Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2006 Apr 28;170(1):197–222. doi: 10.1111/j.1600-065X.1999.tb01339.x

Mucosal immunity and tolerance: relevance to vaccine development

Cecil Czerkinsky 1,, Fabienne Anjueie 1, Jerry R McGhee 2, Annie Geoige‐Chundy 1,3, Jon Holmgren 3, Marie‐Paule Kieny 4, Kohlaro Fujiyashi 2, Jiri F Mestecky 2, Valérie Pierrefite‐Carle 1, Carok Rusk 3, Jia‐Bin Sun 3
PMCID: PMC7165636  PMID: 10566152

Abstract

Summary: The mucosal immune system of mammals consists of an integrated network of lymphoid cells which work in concert with innate host factors to promote host defense. Major mucosal effector immune mechanisms include secretory antibodies, largely of immunoglobulin A (IgA) isotype, cytotoxic T cells, as well as cytokines, chemokines and their receptors. Immunologic unresponsiveness (tolerance) is a key feature of the mucosal immune system, and deliberate vaccination or natural immunization by a mucosal route can effectively induce immune suppression. The diverse compartments located in the aerodigestive and genitourinary tracts and exocrine glands communicate via preferential homing of lymphocytes and antigen‐presenting cells. Mucosal administration of antigens may result in the concomitant expression of secretory immunoglobulin A (S‐IgA) antibody responses in various mucosal tissues and secretions, and under certain conditions, in the suppression of immune responses. Thus, developing formulations based on efficient delivery of selected anti‐gens/tolerogens, cytokines and adjuvants may impact on the design of future vaccines and of specific immunotherapeutic approaches against diseases associated with untoward immune responses, such as autoimmune disorders, allergic reactions, and tissue‐damaging inflammatory reactions triggered by persistent microorganisms.

Acknowledgements
Studies from the authors laboratories are supported by INSERM (France), the European Communities (Biotechnology and Biomedical Programs), the Swedish Medical Research Council, and the U. S. National Institutes of Health.

References

  • 1. Liew FY, Russeli SM, Appleyard G, Brand CM, Beale J. Cross‐protection in mice infected with influenza A virus by the respiratory route is correlated with local IgA antibody rather than serum antibody or cytotoxic T‐cell reactivity. Eur J Immunol 1984;14:350–356. [DOI] [PubMed] [Google Scholar]
  • 2. Mazanec MB, Kaetzel CS, Lamm ME, Fletcher D, Nedrud JG. Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci USA 1992;89:6901–6905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Alley CD, Mestecky J. The mucosal immune system In: Birdand G. Calvert JE, eds. B lymphocytes in human disease. Oxford : Oxford University Press; 1998. p. 222–254. [Google Scholar]
  • 4. Allansmith MR, McClellan BH, Butterworth M, Maloney JR. The development of imnionoglobulin levels in man. J Pediatr 1968;72:276–290. [DOI] [PubMed] [Google Scholar]
  • 5. Mellander L, Carlsson B, Hanson LA. Appearance of secretory IgM and IgA antibodies to Escherichio coli in saliva during early infancy and childhood. J Pediatr 1984; 104:564–568. [DOI] [PubMed] [Google Scholar]
  • 6. Brandtzaeg P. The role of J chain and secretory component in receptor‐mediated glandular and hepatic transport of immunoglobulins in man. Scand J Immunol 1989;22:111–146. [DOI] [PubMed] [Google Scholar]
  • 7. Mestecky J, Lue C, Russell MW. Selective transport of IgA: ceUuiar and molecular aspects. Gastroenterol Clin North Amer 1991;20:441–471. [PubMed] [Google Scholar]
  • 8. Guy‐Grand D, Griscelli C, Vassalli P. The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft‐versus‐host conditions. J Exp Med 1978:148:1661–1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Davies MD, Parrott DM. The early appearance of specific cytotoxic T cells in murine gut mucosa. Clin Exp Immunol 1980;42:273–279. [PMC free article] [PubMed] [Google Scholar]
  • 10. MacDermott RP, Franklin GO, Jenkins KM, Kodner IJ, Nash GS, Weinrieb IJ. Human intestinal mononuclear cells. I. Investigation of antibody-dependent, lectin-induced and spontonaeous cell-mediated cytotoxic capabilities, Gastroenterology 1980;78:47–56. [PubMed] [Google Scholar]
  • 11. Davies MD, Parrott DM. Cytotoxic T cells in small intestine, epithelial, lamina propria and lung lymphocytes. Immunology 1981;44:367–371. [PMC free article] [PubMed] [Google Scholar]
  • 12. Taghabue A, Luini W, Soldateschi D, Boraschi D. Natural killer activity of gut mucosal lymphoid cells in mice. Eur J Immunol 1981;11:919–922. [DOI] [PubMed] [Google Scholar]
  • 13. Nauss KM, Pavlina TM, Kumar V, Newberne PM. Functional characteristics of lymphocytes isolated from the rat large intestine. Response to T-cell mitogen and natural killer cell activity Gastroemerology 1984;86:468–475. [PubMed] [Google Scholar]
  • 14. Ernst PB, Befus AD, Bienenstock J. Leukocytes in the intestinal epithelium: An unusual immunologic compartment. Immunol Today 1985;6:50–55. [DOI] [PubMed] [Google Scholar]
  • 15. Smyth MJ, Trapani JA. The relative role of lymphocyte granule exocytosis versus death‐receptor‐mediated cytotoxicity in viral pathophysiology. J Virol 1998;72:1–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. London SD, Rubin DH, Cebra JJ. Gut mucosal immunization with reovirus serotype I/L stimulates virus‐specific cytotoxic T cell precursors as well as IgA memory cells in Peyer's patches. J Exp Med 1987;165:830–847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Offit PA, Cunningham SL, Dudzik KI. Memory and distribution of virus‐specific cytotoxic T lymphocytes (CTLs) and CTL precursors after rotavirus infection. J Virol 1991;65:1318–1324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. London SD, Cebra‐Thomas JA, Rubin DH, Cebra JJ. CD8 lymphocyte subpopulations in Peyer's patches Induced by reovirus serotype 1 infection. J Immunol 1990;144:3187–3194. [PubMed] [Google Scholar]
  • 19. George A, Kost SI, Witzleben CL, Cebra JJ, Rubin DH. Reovirus‐induced liver disease in severe combined immunodeficient (SCID) mice. A model for the study of viral infection, pathogenesis, and clearance. J Exp Med 1990;171:929–934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Cuff CF, Cebra CK, Rubin DH, Cebra JJ. Developmental relationship between cytotoxic αβ T‐cell‐receptor‐positive intraepithelial lymphocytes and Peyer's patch lymphocytes. Eur J Immunol 1993:23:333–1339. [DOI] [PubMed] [Google Scholar]
  • 21. Issekutz TB. The response of gut‐associated T lymphocytes to intestinal viral immunization, J Immunol 1984;133:2955–2960. [PubMed] [Google Scholar]
  • 22. Buzoni‐Gatel, D , Lepage, AC , Dimier‐Poisson, IH , Bout, DT , Kasper, LH. Adoptive transfer of gut intraepithelial lymphocytes protects against murine infection with Toxoplasmo gondi. J Immunol 1997;158:5883–5889. [PubMed] [Google Scholar]
  • 23. Offit PA, Dudzik KI. Rotavirus‐specific cytotoxic T lymphocytes passively protect against gastroenteritis in suckling mice. J Virol 1990;64:6325–6328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Dharakul T, et al. Immunization with baculovirus‐expressed recombinant rotavirus proteins VP1, VP4, VP6 and VP7 induces CDS+ T lymphocytes that mediate clearance of chronic rotavirus infection in SCID mice. J Virol 1991;65:5928–5932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Franco MA. Greenberg HB. Role of B cells and cycotoxic T lymphocytes in clearance of and immunity to rotavirus infection in mice. J Virol 1995;69:7800–7806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Franco MA, Tin C, Rott LS, VanCott JL, McGhee JR, Greenberg HB. Evidence for CD8+ T‐cell immunity to murine rotavirus in the absence of perforin, fas and γ interferon. J Virol 1997;71:479–486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Burns JW, Siadat‐Pajouh M, Krishaney AA, Greenberg HB. Protective effect of rotavirus VP6‐specific IgA monoclonal antibodies that lack neutralizing activity. Science 1996;272:104–107. [DOI] [PubMed] [Google Scholar]
  • 28. Belyakov, IM el al. Mucosal immunization with HIV‐1 peptide vaccine induces mucosal and systemic cytotoxic T lymphocytes and protective immunity in mice against intrarectal recombinant HIV‐vaccinia challenge. Proc Natl Acad Sci USA 1998;95:1709–1714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Anderson MJ, Pattison JR, Cureton RJ, Argent S, Heath RB. The role of host responses in the recovery of mice from Sendai virus infection. J Gen Virol 1980;46:5052–5060. [DOI] [PubMed] [Google Scholar]
  • 30. Johnson RA, Prince GA, Suffin SC, Horswood RL, Chanock RM. Respiratory syncytial virus infection in cyclophosphamide‐ treated cotton rats, Infect Immun 1982;37:369–373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Bender BS, Croghan T, Zhang L, Small, PA Jr. Transgenic mice lacking class I major histocompatibility complex‐restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med 1992;175:1143–1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Crowe, JE Jr. Host responses to respiratory virus infection and immunization. Curr Top Microbiol Immunol 1999;27:191–214. [DOI] [PubMed] [Google Scholar]
  • 33. Allan W, Tabi Z, Cleary A, Doherty PC. Cellular events in the lymph node and lung of mice with influenza. Consequences of depicting CD4+ T cells. J Immunol 1990;144:3980–3986. [PubMed] [Google Scholar]
  • 34. Eichelberger M, Allan W. Zijlstra M., Jaenisch R, Doherty PC. Clearance of influenza virus respiratory infectiou in mice lacking class I major histocompatibility complex‐restricted CD8+ T cells. J Exp Med 1991;174:875–880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Carding SR, Allan W, Kyes S, Hayday A, Bottomly K, Doherty PC. Late dominance of the inflanunatory process in murine influenza by γδ T cells. J Exp Med 1990;172:1225–1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Muñoz JL, McCarthy CA, Clark ME, Hall CB. Respiratory syncytial virus infection in C57BL/6 mice: Clearance of virus from the lungs with virus‐,specific cytotoxic T cells. J Virol 1991;65:4494–4497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Nicholas JA, Rubino KL, Levely ME, Meyer AL, Collins PL. Cytotoxic T cell activity against the 22‐kDa protein of human respiratory syncytial virus (RSV) is associated with a significant reduction in pulmonary RSV replication. Virology 1991;182:664–672. [DOI] [PubMed] [Google Scholar]
  • 38. Graham BS, Bunton LA, Wright PF, Karzon DT. Role of T lymphocyte subsets in the pathogenesis of primary infection and rechallenge with respiratory syncytial virus in mice. J Clin Invest 1991;88:1026–1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Graham BS, Henderson GS, Tang YW, Lu X, Neuzil KM, CoUey DG. Priming immunization determines T helper cytokine mRNA expression patterns in lungs of mice challenged with respiratory syncytial virus. J Immunol 1993;151:2032–2040. [PubMed] [Google Scholar]
  • 40. Miller CJ. Mucosal transmission of simian immunodeficiency virus. Curr Top Microbiol Immunol 1994;188:107–122. [DOI] [PubMed] [Google Scholar]
  • 41. Lohman BL, Miller CJ, McChesney MB. Antiviral cytotoxic T lymphocytes in vaginal mucosa of simian immunodeficiency virus‐infected rhesus macaques. J Immunol 1995;155:5855–5860. [PMC free article] [PubMed] [Google Scholar]
  • 42. Miller CJ, et al. Rhesus macaques previously‐infected with simian /human immunodeficiency virus are protected from vaginal challenge with pathogenic SIVmac239. J Virol 1997;71:1911–1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Musey L, Hu Y, Eckert L, Christensen M, Karchmer T, McElrath MJ. HIV‐1 induces cytotoxic T lymphocytes in the cervix of infected women. J Exp Med 1997;185:293–303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science 1996;272:60–66. [DOI] [PubMed] [Google Scholar]
  • 45. Weinberg AD, English M, Swain SL. Distinct regulation of lymphokine production is found In fresh versus in vitro primed murine helper T cells. J Immunol 1990;144:1800–1807. [PubMed] [Google Scholar]
  • 46. Powers GD, Abbas AK, Miller RA. Frequencies of IL‐2‐ and IL‐4‐secreting T cells in naive and antigen‐stimulated lymphocyte populations. J Immunol 1988;140:3352–3357. [PubMed] [Google Scholar]
  • 47. Daynes RA, Araneo BA, Dowell TA, Huang K, Dudley D. Regulation of murine lymphokine production in vivo. III. The lymphoid tissue microenvironment exerts regulatory influences over T helper cell function. J Exp Med 1990;171:979–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Hsieh CA, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM. Development of Th1 CD4+ T cells through IL‐12 produced by Listeria‐induced macrophages. Science 1993;260:547–549. [DOI] [PubMed] [Google Scholar]
  • 49. Trinchieri G. Interleukin‐12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen‐specific adaptive immunity. Annu Rev Immunol 1995;13:251–276. [DOI] [PubMed] [Google Scholar]
  • 50. Snapper CM, Paul WE. Interferon‐γ and B cell stimulatory factor‐1 reciprocally regulate Ig isotype production. Science 1987;236:944–947. [DOI] [PubMed] [Google Scholar]
  • 51. Yoshimoio T, Paul WE. CD4+ NK1.1+ T cells promptly produce interleukin 4 in response to ill vivo challenge with anti‐CD3. J Exp Med 1994;179:1285–1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Yoshimoio T, Bendelac A, Watson C, Hu‐Li J, Paul WE. Role of NK1.1+ T cells in a Th2 response and in immunoglobulin E production. Science 1995;270:1845–1847. [DOI] [PubMed] [Google Scholar]
  • 53. Coffman RL, Varkila K, Scott P, Chatelain R. Role of cytokines in the differentiation of CD4+ T‐cell subsets in vivo . Immunol Rev 1991;123:189–207. [DOI] [PubMed] [Google Scholar]
  • 54. Mosmann TR. The role of helper T‐cell products in mouse B‐cell differentiation and isotype regulation. Immunol Rev 1988;102:5–28. [DOI] [PubMed] [Google Scholar]
  • 55. Mosmann TR, Coffman RL. Th1 and Th2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989;7:145–173. [DOI] [PubMed] [Google Scholar]
  • 56. Seder RA, Paul WE. Acquisition of lymphokine‐producing phenotype by CD4+ T cells. J Allergy Clin Immunol 1994;94:1195–1202. [DOI] [PubMed] [Google Scholar]
  • 57. Sehooley KA, Coffman RL, Mossmann TR, Paul WE. Lymphokine control of in vivo immunoglobulin isotype selection, Annu Rev Immunol 1990;8:303–333. [DOI] [PubMed] [Google Scholar]
  • 58. Esser C, Radbruch A. Immunoglobulin class switching; Molecular and cellular analysis. Annu Rev Immunol 1990;8:717–735. [DOI] [PubMed] [Google Scholar]
  • 59. Gajewski TF, Fitch FW. Anti‐proliferative effect of IFN‐γ in imtnune regulation, I, IEN‐γ inhibits the proliferation of Th2 but not Th1 murine helper T‐ lymphocyte clones. J Immunol 1988;140:4245–4252. [PubMed] [Google Scholar]
  • 60. Czerkinsky C, et al. Detection of human cytokine‐secreting cells in distinct anatomical compartments. Immunol Rev 1991:119:1–18. [DOI] [PubMed] [Google Scholar]
  • 61. Hauer AC, Breese EJ, Walker‐Smith JA, MacDonald TT. The frequency of cells secreting interferon γ, IL‐4, IL-5 and IL-10 in the blood and duodenal mucosa of children with cow's milk hypersensitivity Pediatr Res 1997:42:1–10. [DOI] [PubMed] [Google Scholar]
  • 62. VanCott JL, et al. Regulation of mucosal and systemic antibody responses by T helper cell subsets, macrophages and derived cytokines following oral immunization with live recombinant Salmonella. J Immunol 1996;156:1504–1514. [PubMed] [Google Scholar]
  • 63. McGhee JR, Mestecky J, Elson CO, Kiyono H. Regulation of IgA synthesis and immune response by T cells and interleukins. J Clin Immunol 1989;9:175–199. [DOI] [PubMed] [Google Scholar]
  • 64. Defrance T, Vanbervliet B, Briere E, Durand I, Rousset F, Banchereau J. Interleukin 10 and transforming growth factor b cooperate to induce anti‐CD40‐activated naive human B cells to secrete immunoglobulin A. J Exp Med 1992;175:671–682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Van Vlasselaer P, Punnonen J, de Vries JE. Transforming growth factor‐b directs IgA switching in human B cells. J Immunol 1992;148:2062–2067. [PubMed] [Google Scholar]
  • 66. Murray PD, McKenzie DT, Swain SL, Kagnoff MF. Interleukin 5 and interleukin 4 produced by Peyer's patch T cells selectively enhance immunoglobulin A expression. J Immunol J 1987:139:2669–2674. [PubMed] [Google Scholar]
  • 67. Coffman RL, Shrader B, Carty J, Mossman TR, Bond MW. A mouse T‐cell product that preferentially enhances IgA production. Biologic characterization. J Immunol 1987;139:3685–3690. [PubMed] [Google Scholar]
  • 68. Kiyono H, et al. Murine Peyer's patch T‐cell clones: characterization of antigen‐specific helper T cells for immunoglobulin A responses. J Exp Med 1982;156:1115–1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Kiyono H, et al. Isotype‐specificity of helper T‐cell clones: Peyer's patch Th cells preferentially collaborate with mature IgA B cells for IgA responses. J Exp Med 1984;159:798–811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Coffman RL, Lebman DA, Shrade B. Transforming growth factor beta specifically enhances IgA production by lipopolysaccharide‐stimulated murine B lymphocytes. J Exp Med 1989;170:1039–1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Kim PH, Kagnoff MF. Transforming growth factor‐β 1 is a costimulator for IgA production. J Immunol 1990;144:3411–3416. [PubMed] [Google Scholar]
  • 72. Chen Y, Kuchroo VK, Inobe JI, Hanffler DA, Weiner HL. Regulatory T‐cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994;265:1237–1240. [DOI] [PubMed] [Google Scholar]
  • 73. Weiner HL. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today 1997;18:335–343. [DOI] [PubMed] [Google Scholar]
  • 74. Khoury SJ, Hancock WW, Weiner HL. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with down regulation of inflammatory cytokines and differential upregulation of TGF‐β, IL‐4 and PGE expression in the brain. J Exp Med 1992;176:1355–1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Craig SW. Cebra. JJ Peyer's patches: an enriched source of precursors for IgA‐producing immunocytes in the rabbit. J Exp Med 1971;134:188–200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Weisz‐Carrington F, Roux ME, McWilliams M, Phihps‐Quagliata JM, Lamm ME. Organ and isotype distribution of plasma cells producing specific antibody after oral immunization: evidence for a generalized secretory immune system. J Immunol 1979;123:1705–1708. [PubMed] [Google Scholar]
  • 77. Scicchitano R, Stanisz A, Ernst PB, Bienenstock J. A common mucosal immune system revisited In: Husband AJ., ed. Migration and homing of lymphoid cells. Boca Raton , FL : CRC Press: 1988. p. 1–34. [Google Scholar]
  • 78. Nadal D, Albini B, Schlapfer E, Chen C, Brodsky L, Ogra PL. Tissue distribution of mucosal antibody‐producing cells specific for respiratory syncytial virus in severe combined immune deficiency (SCID) mice engrafted with human tonsils. Clin Exp Immunol 1991;3:358–64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Czerkiiisky C, et al. IgA antibody‐producing cells in peripheral blood after antigen ingestion:evidence for a common mucosal immune system in humans. Proc Natl Acad Sci USA 1987;84:2449–2453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Czerkinsky C, Svennerholm AM, Quiding M, Johnsson R, Holmgren J. Antibody‐producing cells in peripheral blood and salivary glands after oral cholera vaccination of humans. Infect Immun 1991;59:996–1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Kantele A. Antibody‐secreting cells in the evaluation of the immunogenicity of an oral vaccine. Vaccine 1990;8:321–326. [DOI] [PubMed] [Google Scholar]
  • 82. Quiding‐Jarbrink M, et al. Human circulating anti gen‐specific B cell immunoblasts after mucosal and systemic immunizations: Differential homing commandments and cell surface differentiation markers. Eur J Immunol 1995;25:322–327. [DOI] [PubMed] [Google Scholar]
  • 83. Quiding‐Järbrink M, et al. Differential expression of tissue‐specific adhesion molecules on human circulating antibody‐forming cells after systemic, enteric and nasal immunizations. A molecular basis for the compartmentalization of effector B‐cell responses. J Clin Invest 1997:99:1281–1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Pabst R. Is BALT a major component of the human lung immune system Immunol Today 1992;13:119–122. [DOI] [PubMed] [Google Scholar]
  • 85. Kupfer CF, et al. The role of nasopharyngeal lymphoid tissue. Immunol Today 1992;13:219–224. [DOI] [PubMed] [Google Scholar]
  • 86. Hein WR. Organization of mucosal lymphoid tissue. Curr Top Microbiol Immunol 1999;236:1–14. [DOI] [PubMed] [Google Scholar]
  • 87. Brandtzaeg P. Immune functions of human nasal mucosa and tonsils in health In: Bienenstock J., ed. Immunology of the lung and upper respiratory tract. New York : McGraw‐Hill: 1984. p. 28–95. [Google Scholar]
  • 88. Langman JM, Rowland R. The number and distribution of lymphoid follicles in the human large intestine. J Anat 1986;194:189–194. [PMC free article] [PubMed] [Google Scholar]
  • 89. O'Leary AD, Swenney EC. Lympho‐glandular complexes of the colon: structure and distribution. Histology 1986;10:267–283. [DOI] [PubMed] [Google Scholar]
  • 90. Crago SS, et al. Distribution of IgAl‐, IgA2‐, and J chain‐containing cells in human tissues. J Immunol 1984;132:16–18. [PubMed] [Google Scholar]
  • 91. Forrest BD, Shearman DJC, La Brooy JT. Specific immune response in humans following rectal delivery of live typhoid vaccine. Vaccine 1990;8:209–212. [DOI] [PubMed] [Google Scholar]
  • 92. Lehner T, Panagiotidi C, Bergmeier LA, Ping T, Brooks R, Adams SE. A comparison of the immune response following oral, vaginal, or rectal route of immunization with SIV antigens in nonhuman primates. Vaccine Res 1992;1:319–330. [Google Scholar]
  • 93. Lehner T, et al. T‐ and B‐cell functions and epitope expression in nonhuman primates immunized with simian immunodeficiency viral antigen by the rectal route. ProcNatlAcadSci USA 1993;90:8638–8642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Haneberg B, Kendall D, Amerongen HM, Apter FM, Kraehenbuhl JP. Neutra MR. Induction of specific immunoglobulin‐A in the small intestine, colon‐rectum, and vagina measured by a new method for collection of secretions from local mucosal surfaces. Infect Immun 1994;62:15–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Hopkins S, et al. A recombinant Salmonella typhimurium vaccine induces local immunity by fbur different routes of immunization. Infect Immun 1995;63:3279–3286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Moldoveanu Z, Russell MW, Wu HY, Huang W‐Q, Compans RW, Mestecky J. Compartmentalization within the common mucosal immune system. Adv Exp Med Biol 1995;371:97–102. [DOI] [PubMed] [Google Scholar]
  • 97. Nardelli‐Haefliger D, et al. Oral and rectal immunization of adult female volunteers with a recombinant attenuated Salmonella typhi vaccine strain. Infect Immun 1996;64:5219–5224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98. Hordnes K, Tyniiing T, Kvam AI, Johnsson R, Haneberg B. Colonization in the rectum and uterine cervix with group B streptococci may induce specific antibody responses in cervical secretions of pregnant women. Infect Immun 1996;64:1643–1652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Kozlowski PA, Cu‐Uvin S, Neutra MR, Flanigan TP. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect Immun 1996;65:1387–1394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100. Eriksson K, et al. Specific‐antibody‐secreting cells in the rectums and genital tracts of non‐human primates following vaccination. Immunol Infect Immun 1998;66:5889–5896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Saito H, et al. Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science 1998;280:275–278. [DOI] [PubMed] [Google Scholar]
  • 102. Lubeck MD, et al. Immunogenicity of recombinant adenovirus‐human immunodeficiency virus vaccines in chimpanzees following intranasal administration. AIDS Res Hum Retroviruses 1994;10:1443–1449. [DOI] [PubMed] [Google Scholar]
  • 103. Quiding‐Jarbrink M, Granstrom G, Nordstrom I, Holmgren J, Czerkinsky C. Induction of compartmentalized B‐cell responses in human tonsils. Infect Immun 1995;63:853–857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Gallichan WS, Rosenthal KL. Specific secretory immune responses in the female genital tract following intranasal immunization with a recombinant adenovirus expressing glycoprotein B of herpes simplex virus. Vaccine 1995;13:1589–1595. [DOI] [PubMed] [Google Scholar]
  • 105. Gallichan WS, Johnson DC, Graham FL. Rosenthal, KL. Mucosal immunity and protection after intranasal immunization with recombinant adenovirus expressing herpes simplex glycoprotein B. J Infect Dis 1993;168:622–629. [DOI] [PubMed] [Google Scholar]
  • 106. Pal S, Peterson EM., de la Maza LM. Intranasal immunization induces long‐term protection in mice against a Chlamydia trachomatis genital challenge. Infect Immun 1996;64:5341–5348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Russell MW. Moldoveanu Z., White PL, Sibert GJ, Mestecky J, Michalek SM. Salivary, nasal, genital, and systemic antibody responses in monkeys immunized intranasally with a bacterial protein antigen and the cholera toxin B subunit. Infect Immun 1996;64:1272–1282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Di Tommaso A., et al. Induction of antigen‐specific antibodies in vaginal secretions by using a nontoxic mutant of heat‐labile enterotoxin as a mucosal adjuvant. Infect Immun 1996;64:974–979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Siaats HF, Nichols WG, Palker TJ. Systemic and vaginal antibody respones after intranasal immunization with the HIV‐1 C4/V3 peptide TISPIOMN(A). J Immunol 1996;157:462–472. [PubMed] [Google Scholar]
  • 110. Bergquist C, Johansson EL, Lagergard T, Holmgren J, Rudin A. Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina. Infect Immun 1997;65:2676–2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Johansson EL, Rask C, Fredriksson M, Eriksson K, Czerkinsky C, Holmgren J. Antibodies and antibody‐secreting cells in the female genital tract after vaginal or intranasal immunization with cholera toxin B subunit or conjugates, Infect Immun 1998;66:514–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Hameleers DM, Stoop AE., van der Ven I., Biewenga J., van der Baan S. Sminia T Intra‐epithelial lymphocytes and non‐lymphoid cells in the human nasal mucosa. Int Arch Allergy Appl Immunol 1989;88:17–22. [DOI] [PubMed] [Google Scholar]
  • 113. Graetne‐Cook E, Bhan AK, Harris NL. Immunohistochemical characterization of intraepithelial and subepithelial mononuclear cells of the upper airways. Am J Pathol 1993;143:1416–22. [PMC free article] [PubMed] [Google Scholar]
  • 114. Kupfer CF, Hameleers DM, Bruijntjes JP., van der Ven I., Biewenga J, Sminia T. Lymphoid and non‐lymphoid cells in nasal‐associated lymphoid tissue (NALT) in the rat. An immuno‐ and enzyme‐histochemical study. Cell Tissue Res 1990;259:371–377. [DOI] [PubMed] [Google Scholar]
  • 115. van der Ven I, Sminia T. The development and structure of mouse nasal‐associated lymphoid tissue: an immuno‐ and enzyme‐histochemical study, Reg Immunol 1993;5:69–75. [PubMed] [Google Scholar]
  • 116. Ogra PL. Effect of tonsillectomy and adenoidectomy on nasopharyngeal antibody response lo poliovirus. N Engl J Med 1979;284:59–64. [DOI] [PubMed] [Google Scholar]
  • 117. Edwards JN, Morris HB. Langerhans'cells and lymphocyte subsets in the female genital tract. Br J Obstet Gynaecol 1985;92:974–982. [DOI] [PubMed] [Google Scholar]
  • 118. Hussain LA, et al. Expression and gene transcript of Ec receptors for IgG, HLA class II antigens and Langerhans cells in human cervico‐vaginal epithelium. Clin Exp Immunol 1992;90:530–538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Olaitan A, Johnson MA, MacLean A, Poulter LW. The distribution of immunocompetent cells in the genital tract of HIV‐positive women. AIDS 1996;10:759–764. [DOI] [PubMed] [Google Scholar]
  • 120. Kutteh WH, Hatch KD, Blackwell RE, Mestecky J. Secretory immune system in the female reproductive tract: I. Immunoglobulin and secretory component‐containing cells. Obstetr Gynecol 1988;71:56–60. [PubMed] [Google Scholar]
  • 121. Kutteh WJ, Mestecky J. Secretory immunity in the female reproductive tract. Am J Reprod Immunol 1994;31:40–46. [DOI] [PubMed] [Google Scholar]
  • 122. Ogra PL, Ogra SS. Local antibody response lo poliovaccine in the female genital tract. J Immunol 1973;110:1307–1311. [PubMed] [Google Scholar]
  • 123. Wassen L, Schon K, Holmgren J, Jeriborn M, Lycke N. Local intravaginal vaccination of the female genital tract. Scand J Immunol 1986;44:408–414. [DOI] [PubMed] [Google Scholar]
  • 124. Mestecky J, Kutteh WH, Jackson S. Mucosal immunity in the female genital trace: relevance to vaccination efforts against the human immunodeficiency virus. AIDS Res Hum Retroviruses 1994;10:S11–S20. [PubMed] [Google Scholar]
  • 125. Bergman KC, Waldman RH, Tischner H. Pohl W Antibody in tears, saliva and nasal secretions following oral immunization of humans with inactivated influenza virus vaccine. Int Arch Allergy Appl Immunol 1986;80:107–109. [DOI] [PubMed] [Google Scholar]
  • 126. Bergman KC, Waldman RH. Oral immunization with influenza virus: Experimental and clinical studies. Curr Top Microbiol lmmunol 1989;146:83–89. [DOI] [PubMed] [Google Scholar]
  • 127. Moldoveanu Z, Clements, ML , Prince, SJ , Murphy BR, Mestecky J. Human immune responses to influenza virus vaccines administered by systemic or mucosal routes. Vaccine 1995;3:1006–1012. [DOI] [PubMed] [Google Scholar]
  • 128. Ohlsson‐Wilhelm BM, Duncan JD, Mestecky J, Compans RW. Mucosal immunization against influenza virus using bioadhesive polymers. Proceedings, Options for the Control of Influenza III, 1998. (In press). [Google Scholar]
  • 129. Gizurarson G, Jonsdottir VM, Heron I. Intranasal administration of diptheria toxoid, Selecting antibody isotypes using formulations having various lipophilic characteristics. Vaccine 1995;13:617–621. [DOI] [PubMed] [Google Scholar]
  • 130. Michalek SM, Eldridge JH, Curtiss III R, Rosenthal KL. Antigen delivery systems: new approaches to niacosal immunizaiion In: Ogra PL. Mestecky J, Limm ME, Strober W, McGhee, Bienenstock J., eds. Handbook of mucosal immunology San Diego : Academic Press: 1994. p. 373–390. [Google Scholar]
  • 131. Gould‐Fogerite S, et al. Lipid matrix‐based subunit vaccines: a structure‐function approach to oral and parenteral immunization. AIDS Res Human Retroviruses 1994;10:599–5103. [PubMed] [Google Scholar]
  • 132. Eldridge JH, Meulbroek JA, Staas JK, Tice TR, Gilley RM. Vaccine containing biodegradable tnicrospheres specifically enter the gut‐associated lymphoid tissue following oral administration and induce a disseminated mucosal immune response. Adv Exp Med Biol 1989;251:191–202. [DOI] [PubMed] [Google Scholar]
  • 133. Duncan JD, Gilley RM, Schaffer DP. Moldoveanu Z., Mestecky J. Poly (lactide‐coglycolide) microencapsulation of vaccines for mucosal immunization In: Kiyono H. Ogra PL. McGhee JB, eds. Mucosal vaccines. San Diego : Academic Press: 1996. p. 159–173. [Google Scholar]
  • 134. Mestecky J, Eldridge JH. Targeting and controlled release of antigens for die effective induction of secretory antibody responses. Curr Opin Immunol 1991;3:492–495. [DOI] [PubMed] [Google Scholar]
  • 135. Mestecky J, et al. Current options for vaccine delivery systems by mucosal routes. J Controlled Release 1997;48:243–257. [Google Scholar]
  • 136. McKenzie SJ, Halsey JF. Cholera toxin B subunit as a carrier protein to stimulate a mucosal immune response. J Immunol 1984;133:1818–1824. [PubMed] [Google Scholar]
  • 137. De Aizpurna HJ, Russell‐Jones GJ. Oral vaccination. Identification of classes of proteins that provoke an immune response upon oral tending. J Exp Med 1988;167:440–451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138. Czerkinsky C, Russell MW, Lycke N, Lindblad M, Holmgren J. Oral administration of a streptococcal antigen coupled to choleratoxin B subunit evokes strong antibody responses in salivary glands and extramucosal tissues. Infect human 1989;57:1072–1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139. Bergquist C, Lagergard T, Lindblad M, Holmgren J. Local and systemic responses to dextran‐cholera toxin B subunit conjugates. Infect Immun 1995;63:2021–2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140. Sanchez J, Johansson S, Löwenadler B, Svennerholm A‐M, Holmgren J. Recombinant cholera toxin B‐subunit and gene fusion proteins for oral vaccination. Res Microbiol 1990;141:971–979. [DOI] [PubMed] [Google Scholar]
  • 141. Dertzbaugh MT, Elson CO. Comparative effectiveness of the cholera toxin B subunit and alkaline phosphatase as carriers for oral vaccines. Infect Immun 1993;61:48–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142. Sanchez J, Holmgren J. Recombinant system for overexpression of cholera toxin B subunit in Vibrio choierae as a basis for vaccine development. Proc Natl Acad Sci USA 1989;86:481–485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143. Jobling MG, Holmes RK. Fusion proteins containing the A 2 domain of cholera toxin assemble with B polypeptides of cholera toxin to form immunoreactive and functional holotoxin‐like chimeras. Infect Immun 1992;60:4915–924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144. Hajistiengallis G, Hollingshead SK, Koga T, Russell MW. Mucosal immunization with a bacterial protein antigen genetically coupled to cholera toxin A2/B subunits. J Immunol 1995;154:4322–332. [PubMed] [Google Scholar]
  • 145. Sultan F, Jin LL, Jobling MG, Holmes RK, Stanley, SL Jr. Mucosal immunogenicity of a holotoxin‐like molectile containing the serine‐rich Entamoeba histolytica protein (SREHP) fused to the A 2 domain of cholera toxin. Infect Immun 1998;66:462–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146. Moxon RE. Applications of molecular microbiology to vaccinology. Lancet 1991;350:1240–1244. [DOI] [PubMed] [Google Scholar]
  • 147. Plotkin SA. Vaccination in the 21st century. J Infect Dis 1993;168:29–37. [DOI] [PubMed] [Google Scholar]
  • 148. Curtiss R, Kelly SM, Hassan JO. Live oral avirulent Salmonella vaccines. Vet Microbiol 1993;37:397–405. [DOI] [PubMed] [Google Scholar]
  • 149. Doggett TA, Brown PK. Attenuated Salmonella as vectors for oral immunization In: Kiyono H. Ogra PL. McGhee, eds. Mucosal Vaccines. San Diego : Academic Press: 1996. p. 105–108. [Google Scholar]
  • 150. Chatfleld S, Roberts M, Londono P, Cropley I, Douce G, Dougan G. The development of oral vaccines based on live attenuated Salmonella strains. FEMS Immunol Med Microbiol 1993;7:1–7. [DOI] [PubMed] [Google Scholar]
  • 151. Roberts M, Chatfield, SN , Dougan, G. Salmonella as carriers of heterologous antigens In: O'Hagan DT., ed. Novel delivery systems for oral vaccines. Boca Raion , EL : CRC Press: 1994. p, 27–41. [Google Scholar]
  • 152. Schodcl F, Curtiss H III. Salmonella as oral vaccine carriers. Dev Biol Stand 1995;84:245–53. [PubMed] [Google Scholar]
  • 153. Gonzales C, et al. Salmonella typhi vaccine strain CVD 908 expressing the circumsporozoite protein of Plasmodium falciparum: strain construction and safety about immunogenicity in humans. J Infect Dis 1994;169:927–931. [DOI] [PubMed] [Google Scholar]
  • 154. Yang DM, Fairweather N, Button LL, McMaster WR, Kahl LR. Liew FY. Oral Sulmonella typhimurium (AroA) vaccine expressing a major leishmanial surface protein (gp 63) preferentially induces T helper 1 cells and protective immunity against leishmaniasis. J Immunol 1990;145:2281–2285. [PubMed] [Google Scholar]
  • 155. Okahashi N, et al. Oral immunilization of inrerleukin‐4 (IL‐4) knockout mice with a recombinant Salmunella strain or cholera toxin reveals that CD4+ Th2 cells producing IL‐6 and IL‐10 are associated with mucosal immunoglobulin A responses. Infect Immun 1996;64:1516–1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156. Stover CK. Recombinant vaccine delivery systems and encoded vaccines. Curr Opin Immunol 1994;6:568–571. [DOI] [PubMed] [Google Scholar]
  • 157. Renauld‐Mongénie G, et al. Induction of mucosal immune responses against a heterologous antigen fused to filamentous hemagglutinin after intranasal immunization with recombinant Bordetella pertussis . Proc Natl Acad Sci USA 1996;93:7944–7949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158. Graham FL. Use of human adenovirus‐based vectors for antigen expression in animals. J Gen Virol 1989;70:429–434. [DOI] [PubMed] [Google Scholar]
  • 159. Wilson JM. Adenoviruses as gene‐delivery vehicles, N Engl J Med 1996;334:1185–1187. [DOI] [PubMed] [Google Scholar]
  • 160. Graham FL, Smiley J, Russell WC, Nairn R. Characterization of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977;36:59–74. [DOI] [PubMed] [Google Scholar]
  • 161. Gallichan WS, Rosenthal KL. Long‐term immunity and protection against herpes simplex virus type 1 in the murine female genital tract after mucosal but not systemic Immunization. I Infect Dis 1998;177:1155–1161. [DOI] [PubMed] [Google Scholar]
  • 162. Gallichan WS, Rosenthal KL. Long‐lived cytotoxic T lymphocyte memory in mucosal tissues after mucosal but not systemic immunization. J Exp Med 1996;184:1879–1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163. Buge SL, et al. An adenovirus‐simian immunodeficiency virus env vaccine elicits humoral, cellular, and mucosal immune responses in rhesus macaques and decreases viral burden following vaginal challenge. J Virol 1997;71:8531–8541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164. Prevec L, Campbell JB, Christie BS, Belbeck L, Graham FL. A recombinant human adenovirus vaccine against rabies. J Infect Dis 1990;161:27–30. [DOI] [PubMed] [Google Scholar]
  • 165. Hsu KH, et al. Immunogenicity of recombinant adenovirus‐respiratory syncytial virus vaccines with adenovirus types 4, 5 and 7 vectors in dogs and a chimpanzee. J Infect Dis 1992;166:769–775. [DOI] [PubMed] [Google Scholar]
  • 166. Tacket CO, et al. Initial safety and immunogenicity studies of an oral recombinant adenohepatitis B vaccine. Vaccine 1992;10:673–676. [DOI] [PubMed] [Google Scholar]
  • 167. Baca‐Estrada ME, Liang X, Babiuk LA, Yoo D. Induction of mucosal immunity in cotton rats lo haemagglutinin‐esterase glycoprotein of bovine coronavirus by recombinant adenovirus. Immunology 1995;86:134–140. [PMC free article] [PubMed] [Google Scholar]
  • 168. Kagami H, et al. Repetitive adenovirus administration to the parotid gland: role of immunological barriers and induction of tolerance. Hum Gene Ther 1998;10:305–313. [DOI] [PubMed] [Google Scholar]
  • 169. Brochier B, et al. Large‐scale eradication of rabies using recombinant vaccinia‐rabies vaccine. Nature 1991;354:520–522. [DOI] [PubMed] [Google Scholar]
  • 170. Kieny MP, et al. Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature 1984;312:163–166. [DOI] [PubMed] [Google Scholar]
  • 171. Meitin CA, Bender BS, Small, PA Jr. Enteric immunization of mice against influenza with recombinant vaccinia. Proc Natl Acad Sci USA 1994;91:11187–11191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172. Ramsay AJ, Kohonen‐Corish M. Interleukin‐5 expressed by a recombinant virus vector enhances specific mucosal IgA responses in vivo . Eur J Immunol 1993;23:3141–3145. [DOI] [PubMed] [Google Scholar]
  • 173. Paoletti, E. Applications of poxvirus vectors to vaccination: an update. Proc Natl Acad Sci USA 1996;93:11349–11353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174. Welter J, Taylor J, Tartaglia J, Paoletti E, Stephensen CB. Mucosal vaccination with recombinant poxvirus vaccines protects ferrets against symptomatic CDV infection. Vaccine 1999;17:308–318. [DOI] [PubMed] [Google Scholar]
  • 175. Gonin P, Oualikene W, Fournier A, Eloit M. Comparison of the efficacy of replication‐defective adenovirus and Nyvac poxvirus as vaccine vectors in mice. Vaccine 1996;14:1083–1087. [DOI] [PubMed] [Google Scholar]
  • 176. Mayr A, Danner K. Vaccination against pox diseases under immunosuppressive conditions. Dev Biol Stand 1978;41:225–234. [PubMed] [Google Scholar]
  • 177. Sutter G, Wyatt LS, Foley PL, Bennink JR, Moss B. A recombinant vector derived from the host range‐restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 1994;12:1032–1040. [DOI] [PubMed] [Google Scholar]
  • 178. Morrow CD, Novak MJ, Ansardi DC, Porter DC, Moldoveanu Z. Recombinant viruses as vectors for mucosal immunity. Curr Top Microbiol Immunol 1999;236:255–273. [DOI] [PubMed] [Google Scholar]
  • 179. Caley IJ, et al. Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol 1997;71:3031–3038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180. Davis NL, Brown KW, Johnston RE. A viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge. J Virol 1996;70:3781–3787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181. Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JR. Replicon‐helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 1997;239:389–401. [DOI] [PubMed] [Google Scholar]
  • 182. Tang S, van Rij R, Silvera D, Andino R. Toward a poliovirus‐based simian immunodeficiency virus vaccine: correlation between genetic stability and immunogenecity. J Virol 1997;71:7841–7850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183. Anderson MJ, Porter DC, Moldoveanu Z, Fletcher, TM 3rd , McPherson, S. , Morrow CD. Characterization of the expression and immunogenicity of poliovirus replicons that encode simian immunodeficiency virus SIVmac239 Gag or envelope SU proteins, AIDS Res Hum Retroviruses 1997;13:53–62. [DOI] [PubMed] [Google Scholar]
  • 184. Wolff JA, et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465–1468. [DOI] [PubMed] [Google Scholar]
  • 185. Ulmer JB, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993:259:1745–1749. [DOI] [PubMed] [Google Scholar]
  • 186. Yamamoto S, Yamamoto T, Kataoka T, Kuramoto E, Yano O, Tokunaga T. Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN‐mediated natural killer activity. J Immunol 1992;148:4072–4076. [PubMed] [Google Scholar]
  • 187. Sato Y, et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 1996;273:352–354. [DOI] [PubMed] [Google Scholar]
  • 188. Krieg AM, et al. CpG motifs in bacterial DNA trigger direct B‐cell activation. Nature 1995;374:546–549. [DOI] [PubMed] [Google Scholar]
  • 189. Klinman DM, Yi AK, Beaticage SL, Conover J, Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon γ. Proc Natl Acad Sci USA 1996;93:2879–2883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190. Krieg AM, Love‐Homan L, Yi AK, Harty JT. CpG DNA induces sustained IL‐12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 1998;161:2428–2434. [PubMed] [Google Scholar]
  • 191. Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC. Activation of cutaneous dendritic cells by CpG‐containing oligonucleotides: a role for dendritic cells in the augmentation of Th I responses by immunostimulatory DKA. J Immunol 1998;161:3042–3049. [PubMed] [Google Scholar]
  • 192. Moldoveanu Z, Love‐Homan L, Huang WQ, Krieg AM. CpG DNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine 1998;16:1216–1224. [DOI] [PubMed] [Google Scholar]
  • 193. Fynan EF, Webster RG, Euller DH, Haynes JR, Santoro JC, Robinson HL. DNA vaccines: protective immunizations by parenteral, mucosal and gene‐gun inoculations. Proc Natl Acad Sci USA 1993;90:11478–11482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194. Wang B, et al. Gene inoculation generates immune responses against HIV‐1. Proc Natl Acad Sci USA 1993;90:4156–4160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195. Kuklin N, Daheshia M, Karem K, Manickan E, Rouse BT. Induction of mucosal immunity against herpes simplex virus by plasmid DN. immunization. J Virol 1997;71:3138–3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196. Etchari N, Buckland R, Liu MA, Wild TF, Kaiserlian D. Class I‐restricted CTL induction by mucosal immunization with naked DNA encoding measles virus haemagglutinin. J Gen Virol 1997;78:1577–1580. [DOI] [PubMed] [Google Scholar]
  • 197. Baragazzi ML, et al. Safety and immunogenicity of intramuscular and intravaginal delivery of HIV‐1 DNA constructs to infant chimpanzees. J Med Primatol 1997;26:27–33. [DOI] [PubMed] [Google Scholar]
  • 198. McCluskie MJ, Chu Y, Xia JL, Jessee J, Gebyehu G, Davis HL. Direct gene transfer to the respiratory tract of mice with pure plasmid and lipid‐formulated DNA. Antisense Nucleic Acid Drug Dev 1998;8:401–414. [DOI] [PubMed] [Google Scholar]
  • 199. Okada E, et al. Intranasal immunization of a DNA vaccine with IL‐12‐ and granulocyte‐macrophage colony‐stimulating factor (GM‐CSF)‐expressing plasmids in liposomes induces strong mucosal and cell‐mediated immune responses against HIV‐1 antigens. J Immunol 1997;159:3638–3647. [PubMed] [Google Scholar]
  • 200. Sasaki S, et al. Comparison of intranasal and intramuscular immunization against human immunodeficiency virus type 1 with a DNA‐monophosphoryl lipid Aadjuvant vaccine. Infect Immun 1998;66:823–826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201. Klavinskis LS, Barnfield C, Gao L, Parker S. Intranasal immunization with plasmid DNA‐lipid complexes elicits mucosal immunity in the female genital and rectal tracts. J Immunol 1999;162:254–262. [PubMed] [Google Scholar]
  • 202. Jones DH, Clegg JC, Farrar GH. Oral delivery of micro‐encapsulated DNA vaccines. Dev Biol Stand 1998;92:149–155. [PubMed] [Google Scholar]
  • 203. Chen SC, et al. Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. J Virol 1998;72:5757–5761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204. Darji A, et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 1997;91:765–775. [DOI] [PubMed] [Google Scholar]
  • 205. Paglia P, Medina E, Arioli I, Guzman CA. Colombo MP Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimuriura, results in protective immunity against a murine fibrosarcoma. Blood 1998;92:3172–3176. [PubMed] [Google Scholar]
  • 206. Condon C, Watkins SC, Celltizi CM, Thompson K, Falo, LD Jr. DNA‐based immunization by in vivo transfection of dendritic cells. Nat Med 1996;2:1122–1128. [DOI] [PubMed] [Google Scholar]
  • 207. Casares S, Inaba K, Brumeanu TD, Steinman RM, Bona C. Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II‐restricted viral epitope. J Exp Med 1997;186:1481–1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208. Chattergoon MA, Robinson TM, Boyer JD, Weiner DB. Specific immune induction following DNA‐based immunization through in vivo transfeciion and activation of macrophages. J Immunol 1998;160:5707–5718. [PubMed] [Google Scholar]
  • 209. Akbari O, Panjwani N, Garcia S, Tascon R, Lourie D, Stockinger B. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 1999;189:169–177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210. Mason HS, Lam DMK. Arntzen CJ. Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA 1992;89:11745–11749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211. Arntzen CJ, Mason HS. Oral vaccine production in the edible tissues of transgenic plants In: Levine MM. Woodrow GC, Kaper JB, Cobon GS, eds. New generation vaccines. New York : Marcel Dekker: 1996. p. 263–267. [Google Scholar]
  • 212. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245–252. [DOI] [PubMed] [Google Scholar]
  • 213. Mayordomo JI, et al. Bone marrow‐derived dendritic cells serve as poteny adjuvants for peptide‐based antitumor vaccines. Stem Cells 1997;15:94–63. [DOI] [PubMed] [Google Scholar]
  • 214. Timmerman JM, Levy R. Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 1999;50:507–529. [DOI] [PubMed] [Google Scholar]
  • 215. Bender A, Bui LK, Feldman MAV. Larson M., Bhardwaj N. Inactivated influenza virus, when presented on dendritic ceils, elicits human CD8+ cytolytic T‐cell responses. J Exp Med 1995;182:1663–1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216. Mbow ML, Zeidner N, Panella N, Titus RG, Piesman J. Borrella burgdorferi‐pulsed dendritic cells induce protective immune response against tick transmitted spirochetes. Infect Immun 1997;65:3386–3390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217. Brossart P, Goldrath AW. Butz EA., Martin S, Bevan MJ. Virus‐mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J Immunol 1997;158:3270–3276. [PubMed] [Google Scholar]
  • 218. Su H, Messer R, Whitmire W. Eischer E., Portis JC, Caldweil HD. Vaccination against chlamydial genital tract infection after immunisation with dendritic cells pulsed with nonviable chlamydiae. J Exp Med 1998;188:809–818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219. Spangler BD. Structure and function of cholera toxin and the related Escherichia coli heat‐labile enterotoxin. Microbiol Rev 1992;56:622–647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220. Fukuta S, Magnani JL, Twiddy EM, Holmes RK, Ginsburg V. Comparison of the carbohydrate‐binding specificities of cholera toxin and Escherichia coli heat‐labile enterotoxins LTh‐I, LT‐IIa, and LT‐IIb. Infect Immun 1988;56:1748–1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221. Elson CO, Ealding W. Cholera toxin did not induce oral tolerance in mice and abrogated oral tolerance loan unrelated antigen. J Immunol 1984;133:2892–2898. [PubMed] [Google Scholar]
  • 222. Lycke N, Holmgren J. Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology 1986;2:301–308. [PMC free article] [PubMed] [Google Scholar]
  • 223. Clements JD, Hartzog NM, Lyon FL. Adjuvant activity of Escherichia coli heat‐labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine 1988;6:269–277. [DOI] [PubMed] [Google Scholar]
  • 224. Xu‐Amano J, et al. Helper T‐cell subsets for immunoglobulin A responses: oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa associated tissues. J Exp Med 1990;172:95–103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225. Munoz E, Zubiaga AM, Merrow M, Sauter NP, Huber BT. Cholera toxin discriminates between T helper 1 and 2 cells in T cell receptor‐mediated activation: role of cAMP in T cell proliferation. J Exp Med 1992;175:131–138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226. Marinaro M. et al. Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2 (Th2) cells and IL‐4. J Immunol 1995;155:4621–4629. [PubMed] [Google Scholar]
  • 227. Snider DP, Marshall, JS , Perdue, MH , Dang H. Production of IgE antibody and allergic sensitization of intestinal and peripheral tissues after oral immunization with protein Ag and cholera toxin. J Immunol 1994;153:647–657. [PubMed] [Google Scholar]
  • 228. Wilson AD, Bailey M, Williams NA, Siokes CR. The in vitro production of cytokines by mucosal lymphocytes immunized by oral administration of key‐hole limpet hemocyanin using cholera toxin as an adjuvant. Eur J Immunol 1991;21:2333–2339. [DOI] [PubMed] [Google Scholar]
  • 229. Sun JB, Holmgren J, Czerkinsky C. Cholera toxin B subunit: an effective transmucosal carrier delivery system for induction of peripheral immunological tolerance. Proc Natl Acad Sci USA 1994;91:10795–10799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230. Bowen JC, Nair SK, Reddy R, Rouse BT. Cholera toxin acts as a potent adjuvant for the induction of cytotoxic T‐lymphocyte responses with non‐replicating antigens. Immunology 1994;81:338–342. [PMC free article] [PubMed] [Google Scholar]
  • 231. Lycke N, Tsuji T, Holmgren J. The adjuvant effect of Vibrio cholerae and Escherichia coli heat‐labile enterotoxins is linked to their ADP‐ribosyltransferase activity Eur J Immunol 1992;22:2277–2281. [DOI] [PubMed] [Google Scholar]
  • 232. Takahashi I, et al. Mechanisms for mucosal immunogenicity and adjuvancy of Escherichia coli labile enterotoxin. J Infect Dis 1996;173:627–635. [DOI] [PubMed] [Google Scholar]
  • 233. Douce G, et al. Mutants of Escherichia coli heat‐labile toxin lacking ADP‐ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci USA 1995;92:1644–1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 234. Dickinson BL, Clements JD. Dissociation of Escherichia coli heat‐labile enterotoxin adjuvanticity from ADP‐ribosyltransferase activity. Infect Immun 1995;63:1617–1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235. Yamamoto S, et al. A nontoxic mutant of cholera toxin elicits Th2‐type responses for enhanced mucosal immunity. Proc Natl Acad Sci USA 1997;94:5267–5272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 236. Yamamoto S, et al. Mutants in the ADP‐ribosyltransferase cleft of cholera toxin lack diarrhoeagenicity but retain adjuvanticity. J Exp Med 1997;185:1203–1210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237. Challacombe SJ, Tomasi, TB Jr. Systemic tolerance and secretory immunity after oral immunization. J Exp Med 1980;152:1459–1472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 238. Karpus WJ, Lukacs NW. The role of chemokines in oral tolerance: abrogation of nonresponsiveness by treatment with anti‐MCP‐1. Ann NY Acad Sci 1996;778:133–142. [DOI] [PubMed] [Google Scholar]
  • 239. Strobel S, Mowai AM, Drummond HE, Pickering MG, Ferguson A. Immunological responses to fed protein antigens in mice, II Oral tolerance for CMI is due to activation of cyclophosphamide‐sensitive cells by gut‐processed antigen. Immunology 1983;49:451–456. [PMC free article] [PubMed] [Google Scholar]
  • 240. Bruce MG, Strobel, S , Hanson, DG , Ferguson A. Transferable tolerance for cell‐mediated immunity after feeding is prevented by radiation damage and restored by immune reconstitution. Clin Exp Immunol 1987;70:611–618. [PMC free article] [PubMed] [Google Scholar]
  • 241. Mayer L, So LP, Yio XY, Small G. Antigen trafficking in the intestine. Ann NY Acad Sci 1996;778:28–35. [DOI] [PubMed] [Google Scholar]
  • 242. Kaiserhan D. The intestinal epithelial cell: a non conventional type of antigen‐presenting cell In: Auricchio S. Ferguson A. Troncone R., eds. Mucosal immunity and the gut epithelium: interactions in health and disease. Basel : Karger; 1995. p. 32–39. [Google Scholar]
  • 243. Eynon EE, Parker DC. Small B cells as antigen‐presenting cells in the induction of tolerance to soluble protein antigens J Exp Med 1992;175:131–138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 244. Fuchs EJ, Matzinger P. B cells turn off virgin but not memory T cells. Science 1992;258:1156–1159. [DOI] [PubMed] [Google Scholar]
  • 245. MacPhersonGG, Liu LM. Dendritic cells and Langerhans cells in the uptake of mucosal antigens. Curr Top Microbiol Immunol 1999;236:34–53. [DOI] [PubMed] [Google Scholar]
  • 246. Stumbles PA, et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 responses and require obligatory cytokine signals for induction of Thl immunity J Exp Med 1998;188:2019–2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247. Steptoe RJ, Thomson AW. Dendritic cells and tolerance induction, Clin Exp Immunol 1996;105:397–402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248. Viney JL, Mowat AM, O'Mailey JM, Williamson E, Eanger NA. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 1998;160:5815–5825. [PubMed] [Google Scholar]
  • 249. Khoury SJ, Lider O, Al‐Sabbagh A, Weiner HL. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. III. Synergistic effect of lipopolysaccharide. Cell Immunol 1982;131:302–310. [DOI] [PubMed] [Google Scholar]
  • 250. Rebien W, Puttonen E, Maasch HJ, Stix E, Wahn U. Clinical and immunological response to oral and subcutaneous immunotherapy with grass pollen extracts. A prospective study, Eur J Pediatry 1982;138:341–344. [DOI] [PubMed] [Google Scholar]
  • 251. Wortmann F. Oral hyposensitization of children with pollinosis or house dust asthma. Allergol Immunopathol 1977;5:15–26. [PubMed] [Google Scholar]
  • 252. Hoyne GE, O'Hehir RE, Wraith DC, Thomas WR, Lamb JR. Inhibition of T cell and antibody responses lo house dust mite allergen by inhalation of the dominant T cell epitope in naive and sensitized mice. J Exp Med 1993;178:1783–1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253. Hanson DG, Vaz NM, Rawlings LA, Lynch JM. Inhibition of specific immune responses by feeding protein antigens. II. Effects of prior passive and active immunization. J Immunol 1979;122:2261–2266. [PubMed] [Google Scholar]
  • 254. Staines NA, Harper N, Ward FJ, Thompson HSG, Bansal S. Arthritis: animal models of oral tolerance. Ann NY Acad Sci 1996;778:297–305. [DOI] [PubMed] [Google Scholar]
  • 255. Czerkinsky, C el al. Cholera toxin B subunit as transmucosal carrier‐delivery and immunomodulating system for induction of anti‐infectious and anti‐pathological immunity, Ann NY Acad Sci 1996;778:185–193. [DOI] [PubMed] [Google Scholar]
  • 256. Sun JB, Rask C, Olsson T, Holmgren J, Czerkinsky C. Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit, Proc Natl Acad Sci USA 1996;93:7196–7201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257. Tarkowski A, Sun JB, Holmdahl R, Holmgren J, Czerkinsky C. Treatment of experimental autoimmune arthritis by nasal administration of a type it collagen‐cholera toxoid conjugate vaccine. Arthritis Rheum (In press). [DOI] [PubMed] [Google Scholar]
  • 258. Bergeroi I, et al. A cholera toxoid‐insulin conjugate as oral vaccine against spontaneous autoimmune diabetes. Proc Natl Acad Sci USA 1997;94:4610–4614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259. Ma D, Mellon J, Niederkorn JY. Conditions affecting enhanced corneal allograft survival by oral immunization. Invest Ophthalmol Vis Sci 1998;39:1835–1846. [PubMed] [Google Scholar]
  • 260. Tamura S, Hatori E, Tsuruhara T, Aizawa C, Kurata T. Suppression of delayed‐type hypersensitivity and IgE antibody responses to ovalbumin by intranasal administration of Escherichia coli heat‐labile enterotoxin B subunit‐conjugated ovalbumin. Vaccine 1997;15:225–229. [DOI] [PubMed] [Google Scholar]
  • 261. Juha V, Rassoulzadegan M. Glaichenhaus. Resistance to Leishmania major induced by tolerance to a single antigen. Science 1996;274:421–423. [DOI] [PubMed] [Google Scholar]
  • 262. McSorley SJ, Rask C, Pichot R, Julia V, Czerkinsky C, Glaichenhaus, N. Selective tolerization of Th1‐like cells after nasal administration of a cholera toxoid‐LACK conjugate. Eur J Immunol 1998;28:44–430. [DOI] [PubMed] [Google Scholar]
  • 263. Sun JB, et al. Intranasal administration of a Schistosoma mansoni glutathione S‐transferase‐cholera toxoide conjugate vaccine epokes antiparasitic and antipathological immunity in mice. J Immunol 1999;163:1045–1052. [PubMed] [Google Scholar]
  • 264. Arakawa T, Yu J, Chong DK, Hough J, Engen PC, Langridge WH. A plant‐based cholera toxin B subunit‐insulin fusion protein protects against the development of autoimmune diabetes, Nat Biotechnol 1998;16:934–938. [DOI] [PubMed] [Google Scholar]
  • 265. Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan‐DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 1999;5:387–391. [DOI] [PubMed] [Google Scholar]

Articles from Immunological Reviews are provided here courtesy of Wiley

RESOURCES