002/wrna.1113. [DOI] [PubMed] [Google Scholar]
- 395.Shahid R., Bugaut A., Balasubramanian S. The BCL-2 5′ untranslated region contains an RNA Gquadruplex-forming motif that modulates protein expression. Biochemistry. 2010;49:8300–8306. doi: 10.1021/bi100957h. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 396.Yu C. H., Teulade-Fichou M. P., Olsthoorn R. C. Stimulation of ribosomal frameshifting by RNA Gquadruplex structures. Nucleic Acids Res. 2014;42:1887–1892. doi: 10.1093/nar/gkt1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 397.Bhattacharyya D., Nguyen K., Basu S. Rationally induced RNA:DNA G-quadruplex structures elicit an anticancer effect by inhibiting endogenous eIF-4E expression. Biochemistry. 2014;53:5461–5470. doi: 10.1021/bi5008904. [DOI] [PubMed] [Google Scholar]
- 398.Oyaghire S. N., Cherubim C. J., Telmer C. A., Martinez J. A., Bruchez M. P., Armitage B. A. RNA G-quadruplex invasion and translation inhibition by antisense gamma-peptide nucleic acid oligomers. Biochemistry. 2016;55:1977–1988. doi: 10.1021/acs.biochem.6b00055. [DOI] [PubMed] [Google Scholar]
- 399.Panyutin I. G., Onyshchenko M. I., Englund E. A., Appella D. H., Neumann R. D. Targeting DNA G-quadruplex structures with peptide nucleic acids. Curr. Pharm. Des. 2012;18:1984–1991. doi: 10.2174/138161212799958440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 400.Rouleau S. G., Beaudoin J. D., Bisaillon M., Perreault J. P. Small antisense oligonucleotides against G-quadruplexes: specific mRNA translational switches. Nucleic Acids Res. 2015;43:595–606. doi: 10.1093/nar/gku1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 401.Agarwala P., Pandey S., Mapa K., Maiti S. The G-quadruplex augments translation in the 5′-untranslated region of transforming growth factor beta2. Biochemistry. 2013;52:1528–1538. doi: 10.1021/bi301365g. [DOI] [PubMed] [Google Scholar]
- 402.Agarwala P., Pandey S., Maiti S. Role of Gquadruplex located at 5′-end of mRNAs. Biochim. Biophys. Acta. 2014;1840:3503–3510. doi: 10.1016/j.bbagen.2014.08.017. [DOI] [PubMed] [Google Scholar]
- 403.Morris M. J., Negishi Y., Pazsint C., Schonhoft J. D., Basu S. An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES. J. Am. Chem. Soc. 2010;132:17831–17839. doi: 10.1021/ja106287x. [DOI] [PubMed] [Google Scholar]
- 404.Bhattacharyya D., Diamond P., Basu S. An independently folding RNA G-quadruplex domain directly recruits the 40S ribosomal subunit. Biochemistry. 2015;54:1879–1885. doi: 10.1021/acs.biochem.5b00091. [DOI] [PubMed] [Google Scholar]
- 405.Arnoult N., Van Beneden A., Decottignies A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1alpha. Nat. Struct. Mol. Biol. 2012;19:948–956. doi: 10.1038/nsmb.2364. [DOI] [PubMed] [Google Scholar]
- 406.Hirashima K., Seimiya H. Telomeric repeatcontaining RNA/G-quadruplex-forming sequences cause genome-wide alteration of gene expression in human cancer cells in vivo. Nucleic Acids Res. 2015;43:2022–2032. doi: 10.1093/nar/gkv063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 407.Redon S., Zemp I., Lingner J. A three-state model for the regulation of telomerase by TERRA and hnRNPA1. Nucleic Acids Res. 2013;41:9117–9128. doi: 10.1093/nar/gkt695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 408.Cusanelli E., Chartrand P. Telomeric noncoding RNA: telomeric repeat-containing RNA in telomere biology. Wiley Interdiscip. Rev. RNA. 2014;5:407–419. doi: 10.1002/wrna.1220. [DOI] [PubMed] [Google Scholar]
- 409.Huang H., Suslov N. B., Li N. S., Shelke S. A., Evans M. E., Koldobskaya Y., Rice P. A., Piccirilli J. A. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat. Chem. Biol. 2014;10:686–691. doi: 10.1038/nchembio.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 410.Tanpure A. A., Srivatsan S. G. Conformation-sensitive nucleoside analogues as topologyspecific fluorescence turn-on probes for DNA and RNA G-quadruplexes. Nucleic Acids Res. 2015;43:e149. doi: 10.1093/nar/gkv743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 411.Xu Y., Ishizuka T., Yang J., Ito K., Katada H., Komiyama M., Hayashi T. Oligonucleotide models of telomeric DNA and RNA form a hybrid Gquadruplex structure as a potential component of telomeres. J. Biol. Chem. 2012;287:41787–41796. doi: 10.1074/jbc.M112.342030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 412.Zheng K. W., Xiao S., Liu J. Q., Zhang J. Y., Hao Y. H., Tan Z. Co-transcriptional formation of DNA:RNA hybrid G-quadruplex and potential function as constitutional cis element for transcription control. Nucleic Acids Res. 2013;41:5533–5541. doi: 10.1093/nar/gkt264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 413.Xiao S., Zhang J. Y., Zheng K. W., Hao Y. H., Tan Z. Bioinformatic analysis reveals an evolutional selection for DNA:RNA hybrid G-quadruplex structures as putative transcription regulatory elements in warmblooded animals. Nucleic Acids Res. 2013;41:10379–10390. doi: 10.1093/nar/gkt781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 414.Zhang J. Y., Zheng K. W., Xiao S., Hao Y. H., Tan Z. Mechanism and manipulation of DNA:RNA hybrid G-quadruplex formation in transcription of G-rich DNA. J. Am. Chem. Soc. 2014;136:1381–1390. doi: 10.1021/ja4085572. [DOI] [PubMed] [Google Scholar]
- 415.Wanrooij P. H., Uhler J. P., Shi Y., Westerlund F., Falkenberg M., Gustafsson C. M. A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop. Nucleic Acids Res. 2012;40:10334–10344. doi: 10.1093/nar/gks802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 416.Wang J., Haeusler A. R., Simko E. A. Emerging role of RNA–DNA hybrids in C9orf72-linked neurodegeneration. Cell Cycle. 2015;14:526–532. doi: 10.1080/15384101.2014.995490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 417.Groh M., Lufino M. M., Wade-Martins R., Gromak N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 2014;10:e1004318. doi: 10.1371/journal.pgen.1004318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 418.Eddy S., Ketkar A., Zafar M. K., Maddukuri L., Choi J. Y., Eoff R. L. Human Rev1 polymerase disrupts G-quadruplex DNA. Nucleic Acids Res. 2014;42:3272–3285. doi: 10.1093/nar/gkt1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 419.Li D., Lv B., Zhang H., Lee J. Y., Li T. Positive supercoiling affiliated with nucleosome formation repairs non-B DNA structures. Chem. Commun. (Camb.) 2014;50:10641–10644. doi: 10.1039/C4CC04789C. [DOI] [PubMed] [Google Scholar]
- 420.Mergny J. L. Alternative DNA structures: G4 DNA in cells: itae missa est. Nat. Chem. Biol. 2012;8:225–226. doi: 10.1038/nchembio.793. [DOI] [PubMed] [Google Scholar]
- 421.Henderson A., Wu Y., Huang Y. C., Chavez E. A., Platt J., Johnson F. B., Brosh R. M. Jr., Sen D., Lansdorp P. M. Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res. 2014;42:860–869. doi: 10.1093/nar/gkt957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 422.Huang W. C., Tseng T. Y., Chen Y. T., Chang C. C., Wang Z. F., Wang C. L., Hsu T. N., Li P. T., Chen C. T., Lin J. J., Lou P. J., Chang T. C. Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents. Nucleic Acids Res. 2015;43:10102–10113. doi: 10.1093/nar/gkv1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 423.Biffi G., Tannahill D., Miller J., Howat W. J., Balasubramanian S. Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLoS One. 2014;9:e102711. doi: 10.1371/journal.pone.0102711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 424.Yang T. L., Lin L., Lou P. J., Chang T. C., Young T. H. Detection of cell carcinogenic transformation by a quadruplex DNA binding fluorescent probe. PLoS One. 2014;9:e86143. doi: 10.1371/journal.pone.0086143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 425.Hoffmann R. F., Moshkin Y. M., Mouton S., Grzeschik N. A., Kalicharan R. D., Kuipers J., Wolters A. H., Nishida K., Romashchenko A. V., Postberg J., Lipps H., Berezikov E., Sibon O. C., Giepmans B. N., Lansdorp P. M. Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res. 2016;44:152–163. doi: 10.1093/nar/gkv900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 426.David A. P., Margarit E., Domizi P., Banchio C., Armas P., Calcaterra N. B. G-quadruplexes as novel cis-elements controlling transcription during embryonic development. Nucleic Acids Res. 2016;44:4163–4173. doi: 10.1093/nar/gkw011. [DOI] [PMC free article] [PubMed] [Google Scholar]