Abstract
Classic psychedelics, such as LSD, psilocybin, and the DMT-containing beverage ayahuasca, show some potential to treat depression, anxiety, and addiction. Importantly, clinical improvements can last for months or years after treatment. It has been theorized that these long-term improvements arise because psychedelics rapidly and lastingly stimulate neuroplasticity. The focus of this review is on answering specific questions about the effects of psychedelics on neuroplasticity. Firstly, we review the evidence that psychedelics promote neuroplasticity and examine the cellular and molecular mechanisms behind the effects of different psychedelics on different aspects of neuroplasticity, including dendritogenesis, synaptogenesis, neurogenesis, and expression of plasticity-related genes (e.g., brain-derived neurotrophic factor and immediate early genes). We then examine where in the brain psychedelics promote neuroplasticity, particularly discussing the prefrontal cortex and hippocampus. We also examine what doses are required to produce this effect (e.g., hallucinogenic doses vs. “microdoses”), and how long purported changes in neuroplasticity last. Finally, we discuss the likely consequences of psychedelics’ effects on neuroplasticity for both patients and healthy people, and we identify important research questions that would further scientific understanding of psychedelics’ effects on neuroplasticity and its potential clinical applications.
Subject terms: Long-term potentiation, Depression, Adult neurogenesis, Neurotrophic factors
Introduction
Recent decades have seen renewed scientific interest in classic psychedelics, which include lysergic acid diethylamide (LSD), psilocybin, 2,5-dimethoxy-4-iodoamphetamine (DOI), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), and N,N-dimethyltryptamine (DMT), the psychedelic compound in the Amazonian ayahuasca brew [1]. Classic psychedelics have been shown to catalyze relatively long-lasting improvements in mental health after a small number of doses, especially when combined with psychotherapy [2]. In patients suffering from depression, anxiety disorders, and addiction, the benefits of psychedelic-assisted psychotherapy can last for many months or years [3–10]. Additionally, healthy subjects report increased well-being up to a year after administration of psychedelics in a safe and supportive setting [11–13].
One leading theory of psychedelics’ lasting effects categorizes them as “psychoplastogens” which rapidly stimulate a period of enhanced neuroplasticity, as well as enduring neuroplastic changes [14, 15]. Neuroplasticity denotes the nervous system’s ability to reorganize its structure and function and adapt to its dynamic environment [16]. Throughout the lifespan, neuroplasticity is essential for learning, memory, and recovery from neurological insults, as well as adapting to life experiences [17]. The theory that psychedelics open a window of neuroplasticity would explain how long-term effects outlast the drug’s presence in the body, and it is also attractive because disruptions in neuroplasticity are present in mood disorders and addiction [18].
Neuroplasticity can be investigated at multiple levels of analysis. At the molecular level, it comprises changes in gene and protein expression, as well as post-translational modifications [19]. Of particular importance is brain-derived neurotrophic factor (BDNF), a neurotrophin that regulates neuronal growth and synaptic plasticity [20]. Changes in gene and protein expression give rise to morphological changes, including the formation and modification of synapses and dendrites [21]. In particular regions, most notably the hippocampus, neuroplasticity also comprises neurogenesis [22]. These processes modify neural circuits, ultimately manifesting in learning, memory, and changes in adaptive behavior [19]. Neuroplasticity is crucially activity-dependent at the cellular level, which translates into experience-dependence at the level of cognition and behavior: people learn both passively and actively from their experiences, adjusting patterns of thought, emotion, and behavior accordingly [17, 23].
In order to effectively harness the potential of psychedelics, it is imperative to understand how they affect neuroplasticity, as well as the clinical relevance of these effects. In the present review, we first evaluate the available evidence concerning whether psychedelics enhance neuroplasticity. We then discuss where in the brain this likely happens, what doses are capable of this, how long the effects may last, and whether they have meaningful consequences for emotion, cognition, and behavior, as well as therapeutic use. Finally, we discuss the advantages and challenges that psychedelic-induced neuroplasticity presents and identify important directions for future research.
Do psychedelics enhance neuroplasticity?
Classic psychedelics are thought to catalyze a period of accelerated neuronal growth, enhancing the brain’s capacity for neuroplastic changes. Studies in animals have shown that LSD, psilocybin, DMT, and DOI promote the expression of genes related to synaptic plasticity, including immediate early genes (IEGs) and BDNF [24–34]. Furthermore, they catalyze a burst of synaptic and dendritic growth and can increase the strength of long-term potentiation (LTP) [27, 35–40]. Regarding neurogenesis, results have been mixed: LSD and DOI had no effect on adult neurogenesis in rats, and psilocybin was shown to slightly reduce it in mice [41–43]. By contrast, studies in mice using both DMT and 5-MeO-DMT observed increased neurogenesis [44, 45].
In humans, studies have often relied on peripheral BDNF as a marker of neuroplasticity, yielding mixed results. Though ayahuasca increased BDNF levels in both healthy and depressed people in one study, another found no change [46, 47]. Several studies have measured the effects of LSD on BDNF, with some finding an increase [48, 49] and others no change [50, 51]. In two studies in healthy subjects, comparable doses of psilocybin did not elevate plasma BDNF in one [50], but did so in the other [52]. This variability may be partially due to the limitations of peripheral BDNF as a biomarker in pharmacological studies. Though blood BDNF has been shown to predict brain BDNF under normal conditions, psychoplastogens may cause an increase in peripheral BDNF levels without any increase in brain BDNF [53, 54]. Furthermore, BDNF may not correlate with other measures of cortical neuroplasticity in humans, and blood platelets can store and release BDNF independently of neurons [55, 56]. Beyond measuring BDNF levels, neuroimaging studies have found evidence of altered neural connectivity following treatment with psilocybin and ayahuasca, which is interpreted as evidence of drug-induced neuroplastic changes [57–59].
Taken together, animal studies offer moderately strong evidence that psychedelics promote genes related to neuroplasticity, synaptic strength, and dendritic growth, including BDNF. However, analyses of peripheral BDNF protein in human studies have thus far been inconclusive. Future studies in humans could benefit from protocols which do not rely only on peripheral markers, but also induce LTP-like changes to index neuroplasticity, such as paired associative stimulation [60–62] or tetanic sensory stimulation [63, 64], as well as PET studies with markers of synaptic density, such as SV2A [65].
How do psychedelics enhance neuroplasticity?
The complex molecular signaling underlying psychedelic-enhanced neuroplasticity has been thoroughly discussed elsewhere [66–69], but we will briefly review the most important aspects. Psychedelics appear to enhance neuroplasticity via the 5- HT2A receptor, which also mediates most of their subjective effects [70–72]. Though relatively low doses of the selective 5-HT2A receptor antagonist ketanserin do not fully block psychedelic-induced neuroplasticity [37, 73], higher doses of ketanserin block it completely [36]. Furthermore, the affinity of different psychedelic drugs for the 5-HT2A receptor predicts their individual potency as psychoplastogens, and 5-HT2A receptor knockout mice show no signs of enhanced neuroplasticity following treatment with psychedelics [24, 27, 36].
Psychedelics stimulate 5-HT2A receptors found post-synaptically on layer 5 and 6 pyramidal neurons, as well as on GABAergic interneurons [72]. The net effect appears to be excitation of layer 5 pyramidal neurons and increased levels of extracellular glutamate, resulting in greater stimulation of AMPA receptors [35, 72, 74]. The precise molecular pathways which may modify neuroplasticity after 5-HT2A receptor stimulation are not fully understood. However, one leading hypothesis suggests that the aforementioned AMPA receptor stimulation triggers a positive feedback loop: Stimulation of AMPA receptors may enhance BDNF secretion, which would stimulate TrkB receptors and mTOR, which in turn would stimulate further BDNF production and sustained AMPA activation [36, 38]. Sustained activation of both AMPA receptors and mTOR appears to be necessary for the enhanced dendritic growth following stimulation with psychedelics [35]. Additionally, activity involving both 5-HT2A and glutamate receptors, particularly mGlu2, may be essential for psychedelics’ effects on neuroplasticity [66, 75, 76]. These effects likely remain specific to synapses and circuits expressing 5-HT2A receptors, as BDNF acts locally and does not diffuse far after release [20, 77].
In addition to 5-HT2A receptors, the effects on neurogenesis seen with DMT and 5-MeO-DMT could potentially involve other receptors [42, 43]. DMT has low but functionally significant affinity for the sigma-1 receptor, an orphan receptor involved in neuroprotection and neurogenesis [78]. Sigma-1 receptor antagonists block DMT’s effects on hippocampal neurogenesis [44, 79], and sigma-1 receptor activity has also been shown to stimulate neurogenesis in previous studies [80–82]. The affinity of DMT for sigma-1 receptors may also not only its effects on neurogenesis, but also DMT’s neuroprotective effects in a rat model of stroke [83].
Concerning 5-MeO-DMT, this molecule is unusual among psychedelics in that it has a nearly 1000-fold higher affinity for 5-HT1A than 5-HT2A receptors, and many of its effects are mediated by 5-HT1A receptors [79, 84–87]. Hippocampal 5-HT1A receptors may drive neurogenesis, suggesting that the effects of 5-MeO-DMT on neurogenesis could conceivably occur via potent, relatively selective activation of 5-HT1A receptors [88, 89]. Additionally, 5-HT1A receptors are generally inhibitory and tend to have opposite effects on downstream signaling pathways than 5-HT2A receptors [90–93]. Many psychedelics show binding affinity for both 5-HT2A and 5-HT1A receptors [94]. Furthermore, some of psychedelics’ effects on attention and the visual system may be mediated by the 5-HT1A receptor [95, 96]. The excitatory and neuroplastic effects of different psychedelic drugs in any particular brain region could conceivably depend on whether that region is richer in 5-HT2A or 5-HT1A receptors [79, 97–101].
Where do psychedelics enhance neuroplasticity?
Because psychedelics promote synapse and dendrite growth in a 5-HT2A receptor-dependent manner, the greatest effects would be expected in regions with high 5-HT2A receptor expression, i.e., the neocortex [72, 91, 102]. Data from animal studies thus far supports this theory, showing relatively robust effects in cortical regions and smaller, less consistent effects on neuroplasticity elsewhere.
Neocortex
Psychedelics have been shown to enhance dendritic growth, including spinogenesis, in cortical neurons [36, 40]. In the frontal lobe specifically, animal studies show that psychedelics upregulate plasticity-related genes and promote the growth of synapses and dendritic spines [25, 27, 36, 37, 103]. In the prefrontal cortex (PFC), several psychedelics have been shown to rapidly upregulate genes related to neuroplasticity [25, 26, 104]. Pigs exposed to a hallucinogenic dose of psilocybin showed increased presynaptic density in the PFC [39]. In humans, PET imaging has shown that psilocybin increases glutamate signaling in the PFC, which is theorized to be important for psychedelic-enhanced plasticity [105].
Other cortical regions likely also show enhanced neuroplasticity as a function of 5-HT2A receptor density. DOI enhanced expression of the plasticity-related Arc gene in the whole cortex, as well as in the parietal cortex specifically [28, 106]. A recent unpublished study in mice examined expression of c-Fos, an early marker of neuroplastic processes, after treatment with psilocybin, revealing strong upregulation in most cortical regions. These included sensory visual, auditory, somatosensory, and gustatory areas, as well as motor and association areas, the anterior cingulate cortex (ACC), and the insula [107].
Hippocampus
Several studies have focused on the hippocampus, but many found modest effects compared to the cortex. In the rodent hippocampus, psilocybin treatment upregulated fewer plasticity-related transcripts in the hippocampus than in the cortex, and LSD failed to upregulate immediate early genes associated with neuroplasticity [24, 25]. Similarly, DOI failed to enhance expression of Arc in the hippocampus [106]. Treatment with DOI may even decrease the expression of BDNF in the dentate gyrus, leaving it unchanged in the rest of the hippocampus [28]. In line with this, the abovementioned PET study in humans found reduced glutamate activity in the hippocampus after psilocybin [105]. However, the cortex and hippocampus do not always show this opposite pattern. Pigs exposed to a hallucinogenic dose of psilocybin showed increased presynaptic density in both the hippocampus and the PFC [39]. Additionally, psilocybin has been shown to strengthen cortico-hippocampal synapses [73].
The reduced tendency toward neuroplastic effects in the hippocampus might be explained by its greater density of 5-HT1A than 5-HT2A receptors [90, 102]. It is possible that LSD, DOI, and psilocybin, and perhaps other psychedelics, have pro-neuroplastic effects in the cortex and other regions richer in 5-HT2A than 5-HT1A receptors, but tend to have modest or even inhibitory effects in 5-HT1A receptor-dominant areas like the hippocampus.
Other subcortical regions
Some preliminary unpublished evidence suggests that psychedelics may enhance neuroplasticity in a few subcortical regions. In the aforementioned study of c-fos, psilocybin increased c-fos expression in the claustrum, locus ceruleus, lateral habenula and some areas of the thalamus, amygdala, and brainstem [107]. The pattern of expression changes correlated with 5-HT2A receptor distribution [107]. Given that c-fos is a relatively unspecific marker, however, these results should be interpreted with caution, and more research is necessary to determine how psychedelics affect neuroplasticity in subcortical regions.
The mesolimbic pathway warrants particular attention due to its role in addiction. Addiction to drugs of abuse is driven by neuroplastic changes in dopaminergic neurons of the mesolimbic pathway [108]. Notably, however, psychedelics do not cause dependence or addiction [108]. Important mesolimbic areas for addiction, including the ventral tegmental area, nucleus accumbens, and striatum, express relatively few 5-HT2A receptors and are therefore unlikely to be much affected by psychedelic-induced plasticity [102, 109]. Additionally, inhibitory neurons projecting from the PFC to areas of the mesolimbic pathway are much richer in 5-HT2A receptors [102, 110], and enhanced dendritic growth in these PFC neurons could conceivably contribute to the anti-addictive effect observed with psychedelics [3, 10, 111].
At what dose do psychedelics enhance neuroplasticity?
Several studies have investigated how different doses of psychedelic drugs affect neuroplasticity. In rats, 0.2 mg/kg LSD promoted neuroplasticity-related changes in gene expression, and the efficacy increased up to a dose of 1 mg/kg, although some genes showed a peak effect at lower doses [31–33]. For psilocybin, a dose of 4 mg/kg was required to induce neuroplasticity-related changes in gene expression, and the effect also increased in a dose-dependent manner [25]. DOI also shows a dose-dependent effect on neuroplasticity [28]. Finally, a presumably sub-hallucinogenic dose of 1 mg/kg DMT increased functional plasticity in rat cortical slices, as measured by the frequency and amplitude of excitatory post-synaptic currents [36].
Though these studies suggest that psychedelics probably promote neuroplasticity in a dose-dependent manner, clear dose-response effects on neuroplasticity have not been established in humans. Sub-hallucinogenic doses of between 5 and 20 µg LSD produced significant short-term enhancements in plasma BDNF [48]. However, a similar study using doses of between 25 µg and 200 µg LSD only found significant effects on BDNF at 200 µg [49], and another failed to find significant changes even at this dose [50]. Perhaps using different methods, future research should seek to clarify the minimum and optimal doses for stimulating neuroplasticity with different psychedelics. The prospect of non-hallucinogenic “microdoses” which enhance neuroplasticity is attractive for certain clinical applications, including stroke, brain injury, and neurodegenerative disorders [15].
Particularly regarding microdoses, a discussion of dosing frequency is warranted. While large doses of psychedelics are not taken chronically due to their intense subjective effects, microdoses can be taken regularly and have been hypothesized to enhance neuroplasticity [48, 112]. Chronic dosing with LSD has been associated with enhanced eyeblink conditioning, as well as improved avoidance learning and reversal of stress-induced deficits in synaptogenesis in rodent models of depression [103, 113, 114]. However, chronic dosing with DMT may cause retraction of dendritic spines [115]. Additionally, chronic LSD dosing was associated with upregulation in genes related to neuroplasticity, but also to schizophrenia [104]. Many animal studies investigating chronic dosing have not differentiated between microdoses and hallucinogenic doses, which may be an important distinction. Nevertheless, further studies should investigate whether chronic dosing, particularly chronic microdosing, has different effects on neuroplasticity than single doses.
For how long do psychedelics enhance neuroplasticity?
In order to take advantage of a “window of plasticity,” it is essential to know when this window opens and closes. Evidence of enhanced neuroplasticity appears within several hours after exposure to psychedelics (Fig. 1). The earliest changes involve upregulation of neuroplasticity-related transcripts, which can occur within one hour [24, 34]. In rats, both LSD and psilocybin upregulated genes associated with neuroplasticity after 1.5 hours, particularly in the PFC [25, 33]. BDNF mRNA may become upregulated slightly later: one study found no change 1.5 hours after treatment with psilocybin, but others have found increased expression 2 and 3 hours after treatment with DOI [25, 28, 116].
Changes in cellular morphology have been observed starting 6 hours after stimulation with psychedelics [35]. One study found no changes in dendritic growth 1 hour after stimulating primary rat neuronal cultures with LSD, but observed significant changes in dendritic growth, synaptogenesis, and spinogenesis at several later time points [35]. In humans, increases in peripheral BDNF levels have earliest been seen 4 hours after oral administration of LSD [48, 49].
Though neuroplasticity may increase within several hours, the peak effect may come some time later. In rat cortical neurons, the observed increase in synaptogenesis was greater at 24 hours than at 6 hours post-stimulation, and in female mice, the rate of dendritic spine formation 3 days after psilocybin treatment is greater than the rate seen just 1 day after treatment [36, 37]. Other work has shown that a significant neuronal growth phase occurs in the 72 hours after initial exposure to psychedelics [35].
Enhanced neuroplasticity may also last for several days. In mice treated with psilocybin, the rate of dendritic spine formation remained elevated for 3 days, returning to baseline by 5 days post-treatment [37]. In humans, both healthy volunteers and depressed patients show elevated peripheral BDNF levels 2 days following treatment with ayahuasca [46]. Finally, a study that treated mice with LSD every other day for 1 month observed long-term upregulated of neuroplasticity-related genes, including BDNF, in the medial PFC 4 weeks after treatment cessation [104]. Additionally, specific markers of neuroplasticity may have different “windows.” Though BDNF mRNA can become upregulated within 2 hours, the effect may already be gone 24 hours later, and it is unclear what this means for BDNF protein expression [36]. Upregulation of other plasticity-related genes follows various time courses, with some genes showing peak expression within a few hours, others at around 48 hours, and still others at 7 days after administration [27, 31, 32].
Crucially, new dendrites and synapses formed during the window of enhanced neuroplasticity can outlast the window itself. Increased synaptic and dendritic density has been observed at 72 hours post-treatment in multiple studies [27, 37, 39]. Furthermore, though mice treated with psilocybin returned to baseline levels of dendritic spine formation within 5 days, new dendrites formed during that period survived for at least 1 month [37]. In humans, research has uncovered changes in brain function which lasted at least 1 month after treatment with psilocybin, suggesting the presence of lasting neuroplastic changes [57].
These data suggest that various signs of enhanced neuroplasticity arise within 1–6 hours, with changes in gene expression appearing earliest and changes in cell morphology and synapse organization arising later. The increased rate of dendritogenesis may taper off within 5 days, however, neuroplastic changes which arise during this period of neural growth may last for at least 1 month. However, important questions about the window of neuroplasticity remain, and future research should aim to define the temporal dynamics of enhanced neuroplasticity in humans, as this may be crucial for the timing of psychotherapeutic interventions.
Consequences of enhanced neuroplasticity
Is enhanced neuroplasticity simply something we can measure, or does it also have meaningful consequences? Answering this question is essential for understanding the basis of psychedelics’ long-term effects, however, few studies have related changes in neuroplasticity directly to behavioral outcomes. In chronically stressed mice, psilocybin both strengthened cortico-hippocampal synapses and reduced anhedonia, which may be the result of improved synaptic strength in reward circuits [73]. Additionally, DMT has been seen to enhance both neurogenesis and memory performance [44]. Other studies have reported improvements in fear extinction learning and reductions in anxious behaviors and learned helplessness following exposure to psychedelics, while also observing increased dendritic spine density in separate cohorts of animals [27, 37, 103]. Finally, the enhanced spinogenesis induced by ketamine, which is also a psychoplastogen, has been associated with reductions in depression-related behaviors [117, 118]. More research is needed to determine whether the same could be true for classic psychedelics, and to confirm or deny the associations between neuroplastic and behavioral effects suggested in the literature thus far.
In humans, one study found that depressed patients treated with ayahuasca had elevated BDNF levels which correlated with their clinical improvements [46]. In another study, psilocybin lastingly increased connectivity between the PFC and other brain areas, including limbic and subcortical regions, and these increases occurred alongside decreases in negative affect and anxiety [57]. However, one limitation of many of these studies is the lack of causal inference: though changes in neuroplasticity and changes in cognition or behavior may occur simultaneously, whether neuroplasticity mediated those changes remains an open question for future studies to address.
Further outcomes possibly explained by enhanced neuroplasticity
Changes in neuroplasticity may also partially explain some other long-term effects of psychedelics. Psychedelics, combined with psychotherapy, have shown clinical efficacy in trials for mood disorders and addiction, and healthy participants also report improved mood after taking psychedelics [3–6, 10, 119–123]. Enhanced dendritic and synaptic growth in PFC neurons may be a plausible explanation for this: the PFC is essential for emotional regulation via its connections with the amygdala and other subcortical regions [124, 125]. Depression in particular is characterized by reduced cortical neuroplasticity [56, 126–128], synapse atrophy in the PFC [18, 129–131], and a reduced ability of the PFC to regulate limbic areas [132, 133]. Additionally, PTSD, social anxiety disorder, and generalized anxiety have been associated with fewer synaptic connections between the medial PFC and the amygdala, compromising the PFC’s ability to regulate fear responses [134–136]. In addiction, neuroplasticity in the circuits between the PFC and the nucleus accumbens, striatum, and limbic system becomes impaired, reducing PFC modulation of these regions [137]. Relatively selective dendritic growth on neurons originating in the PFC may help reverse these deficits, restoring signaling balance and top-down control over the limbic system.
Other modest cognitive improvements found after treatment with psychedelics may also be explained by enhanced neuroplasticity in cortical regions. In animal studies, chronic LSD treatment has been associated with improvements in learning [113, 114, 138]. In humans, LSD has improved frontal-dependent memory retrieval, and unpublished data suggests that it may also improve reinforcement learning, possibly by enhancing reward sensitivity [139, 140]. Cognitive flexibility also involves several circuits originating in the PFC [141, 142], and ayahuasca and psilocybin have been shown to promote certain aspects of cognitive flexibility [143–147]. Regular ayahuasca users additionally perform better on tests of behavioral inhibition, cognitive flexibility, working memory, and executive functioning [147]. Ayahuasca and psilocybin have also been shown to increase mindfulness, one form of attentional regulation for which the PFC, but also the ACC is essential [13, 58, 143, 148–150]. It is possible that dendritic growth in PFC and ACC neurons is responsible for these effects [59].
Finally, neuroplasticity may not only play a role in positive long-term effects of psychedelics, but also undesirable ones. Drug-induced neuroplastic changes in sensory regions could conceivably be a factor in psychedelic-induced flashbacks, as well as the rarer and more severe hallucinogen persisting perceptual disorder (HPPD), in which some drug effects, including hallucinations and psychological distress, persist after the drug has been metabolized [108, 151].
Experience-dependent neuroplasticity
Neuroplastic changes occur in an activity- and experience-dependent manner [16]. This is an important consideration when discussing psychedelic-enhanced neuroplasticity, because psychedelics themselves can catalyze intense experiences [2]. The beginning of the window of plasticity falls within the timeline of many psychedelic drugs’ subjective effects, meaning that at least some of the psychedelic experience takes place within a highly plastic brain [1, 152].
Because of this, the experiences people have under psychedelics may have more power to re-shape neural circuitry than everyday occurrences. This possibility comes with opportunities and challenges. In a safe and supportive setting, psychedelic drugs can cause personally meaningful, emotionally salient experiences which can lead to lasting improvements in well-being [11]. Both patients and healthy volunteers report insights into personal problems, emotional breakthroughs, reprocessing of traumatic memories, and feelings of connectedness and empathy for oneself and others [7, 12, 123, 153–156]. Sometimes this can take the form of a “helioscope effect” in which people seem to perceive their experiences in more detail, but are also able to work through difficult material without becoming overwhelmed [157]. These effects are commonly described in terms of learning experiences [154, 158]. Furthermore, mystical experiences, emotional breakthroughs, and insights correlate significantly with positive long-term effects, independently from the overall intensity of drug effects [155, 159]. There may be a synergy between enhanced neuroplasticity and these positive, therapeutic experiences.
However, especially in unsafe settings, psychedelics can also cause “bad trips” involving intense physical and psychological distress [160]. Negative psychedelic experiences, in particular longer ones, are sometimes associated with subsequent negative changes in well-being, and feelings of anxiety during a psychedelic experience correlate negatively with therapeutic effects [12, 160–162]. Along these lines, most people who develop HPPD report that distressing symptoms appeared after a frightening acute psychedelic experience [163]. Crucially, not all negative experiences lead to decreases in well-being; in fact, most do not, and long-term negative effects are rare [12, 161]. In a survey of people who had had a challenging experience while on psilocybin, the duration of the challenging experience was significantly and negatively correlated with changes in well-being [161]. This suggests that challenging experiences which resolve relatively quickly are less likely to cause undesirable neuroplastic changes, perhaps because overcoming difficult feelings becomes a positive learning experience. However, prolonged experiences of anxiety and distress during a state of heightened plasticity have the potential to be damaging.
Finally, the psychedelic experience itself is not the only important experience in psychedelic therapy. Enhanced neuroplasticity may also make people more responsive to other therapeutic interventions, including psychotherapy, but potentially also neurorehabilitation after stroke or brain injury [14]. Therapeutic interventions combined with antidepressants, which also modestly promote neuroplasticity, have been shown to be more effective than either intervention alone, and the same is likely true of psychedelics [164, 165]. Enhanced neuroplasticity, coupled with a psychedelic experience in a safe setting and accompanying psychotherapy, could ultimately generate a therapeutic effect that is more than the sum of its parts.
Conclusions
Significant progress has been made toward understanding how psychedelics affect neuroplasticity. Data thus far supports the theory that psychedelics stimulate dendritogenesis, synaptogenesis, and the upregulation of plasticity-related genes in a 5-HT2A receptor-dependent manner, affecting the cortex in particular. The window of neuroplasticity appears to open within a few hours and may last a few days, although neuroplastic changes occurring during this time may survive for at least a month. Because neuroplastic changes occur in an experience-dependent manner, experiences people have during this time may have a greater psychological impact than they otherwise would. Future research should attempt to confirm preclinical findings in humans, clarify optimal doses and specific neuroplastic effects for different psychedelic compounds, and further explore the consequences of psychedelic-enhanced neuroplasticity for both patient groups and healthy people.
Supplementary information
Acknowledgements
This work was supported by the University of Fribourg.
Author contributions
Both AEC and GH conceptualized the scope and content of this review. AEC drafted the manuscript, and GH critically revised the manuscript and approved the final version to be published.
Funding
Open access funding provided by University of Fribourg.
Competing interests
The authors declare no competing interests.
Footnotes
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Abigail E. Calder, Email: abigail.calder@unifr.ch
Gregor Hasler, Email: gregor.hasler@unifr.ch.
Supplementary information
The online version contains supplementary material available at 10.1038/s41386-022-01389-z.
References
- 1.Nichols DE. Psychedelics. Pharm Rev. 2016;68:264–355. doi: 10.1124/pr.115.011478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. Psychedelics and psychedelic-assisted psychotherapy. Am J Psychiatry. 2020;177:391–410. doi: 10.1176/appi.ajp.2019.19010035. [DOI] [PubMed] [Google Scholar]
- 3.Bogenschutz MP, Forcehimes AA, Pommy JA, Wilcox CE, Barbosa PC, Strassman RJ. Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. J Psychopharmacol. 2015;29:289–99. doi: 10.1177/0269881114565144. [DOI] [PubMed] [Google Scholar]
- 4.Carhart-Harris RL, Bolstridge M, Day CMJ, Rucker J, Watts R, Erritzoe DE, et al. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacol (Berl) 2018;235:399–408. doi: 10.1007/s00213-017-4771-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol. 2016;30:1165–80.. doi: 10.1177/0269881116675512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA, Richards BD, et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. J Psychopharmacol. 2016;30:1181–97.. doi: 10.1177/0269881116675513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Gasser P, Kirchner K, Passie T. LSD-assisted psychotherapy for anxiety associated with a life-threatening disease: a qualitative study of acute and sustained subjective effects. J Psychopharmacol. 2015;29:57–68. doi: 10.1177/0269881114555249. [DOI] [PubMed] [Google Scholar]
- 8.Ross S, Agin-Liebes G, Lo S, Zeifman RJ, Ghazal L, Benville J, et al. Acute and sustained reductions in loss of meaning and suicidal ideation following psilocybin-assisted psychotherapy for psychiatric and existential distress in life-threatening cancer. ACS Pharm Transl Sci. 2021;4:553–62.. doi: 10.1021/acsptsci.1c00020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Agin-Liebes GI, Malone T, Yalch MM, Mennenga SE, Ponte KL, Guss J, et al. Long-term follow-up of psilocybin-assisted psychotherapy for psychiatric and existential distress in patients with life-threatening cancer. J Psychopharmacol. 2020;34:155–66.. doi: 10.1177/0269881119897615. [DOI] [PubMed] [Google Scholar]
- 10.Johnson MW, Garcia-Romeu A, Griffiths RR. Long-term follow-up of psilocybin-facilitated smoking cessation. Am J Drug Alcohol Abus. 2017;43:55–60. doi: 10.3109/00952990.2016.1170135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Schmid Y, Liechti ME. Long-lasting subjective effects of LSD in normal subjects. Psychopharmacol (Berl) 2018;235:535–45.. doi: 10.1007/s00213-017-4733-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Studerus E, Kometer M, Hasler F, Vollenweider FX. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J Psychopharmacol. 2011;25:1434–52. doi: 10.1177/0269881110382466. [DOI] [PubMed] [Google Scholar]
- 13.Uthaug MV, van Oorsouw K, Kuypers KPC, van Boxtel M, Broers NJ, Mason NL, et al. Sub-acute and long-term effects of ayahuasca on affect and cognitive thinking style and their association with ego dissolution. Psychopharmacol (Berl) 2018;235:2979–89.. doi: 10.1007/s00213-018-4988-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Hasler G. Toward specific ways to combine ketamine and psychotherapy in treating depression. CNS Spectr. 2020;25:445–7.. doi: 10.1017/S1092852919001007. [DOI] [PubMed] [Google Scholar]
- 15.Olson DE. Psychoplastogens: a promising class of plasticity-promoting neurotherapeutics. J Exp Neurosci. 2018;12:1179069518800508. doi: 10.1177/1179069518800508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134:1591–609. doi: 10.1093/brain/awr039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol. 2017;21:23–48. doi: 10.1016/j.ejpn.2016.07.007. [DOI] [PubMed] [Google Scholar]
- 18.Ray MT, Shannon Weickert C, Webster MJ. Decreased BDNF and TrkB mRNA expression in multiple cortical areas of patients with schizophrenia and mood disorders. Transl Psychiatry. 2014;4:e389. doi: 10.1038/tp.2014.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Gulyaeva NV. Molecular mechanisms of neuroplasticity: an expanding universe. Biochem (Mosc) 2017;82:237–42.. doi: 10.1134/S0006297917030014. [DOI] [PubMed] [Google Scholar]
- 20.Song M, Martinowich K, Lee FS. BDNF at the synapse: why location matters. Mol Psychiatry. 2017;22:1370–75.. doi: 10.1038/mp.2017.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Ribak CE, Shapiro LA. Dendritic development of newly generated neurons in the adult brain. Brain Res Rev. 2007;55:390–4. doi: 10.1016/j.brainresrev.2006.12.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Gage F. Adult neurogenesis in mammals. Science. 2019;364:827–8.. doi: 10.1126/science.aav6885. [DOI] [PubMed] [Google Scholar]
- 23.Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51:S225–39. doi: 10.1044/1092-4388(2008/018). [DOI] [PubMed] [Google Scholar]
- 24.Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, et al. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron. 2007;53:439–52. doi: 10.1016/j.neuron.2007.01.008. [DOI] [PubMed] [Google Scholar]
- 25.Jefsen OH, Elfving B, Wegener G, Muller HK. Transcriptional regulation in the rat prefrontal cortex and hippocampus after a single administration of psilocybin. J Psychopharmacol. 2020;35:269881120959614. [DOI] [PubMed]
- 26.Kelley DP, Venable K, Destouni A, Billac G, Ebenezer P, Stadler K, et al. Pharmahuasca and DMT rescue ROS production and differentially expressed genes observed after predator and psychosocial stress: relevance to human PTSD. ACS Chem Neurosci. 2022;13:257–74. [DOI] [PubMed]
- 27.de la Fuente Revenga M, Zhu B, Guevara CA, Naler LB, Saunders JM, Zhou Z, et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Reports. 2021;37:109836. [DOI] [PMC free article] [PubMed]
- 28.Vaidya VA, Marek GJ, Aghajanian GK, Duman RS. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci. 1997;17:2785–95.. doi: 10.1523/JNEUROSCI.17-08-02785.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Gewirtz JCC AC, Terwilliger R, Duman RC, Marek GJ. Modulation of DOI-induced increases in cortical BDNF expression by group II mGlu receptors. Pharmacol, Biochem Behav. 2002;73:317–26.. doi: 10.1016/s0091-3057(02)00844-4. [DOI] [PubMed] [Google Scholar]
- 30.Desouza LA, Benekareddy M, Fanibunda SE, Mohammad F, Janakiraman B, Ghai U, et al. The hallucinogenic serotonin2A receptor agonist, 2,5-Dimethoxy-4-Iodoamphetamine, Promotes cAMP response element binding protein-dependent gene expression of specific plasticity-associated genes in the rodent neocortex. Front Mol Neurosci. 2021;14:790213. [DOI] [PMC free article] [PubMed]
- 31.Nichols CD, Sanders-Bush E. Molecular genetic responses to lysergic acid diethylamide include transcriptional activation of MAP kinase phosphatase-1, C/EBP-beta and ILAD-1, a novel gene with homology to arrestins. J Neurochem. 2004;90:576–84.. doi: 10.1111/j.1471-4159.2004.02515.x. [DOI] [PubMed] [Google Scholar]
- 32.Nichols CD, Garcia EE, Sanders-Bush E. Dynamic changes in prefrontal cortex gene expression following lysergic acid diethylamide administration. Mol Brain Res. 2003;111:182–8. doi: 10.1016/s0169-328x(03)00029-9. [DOI] [PubMed] [Google Scholar]
- 33.Nichols CD, Sanders-Bush E. A single dose of lysergic acid diethylamide influences gene expression patterns within the mammalian brain. Neuropsychopharmacology. 2002;26:634–42. doi: 10.1016/S0893-133X(01)00405-5. [DOI] [PubMed] [Google Scholar]
- 34.González-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, et al. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-Hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci. 2003;23:8836–43. doi: 10.1523/JNEUROSCI.23-26-08836.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Ly C, Greb AC, Vargas MV, Duim WC, Grodzki ACG, Lein PJ, et al. Transient stimulation with psychoplastogens is sufficient to initiate neuronal growth. ACS Pharmacol Transl Sci. 2020;4:452–60. [DOI] [PMC free article] [PubMed]
- 36.Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23:3170–82. doi: 10.1016/j.celrep.2018.05.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–44.e4. doi: 10.1016/j.neuron.2021.06.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.De Gregorio D, Popic J, Enns JP, Inserra A, Skalecka A, Markopoulos A, et al. Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proc Natl Acad Sci. 2021;118:1–9. doi: 10.1073/pnas.2020705118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Raval NR, Johansen A, Donovan LL, Ros NF, Ozenne B, Hansen HD, et al. A single dose of psilocybin increases synaptic density and decreases 5-HT2A receptor density in the pig brain. Int J Mol Sci. 2021;22:85. [DOI] [PMC free article] [PubMed]
- 40.Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature. 2021;589:474–9. doi: 10.1038/s41586-020-3008-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Catlow BJ, Song S, Paredes DA, Kirstein CL, Sanchez-Ramos J. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp Brain Res. 2013;228:481–91. doi: 10.1007/s00221-013-3579-0. [DOI] [PubMed] [Google Scholar]
- 42.Jha S, Rajendran R, Fernandes KA, Vaidya VA. 5-HT2A/2C receptor blockade regulates progenitor cell proliferation in the adult rat hippocampus. Neurosci Lett. 2008;441:210–4. doi: 10.1016/j.neulet.2008.06.028. [DOI] [PubMed] [Google Scholar]
- 43.Banasr M, Hery M, Printemps R, Daszuta A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology. 2004;29:450–60. doi: 10.1038/sj.npp.1300320. [DOI] [PubMed] [Google Scholar]
- 44.Morales-Garcia JA, Calleja-Conde J, Lopez-Moreno JA, Alonso-Gil S, Sanz-SanCristobal M, Riba J, et al. N,N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo. Transl Psychiatry. 2020;10:331. doi: 10.1038/s41398-020-01011-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Lima da Cruz RV, Moulin TC, Petiz LL, Leao RN. A single dose of 5-MeO-DMT stimulates cell proliferation, neuronal survivability, morphological and functional changes in adult mice ventral dentate gyrus. Front Mol Neurosci. 2018;11:312. doi: 10.3389/fnmol.2018.00312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.de Almeida RN, Galvao ACM, da Silva FS, Silva E, Palhano-Fontes F, Maia-de-Oliveira JP, et al. Modulation of serum brain-derived neurotrophic factor by a single dose of ayahuasca: observation from a randomized controlled trial. Front Psychol. 2019;10:1234. doi: 10.3389/fpsyg.2019.01234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Rocha JM, Rossi GN, de Lima Osório F, Bouso JC, de Oliveira Silveira G, Yonamine M, et al. Effects of ayahuasca on the recognition of facial expressions of emotions in naive healthy volunteers: a pilot, proof-of-concept, randomized controlled trial. J Clin Psychopharmacol. 2021;41:267–74. doi: 10.1097/JCP.0000000000001396. [DOI] [PubMed] [Google Scholar]
- 48.Hutten NRPW, Mason NL, Dolder PC, Theunissen EL, Holze F, Liechti ME, et al. Low doses of LSD acutely increase bdnf blood plasma levels in healthy volunteers. ACS Pharmacol Transl Sci. 2020;4:461–6. [DOI] [PMC free article] [PubMed]
- 49.Holze F, Vizeli P, Ley L, Muller F, Dolder P, Stocker M, et al. Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2021;46:537–44. doi: 10.1038/s41386-020-00883-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Holze F, Ley L, Muller F, Becker AM, Straumann I, Vizeli P, et al. Direct comparison of the acute effects of lysergic acid diethylamide and psilocybin in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2022;47:1180–7. [DOI] [PMC free article] [PubMed]
- 51.Holze F, Vizeli P, Muller F, Ley L, Duerig R, Varghese N, et al. Distinct acute effects of LSD, MDMA, and D-amphetamine in healthy subjects. Neuropsychopharmacology. 2019;45:462–71. doi: 10.1038/s41386-019-0569-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Becker AM, Holze F, Grandinetti T, Klaiber A, Toedtli VE, Kolaczynska KE, et al. Acute effects of psilocybin after escitalopram or placebo pretreatment in a randomized, double-blind, placebo-controlled, crossover study in healthy subjects. Clin Pharmacol Ther. 2021;111:886–95. [DOI] [PMC free article] [PubMed]
- 53.Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14:347–53. doi: 10.1017/S1461145710000738. [DOI] [PubMed] [Google Scholar]
- 54.Le Nedelec M, Glue P, Winter H, Goulton C, Broughton L, Medlicott N. Acute low-dose ketamine produces a rapid and robust increase in plasma BDNF without altering brain BDNF concentrations. Drug Deliv Transl Res. 2018;8:780–6. doi: 10.1007/s13346-017-0476-2. [DOI] [PubMed] [Google Scholar]
- 55.Le Blanc J, Fleury S, Boukhatem I, Belanger JC, Welman M, Lordkipanidze M. Platelets selectively regulate the release of BDNF, but not that of its precursor protein, proBDNF. Front Immunol. 2020;11:575607. doi: 10.3389/fimmu.2020.575607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Player MJ, Taylor JL, Weickert CS, Alonzo A, Sachdev P, Martin D, et al. Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology. 2013;38:2101–8. doi: 10.1038/npp.2013.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Barrett FS, Doss MK, Sepeda ND, Pekar JJ, Griffiths RR. Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci Rep. 2020;10:2214. doi: 10.1038/s41598-020-59282-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.McCulloch DE, Madsen MK, Stenbaek DS, Kristiansen S, Ozenne B, Jensen PS, et al. Lasting effects of a single psilocybin dose on resting-state functional connectivity in healthy individuals. J Psychopharmacol. 2021;36:2698811211026454. [DOI] [PMC free article] [PubMed]
- 59.Sampedro F, de la Fuente Revenga M, Valle M, Roberto N, Dominguez-Clave E, Elices M, et al. Assessing the psychedelic “after-glow” in ayahuasca users: post-acute neurometabolic and functional connectivity changes are associated with enhanced mindfulness capacities. Int J Neuropsychopharmacol. 2017;20:698–711. doi: 10.1093/ijnp/pyx036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Galvez V, Nikolin S, Ho KA, Alonzo A, Somogyi AA, Loo CK. Increase in PAS-induced neuroplasticity after a treatment course of intranasal ketamine for depression. Report of three cases from a placebo-controlled trial. Compr Psychiatry. 2017;73:31–4. doi: 10.1016/j.comppsych.2016.10.012. [DOI] [PubMed] [Google Scholar]
- 61.Rajji TK, Sun Y, Zomorrodi-Moghaddam R, Farzan F, Blumberger DM, Mulsant BH, et al. PAS-induced potentiation of cortical-evoked activity in the dorsolateral prefrontal cortex. Neuropsychopharmacology. 2013;38:2545–52. doi: 10.1038/npp.2013.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123:572–84. doi: 10.1093/brain/123.3.572. [DOI] [PubMed] [Google Scholar]
- 63.Spriggs MJ, Sumner RL, McMillan RL, Moran RJ, Kirk IJ, Muthukumaraswamy SD. Indexing sensory plasticity: Evidence for distinct Predictive Coding and Hebbian learning mechanisms in the cerebral cortex. Neuroimage. 2018;176:290–300. doi: 10.1016/j.neuroimage.2018.04.060. [DOI] [PubMed] [Google Scholar]
- 64.Sanders PJ, Thompson B, Corballis PM, Maslin M, Searchfield GD. A review of plasticity induced by auditory and visual tetanic stimulation in humans. Eur J Neurosci. 2018;48:2084–97. doi: 10.1111/ejn.14080. [DOI] [PubMed] [Google Scholar]
- 65.Cai Z, Li S, Matuskey D, Nabulsi N, Huang Y. PET imaging of synaptic density: A new tool for investigation of neuropsychiatric diseases. Neurosci Lett. 2019;691:44–50. doi: 10.1016/j.neulet.2018.07.038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Banks MI, Zahid Z, Jones NT, Sultan ZW, Wenthur CJ. Catalysts for change: the cellular neurobiology of psychedelics. Mol Biol Cell. 2021;32:1135–44. doi: 10.1091/mbc.E20-05-0340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Inserra A, De Gregoria D, Gobbi G. Psychedelics in psychiatry: neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Pharm Rev. 2018;73:202–77. doi: 10.1124/pharmrev.120.000056. [DOI] [PubMed] [Google Scholar]
- 68.Olson DE. Biochemical mechanisms underlying psychedelic-induced neuroplasticity. Biochemistry. 2022;61:127–36. doi: 10.1021/acs.biochem.1c00812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Aleksandrova LR, Phillips AG. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharmacol Sci. 2021;42:929–42. [DOI] [PubMed]
- 70.Preller KH, Herdener M, Pokorny T, Planzer A, Kraehenmann R, Stampfli P, et al. The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr Biol. 2017;27:451–7. doi: 10.1016/j.cub.2016.12.030. [DOI] [PubMed] [Google Scholar]
- 71.Stenbaek DS, Madsen MK, Ozenne B, Kristiansen S, Burmester D, Erritzoe D, et al. Brain serotonin 2A receptor binding predicts subjective temporal and mystical effects of psilocybin in healthy humans. J Psychopharmacol. 2020;35:269881120959609. [DOI] [PubMed]
- 72.Vollenweider FX, Preller KH. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat Rev Neurosci. 2020;21:611–24. doi: 10.1038/s41583-020-0367-2. [DOI] [PubMed] [Google Scholar]
- 73.Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. 2021;118:e2022489118. [DOI] [PMC free article] [PubMed]
- 74.Muschamp JW, Regina MJ, Hull EM, Winter JC, Rabin RA. Lysergic acid diethylamide and [-]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Res. 2004;1023:134–40. doi: 10.1016/j.brainres.2004.07.044. [DOI] [PubMed] [Google Scholar]
- 75.Moreno JL, Holloway T, Albizu L, Sealfon SC, González-Maeso J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett. 2011;493:76–9. doi: 10.1016/j.neulet.2011.01.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Delille HK, Mezler M, Marek GJ. The two faces of the pharmacological interaction of mGlu2 and 5-HT(2)A - relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology. 2013;70:296–305. doi: 10.1016/j.neuropharm.2013.02.005. [DOI] [PubMed] [Google Scholar]
- 77.Horch HW, Katz LC. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci. 2002;5:1177–84. doi: 10.1038/nn927. [DOI] [PubMed] [Google Scholar]
- 78.Crouzier L, Couly S, Roques C, Peter C, Belkhiter R, Arguel Jacquemin M, et al. Sigma-1 (sigma1) receptor activity is necessary for physiological brain plasticity in mice. Eur Neuropsychopharmacol. 2020;39:29–45. doi: 10.1016/j.euroneuro.2020.08.010. [DOI] [PubMed] [Google Scholar]
- 79.Ray TS. Psychedelics and the human receptorome. PLoS One. 2010;5:e9019. doi: 10.1371/journal.pone.0009019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Moriguchi S, Shinoda Y, Yamamoto Y, Sasaki Y, Miyajima K, Tagashira H, et al. Stimulation of the sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice. PLoS One. 2013;8:e60863. doi: 10.1371/journal.pone.0060863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Meunier J, Maurice T. Beneficial effects of the sigma1 receptor agonists igmesine and dehydroepiandrosterone against learning impairments in rats prenatally exposed to cocaine. Neurotoxicol Teratol. 2004;26:783–97. doi: 10.1016/j.ntt.2004.07.003. [DOI] [PubMed] [Google Scholar]
- 82.Fukunaga K, Moriguchi S. Stimulation of the sigma-1 receptor and the effects on neurogenesis and depressive behaviors in mice. In: Smith, S., Su, TP. (eds) Sigma Receptors: Their Role in Disease and as Therapeutic Targets. Springer: Cham; 2017. p. 201–11. [DOI] [PubMed]
- 83.Szabo I, Varga VE, Dvoracsko S, Farkas AE, Kormoczi T, Berkecz R, et al. N,N-Dimethyltryptamine attenuates spreading depolarization and restrains neurodegeneration by sigma-1 receptor activation in the ischemic rat brain. Neuropharmacology. 2021;192:108612. doi: 10.1016/j.neuropharm.2021.108612. [DOI] [PubMed] [Google Scholar]
- 84.Winter JC, Filipink RA, Timineri D, Helsley SE, Rabin RA. The paradox of 5-methoxy-N, N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors. Pharmacol Biochem Behav. 2000;65:75–82. doi: 10.1016/s0091-3057(99)00178-1. [DOI] [PubMed] [Google Scholar]
- 85.Riga MS, Llado-Pelfort L, Artigas F, Celada P. The serotonin hallucinogen 5-MeO-DMT alters cortico-thalamic activity in freely moving mice: Regionally-selective involvement of 5-HT1A and 5-HT2A receptors. Neuropharmacology. 2018;142:219–30. doi: 10.1016/j.neuropharm.2017.11.049. [DOI] [PubMed] [Google Scholar]
- 86.Riga MS, Bortolozzi A, Campa L, Artigas F, Celada P. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors. Neuropharmacology. 2016;101:370–8. doi: 10.1016/j.neuropharm.2015.10.016. [DOI] [PubMed] [Google Scholar]
- 87.Krebs-Thomson K, Ruiz EM, Masten V, Buell M, Geyer MA. The roles of 5-HT1A and 5-HT2 receptors in the effects of 5-MeO-DMT on locomotor activity and prepulse inhibition in rats. Psychopharmacol (Berl) 2006;189:319–29. doi: 10.1007/s00213-006-0566-1. [DOI] [PubMed] [Google Scholar]
- 88.Islam MR, Moriguchi S, Tagashira H, Fukunaga K. Rivastigmine improves hippocampal neurogenesis and depression-like behaviors via 5-HT1A receptor stimulation in olfactory bulbectomized mice. Neuroscience. 2014;272:116–30. doi: 10.1016/j.neuroscience.2014.04.046. [DOI] [PubMed] [Google Scholar]
- 89.Grabiec M, Turlejski K, Djavadian RL. The partial 5-HT1A receptor agonist buspirone enhances neurogenesis in the opossum (Monodelphis domestica) Eur Neuropsychopharmacol. 2009;19:431–9. doi: 10.1016/j.euroneuro.2009.01.013. [DOI] [PubMed] [Google Scholar]
- 90.Mengod G, Palacios JM, Cortes R. Cartography of 5-HT1A and 5-HT2A receptor subtypes in prefrontal cortex and its projections. ACS Chem Neurosci. 2015;6:1089–98. doi: 10.1021/acschemneuro.5b00023. [DOI] [PubMed] [Google Scholar]
- 91.Lopez-Gimenez JF, Gonzalez-Maeso J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. Curr Top Behav Neurosci. 2018;36:45–73. doi: 10.1007/7854_2017_478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Celada P, Puig MV, Amargós-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004;29:252–65. [PMC free article] [PubMed]
- 93.Reissig CJ, Eckler JR, Rabin RA, Winter JC. The 5-HT 1A receptor and the stimulus effects of LSD in the rat. Psychopharmacology. 2005;182:197–204. doi: 10.1007/s00213-005-0068-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Rickli A, Moning OD, Hoener MC, Liechti ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol. 2016;26:1327–37. doi: 10.1016/j.euroneuro.2016.05.001. [DOI] [PubMed] [Google Scholar]
- 95.Carter OL, Burr DC, Pettigrew JD, Wallis GM, Hasler F, Vollenweider FX. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J Cogn Neurosci. 2005;17:1497–508. doi: 10.1162/089892905774597191. [DOI] [PubMed] [Google Scholar]
- 96.Pokorny T, Preller KH, Kraehenmann R, Vollenweider FX. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. Eur Neuropsychopharmacol. 2016;26:756–66. doi: 10.1016/j.euroneuro.2016.01.005. [DOI] [PubMed] [Google Scholar]
- 97.Nichols DE, Frescas S, Marona-Lewicka D, Kurrasch-Orbaugh DM. Lysergamides of isomeric 2,4-dimethylazetidines map the binding orientation of the diethylamide moiety in the potent hallucinogenic agent N, N-diethyllysergamide (LSD) J Medicinal Chem. 2002;45:4344–49. doi: 10.1021/jm020153s. [DOI] [PubMed] [Google Scholar]
- 98.Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs) Neuropharmacology. 2015;99:546–53. doi: 10.1016/j.neuropharm.2015.08.034. [DOI] [PubMed] [Google Scholar]
- 99.Janowsky A, Eshleman AJ, Johnson RA, Wolfrum KM, Hinrichs DJ, Yang J, et al. Mefloquine and psychotomimetics share neurotransmitter receptor and transporter interactions in vitro. Psychopharmacol (Berl) 2014;231:2771–83. doi: 10.1007/s00213-014-3446-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Savalia NK, Shao LX, Kwan AC. A dendrite-focused framework for understanding the actions of ketamine and psychedelics. Trends Neurosci. 2020;44:260–75. [DOI] [PMC free article] [PubMed]
- 101.Carhart-Harris RL, Nutt DJ. Serotonin and brain function: a tale of two receptors. J Psychopharmacol. 2017;31:1091–120. doi: 10.1177/0269881117725915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Beliveau V, Ganz M, Feng L, Ozenne B, Hojgaard L, Fisher PM, et al. A high-resolution in vivo atlas of the human brain’s serotonin system. J Neurosci. 2017;37:120–28. doi: 10.1523/JNEUROSCI.2830-16.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.De Gregorio D, Inserra A, Enns JP, Markopoulos A, Pileggi M, El Rahimy Y, et al. Repeated lysergic acid diethylamide (LSD) reverses stress-induced anxiety-like behavior, cortical synaptogenesis deficits and serotonergic neurotransmission decline. Neuropsychopharmacology. 2022;47:1188–98. [DOI] [PMC free article] [PubMed]
- 104.Martin DA, Marona-Lewicka D, Nichols DE, Nichols CD. Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia. Neuropharmacology. 2014;83:1–8. doi: 10.1016/j.neuropharm.2014.03.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Mason NL, Kuypers KPC, Muller F, Reckweg J, Tse DHY, Toennes SW, et al. Me, myself, bye: regional alterations in glutamate and the experience of ego dissolution with psilocybin. Neuropsychopharmacology. 2020;45:2003–11. doi: 10.1038/s41386-020-0718-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Benekareddy M, Nair AR, Dias BG, Suri D, Autry AE, Monteggia LM, et al. Induction of the plasticity-associated immediate early gene Arc by stress and hallucinogens: role of brain-derived neurotrophic factor. Int J Neuropsychopharmacol. 2013;16:405–15. doi: 10.1017/S1461145712000168. [DOI] [PubMed] [Google Scholar]
- 107.Davoudian PA, Shao L-X, Kwan AC. Shared and distinct brain regions targeted for immediate early gene expression by ketamine and psilocybin. bioRxiv, Preprint. 2022. 10.1101/2022.03.18.484437. [DOI] [PMC free article] [PubMed]
- 108.Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, et al. Mechanisms of action and persistent neuroplasticity by drugs of abuse. Pharm Rev. 2015;67:872–1004. doi: 10.1124/pr.115.010967. [DOI] [PubMed] [Google Scholar]
- 109.Ito H, Nyberg S, Halldin C, Lundkvist C, Farde L. PET imaging of central 5-HT2A receptors with carbon-11-MDL 100,907. J Nucl Med. 1998;39:208–14. [PubMed] [Google Scholar]
- 110.Kalivas PW. Addiction as a pathology in prefrontal cortical regulation of corticostriatal habit circuitry. Neurotox Res. 2008;14:185–9.. doi: 10.1007/BF03033809. [DOI] [PubMed] [Google Scholar]
- 111.Morgan C, McAndrew A, Stevens T, Nutt D, Lawn W. Tripping up addiction: the use of psychedelic drugs in the treatment of problematic drug and alcohol use. Curr Opin Behav Sci. 2017;13:71–6. [Google Scholar]
- 112.Fadiman J, Korb S. Might microdosing psychedelics be safe and beneficial? An initial exploration. J Psychoact Drugs. 2019;51:118–22. doi: 10.1080/02791072.2019.1593561. [DOI] [PubMed] [Google Scholar]
- 113.Romano AG, Quinn JL, Li L, Dave KD, Schindler EA, Aloyo VJ, et al. Intrahippocampal LSD accelerates learning and desensitizes the 5-HT(2A) receptor in the rabbit, Romano et al. Psychopharmacol (Berl) 2010;212:441–8. doi: 10.1007/s00213-010-2004-7. [DOI] [PubMed] [Google Scholar]
- 114.Buchborn T, Schroder H, Hollt V, Grecksch G. Repeated lysergic acid diethylamide in an animal model of depression: Normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling. J Psychopharmacol. 2014;28:545–52. doi: 10.1177/0269881114531666. [DOI] [PubMed] [Google Scholar]
- 115.Cameron LP, Benson CJ, DeFelice BC, Fiehn O, Olson DE. Chronic, intermittent microdoses of the psychedelic N,N-Dimethyltryptamine (DMT) produce positive effects on mood and anxiety in rodents. ACS Chem Neurosci. 2019;10:3261–70. doi: 10.1021/acschemneuro.8b00692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Gewirtz JC, Chen AC, Terwilliger R, Duman RC, Marek GJ. Modulation of DOI-induced increases in cortical BDNF expression by group II mGlu receptors. Pharmacol, Biochem Behav. 2002;73:317–26. doi: 10.1016/s0091-3057(02)00844-4. [DOI] [PubMed] [Google Scholar]
- 117.Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. 2019;364:eaat8078. [DOI] [PMC free article] [PubMed]
- 118.Wu M, Minkowicz S, Dumrongprechachan V, Hamilton P, Kozorovitskiy Y. Ketamine rapidly enhances glutamate-evoked dendritic spinogenesis in medial prefrontal cortex through dopaminergic mechanisms. Biol Psychiatry. 2021;89:1096–105. doi: 10.1016/j.biopsych.2020.12.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, et al. Trial of psilocybin versus escitalopram for depression. N. Engl J Med. 2021;384:1402–11. doi: 10.1056/NEJMoa2032994. [DOI] [PubMed] [Google Scholar]
- 120.Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, et al. Effects of Psilocybin-Assisted Therapy on Major Depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2021;78:481–9. doi: 10.1001/jamapsychiatry.2020.3285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Gasser P, Holstein D, Michel Y, Doblin R, Yazar-Klosinski B, Passie T, et al. Safety and efficacy of lysergic acid diethylamide-assisted psychotherapy for anxiety associated with life-threatening diseases. J Nerv Ment Dis. 2014;202:513–20. doi: 10.1097/NMD.0000000000000113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Schimmel N, Breeksema JJ, Smith-Apeldoorn SY, Veraart J, van den Brink W, Schoevers RA. Psychedelics for the treatment of depression, anxiety, and existential distress in patients with a terminal illness: a systematic review. Psychopharmacology (Berl). 2021;239:15–33. [DOI] [PubMed]
- 123.Majic T, Schmidt TT, Gallinat J. Peak experiences and the afterglow phenomenon: when and how do therapeutic effects of hallucinogens depend on psychedelic experiences? J Psychopharmacol. 2015;29:241–53. doi: 10.1177/0269881114568040. [DOI] [PubMed] [Google Scholar]
- 124.Banks SJ, Eddy KT, Angstadt M, Nathan PJ, Phan KL. Amygdala-frontal connectivity during emotion regulation. Soc Cogn Affect Neurosci. 2007;2:303–12. doi: 10.1093/scan/nsm029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Dixon ML, Thiruchselvam R, Todd R, Christoff K. Emotion and the prefrontal cortex: An integrative review. Psychol Bull. 2017;143:1033–81. doi: 10.1037/bul0000096. [DOI] [PubMed] [Google Scholar]
- 126.Kuhn M, Mainberger F, Feige B, Maier JG, Wirminghaus M, Limbach L, et al. State-dependent partial occlusion of cortical LTP-like plasticity in major depression. Neuropsychopharmacology. 2016;41:1521–9. doi: 10.1038/npp.2015.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Normann C, Schmitz D, Furmaier A, Doing C, Bach M. Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry. 2007;62:373–80. doi: 10.1016/j.biopsych.2006.10.006. [DOI] [PubMed] [Google Scholar]
- 128.Noda Y, Zomorrodi R, Vila-Rodriguez F, Downar J, Farzan F, Cash RFH, et al. Impaired neuroplasticity in the prefrontal cortex in depression indexed through paired associative stimulation. Depress Anxiety. 2018;35:448–56. doi: 10.1002/da.22738. [DOI] [PubMed] [Google Scholar]
- 129.Smith R, Chen K, Baxter L, Fort C, Lane RD. Antidepressant effects of sertraline associated with volume increases in dorsolateral prefrontal cortex. J Affect Disord. 2013;146:414–9. doi: 10.1016/j.jad.2012.07.029. [DOI] [PubMed] [Google Scholar]
- 130.Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18:1413–7. doi: 10.1038/nm.2886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Schmaal L, Hibar DP, Samann PG, Hall GB, Baune BT, Jahanshad N, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 2017;22:900–09. doi: 10.1038/mp.2016.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Hare BD, Duman RS. Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol Psychiatry. 2020;25:2742–58. doi: 10.1038/s41380-020-0685-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol Psychiatry. 2020;25:530–43. doi: 10.1038/s41380-019-0615-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, Marchante AN, et al. The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav Brain Res. 2011;223:403–10. doi: 10.1016/j.bbr.2011.04.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun. 2020;11:2221. doi: 10.1038/s41467-020-15920-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Yabuki Y, Fukunaga K. Clinical therapeutic strategy and neuronal mechanism underlying post-traumatic stress disorder (PTSD). Int J Mol Sci. 2019;20:3614. [DOI] [PMC free article] [PubMed]
- 137.Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci. 2009;10:561–72. doi: 10.1038/nrn2515. [DOI] [PubMed] [Google Scholar]
- 138.Gimpl MP, Gormezano I, Harvey JA. Effects of LSD on learning as measured by classical conditioning of the rabbit nictitating membrane response. J Pharmacol Exp Therapeutics. 1979;208:330–4. [PubMed] [Google Scholar]
- 139.Kanen JW, Luo Q, Kandroodi MR, Cardinal RN, Robbins TW, Carhart-Harris RL, et al. Effect of lysergic acid diethylamide (LSD) on reinforcement learning in humans. bioRxiv, Preprint. 2021: 10.1101/2020.12.04.412189. [DOI] [PMC free article] [PubMed]
- 140.Wiessner I, Olivieri R, Falchi M, Palhano-Fontes F, Oliveira Maia L, Feilding A, et al. LSD, afterglow and hangover: Increased episodic memory and verbal fluency, decreased cognitive flexibility. Eur Neuropsychopharmacol. 2022;58:7–19. doi: 10.1016/j.euroneuro.2022.01.114. [DOI] [PubMed] [Google Scholar]
- 141.Waltz JA. The neural underpinnings of cognitive flexibility and their disruption in psychotic illness. Neuroscience. 2017;345:203–17. doi: 10.1016/j.neuroscience.2016.06.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Lange F, Seer C, Kopp B. Cognitive flexibility in neurological disorders: Cognitive components and event-related potentials. Neurosci Biobehav Rev. 2017;83:496–507. doi: 10.1016/j.neubiorev.2017.09.011. [DOI] [PubMed] [Google Scholar]
- 143.Murphy-Beiner A, Soar K. Ayahuasca’s ‘afterglow’: improved mindfulness and cognitive flexibility in ayahuasca drinkers. Psychopharmacol (Berl) 2020;237:1161–9. doi: 10.1007/s00213-019-05445-3. [DOI] [PubMed] [Google Scholar]
- 144.Doss MK, Povazan M, Rosenberg MD, Sepeda ND, Davis AK, Finan PH, et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl Psychiatry. 2021;11:574. doi: 10.1038/s41398-021-01706-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Davis AK, Barrett FS, Griffiths RR. Psychological flexibility mediates the relations between acute psychedelic effects and subjective decreases in depression and anxiety. J Contextual. Behav Sci. 2020;15:39–45. doi: 10.1016/j.jcbs.2019.11.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Magaraggia I, Kuiperes Z, Schreiber R. Improving cognitive functioning in major depressive disorder with psychedelics: A dimensional approach. Neurobiol Learn Mem. 2021;183:107467. doi: 10.1016/j.nlm.2021.107467. [DOI] [PubMed] [Google Scholar]
- 147.Bouso JC, Gonzalez D, Fondevila S, Cutchet M, Fernandez X, Ribeiro Barbosa PC, et al. Personality, psychopathology, life attitudes and neuropsychological performance among ritual users of Ayahuasca: a longitudinal study. PLoS One. 2012;7:e42421. doi: 10.1371/journal.pone.0042421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.van Oorsouw K, Toennes SW, Ramaekers JG. Therapeutic effect of an ayahuasca analogue in clinically depressed patients: a longitudinal observational study. Psychopharmacology (Berl). 2022;239:1839–52. [DOI] [PMC free article] [PubMed]
- 149.Dominguez-Clave E, Soler J, Elices M, Franquesa A, Alvarez E, Pascual JC. Ayahuasca may help to improve self-compassion and self-criticism capacities. Hum Psychopharmacology: Clinical and Experimental. 2021;37:e2807. [DOI] [PubMed]
- 150.Madsen MK, Fisher PM, Stenbaek DS, Kristiansen S, Burmester D, Lehel S, et al. A single psilocybin dose is associated with long-term increased mindfulness, preceded by a proportional change in neocortical 5-HT2A receptor binding. Eur Neuropsychopharmacol. 2020;33:71–80. doi: 10.1016/j.euroneuro.2020.02.001. [DOI] [PubMed] [Google Scholar]
- 151.Müller F, Kraus E, Holze F, Becker A, Ley L, Schmid Y, et al. Flashback phenomena after administration of LSD and psilocybin in controlled studies with healthy participants. Psychopharmacology (Berl). 2022;239:1933–43. [DOI] [PMC free article] [PubMed]
- 152.Schmid Y, Enzler F, Gasser P, Grouzmann E, Preller KH, Vollenweider FX, et al. Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry. 2015;78:544–53. doi: 10.1016/j.biopsych.2014.11.015. [DOI] [PubMed] [Google Scholar]
- 153.Kometer M, Pokorny T, Seifritz E, Volleinweider FX. Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacol (Berl) 2015;232:3663–76. doi: 10.1007/s00213-015-4026-7. [DOI] [PubMed] [Google Scholar]
- 154.Breeksema JJ, Niemeijer AR, Krediet E, Vermetten E, Schoevers RA. Psychedelic treatments for psychiatric disorders: a systematic review and thematic synthesis of patient experiences in qualitative studies. CNS Drugs. 2020;34:925–46. doi: 10.1007/s40263-020-00748-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Yaden DB, Griffiths RR. The subjective effects of psychedelics are necessary for their enduring therapeutic effects. ACS Pharm Transl Sci. 2021;4:568–72. doi: 10.1021/acsptsci.0c00194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Watts R, Day C, Krzanowski J, Nutt D, Carhart-Harris R. Patients’ accounts of increased “connectedness” and “acceptance” after psilocybin for treatment-resistant depression. J Humanist Psychol. 2017;57:520–64. [Google Scholar]
- 157.Hasler G. Toward the “helioscope” hypothesis of psychedelic therapy. Eur Neuropsychopharmacol. 2022;57:118–9. doi: 10.1016/j.euroneuro.2022.02.006. [DOI] [PubMed] [Google Scholar]
- 158.Brouwer A, Carhart-Harris RL. Pivotal mental states. J Psychopharmacol. 2020;35:269881120959637. [DOI] [PMC free article] [PubMed]
- 159.Griffiths RR, Richards WA, Johnson MW, McCann UD, Jesse R. Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. J Psychopharmacol. 2008;22:621–32. doi: 10.1177/0269881108094300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Barrett FS, Bradstreet MP, Leoutsakos JS, Johnson MW, Griffiths RR. The Challenging Experience Questionnaire: Characterization of challenging experiences with psilocybin mushrooms. J Psychopharmacol. 2016;30:1279–95. doi: 10.1177/0269881116678781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Carbonaro TM, Bradstreet MP, Barrett FS, MacLean KA, Jesse R, Johnson MW, et al. Survey study of challenging experiences after ingesting psilocybin mushrooms: Acute and enduring positive and negative consequences. J Psychopharmacol. 2016;30:1268–78. doi: 10.1177/0269881116662634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Roseman L, Nutt DJ, Carhart-Harris RL. Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front Pharm. 2018;8:974. doi: 10.3389/fphar.2017.00974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Halpern JH, Lerner AG, Passie T. A review of hallucinogen persisting perception disorder (HPPD) and an exploratory study of subjects claiming symptoms of HPPD. Curr Top Behav Neurosci. 2018;36:333–60. doi: 10.1007/7854_2016_457. [DOI] [PubMed] [Google Scholar]
- 164.de Jonghe F, Kool S, van Aalst G, Dekker J, Peen J. Combining psychotherapy and antidepressants in the treatment of depression. J Affect Disord. 2001;64:217–29. doi: 10.1016/s0165-0327(00)00259-7. [DOI] [PubMed] [Google Scholar]
- 165.Areán PA, Cook BL. Psychotherapy, Antidepressants, and Their Combination for Chronic Major Depressive Disorder: A Systematic Review. Biol Psychiatry. 2013;52:293–303. doi: 10.1177/070674371305800703. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.