Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;55:135–184. doi: 10.1016/S0065-3527(00)55003-9

Viral and cellular mRNA capping: Past and prospects

Yasuhiro Furuichi 1, Aaron J Shatkin 2
PMCID: PMC7131690  PMID: 11050942

Publisher Summary

This chapter focuses on the history of the discovery of cap and an update of research on viral and cellular-messenger RNA (mRNA) capping. Cap structures of the type m7 GpppN(m)pN(m)p are present at the 5′ ends of nearly all eukaryotic cellular and viral mRNAs. A cap is added to cellular mRNA precursors and to the transcripts of viruses that replicate in the nucleus during the initial phases of transcription and before other processing events, including internal N6A methylation, 3′-poly (A) addition, and exon splicing. Despite the variations on the methylation theme, the important biological consequences of a cap structure appear to correlate with the N7-methyl on the 5′-terminal G and the two pyrophosphoryl bonds that connect m7G in a 5′–5′ configuration to the first nucleotide of mRNA. In addition to elucidating the biochemical mechanisms of capping and the downstream effects of this 5′- modification on gene expression, the advent of gene cloning has made available an ever-increasing amount of information on the proteins responsible for producing caps and the functional effects of other cap-related interactions. Genetic approaches have demonstrated the lethal consequences of cap failure in yeasts, and complementation studies have shown the evolutionary functional conservation of capping from unicellular to metazoan organisms.

References

  • 1.Shatkin A.J. Capping of eukaryotic mRNAs. Cell. 1976;9:645–653. doi: 10.1016/0092-8674(76)90128-8. [DOI] [PubMed] [Google Scholar]
  • 2.Furuichi Y, Shatkin A.J. Characterization of cap structures. Methods Enzymol. 1989;180:164–177. doi: 10.1016/0076-6879(89)80100-4. [DOI] [PubMed] [Google Scholar]
  • 3.Furuichi Y, Shatkin A.J. Capping and methylation of mRNA: In: Higgins S.J, Hames B.D, editors. Third Edition. Vol II. Oxford University Press; London: 1991. pp. 35–67. (RNA Processing: A Practical Approach). [Google Scholar]
  • 4.Banerjee A. 5′-Terminal cap structure in eukaryotic messenger ribonucleic acids. Microbiol. Rev. 1980;44:175–205. doi: 10.1128/mr.44.2.175-205.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Reddy R, Busch H. Small nuclear RNAs: RNA sequences, structure, and modifications. In: Birnstiel M, editor. Structure and Function of Major and Minor snRNPs. Springer Verlag; Berlin: 1988. pp. 1–37. [Google Scholar]
  • 6.Reddy R, Singh R, Shimba S. Methylated cap structures in eukaryotic RNAs: Structure, synthesis and functions. Pharma. Ther. 1992;54:249–267. doi: 10.1016/0163-7258(92)90002-h. [DOI] [PubMed] [Google Scholar]
  • 7.Furuichi Y, Lafiandra A, Shatkin A.J. 5′-Terminal structure and mRNA stability. Nature (London) 1977;266:235–239. doi: 10.1038/266235a0. [DOI] [PubMed] [Google Scholar]
  • 8.Shimotohno K, Kodama Y, Hashimoto J, Miura K.I. Third Edition. Vol. 74. 1977. Importance of 5′ terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis; pp. 2734–2738. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Hsu C.L, Stevens A. Yeast cells lacking 5′-->3′ exonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 1993;13:4826–4835. doi: 10.1128/mcb.13.8.4826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Lewis J.D, Izaurralde E. The role of the cap structure in RNA processing and nuclear export. Eur. J. Biochem. 1997;247:461–469. doi: 10.1111/j.1432-1033.1997.00461.x. [DOI] [PubMed] [Google Scholar]
  • 11.Schwer B, Shuman S. Conditional inactivation of mRNA capping enzyme affects yeast pre-mRNA splicing in vivo. RNA. 1996;2:574–583. [PMC free article] [PubMed] [Google Scholar]
  • 12.McDevitt M.A, Gilmartin G.M, Reeves W.H, Nevins J.R. Multiple factors are required for poly(A) addition to a mRNA 3′ end. Genes Dev. 1988;2:588–597. doi: 10.1101/gad.2.5.588. [DOI] [PubMed] [Google Scholar]
  • 13.Cooke C, Alwine J.C. The cap and the 3′ splice site similarly affect polyadenylation efficiency. Mol. Cell. Biol. 1996;16:2579–2584. doi: 10.1128/mcb.16.6.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Flaherty S.M, Fortes P, Izaurralde E, Mattaj I.W, Gilmartin G.M. Third Edition. Vol. 94. 1997. Participation of the nuclear cap binding complex in pre-mRNA 3′ processing; pp. 11893–11898. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Sonenberg N. Cap-binding proteins of eukaryotic mRNA: Functions in initiation and control of translation. Prog. Nucleic Acids Res. Mol. Biol. 1988;35:173–207. doi: 10.1016/s0079-6603(08)60614-5. [DOI] [PubMed] [Google Scholar]
  • 16.Kominami R, Muramatsu M. Heterogeneity of 5′-termini of nucleolar 45S, 32S and 28S RNA in mouse hepatoma. Nucleic Acids Res. 1977;4:229–240. doi: 10.1093/nar/4.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Miura K.-I, Watanabe K, Sugiura M, Shatkin A.J. Third Edition. Vol. 71. 1974. The 5′-terminal nucleotide sequence of the double-stranded RNA of human reovirus; pp. 3979–3983. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Furuichi Y, Miura K. The 3'-termini of the genome RNA segments of silkworm cytoplasmic polyhedrosis virus. J. Mol. Biol. 1972;64:619–632. doi: 10.1016/0022-2836(72)90087-3. [DOI] [PubMed] [Google Scholar]
  • 19.Furuichi Y, Miura K.-I. Identity of the 3′-terminal sequences in ten genome segments of silkworm cytoplasmic polyhedrosis virus. Virology. 1973;55:418–425. doi: 10.1016/0042-6822(73)90183-9. [DOI] [PubMed] [Google Scholar]
  • 20.Miura K, Watanabe K, Sugiura M. 5′-Terminal nucleotide sequence of the double-stranded RNA of silkworm cytoplasmic polyhedrosis virus. J. Mol. Biol. 1974;86:31–48. doi: 10.1016/s0022-2836(74)80005-7. [DOI] [PubMed] [Google Scholar]
  • 21.Banerjee A.K, Lafiandra A, Shatkin A.J. Transcription in vitro by reovirus-associated ribonucleic acid-dependent polymerase. J. Virol. 1970;6:1–11. doi: 10.1128/jvi.6.1.1-11.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Shimotohno K, Kimura K, Miura K. Transcription of doublestranded RNA in cytoplasmic polyhedrosis virus in vitro. Virology. 1973;53:283–286. [PubMed] [Google Scholar]
  • 23.Shatkin A.J, Sipe J.D. Third Edition. Vol. 61. 1968. RNA polymerase activity in purified reoviruses; pp. 1462–1469. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Furuichi Y. Methylation-coupled transcription by virus-associated transcriptase of cytoplasmic polyhedrosis virus containing double-stranded RNA. Nucleic Acids Res. 1974;1:809–822. doi: 10.1093/nar/1.6.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Perry R.P, Kelley D.E. Existence of methylated messenger RNA in mouse L cells. Cell. 1974;1:37–42. [Google Scholar]
  • 26.Desrosiers R, Friderici K, Rottman F. Third Edition. Vol. 71. 1974. Identification of methylated nucleotides in messenger RNA from Novikoff hepatoma cells; pp. 3971–3975. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Reddy R, Ro-Choi T.S, Henning D, Busch H. Primary sequence of U1 nuclear ribonucleic acid of Novikoff hepatoma ascites cells. J. Biol. Chem. 1974;249:6486–6494. [PubMed] [Google Scholar]
  • 28.Adams J.M, Cory S. Modified nucleotides and bizarre 5′-termini in mouse myeloma mRNA. Nature. 1975;255:28–33. doi: 10.1038/255028a0. [DOI] [PubMed] [Google Scholar]
  • 29.Shatkin A.J. Third Edition. Vol. 71. 1974. Methylated messenger RNA synthesis in vitro by purified reovirus; pp. 3204–3207. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Rottman F, Shatkin A.J, Perry R.P. Sequences containing methylated nucleotides at the 5′ termini of messenger RNA: possible implication for processing. Cell. 1974;3:197–199. doi: 10.1016/0092-8674(74)90131-7. [DOI] [PubMed] [Google Scholar]
  • 31.Furuichi Y, Miura K-I. A blocked structure at the 5′ terminus of mRNA from cytoplasmic polyhedrosis virus. Nature. 1975;253:374–375. doi: 10.1038/253374a0. [DOI] [PubMed] [Google Scholar]
  • 32.Furuichi Y, Morgan M, Muthukrishnan S, Shatkin A.J. Third Edition. Vol. 72. 1975. Reovirus messenger RNA contains a methylated, blocked 5′-terminal structure: m7G(5′)ppp(5′) GmpCp- pp. 362–366. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Wei C.M, Moss B. Third Edition. Vol. 72. 1975. Methylated nucleotides block 5′-terminus of vaccinia virus messenger RNA; pp. 318–322. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Urushibara T, Furuichi Y, Nishimura C, Miura K. A modified structure at the 5′-terminus of mRNA of vaccinia virus. FEBS Lett. 1975;49:385–389. doi: 10.1016/0014-5793(75)80791-5. [DOI] [PubMed] [Google Scholar]
  • 35.Furuichi Y, Morgan M, Shatkin A.J, Jelinek W, Salditt-Georgieff M, Darnell J.E. Third Edition. Vol. 72. 1975. Methylated, blocked 5 termini in HeLa cell mRNA; pp. 1904–1908. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Salditt-Georgieff M, Harpold M, Chen-Kiang S, Darnell J.E. The addition of 5′-cap structures occurs early in hnRNA synthesis and prematurely terminated molecules are capped. Cell. 1980;19:69–78. doi: 10.1016/0092-8674(80)90389-x. [DOI] [PubMed] [Google Scholar]
  • 37.Ullu E, Tschudi C. Third Edition. Vol. 88. 1991. Trans splicing in trypanosomes requires methylation of the 5′ end of the spliced leader RNA; pp. 10074–10078. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Shuman S. Capping enzyme in eukaryotic mRNA synthesis. Prog. Nucleic Acids Res. Mole. Biol. 1995;50:101–129. doi: 10.1016/s0079-6603(08)60812-0. [DOI] [PubMed] [Google Scholar]
  • 39.Martin S.A, Moss B. Modification of RNA by mRNA guanylytransferase and mRNA-(guanine-7)-methyltransferase from vaccinia virions. J. Biol. Chem. 1975;250:9330–9335. [PubMed] [Google Scholar]
  • 40.Ensinger M.J, Martin S.A, Paoletti E, Moss B. Third Edition. Vol. 72. 1975. Modification of the 5′-terminus of mRNA by soluble guanylyl and methyl transferases from vaccinia virus; pp. 2525–2529. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Venkatesan S, Gershowitz A, Moss B. Modification of the 5′ end of mRNA. Association of RNA triphosphatase with the RNA guanylyltransferaseRNA (guanine-7) methyltransferase complex from vaccinia virus. J. Biol. Chem. 1980;255:903–908. [PubMed] [Google Scholar]
  • 42.McCracken S, Fong N, Ronina E, Yankulv K, Brothers G, Siderovski D, Hessel A, Foster S, Amgen EST Program, Shuman S, Bentley D. 5′Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 1997;11:3306–3318. doi: 10.1101/gad.11.24.3306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Cho E-J, Takagi T, Moore C.R, Buratowski S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 1997;11:3319–3326. doi: 10.1101/gad.11.24.3319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Yue Z, Maldonado E, Pillutla R, Cho H, Reinberg D, Shatkin A.J. Third Edition. Vol. 94. 1997. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongation form of polymerase II; pp. 12898–12903. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Ho K.C, Sriskanda V, McCracken S, Bentley D, Schwer B, Shuman S. The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 1998;273:9577–9585. doi: 10.1074/jbc.273.16.9577. [DOI] [PubMed] [Google Scholar]
  • 46.Harris N, Rosales R, Moss B. Third Edition. Vol. 90. 1993. Transcription initiation factor activity of vaccinia virus capping enzyme is independent of mRNA guanylylation; pp. 2860–2864. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Furuichi Y. Third Edition. Vol. 82. 1978. Pre-transcriptional capping in the biosynthesis of cytoplasmic polyhedrosis virus mRNA; pp. 488–492. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Wertheimer A.M, Chen S.Y, Borchardt R.T, Furuichi Y. S-Adenosylmethionine and its analogs. Structural features correlated with synthesis and methylation of mRNAs of cytoplasmic polyhedrosis virus. J. Biol. Chem. 1980;255:5924–5930. [PubMed] [Google Scholar]
  • 49.Furuichi Y. Allosteric stimulatory effect of S-adenosylmethionine on the RNA polymerase in cytoplasmic polyhedrosis virus. A model for the positive control of eukaryotic transcription. J. Biol. Chem. 1981;256:483–493. [PubMed] [Google Scholar]
  • 50.Yamakawa M, Furuichi Y, Nakashima K, Lafiandra A.J, Shatkin A.J. Excess synthesis of viral mRNA 5-terminal oligonucleotides by reovirus transcriptase. J. Biol. Chem. 1981;256:6507–6514. [PubMed] [Google Scholar]
  • 51.Yamakawa M, Furuichi Y, Shatkin A.J. Third Edition. Vol. 79. 1982. Priming of reovirus transcription by GppppG and formation of CpG(5′)pppp(5′)GpC; pp. 6142–6146. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Liu J.J, Mclenman A.G. Purification and properties of GTP:GTP guanylyltransferase from encysted embryos of the brine shrimp Artemia. J. Biol. Chem. 1994;269:11787–11794. [PubMed] [Google Scholar]
  • 53.Smith R.E, Furuichi Y. A unique class of compound, guanosinenucleotide tetraphosphate G(5′)pppp(5′)N, synthesized during the in vitro transcription of cytoplasmic polyhedrosis virus of Bombyx mori. Structural determination and mechanism of formation. J. Biol. Chem. 1982;257:485–494. [PubMed] [Google Scholar]
  • 54.Maruyama K, Sugano S. Oligo-capping: A simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene. 1994;138:171–174. doi: 10.1016/0378-1119(94)90802-8. [DOI] [PubMed] [Google Scholar]
  • 55.Suzuki Y, Yoshitomi-Nakagawa K, Maruyama K, Suyama A, Sugano S. Construction and characterization of a full length-enriched and a 5′-end-enriched cDNA library. Gene. 1997;200:149–156. doi: 10.1016/s0378-1119(97)00411-3. [DOI] [PubMed] [Google Scholar]
  • 56.Yamabe Y, Shimamoto A, Goto M, Yokota J, Sugawara M, Furuichi Y. Spl-Mediated transcription of the Werner helicase gene is modulated by Rb and p53. Mol. Cell. Biol. 1998;18:6191–6200. doi: 10.1128/mcb.18.11.6191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Xu L.C, Thali M, Schaffner W. Upstream box/TATA box order is the major determinant of the direction of transcription. Nucleic Acids Res. 1991;19:6699–6704. doi: 10.1093/nar/19.24.6699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Dierks P, Van Ooyen A, Mantei N, Weissmann C. Third Edition. Vol. 78. 1981. DNA sequences preceding the rabbit beta-globin gene are required for formation in mouse L cells of beta-globin RNA with the correct 5′ terminus; pp. 1411–1415. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Van Doren K, Hirsh D. Trans-spliced leader RNA exists as small nuclear ribonucleoprotein particles in Caenorhabditis elegans. Nature. 1988;335:556–559. doi: 10.1038/335556a0. [DOI] [PubMed] [Google Scholar]
  • 60.Kuersten S, Lea K, MacMorris M, Spieth J, Blumenthal T. Relationship between 3′ end formation and SL2-specific trans-splicing in polycistronic Caenorhabditis elegans pre-mRNA processing. RNA. 1997;3:269–278. [PMC free article] [PubMed] [Google Scholar]
  • 61.Fields B.N, Knipe D.M, Howley P.M, editors. Fields Virology. Third Edition. Lippincott-Raven Publishers; Philadelphia: 1996. [Google Scholar]
  • 62.Furuichi Y, Shatkin A.J, Stavnezer E, Bishop J.M. Blocked, methylated 5′-terminal sequence in avian sarcoma virus RNA. Nature. 1975;257:618–620. doi: 10.1038/257618a0. [DOI] [PubMed] [Google Scholar]
  • 63.Guarino L.A, Jin J, Dong W. Guanylyltransferase activity of the LEF-4 subunit of baculovirus RNA polymerase. J. Virol. 1998;72:10003–10010. doi: 10.1128/jvi.72.12.10003-10010.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Mizumoto K, Kaziro Y. Messenger RNA capping enzymes from eukaryotic cells. Prog. Nucleic Acids Res. Mol. Biol. 1987;34:1–28. doi: 10.1016/s0079-6603(08)60491-2. [DOI] [PubMed] [Google Scholar]
  • 65.Krug R.M, Morgan M.A, Shatkin A.J. Influenza viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methylguanosine in cap structures. J. Virol. 1976;20:45–53. doi: 10.1128/jvi.20.1.45-53.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Krug R.M. Expression and replication of the influenza virus genome. In: Krug R.M, editor. The Influenza Viruses. Plenum Press; New York: 1989. pp. 89–152. [Google Scholar]
  • 67.Leahy M.B, Dessens J.T, Nuttall P.A. In vitro polymerase activity of Thogoto virus: Evidence for a unique cap-snatching mechanism in a tick-borne orthomyxovirus. J. Virol. 1997;71:8347–8351. doi: 10.1128/jvi.71.11.8347-8351.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Leung D.W, Browning K.S, Heckman J.E, Rajbhandary U.L, Clark J.M., Jr. Nucleotide sequence of the 5′ terminus of satellite tobacco necrosis virus ribonucleic acid. Biochemistry. 1979;18:1361–1366. doi: 10.1021/bi00574a036. [DOI] [PubMed] [Google Scholar]
  • 69.Lee Y.F, Nomoto A, Detjen B.M, Wimmer E. Vol. 74. 1977. A protein covalently linked to poliovirus genome RNA; pp. 59–63. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Vartapetian A.B, Drygin Y.F, Chumakov K.M, Bogdanov A.A. The structure of the covalent linkage between proteins and RNA in encephalomyocarditis virus. Nucleic Acids Res. 1980;8:3729–3742. doi: 10.1093/nar/8.16.3729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Vartapetian A.B, Koonin E.V, Agol V.I, Bogdanov A.A. Encephalomyocarditis virus RNA synthesis in vitro is protein-primed. EMBO J. 1984;3:2593–2598. doi: 10.1002/j.1460-2075.1984.tb02179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Nomoto A, Detjen B, Pozzatti R, Wimmer E. The location of the polio genome protein in viral RNAs and its implication for RNA synthesis. Nature. 1977;268:208–213. doi: 10.1038/268208a0. [DOI] [PubMed] [Google Scholar]
  • 73.Furuichi Y, Muthukrishnan S, Tomasz J, Shatkin A.J. Mechanism of the formation of reovirus mRNA 5'-terminal blocked and methylated sequence, m7GpppGmpC. J. Biol. Chem. 1976;251:5043–5053. [PubMed] [Google Scholar]
  • 74.Moss B, Gershowitz A, Wei C.-M, Boone R. Formation of the guanylylated and methylated 5′-terminus of vaccinia virus mRNA. Virology. 1976;72:341–351. doi: 10.1016/0042-6822(76)90163-x. [DOI] [PubMed] [Google Scholar]
  • 75.Shimotohno K, Miura K.-I. The process of formation of the 5′-terminal modified structure in messenger RNA of cytoplasmic polyhedrosis virus. FEBS Lett. 1976;64:204–208. doi: 10.1016/0014-5793(76)80284-0. [DOI] [PubMed] [Google Scholar]
  • 76.Ho C.K, Schwer B, Shuman S. Genetic, physical, and functional interactions between the triphosphatase and guanylyltransferase components of the yeast mRNA capping apparatus. Mol. Cell. Biol. 1998;18:5189–5198. doi: 10.1128/mcb.18.9.5189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Shuman S. Vol. 94. 1997. Commentary; Origin of mRNA identity: Capping enzymes bind to the phosphorylated C-terminal domain of RNA polymerase II; pp. 12758–12760. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Shuman S. RNA capping by HeLa cell RNA guanylyltransferase. Characterization of a covalent protein-guanylate intermediate. J. Biol. Chem. 1982;25:7237–7245. [PubMed] [Google Scholar]
  • 79.Pillutla R.C, Yue Z, Maldonado E, Shatkin A.J. Recombinant human mRNA cap methyltransferase binds capping enzyme/RNA polymerase Ho complexes. J. Biol. Chem. 1998;273:21443–21446. doi: 10.1074/jbc.273.34.21443. [DOI] [PubMed] [Google Scholar]
  • 80.Dahmus M.E. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 1996;271:19009–19017. doi: 10.1074/jbc.271.32.19009. [DOI] [PubMed] [Google Scholar]
  • 81.Ho C.K, Shuman S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell. 1999;3:405–411. doi: 10.1016/s1097-2765(00)80468-2. [DOI] [PubMed] [Google Scholar]
  • 82.Wen Y, Shatkin A.J. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev. 1999;13:1774–1779. doi: 10.1101/gad.13.14.1774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Langberg S.R, Moss B. Post-transcriptional modifications of mRNA. Purification and characterization of cap I and cap II RNA (nucleoside-2′-)-methyltransferases from HeLa cells. J. Biol. Chem. 1981;256:10054–10060. [PubMed] [Google Scholar]
  • 84.Kuge H, Richter J.D. Cytoplasmic 3′ poly(A) addition induces 5′ cap ribose methylation: Implication for translational control of maternal mRNA. EMBO J. 1995;14:6301–6310. doi: 10.1002/j.1460-2075.1995.tb00320.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Shuman S, Hurwitz J. Vol. 78. 1981. Mechanism of mRNA capping by vaccinia virus guanylyltransferase: Characterization of an enzyme-guanylate intermediate; pp. 187–191. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Hagler J, Shuman S. A freeze-frame view of eukaryotic transcription during elongation and capping of nascent mRNA. Science. 1992;255:983–986. doi: 10.1126/science.1546295. [DOI] [PubMed] [Google Scholar]
  • 87.Shuman S, Broyles S, Moss B. Purification and characterization of a transcription termination factor from vaccinia virions. J. Biol. Chem. 1987;262:12372–12380. [PubMed] [Google Scholar]
  • 88.Gershon P.D, Shi X, Hodel A.E. Evidence that the RNA methylation and poly (A) polymerase stimulatory activities of vaccinia virus protein VP39 do not impinge upon one another. Virology. 1998;246:253–265. doi: 10.1006/viro.1998.9209. [DOI] [PubMed] [Google Scholar]
  • 89.Lockless S.W, Cheng H-T, Hodel A.E, Quiocho F.A, Gershon P.D. Recognition of capped RNA substrates by VP39, the vaccinia virus-encoded mRNA cap-specific 2′-O-methyltransferase. Biochemistry. 1998;37:8564–8574. doi: 10.1021/bi980178m. [DOI] [PubMed] [Google Scholar]
  • 90.Kawakami K, Mizumoto K, Ishihama A, Shinozaki-Yamaguchi K, Miura K. Activation of influenza virus associated RNA polymerase by cap-1 structure (m7GpppNm) J. Biochem. (Tokyo) 1985;97:655–661. doi: 10.1093/oxfordjournals.jbchem.a135101. [DOI] [PubMed] [Google Scholar]
  • 91.Higman M.A, Christen L.A, Niles E.G. the mRNA (guanine-7-) methyltransferase domain of the vaccinia virus mRNA capping enzyme. J. Biol. Chem. 1994;269:14974–14981. [PubMed] [Google Scholar]
  • 92.Higman M.A, Niles E.G. Location of the S-adenosyl-L-methionine binding region of the vaccinia virus mRNA (guanine-7-)methyltransferase. J. Biol. Chem. 1994;269:14982–14987. [PubMed] [Google Scholar]
  • 93.Myette J.R, Niles E.G. Domain structure of the vaccinia virus mRNA capping enzyme. J. Biol. Chem. 1996;271:11936–11944. doi: 10.1074/jbc.271.20.11936. [DOI] [PubMed] [Google Scholar]
  • 94.Mao X, Shuman S. Intrinsic RNA (guanine-7) methyltransferase activity of the vaccinia virus capping enzyme D1 subunit is stimulated by the D12 subunit. J. Biol. Chem. 1994;269:24472–24479. [PubMed] [Google Scholar]
  • 95.Barbosa E, Moss B. mRNA (nucleoside-2′-)-methyltransferase from vaccinia virus. Characteristics and substrate specificity. J. Biol. Chem. 1978;253:7698–7702. [PubMed] [Google Scholar]
  • 96.Schnierle B.S, Gershon P.D, Moss B. Vol. 89. 1992. Cap-specific mRNA (nucleoside-02′-)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein; pp. 2897–2901. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Hodel A.E, Gershon P.D, Shi X, Quiocho F.A. The 1.85 A structure of vaccinia protein VP39: A bifunctional enzyme that participates in the modification of both mRNA ends. Cell. 1996;85:247–256. doi: 10.1016/s0092-8674(00)81101-0. [DOI] [PubMed] [Google Scholar]
  • 98.Tsukamoto T, Shibagaki Y, Imajo-Ohmi S, Murakoshi T, Suzuki M, Nakamura A, Gotoh H, Mizumoto K. Isolation and characterization of the yeast mRNA capping enzyme beta subunit gene encoding RNA 5′-triphosphatase, which is essential for cell viability. Biochem. Biophys. Res. Comm. 1997;239:116–122. doi: 10.1006/bbrc.1997.7439. [DOI] [PubMed] [Google Scholar]
  • 99.Shibagaki Y, Itoh N, Yamada H, Nagata S, Mizumoto K. mRNA capping enzyme: Isolation and characterization of the gene encoding mRNA guanylyltransferase subunit from Saccharomyces cerevisiae. J. Biol. Chem. 1992;267:9521–9528. [PubMed] [Google Scholar]
  • 100.Mao X, Schwer B, Shuman S. Yeast mRNA cap methyltransferase is a 50-kilodalton protein encoded by an essential gene. Mol. Cell. Biol. 1995;15:4167–4174. doi: 10.1128/mcb.15.8.4167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Mao X, Schwer B, Shuman S. Mutational analysis of the Saccharomyces cerevisiae ABD1 gene: Cap methyltransferase activity is essential for cell growth. Mol. Cell. Biol. 1996;16:475–480. doi: 10.1128/mcb.16.2.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Yamada-Okabe T, Shimmi O, Doi R, Mizumoto K, Arisawa M, Yamada-Okabe H. Isolation of the mRNA-capping enzyme and ferric-reductaserelated genes from Candida albicans. Microbiology. 1996;142:2515–2523. doi: 10.1099/00221287-142-9-2515. [DOI] [PubMed] [Google Scholar]
  • 103.Shuman S, Liu Y, Schwer B. Vol. 91. 1994. Covalent catalysis in nucleotidyl transfer reactions: Essential motifs in Saccharomyces cerevisiae RNA capping enzyme are conserved in Schizosaccharomyces pombe and viral capping enzymes and among polynucleotide ligases; pp. 12046–12050. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Shibagaki Y, Gotoh H, Kato M, Mizumoto K. Localization and in vitro mutagenesis of the active site in the Saccharomyces cerevisiae mRNA capping enzyme. J. Biochem. (Tokyo) 1995;118:1303–1309. doi: 10.1093/oxfordjournals.jbchem.a125023. [DOI] [PubMed] [Google Scholar]
  • 105.Wang S.P, Shuman S. Structure-function analysis of the mRNA cap methyltransferase of Saccharomyces cerevisiae. J. Biol. Chem. 1997;272:14683–14689. doi: 10.1074/jbc.272.23.14683. [DOI] [PubMed] [Google Scholar]
  • 106.Yamada-Okabe T, Mio T, Matsi M, Kashima Y, Arisawa M, YamadaOkabe H. Isolation and characterization of the Candida albicans gene for mRNA 5′-triphosphatase: Association of mRNA 5′-triphosphatase and mRNA 5′guanylyltransferase activities is essential for the function of mRNA 5′-capping enzyme in vivo. FEBS Lett. 1998;435:49–54. doi: 10.1016/s0014-5793(98)01037-0. [DOI] [PubMed] [Google Scholar]
  • 107.Takagi T, Moore C.R, Diehn F, Buratowski S. An RNA 5′-triphosphatase related to the protein tyrosine phosphatases. Cell. 1997;89:867–873. doi: 10.1016/s0092-8674(00)80272-x. [DOI] [PubMed] [Google Scholar]
  • 108.Wang S.P, Deng L, Ho C.K, Shuman S. Vol. 94. 1997. Phylogeny of mRNA capping enzymes; pp. 9573–9578. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Silva E, Ullu E, Kobayashi R, Tschudi C. Trypanosome capping enzymes display a novel two-domain structure. Mol. Cell. Biol. 1998;18:4612–4619. doi: 10.1128/mcb.18.8.4612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Yagi Y, Mizumoto K, Kaziro Y. Limited tryptic digestion of messenger RNA capping enzyme from Artemia salina. Isolation of domains for guanylyltransferase and RNA 5′-triphosphatase. J. Biol. Chem. 1984;259:4695–4698. [PubMed] [Google Scholar]
  • 111.Yamada-Okabe T, Doi R, Shimmi O, Arisawa M, Yamada-Okabe H. Isolation and characterization of a human cDNA for mRNA 5′-capping enzyme. Nucleic Acids Res. 1998;26:1700–1706. doi: 10.1093/nar/26.7.1700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Tsukamoto T, Shibagaki Y, Murakoshi T, Suzuki M, Nakamura A, Gotoh H, Mizumoto K. Cloning and characterization of two human cDNAs encoding the mRNA capping enzyme. Biochem. Biophys. Res. Commun. 1998;243:101–108. doi: 10.1006/bbrc.1997.8038. [DOI] [PubMed] [Google Scholar]
  • 113.Tsukamoto T, Shibagaki Y, Nikura Y, Mizumoto K. Cloning and characterization of three human cDNAs encoding mRNA (guanine-7-)-methyltransferase, an mRNA cap methylase. Biochem. Biophys. Res. Commun. 1998;251:27–34. doi: 10.1006/bbrc.1998.9402. [DOI] [PubMed] [Google Scholar]
  • 114.Pillutla R, Shimamoto A, Furuichi Y, Shatkin A.J. Human mRNA capping enzyme (RNGTT) and cap methyltransferase (RNMT) Map to 6816 and 18p11.22-p11.23, respectively. Genomics. 1998;54:351–353. doi: 10.1006/geno.1998.5604. [DOI] [PubMed] [Google Scholar]
  • 115.Seliger L.S, Zheng K, Shatkin A.J. Complete nucleotide sequence of reovirus L2 gene and deduced amino acid sequence of viral mRNA guanylyltransferase. J. Biol. Chem. 1987;262:16289–16293. [PubMed] [Google Scholar]
  • 116.Mao Z.X, Joklik W.K. Isolation and enzymatic characterization of protein lambda 2, the reovirus guanylyltransferase. Virology. 1991;185:377–386. doi: 10.1016/0042-6822(91)90785-a. [DOI] [PubMed] [Google Scholar]
  • 117.Luongo C.L, Contreras C.M, Farsetta D.L, Nibert M.L. Binding site for S-adenosyl-L-methionine in a central region of mammalian reovirus lambda2 protein. Evidence for activities in mRNA cap methylation. J. Biol. Chem. 1998;273:23773–23780. doi: 10.1074/jbc.273.37.23773. [DOI] [PubMed] [Google Scholar]
  • 118.Noble S, Nibert M.L. Core protein p2 is a second determinant of nucleoside triphosphatase activities by reovirus cores. J. Virol. 1997;71:7728–7735. doi: 10.1128/jvi.71.10.7728-7735.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Gross C.H, Shuman S. Characterization of a baculovirus-encoded RNA 5′-triphosphatase. J. Virol. 1998;72:7057–7063. doi: 10.1128/jvi.72.9.7057-7063.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Jin J, Dong W, Guarino L.A. The LEF-4 subunit of baculovirus RNA polymerase has RNA 5′-triphosphatase and ATPase activities. J. Virol. 1998;72:10011–10019. doi: 10.1128/jvi.72.12.10011-10019.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Gross C.H, Shuman S. RNA 5′-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein. J. Virol. 1998;72:10020–10028. doi: 10.1128/jvi.72.12.10020-10028.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Martinez-Costas J, Sutton G, Ramadevi N, Roy P. Guanylyltransferase and RNA 5′-triphosphatase activities of the purified expressed VP4 protein of bluetongue virus. J. Mol. Biol. 1998;280:859–866. doi: 10.1006/jmbi.1998.1926. [DOI] [PubMed] [Google Scholar]
  • 123.Mi S.D, Huang H.V, Rice C.M, Stiller V. Association of the Sindbis virus methyltransferase activity with the nonstructural protein nsP1. Virology. 1989;170:385–391. doi: 10.1016/0042-6822(89)90429-7. [DOI] [PubMed] [Google Scholar]
  • 124.Laakkonen P, Hyvonen M, Peranen J, Kääriäinen L. Expression of Semliki Forest virus nsPl-specific methyltransferase in insect cells and in Escherichia coli. J. Virol. 1994;74:7418–7425. doi: 10.1128/jvi.68.11.7418-7425.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Ahola T, Kääriäinen L. Vol. 92. 1995. Reactions in alphavirus mRNA capping: Formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP; pp. 507–511. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Ahola T, Laakkonen P, Vihinen H, Kääriäinen L. Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J. Virol. 1997;71:392–397. doi: 10.1128/jvi.71.1.392-397.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Bisaillon M, Guy L. Minireview: Viral and cellular enzymes involved in synthesis of mRNA cap structure. Virology. 1997;236:1–7. doi: 10.1006/viro.1997.8698. [DOI] [PubMed] [Google Scholar]
  • 128.Ho C.K, Van Etten J.L, Shuman S. Expression and characterization of an RNA capping enzyme encoded by Chlorella virus PBCV 1. J. Virol. 1996;70:6658–6664. doi: 10.1128/jvi.70.10.6658-6664.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Hakanson K, Doherty A.J, Shuman S, Wigley D.B. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell. 1997;89:545–553. doi: 10.1016/s0092-8674(00)80236-6. [DOI] [PubMed] [Google Scholar]
  • 130.Das T, Mathur M, Gupta A.K, Janssen G.M.C, Banerjee A.K. Vol. 95. 1998. RNA polymerase of vesicular stomatitis virus specifically associates with translation elongation factor-1αβγ for its activity; pp. 1449–1454. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Banerjee A.K, Mathur M, Gupta A.K, Datta U. Involvement of cellular guanylyltransferase in the 5′-terminal capping of vesicular stomatitis virus mRNAs in vitro. Abstract for the International Virology Meeting; Sydney, Australia; 1999. [Google Scholar]
  • 132.Shuman S. Minireview: A proposed mechanism of mRNA synthesis and capping by vesicular stomatitis virus. Virology. 1997;227:1–6. doi: 10.1006/viro.1996.8305. [DOI] [PubMed] [Google Scholar]
  • 133.Ro-Choi T.S, Raj N.B.K, Pike L.M, Busch H. Effects of a-amanitin, cycloheximide, and thioacetamide on low molecular weight nuclear RNA. Biochemistry. 1976;15:3823–3828. doi: 10.1021/bi00662a027. [DOI] [PubMed] [Google Scholar]
  • 134.Hellung-Larsen P, Kulamowicz I, Frederiksen S. Synthesis of low molecular weight RNA components in cells with a temperature-sensitive polymerase II. Biochem. Biophys. Acta. 1980;609:201–204. doi: 10.1016/0005-2787(80)90213-0. [DOI] [PubMed] [Google Scholar]
  • 135.Eliceiri G.L. Formation of low molecular weight RNA species in HeLa cells. J. Cell. Physiol. 1980;102:199–207. doi: 10.1002/jcp.1041020211. [DOI] [PubMed] [Google Scholar]
  • 136.Skuzeski J.M, Lund E, Murphy J.T, Steinberg T.H, Burgess R.R, Dahlberg J.E. Multiple elements upstream of the coding region are required for accumulation of human U1 RNA in vivo. J. Biol. Chem. 1984;259:8345–8352. [PubMed] [Google Scholar]
  • 137.Mattaj I.W. Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNA protein binding. Cell. 1986;46:905–911. doi: 10.1016/0092-8674(86)90072-3. [DOI] [PubMed] [Google Scholar]
  • 138.Fischer U, Luhrmann R. An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus. Science. 1990;249:786–790. doi: 10.1126/science.2143847. [DOI] [PubMed] [Google Scholar]
  • 139.Hamm J, Darzynkiewicz E, Tahara S.M, Mattaj I.W. The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell. 1990;62:569–577. doi: 10.1016/0092-8674(90)90021-6. [DOI] [PubMed] [Google Scholar]
  • 140.Terns M.P, Dahlberg J.E. Retention and 5′ cap trimethylation of U3 snRNA in the nucleus. Science. 1994;264:959–961. doi: 10.1126/science.8178154. [DOI] [PubMed] [Google Scholar]
  • 141.Steinberg T.H, Mathews D.E, Durbin R.D, Burgess R.R. Tagetitoxin: A new inhibitor of eukaryotic transcription by RNA polymerase III. J. Biol. Chem. 1990;265:499–505. [PubMed] [Google Scholar]
  • 142.Shimba S, Reddy R. Purification of human U6 small nuclear RNA capping enzyme. J. Biol. Chem. 1994;269:12419–12423. [PubMed] [Google Scholar]
  • 143.Bokar J.A, Shambaugj M.E, Polayes D, Matera A.G, Rottman F.M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3:1233–1247. [PMC free article] [PubMed] [Google Scholar]
  • 144.Kuersten S, Lea K, MacMorris M, Spieth J, Blumenthal T. Relationship between 3′ end formation and SL2-specific trans-splicing in polycistronic Caenorhabditis elegans pre-mRNA processing. RNA. 1997;3:269–278. [PMC free article] [PubMed] [Google Scholar]
  • 145.Van Doren K, Hirsh D. Trans-spliced leader RNA exists as small nuclear ribonucleoprotein particles in Caenorhabditis elegans. Nature. 1988;335:556–559. doi: 10.1038/335556a0. [DOI] [PubMed] [Google Scholar]
  • 146.Blumenthal T. Trans-splicing and polycistronic transcription in C. elegans. Trends Genet. 1995;11:132–136. doi: 10.1016/s0168-9525(00)89026-5. [DOI] [PubMed] [Google Scholar]
  • 147.Blumenthal T, Steward K. RNA processing and gene structure. In: Riddle D, Blumenthal T, Meyer B, Press J, editors. C. elegans II. Cold Spring Harbor Laboratory Press; New York: 1997. pp. 117–145. [PubMed] [Google Scholar]
  • 148.Ullu E, Tschudi C. Accurate modification of the trypanosome spliced leader cap structure in a homologous cell-free system. J. Biol. Chem. 1995;270:20365–20369. doi: 10.1074/jbc.270.35.20365. [DOI] [PubMed] [Google Scholar]
  • 149.Lee M.G, Van Der Ploeg L.H. Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Ann. Rev. Microbiol. 1997;51:463–489. doi: 10.1146/annurev.micro.51.1.463. [DOI] [PubMed] [Google Scholar]
  • 150.Breckenridge D.G, Watanabe Y, Greenwood S.J, Gray M.W, Schnare N.M. Vol. 96. 1999. U1 small nuclear RNA and spliceosomal introns on Euglena gracilis; pp. 853–856. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Plotch S.J, Bouloy M, Krug R.M. Vol. 76. 1979. Transfer of 5′-terminal cap of globin mRNA to influenza viral complementary RNA during transcription; pp. 1618–1622. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Plotch S.J, Bouloy M, Ulmanen I, Krug R.M. A unique cap (m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell. 1981;23:847–858. doi: 10.1016/0092-8674(81)90449-9. [DOI] [PubMed] [Google Scholar]
  • 153.Braam J, Ulmanen I, Krug R.M. Molecular model of a eucaryotic transcription complex: Functions and movements of influenza P proteins during capped RNA-primed transcription. Cell. 1983;34:609–618. doi: 10.1016/0092-8674(83)90393-8. [DOI] [PubMed] [Google Scholar]
  • 154.Hagen M, Tiley L, Chung T.D, Krystal M. The role of templateprimer interactions in cleavage and initiation by the influenza virus polymerase. J. Gen. Virol. 1995;76:603–611. doi: 10.1099/0022-1317-76-3-603. [DOI] [PubMed] [Google Scholar]
  • 155.Klumpp K, Ruigrk R.W, Baudin F. Role of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure. EMBO J. 1997;16:1248–1257. doi: 10.1093/emboj/16.6.1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Kawakami K, Mizumoto K, Ishihama A, Shinozaki-Yamaguchi K, Miura K. Activation of influenza virus-associated RNA polymerase by cap-1 structure (m7GpppNm) J. Biochem. (Tokyo) 1985;97:655–661. doi: 10.1093/oxfordjournals.jbchem.a135101. [DOI] [PubMed] [Google Scholar]
  • 157.Li M-L, Ramirez B.C, Krug R.M. RNA-dependent activation of primer RNA production by influenza virus polymerase: Different regions of the same protein subunit constitute the two required RNA-binding sites. EMBO J. 1998;17:5844–5852. doi: 10.1093/emboj/17.19.5844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Leahy M.B, Dessens J.T, Nuttall P.A. In vitro polymerase activity of Thogoto virus: Evidence for a unique cap-snatching mechanism in a tick-born orthomyxovirus. J. Virol. 1997;71:8347–8351. doi: 10.1128/jvi.71.11.8347-8351.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Tomassini J.E, Davies M.E, Hastings J.C, Lingham R, Mojena M, Raghoobar S.L, Singh S.B, Tkacz J.S, Goetz M.A. A novel antiviral agent which inhibits the endonuclease of influenza viruses. Antimicrob. Agents Chemother. 1996;40:1189–1193. doi: 10.1128/aac.40.5.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Lai M.M.C, Cavanagh D. The molecular biology of coronaviruses. Adv. Virus. Res. 1997;48:1–100. doi: 10.1016/S0065-3527(08)60286-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Hsu C.L, Stevens A. Yeast cells lacking 5′-3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 1993;13:4826–4835. doi: 10.1128/mcb.13.8.4826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Poole T.L, Stevens A. Structural modifications of RNA influence the 5′ exoribonucleolytic hydrolysis by XRN1 and HKE1 of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1997;235:799–805. doi: 10.1006/bbrc.1997.6877. [DOI] [PubMed] [Google Scholar]
  • 163.Walther T.N, Wittop Koning T.H, Schmperli D, Muller B. A 5′-3′ exonuclease activity involved in forming the 3′ products of histone pre-mRNA processing in vitro. RNA. 1998;4:1034–1046. doi: 10.1017/s1355838298971771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Sachs A.B. Messenger RNA degradation in eukaryotes. Cell. 1993;74:413–421. doi: 10.1016/0092-8674(93)80043-e. [DOI] [PubMed] [Google Scholar]
  • 165.Larimer F.W, Stevens A. Disruption of the gene XRN1, coding for a 5′-3′ exoribonuclease, restricts yeast cell growth. Gene. 1990;95:85–90. doi: 10.1016/0378-1119(90)90417-p. [DOI] [PubMed] [Google Scholar]
  • 166.Larimer F.W, Hsu C.L, Maupin M.K, Stevens A. Characterization of the XRN1 gene encoding a 5′→3′ exoribonuclease: Sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells. Gene. 1992;120:51–57. doi: 10.1016/0378-1119(92)90008-d. [DOI] [PubMed] [Google Scholar]
  • 167.Lo H-J, Huang H-K, Donahue T.F. RNA polymerase I-promoted HIS4 expression yields uncapped, polyadenylated mRNA that is unstable and inefficiently translated in Saccharomyces cerevisiae. Mol. Cell. Biol. 1998;18:665–675. doi: 10.1128/mcb.18.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Nuss D.L, Furuichi Y, Koch G, Shatkin A.J. Detection in HeLa cell extracts of a 7-methyl guanosine specific enzyme activity that cleaves m7GpppNm. Cell. 1975;6:21–27. doi: 10.1016/0092-8674(75)90069-0. [DOI] [PubMed] [Google Scholar]
  • 169.Nuss D.L, Furuichi Y. Characterization of the m7G(5′)pppN-pyrophosphatase activity from HeLa cells. J. Biol. Chem. 1977;252:2815–2821. [PubMed] [Google Scholar]
  • 170.Decker C.J, Parker R. Mechanisms of mRNA degradation in eukaryotes. Trends Biochem. Sci. 1994;19:336–340. doi: 10.1016/0968-0004(94)90073-6. [DOI] [PubMed] [Google Scholar]
  • 171.Caponigro G, Parker R. Multiple functions for the poly (A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev. 1995;9:2421–2432. doi: 10.1101/gad.9.19.2421. [DOI] [PubMed] [Google Scholar]
  • 172.Beelman C.A, Stevens A, Caponigro G, LaGrandeur T.E, Hatfield L, Fortner D.M, Parker R. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature. 1996;382:642–646. doi: 10.1038/382642a0. [DOI] [PubMed] [Google Scholar]
  • 173.Hatfield L, Beelman C.A, Stevens A, Parker R. Mutations in transacting factors affecting mRNA decapping in Saccharomyces cerevisiae. Mol. Cell. Biol. 1996;16:5830–5838. doi: 10.1128/mcb.16.10.5830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.LaGrandeur T.E, Parker R. mRNA decapping activities and their biological roles. Biochimie. 1996;78:1049–1055. doi: 10.1016/s0300-9084(97)86729-6. [DOI] [PubMed] [Google Scholar]
  • 175.LaGrandeur T.E, Parker R. Isolation and characterization of Dcplp, the yeast mRNA decapping enzyme. EMBO J. 1998;17:1487–1496. doi: 10.1093/emboj/17.5.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Tharun S, Parker R. Analysis of mutations in the yeast mRNA decapping enzyme. Genetics. 1999;151:1273–1285. doi: 10.1093/genetics/151.4.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Schwer B, Mao X, Shuman S. Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucleic Acids Res. 1998;26:2050–2057. doi: 10.1093/nar/26.9.2050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Couttet P, Promont-Racine M, Steel D, Pictet R, Grange T. Vol. 94. 1997. Messenger RNA deadenylylation precedes decapping in mammalian cells; pp. 5628–5633. (Proc. Natl. Acad. Sci. U.S.A). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Muhlrad D, Parker R. Premature translational termination triggers mRNA decapping. Nature. 1994;370:578–581. doi: 10.1038/370578a0. [DOI] [PubMed] [Google Scholar]
  • 180.Lim S.K, Maquat L.E. Human beta-globin mRNAs that harbor a nonsense codon are degraded in murine erythroid tissues to intermediates lacking regions of exon I or exons I and II that have a cap-like structure at the 5′ termini. EMBO J. 1992;11:3271–3278. doi: 10.1002/j.1460-2075.1992.tb05405.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Yamabe Y, Sugimoto M, Satoh M, Suzuki N, Sugawara M, Goto M, Furuichi Y. Down-regulation of the defective transcripts of the Werner's syndrome gene in the cells of patients. Biochem. Biophys. Res. Commun. 1997;236:151–154. doi: 10.1006/bbrc.1997.6919. [DOI] [PubMed] [Google Scholar]
  • 182.Kitao S, Shimamoto A, Goto M, Miller R.W, Smithson W.A, Lindor N.M, Furuichi Y. Identification of RecQ4 DNA helicase gene as a causative gene of Rothmund-Thomson syndrome. Nature Genet. 2000;22:82–84. doi: 10.1038/8788. [DOI] [PubMed] [Google Scholar]
  • 183.Konarska M, Padgett R, Sharp P. Recognition of cap structure in splicing in vitro of mRNA precursors. Cell. 1984;38:731–736. doi: 10.1016/0092-8674(84)90268-x. [DOI] [PubMed] [Google Scholar]
  • 184.Edery I, Sonenberg N. Vol. 82. 1985. Cap-dependent RNA splicing in a HeLa nuclear extract; pp. 7590–7594. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Lewis J.D, Izaurralde E, Jarmolowski A, McGuigan C, Mattaj I.W. A nuclear cap-binding complex facilitates association of U1 sn RNP with the cap-proximal 5′ splice site. Genes Dev. 1996;10:1683–1698. doi: 10.1101/gad.10.13.1683. [DOI] [PubMed] [Google Scholar]
  • 186.Inoue K, Ohno M, Sakamoto H, Shimura Y. Effect of the cap structure on pre-mRNA splicing in Xenopus oocyte nuclei. Genes Dev. 1989;3:1472–1479. doi: 10.1101/gad.3.9.1472. [DOI] [PubMed] [Google Scholar]
  • 187.Izaurralde E, Lewis J, McGuigan C, Jankowska M, Darzynkiewicz E, Mattaj I.W. A nuclear cap binding complex involved in pre-mRNA splicing. Cell. 1994;78:657–668. doi: 10.1016/0092-8674(94)90530-4. [DOI] [PubMed] [Google Scholar]
  • 188.Visa N, Izaurralde E, Ferreira J, Daneholt B, Mattaj I.W. A nuclear cap-binding complex binds Balbiani ring pre-mRNA co-transcriptionally and accompanies the ribonucleoprotein particle during nuclear export. J. Cell Biol. 1996;133:4–14. doi: 10.1083/jcb.133.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Colot H.V, Stutz F, Rosbash M. The yeast splicing factor Mud 13p is a commitment complex component and corresponds to CBP20, the small subunit of the nuclear cap-binding complex. Genes Dev. 1996;10:1699–1708. doi: 10.1101/gad.10.13.1699. [DOI] [PubMed] [Google Scholar]
  • 190.Flaherty S.M, Fortes P, Izaurralde E, Mattaj I.W, Gilmartin G.M. Vol. 94. 1997. Participation of the nuclear cap binding complex in pre-mRNA 3′ processing; pp. 11893–11898. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Berget S.M. Exon recognition in vertebrate splicing. J. Biol. Chem. 1995;270:2411–2414. doi: 10.1074/jbc.270.6.2411. [DOI] [PubMed] [Google Scholar]
  • 192.Fresco L.D, Buratowski S. Conditional mutants of the yeast mRNA capping enzyme show that the cap enhances, but is not required for mRNA splicing. RNA. 1996;2:584–596. [PMC free article] [PubMed] [Google Scholar]
  • 193.Jamolowski A, Boelens W.C, Izaurralde E, Mattaj I.W. Nuclear export of different classes of RNA is mediated by specific factors. J. Cell. Biol. 1994;124:627–635. doi: 10.1083/jcb.124.5.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Izaurralde E, Lewis J, Gamberi C, Jarmoloski A, McGuigan C, Mattaj I.W. A cap-binding protein complex mediating U snRNA export. Nature. 1995;376:709–712. doi: 10.1038/376709a0. [DOI] [PubMed] [Google Scholar]
  • 195.Izaurralde E, Adam S. Transport of macromolecules between the nucleus and the cytoplasm. RNA (review) 1998;4:351–364. [PMC free article] [PubMed] [Google Scholar]
  • 196.Both G.W, Banerjee A.K, Shatkin A.J. Vol. 72. 1975. Methylation-dependent translation of viral messenger RNAs in vitro; pp. 1189–1193. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Muthukrishnan S, Both G.W, Furuichi Y, Shatkin A.J. 5′-terminal 7-methylguanosine in eukaryotic mRNA is required for translation. Nature. 1975;255:33–37. doi: 10.1038/255033a0. [DOI] [PubMed] [Google Scholar]
  • 198.Both G.W, Furuichi Y, Muthukrishnan S, Shatkin A.J. Ribosome binding to reovirus mRNA in protein synthesis requires 5′ terminal 7-methylguanosine. Cell. 1975;6:185–195. doi: 10.1016/0092-8674(75)90009-4. [DOI] [PubMed] [Google Scholar]
  • 199.Hickey E.D, Weber L.A, Baglioni C. Vol. 73. 1976. Inhibition of initiation of protein synthesis by 7-methylguanosine-5′-monophosphate; pp. 19–23. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Adams B.L, Morgan M, Muthukrishnan S, Shatkin A.J. The effect of “cap” analogs on reovirus mRNA binding to wheat germ ribosomes. J. Biol. Chem. 1978;253:2589–2595. [PubMed] [Google Scholar]
  • 201.Filipowicz W, Furuichi Y, Sierra J.M, Muthukrishnan S, Shatkin A.J, Ochoa S. Vol. 73. 1976. A protein binding the methylated 5′-terminal sequence, m7GpppN, of eukaryotic messenger RNA; pp. 1559–1563. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Kozak M, Shatkin A.J. Characterization of ribosome-protected fragments from reovirus messenger RNA. J. Biol. Chem. 1976;251:4259–4266. [PubMed] [Google Scholar]
  • 203.Kozak M, Shatkin A.J. Migration of 40 S ribosomal subunits on messenger RNA in the presence of edeine. J. Biol. Chem. 1978;253:6568–6577. [PubMed] [Google Scholar]
  • 204.Kozak M. How do eukaryotic ribosomes select initiation regions in messenger RNA? Cell. 1978;15:1109–1123. doi: 10.1016/0092-8674(78)90039-9. [DOI] [PubMed] [Google Scholar]
  • 205.Sonenberg N, Morgan M, Merrick W.C, Shatkin A.J. Vol. 75. 1978. A olypeptide in eukaryotic initiation factors that crosslinks specifically to the 5′-terminal cap in mRNA; pp. 4843–4847. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Sonenberg N, Rupprecht K.M, Hecht S.M, Shatkin A.J. Vol. 76. 1979. Eukaryotic mRNA cap binding protein purification by affinity chromatography on Sepharose-coupled m7GDP; pp. 4345–4349. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Sonenberg N, Trachsel H, Hecht S, Shatkin A.J. Differential stimulation of capped mRNA translation in vitro by cap binding protein. Nature. 1980;285:331–333. doi: 10.1038/285331a0. [DOI] [PubMed] [Google Scholar]
  • 208.Ehrenfeld E. Initiation of translation by picornavirus RNAs. In: Hershey J.W.B, Mathews M.B, Sonenberg N, editors. Translational Control. Cold Spring Harbor Laboratory Press; New York: 1996. pp. 549–573. [Google Scholar]
  • 209.Tahara S.M, Morgan M.A, Shatkin A.J. Two forms of purified m7G-cap binding protein with different effects on capped mRNA translation in extracts of uninfected and poliovirus-infected HeLa cells. J. Biol. Chem. 1981;256:7691–7694. [PubMed] [Google Scholar]
  • 210.Grifo J.A, Tahara S.M, Morgan M.A, Shatkin A.J, Merrick W.C. New inititation factor activity required for globin mRNA translation. J. Biol. Chem. 1983;258:5804–5810. [PubMed] [Google Scholar]
  • 211.Lamphear B.J, Kirchweger R, Skein T, Rhoads R.E. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (e1F4G) with picornaviral proteases. J. Biol. Chem. 1995;270:21975–21983. doi: 10.1074/jbc.270.37.21975. [DOI] [PubMed] [Google Scholar]
  • 212.Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor elF-4E binds to a common motif shared by the translation factor, elF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 1995;15:4990–4997. doi: 10.1128/mcb.15.9.4990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Hentze M.W. elF4G: A multipurpose ribosome adapter? Science. 1997;275:500–501. doi: 10.1126/science.275.5299.500. [DOI] [PubMed] [Google Scholar]
  • 214.Fraser C.S, Pain V.M, Morley S.J. The association of initiation factor 4F with poly(A)-binding protein is enchanced in serum-stimulated Xenopus kidney cells. J. Biol. Chem. 1999;274:196–204. doi: 10.1074/jbc.274.1.196. [DOI] [PubMed] [Google Scholar]
  • 215.Gradi A, Svitkin Y.V, Imataka H, Sonenberg N. Vol. 95. 1998. Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection; pp. 11089–11094. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Shatkin A.J. mRNA cap binding proteins: Essential factors for initiating translation. Cell. 1985;40:223–224. doi: 10.1016/0092-8674(85)90132-1. [DOI] [PubMed] [Google Scholar]
  • 217.Sachs A.B, Sarnow P, Hentze M.W. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell. 1997;89:831–838. doi: 10.1016/s0092-8674(00)80268-8. [DOI] [PubMed] [Google Scholar]
  • 218.Sonenberg N, Gingras A-C. The mRNA 5′ cap-binding protein elF4E and control of cell growth. Curr. Opin. Cell Biol. 1998;10:268–275. doi: 10.1016/s0955-0674(98)80150-6. [DOI] [PubMed] [Google Scholar]
  • 219.Pain V.M. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem. 1996;236:747–771. doi: 10.1111/j.1432-1033.1996.00747.x. [DOI] [PubMed] [Google Scholar]
  • 220.Imataka H, Gradi A, Sonenberg N. A newly identified N-terminal amino acid sequence of human elF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 1998;17:7480–7489. doi: 10.1093/emboj/17.24.7480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Gingras A-C, Raught B, Sonenberg N. elF4 initiation factors: Effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 1999;68:913–963. doi: 10.1146/annurev.biochem.68.1.913. [DOI] [PubMed] [Google Scholar]
  • 222.Fire A, Xu S, Montgomery M.K, Kostas S.A, Driver S.E, Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;19:806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  • 223.Rhoads R.E. Signal transduction pathways that regulate eukaryotic protein synthesis. J. Biol. Chem. 1999;274:30337–30340. doi: 10.1074/jbc.274.43.30337. [DOI] [PubMed] [Google Scholar]
  • 224.Doherty A.J. Conversion of a DNA ligase into an RNA capping enzyme. Nucleic Acids Res. 1999;27:3253–3258. doi: 10.1093/nar/27.16.3253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Ahola T, Lampio A, Auvinen P, Kääriäinen L. Semliki Forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity. EMBO J. 1999;18:3164–3172. doi: 10.1093/emboj/18.11.3164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Lampio A, Ahola T, Darzynkiewicz E, Stepinski J, Jankowska-Anyszka M, Kääriäinen L. Guanosine nucleotide analogs as inhibitors of alphavirus mRNA capping enzyme. Antiviral Res. 1999;42:35–46. doi: 10.1016/s0166-3542(99)00011-x. [DOI] [PubMed] [Google Scholar]
  • 227.Hu G, Gershon P.D, Hodel A.E, Quiocho F.A. Vol. 96. 1999. mRNA cap recognition: Dominant role of enhanced stacking interactions between methylated bases and protein aromatic side chains; pp. 7149–7154. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Marcotrigiano J, Gingras A-C, Sonenberg N, Burley S.K. Capdependent translation initiation in eukaryotes is regulated by a molecular mimic of elF-4G. Mol. Cell. 1999;3:707–716. doi: 10.1016/s1097-2765(01)80003-4. [DOI] [PubMed] [Google Scholar]

Articles from Advances in Virus Research are provided here courtesy of Elsevier

RESOURCES