Abstract
Oncogenic overexpression of MYC leads to the fatal deregulation of signaling pathways, cellular metabolism, and cell growth. MYC rearrangements are found frequently among non-Hodgkin B-cell lymphomas enforcing MYC overexpression. Genetically engineered mouse models (GEMMs) were developed to understand MYC-induced B-cell lymphomagenesis. Here, we highlight the advantages of using Eµ-Myc transgenic mice. We thoroughly compiled the available literature to discuss common challenges when using such mouse models. Furthermore, we give an overview of pathways affected by MYC based on knowledge gained from the use of GEMMs. We identified top regulators of MYC-induced lymphomagenesis, including some candidates that are not pharmacologically targeted yet.
Keywords: MYC, B-cells, lymphoma, Eµ-Myc transgene, genetically engineered mouse models
1. Introduction
As observed in most human malignancies, overexpression of MYC leads to fatal cellular metabolism, growth, and signaling deregulation, which defines MYC as a classical oncogene [1,2]. MYC rearrangements, copy number amplifications, or mutations are frequently found among non-Hodgkin B-cell lymphomas (B-NHL) and enforce MYC overexpression [3]. More specifically, roughly 80% of Burkitt’s lymphoma (BL), 15% of diffuse large B-cell lymphoma (DLBCL), and 2% of follicular lymphoma (FL) are characterized by MYC translocations [3,4,5].
Despite the progress made in the past decades, cancer heterogeneity, insufficient therapy response, and relapse are still risks for patients. As directly targeting MYC with chemical compounds is challenging [6], exploring genetic vulnerabilities in MYC-induced B-cell lymphoma is expected to uncover new “attack points” for cancer treatment.
This review highlights the advantages of genetically engineered mouse models (GEMMs) to understand MYC-induced lymphomagenesis. We focus on the widely used Eµ-Myc transgenic mouse model and discuss the most common challenges when using this model system. We give here an overview of GEMMs of MYC-induced B-cell lymphoma, revisiting over 170 GEMMs with distinct genetic alterations. By thoroughly compiling these data, we were able to identify top regulators of MYC-induced lymphomagenesis, including some candidates that are not pharmacologically targeted yet. At last, we discuss future directions in using GEMMs in B-cell lymphoma research.
2. MYC and the Origin of the Eµ-Myc Mouse Model
The transcription factor (TF) MYC is one of the most prominent proto-oncogenes and is composed of a basic helix–loop–helix (bHLH) motif, followed by a leucine zipper that enables its DNA binding and five MYC homology boxes (0-IV), which facilitate stability, protein–protein interactions, and transcriptional regulation [7,8]. Moreover, MYC harbors a nuclear localization signal (NLS) to ensure nuclear import [9]. Here, MYC binds to defined areas in the chromatin. The consensus sequence of the enhancer (E)-box region bound by MYC is characterized by a CACGTG motif and can be found in one-third of MYC binding loci in human B-cells [10]. However, non-canonical E-box (CACATG) and E-box-independent mechanisms contribute to the binding of MYC to roughly 5000 promoter sites in B-cell lymphoma [10,11].
In murine naïve B-cells, MYC was associated with regulatory elements pre-existing in a poised transcriptional state, which is crucial for fast responses toward immunological stimuli [12]. Here, MYC and its interaction with key transcription factors of B-cell identity are essential for cell cycle entry of germinal center (GC) B-cells and memory B-cell formation [13,14,15]. To achieve elevated mRNA translation, MYC regulates the expression of genes encoding transfer RNAs, ribosomal RNAs, and components of the spliceosome [12,16,17,18]. In line with this, murine MYC-deficient B-cells fail to amplify RNA synthesis after stimulation with lipopolysaccharide (LPS) due to impaired chromatin reorganization, which impedes TF occupancy at key promoters [19]. Taken together, physiological MYC is a crucial regulator of transcription and translation in normal cells and a potent driver of B-cell lymphomagenesis in mice and humans (Figure 1).
Figure 1.
Regulation of the MYC gene and functions of MYC. Shown are pathways that activate or repress MYC transcription. Oncogenic translocations, such as (t8;14) found in human BL, juxtapose MYC and potent enhancers, resulting in high MYC expression. MYC has many interaction partners, leading to context-dependent regulation of biological processes. This scheme summarizes findings from various sources [2,8,20,21,22]. BCR—B-cell receptor.
In 1985, Adams and colleagues constructed seven different transgenic mouse strains by inserting the gene encoding MYC into distinct regulatory regions [23]. From these, constitutive expression of Myc under the immunoglobulin enhancers Eκ or Eµ led to lymphoma development originating from B-cells with dramatically increased incidence [23]. Eµ-Myc transgenic mice possess three Myc transgenes on chromosome 19 and two somatic Myc copies on chromosome 15 and are usually bred in a heterozygous manner [24,25]. If all copies are expressed, or some are silenced similar to BL cell lines, is not clear [26,27]. However, the onset of lymphoma is dose-dependent, as homozygous crossings of Eµ-Myc transgenic mice show dramatically reduced survival [28].
Deregulation of Myc transcription in Eµ-Myc transgenic mice occurs stepwise exceeding physiological levels of MYC in pre-tumor cells [12,29,30]. The high abundance of MYC leads to its accumulation at active promoters and enhancers, causing transcriptional amplification by recruitment of factors that phosphorylate RNA polymerase II at serine 2 to speed up transcription, also known as the “general amplifier hypothesis” [16]. Moreover, oncogenic MYC invades low-affinity E-boxes and target sites without E-box motifs [16,31], which can be explained by the biophysical properties of dimeric bHLH domains to non-specifically bind DNA [32].
The “general amplifier hypothesis” is complemented by selective transcriptional regulation of key target genes, generating fatal feedback loops that shape gene expression [12]. These complex pathophysiological mechanisms explain why the expression of an identified core target gene signature for MYC comprising 51 genes could not sufficiently explain how MYC transforms healthy B-cells [33]. In line with the famous “two-hit” hypothesis for tumor development [34], overexpression of MYC in B-cells would generally induce apoptosis or senescence, making the acquisition of secondary mutations necessary for oncogenic transformation [35,36].
At the cellular level, B-cell-restricted overexpression of Myc promotes the accumulation of IgM-negative B-cells in the bone marrow [37]. Moreover, peripheral blood from Eµ-Myc transgenic mice allows tracking of large B220low cells over time, correlating with disease onset and progression [28,38]. Evidence exists that B220low cells are the actual pre-tumorigenic cell type, as they are also found in spleens of Eµ-Myc transgenic mice [29,38]. In wild-type mice, B220low cells are mainly found in the bone marrow but not in the spleen, representing either immature B- or plasma cells [39,40].
The median survival of Eµ-Myc transgenic mice was initially determined to be 11 weeks [23], which enables fast survival analysis of cohorts. Diseased Eµ-Myc transgenic mice develop massively enlarged lymph nodes at inguinal, brachial, and cervical sites, splenomegaly, and sometimes thymoma or bowel obstruction due to tumor masses in the abdomen; this was initially described as “multicentric lymphosarcoma with associated leukemia” [23,41]. Later descriptions of diseased Eµ-Myc transgenic mice included behavioral alterations such as “inactivity, lack of grooming, and/or cachexia” [28], which can now be monitored automatically using body temperature, weight, and food and water intake [42]. Cachexia or “wasting syndrome” can occur in Eµ-Myc transgenic mice without visible lymphoma formation, but with significant weight loss [43]. Taken together, the Eµ-Myc mouse model is a useful system for studying B-cell lymphomagenesis and tumor growth, as molecular changes result in phenotypic alterations.
3. B-Cell Lymphomas from Eµ-Myc Transgenic Mice Arise in a Competent Immune System and Are Highly Heterogeneous
Eµ-Myc transgenic mice possess a competent immune system with all innate and adaptive immune cell types [36,38,44]. The singular deletion of α/β T-cells and natural killer (NK) T-cells or γ/δ T-cells, which are known for their anti-tumor actions, did not affect the survival of Eµ-Myc transgenic mice [45]. This appears to be the case for lymphomas from Eµ-Myc transgenic mice with mutations of the tumor suppressor p53 [36]. In contrast, lymphoma cells overexpressing BCL-2 were immunologically visible and removed by CD8+ T and NK cells [36]. Therefore, this mouse model might be helpful in studying the role of immune cells in counteracting malignant transformation.
The competent immune system enables applications from the growing field of immuno-oncology, including checkpoint inhibitors, cancer vaccines, CAR-T cells, or oncolytic viruses to encounter cancer. Surface expression of PD-1 receptors was found to be increased on cytotoxic T-cells in lymphoma-bearing Eµ-Myc transgenic mice [46], while B-cells from Eµ-Myc transgenic mice showed an upregulation of the inhibitory receptor PD-L1 to prevent T-cell-mediated elimination [25]. The use of chemotherapy and CAR-T-cells against CD19 increased the survival of Eµ-Myc lymphoma cell xenografts, although normal B-cells were diminished as well [47]. Another approach is the “vaccination” of wild-type mice with α-galactosylceramide-loaded (a synthetic CD1d-dependent NK T-cell ligand) and irradiated Eµ-Myc lymphoma cells to lower tumor burden and increase survival after transplantation of malignant cells from Eµ-Myc transgenic mice [48]. A combination of this “vaccine” and an antibody against the immune checkpoint receptor 4–1BB (CD137) resulted in long-term protective effects [49]. Therefore, Eµ-Myc transgenic mice are valuable tools for evaluating potential therapeutic approaches involving the training of the immune system to detect and erase malignant cells.
Lymphomas arising in Eµ-Myc transgenic mice show differences compared to IgM-positive human BL, as constitutive Myc expression occurs from the earliest B-cell progenitor on. Therefore, disease does not necessarily involve GC formation, and all stages of B-cell development can form the tumor cell of origin [36,50]. Mixed phenotypes might be related to multiple events of malignant transformation or cellular de-differentiation rather than “active” differentiation of malignant cells. This is in line with the idea that MYC promotes proliferation but inhibits differentiation [20]. When a specific gene knock-out (KO) blocks or impairs normal B-lymphopoiesis, combination with the Eµ-Myc transgene results in an expansion of the affected B-cell subpopulation. Examples include KO of Msh2 (encoding DNA damage repair protein MSH2) or Prkaa1 (encoding AMP-activated protein kinase AMPKα1) resulting in merely pro-B or pre-B lymphomas [45,51] or, on the contrary, KO of Ube3a (encoding Ubiquitin-Protein-Ligase E3A), which shifts the phenotype towards mature B-cell lymphomas [52].
There is an ongoing debate about using mouse experiments to model human diseases and therapeutic approaches. It became clear in recent years that the experimental design, the mouse model, and the characterization of the patient cohort are critical to obtain transferable data from mouse studies. Eµ-Myc-derived lymphomas are very heterogenous; for example, a study described that individual B-cell lymphomas shared only a quarter of all differentially expressed genes [12]. One would expect that Eµ-Myc lymphomas are similar to human BL due to the Eµ-Myc transgene. However, gene expression signatures close to human DLBCL, including the germinal center-like and activated B-cell-like subtype, were also identified [53]. As DLBCL can be driven by BCL6 translocations or hyperactive RAS signaling [54], the appearance of frequent mutations in Kras or Bcor, which encodes a repressor of BCL-6, as tertiary drivers in Eµ-Myc lymphomas might explain DLBCL-like gene expression signatures [24].
Transgenic mouse models have been widely used to study signaling pathways and test therapeutic agents to understand oncogenic mechanisms. For example, the deregulated mTORC1 signaling in Eμ-Myc lymphomagenesis can be used by treatment with the mTORC inhibitor everolimus, even at the pre-malignant stage, to delay lymphoma onset [55]. These findings from mouse experiments have been validated in human B-cell lymphoma later, including BL and DLBCL, and led to promising clinical trials [56,57,58].
A recent study showed that lymphomas from Eµ-Myc transgenic mice exposed to chemotherapy recapitulate the gene expression profiles of patients suffering from DLBCL. The authors identified a senescence-associated gene signature, termed “SUVARness”, and elevated H3K9me3 marks that predict a favorable outcome in DLBCL patients [59].
These examples clearly show that drug screening in mouse models can be successfully translated into human therapies and that the Eµ-Myc mouse model is a valuable tool for studying human B-cell lymphomas due to similarities in genetic alterations.
4. Critical Genes for MYC-Induced Lymphomagenesis Share Common Pathways
More than 300 peer-reviewed studies involving Eµ-Myc transgenic mice have been published (Figure 2A). We identified 172 different GEMMs presented with survival curves based on the Eµ-Myc transgene (Table 1). These models included additional genetic perturbations, such as complete KOs, conditional KOs, or overexpression by transgene insertion (Figure 2B). A minority of research studies worked with specific (point) mutations or xenografts created with fetal liver or lymphoma cells (Figure 2B).
Figure 2.
A meta-analysis of GEMMs of MYC-induced lymphoma. (A) Timeline of published articles using Eµ-Myc transgenic mice found on Pubmed with search terms: “Emu-myc”, “Eµ-myc”, or “Myc-induced lymphoma”. (B) Pie chart showing the type of mouse model used. Transplants do not fall under the term “GEMM”. (C,D) Ranked list of genes that decrease (C) or increase (D) survival, normalized to the control cohort for each study. Please refer to Table 1 for a complete list of genes.
Roughly 60% of studies analyzed the survival of Eµ-Myc transgenic mice bred to full KOs, resulting in the deletion of the respective gene throughout the entire body. However, this can disturb immuno-surveillance, angiogenesis, or metabolism by affecting other cells. In contrast, only 15% of the studies were based on cell type-specific KOs using B-cell-specific Cre recombinases, such as CD19-cre (active in pro B-cells) or Mb1-cre (active in pre-pro B-cells) to eliminate the target gene flanked by loxP sites [60,61]. This seems favorable for investigating B-cell lymphomagenesis, but a careful interpretation is needed when normal B-cell development is perturbed by the KO, as a decreased B-cell population stochastically lowers malignant transformation events. Moreover, escaping from genetic inactivation can occur under certain conditions during lymphomagenesis, skewing the obtained survival curves [62]. A more sophisticated approach would be the combination of the Eµ-Myc transgene with Cre recombinases that delete in germinal center B-cells, such as AID-cre, CD21-cre, or Cγ1-cre to study mature B-cell lymphomas with the respective genetic deletion [63,64,65].
To rule out strain- or model-dependent effects, when comparing the survival of all these different studies, a percentage normalized to the used control cohort was calculated. By considering all genes where deletion or overexpression had a significant impact on mouse survival (either <50% reduction or >200% increase in life span), we identified 48 critical genes for MYC-induced lymphomagenesis (Figure 2C,D). This also implies that more than two-thirds of all studies did not observe an effect on survival, as defined by our criteria. Common biological functions among the 48 critical genes were identified, being “regulation of transcription by RNA polymerase II”, “chromatin organization”, “histone modification”, and “regulation of catabolic processes” based on the gene ontology (GO) terms (Figure 3). In addition, “signal transduction by p53”, “apoptotic signaling pathway”, and “DNA damage response” were found as common biological pathways among these critical proteins. The contribution of these pathways in MYC-induced B-cell lymphomagenesis will be discussed in detail in this chapter.
Figure 3.
Common biological functions among the critical genes from Figure 2 for Eµ-Myc lymphomas were analyzed using Enrichr and the corresponding GO (gene ontology) terms [66,67]. Visualization was performed using the Revigo tool [68]. The color of the bubble corresponds to the adjusted p value (the redder, the lower the p value) and the size to the genes under the GO Term.
4.1. Epigenetic Modifiers Cooperate with MYC to Maintain Uncontrolled Proliferation
Three distinct fail-safe mechanisms prevent cells from becoming cancer: (1) Induction of cell cycle arrest via p21 through activated p53, (2) sequestering of cell cycle promoting factors such as E2F proteins through pRB (retinoblastoma protein), and (3) repression of anti-apoptotic factors or activation of pro-apoptotic factors to induce apoptosis.
GEMMs with B-cell-specific MYC overexpression and deletions or mutations in the p53/ARF/MDM2-axis uniformly showed reduced survival, as expected [69,70,71,72,73,74]. Of note, whole-body KO of Trp53 (encoding p53) can result in T-cell lymphomas, and investigators should be careful to delineate the distinct effects [75]. Interestingly, B-cell-specific KO of Trp53 with Mb1-cre resulted in the development of B-cell lymphomas harboring oncogenic translocations, including Igh/Myc—very similar to Eµ-Myc transgenic mice—and a median survival of 28 days [76]. Lymphomas were also formed when Trp53 was knocked out using CD21-Cre, although these tumors lacked elevated MYC expression [77]. On the contrary, deleting one allele of Rb barely altered the survival properties of Eµ-Myc transgenic mice [71], while a critical role was attributed to levels of E2F in MYC-induced lymphomagenesis [78].
The pRB/E2F-axis is controlled through the interplay of cyclins and cyclin-dependent kinases (CDKs) [79]. MYC directly activates the expression of the gene encoding Cyclin D2, which is essential for driving cell proliferation [80]. RAS, a commonly found tertiary driver in Eµ-Myc lymphomas [24], can activate Cyclin D1 [81]. Cyclin E, for example, is positively regulated by the RNA helicase DDX3, encoded by the sex chromosomes [82]. Tumor formation was heavily impaired in females but not males lacking the X-linked allele Ddx3x using a B-cell-specific KO model crossed to Eµ-Myc transgenic mice [62].
Epigenetic modifiers were shown to be highly involved in impacting the pRB/E2F-axis in Eµ-Myc transgenic mice. This includes the histone acetyltransferase GCN5 (Kat2a), whose homozygous loss resulted in a decreased expression of the genes encoding E2F and Cyclin D and improved survival by almost three-fold [83]. Similarly, heterozygous loss of the gene encoding the histone acetyltransferase MOZ (Kat6a) slowed down the proliferation of malignant B-cells, and pharmacological inhibition of MOZ reduced E2F2 transcription, stopping tumor growth in vivo [84,85].
Cyclin D1 expression was furthermore shown to be regulated by the methyl transferase EZH2 [86]. More specifically, a gain-of-function mutant of EZH2 (Y641F), which is also found among B-cell lymphoma patients [54,87], acted in concert with wild-type EZH2 to elevate activating H3K27 trimethylation marks in Eµ-Myc transgenic mice, resulting in enforced B-cell receptor signaling and lethality [86].
In contrast, the histone methyltransferase SUV39H1 creates repressive histone marks by tri-methylation of H3K9 and directly interacts with pRB, making it crucial for the repression of genes encoding cyclins [88,89]. Therefore, the loss of Suv39h1 alleles reduced the lifespan of Eµ-Myc transgenic mice by 50%, also due to defects in senescence induction in cancer cells [90].
These molecular interactions show how MYC sustains proliferation and overrides cell cycle checkpoints to circumvent cell-intrinsic safeguard programs. Interestingly, the latest subclassification of DLBCL contains a cluster of human B-cell lymphomas, driven by deregulated methyl transferases, such as EZH2 or MLL4 [54,87], that often occur together with MYC and BCL-2 alterations. Many “epi-drugs” exist that target epigenetic regulators in B-NHL [91], which could be further utilized in therapy for MYC-dependent lymphoma or lymphomas with MYC as the secondary driver.
4.2. Impairing Direct MYC Interaction Partners Is Most Effective in Prolonging Survival
MYC has many interaction partners (Figure 4), constantly interchanging through competitive binding. MAX (MYC-associated factor X), for example, dimerizes with MYC under physiological conditions at E-boxes through bHLH domains to stimulate the transcription of target genes [7]. The MYC:MAX interaction is crucial for target gene transcription and high MYC levels, as MAX-deficient B-cells had unstable MYC, and MAX-deficient Eµ-Myc transgenic mice significantly extended survival [92]. Therefore, the small molecule inhibitor 10058-F4, which blocks dimerization between MYC and MAX, was expected to be a breakthrough in targeting MYC-dependent cancer [93]. However, 10058-F4 did not achieve adequate results due to high turnover and the demand for high molar concentrations in vivo [6]. New inhibitors that disrupt the MYC:MAX interaction are MYCi975 and MYCMI-7, and they obtained promising results [94,95].
Figure 4.
Common effectors of MYC-induced lymphomagenesis physically interact. Critical genes from Figure 2 were clustered based on the physical interaction of the encoding protein (line thickness indicates the strength of data support) of the encoded protein using the STRING database [102]. Additional common interaction partners are shown. Terms describe biological function of some proteins in the clusters.
Binding partners of MYC are functional mediators but also might regulate protein stability (Figure 4). The half-life of MYC is the oncogene’s weak spot, as half of all MYC must be synthesized newly every 30 min, and emphasizes its strong regulation [96]. Phosphorylation of MYC at serine residue 62 is induced by ERK downstream of RAS, positively regulating the protein stability of MYC [97]. In contrast, MYC phosphorylation at threonine residue 58 via GSK3 is destabilizing and frequently mutated in B-cell lymphoma to prevent phosphorylation and decay [98,99]. Furthermore, the isomerase PIN1 alters the configuration of proline residue 63, which sterically shields phosphorylated serine 62 from dephosphorylation, eventually protecting MYC from degradation [100]. This explains why KO of PIN1 significantly increased the survival of Eµ-Myc transgenic mice due to lowered MYC levels [101].
Recently, we discovered a novel way to target the stability of MYC by exploiting its constant shuttling from the cytoplasm to the nucleus [44]. MYC is well-known for associating with microtubules [103], and the post-translational acetylation of tubulin is a crucial factor for assembly and stability [104,105]. The histone deacetylase 6 (HDAC6) mediates tubulin deacetylation, and pharmacological inhibition of HDAC6 decreases MYC protein levels, likely by heat-shock protein-mediated proteolysis [44]. Similarly, the broader MYC interaction network could be further utilized for therapeutic interventions by targeting factors that connect central pathways, such as MIZ-1 (Zbtb17), EED, or DDX3X (Figure 4).
4.3. MYC-Induced Apoptosis Might Be Triggered by Transcriptional Stress and DNA Damage
Apoptosis can be seen as the result of an altered balance between anti- and pro-apoptotic effectors. Therefore, KO of genes encoding anti-apoptotic mediators, such as MCL-1 or BCL-w, had a positive effect on the survival of Eµ-Myc transgenic mice because malignant cells could not maintain high levels of anti-apoptotic proteins and initiated apoptosis [106,107,108]. Loss of pro-apoptotic mediators such as BIM or PUMA in lymphoma cells had the opposite effect on survival, as expected [109,110,111]. The interplay of MYC and other TFs was thought to modulate the expression of apoptotic mediators in a stoichiometric way. For example, the promoter of BCL2 is antagonistically controlled by MYC and MIZ-1, implying that this interaction balances apoptosis induction [112,113].
However, a newer hypothesis assumes that “MYC-driven apoptosis results from RNA Polymerase II stalling” and not from direct transcriptional control of apoptotic mediators [114]. Overexpression of MYC leads to replicative stress, which can stall RNA Polymerase II [115,116]. Two phenomena appear to be the primary source of this type of stress: (I) transcription-replication conflicts caused by the crashing of replication and transcription machinery during the S phase due to fast replication and high transcriptional output [117]. (II) R-loops, which are transient DNA-RNA hybrids formed by nascent RNA transcripts and act as a barrier to replication fork progression [118,119]. Both stressors may generate DNA lesions and genomic instability, which trigger the DNA damage repair machinery.
In particular, the DNA damage sensor CHK1 seems crucial in MYC-induced lymphomagenesis, as B-cell-specific heterozygous KO completely abrogated malignant transformation [120]. CHK1-haploinsuffiency correlated with higher γ-H2A.X levels and PARP cleavage, concluding cell death induction due to unrepaired DNA damage [120]. Activated ATM and high γ-H2A.X levels were also found when the acetyltransferase TIP60 (Kat5) was partially knocked out in Eµ-Myc transgenic mice [121]. Interestingly, TIP60 modulates DNA damage pathways and can modify MYC post-translationally, increasing MYC’s protein stability [122].
A decrease in active, phosphorylated CHK1 was found in Eµ-Myc lymphomas lacking functional MIZ-1, indicating an impaired activation of DNA damage response [50]. Other interactors of MYC, such as BRCA1, might be involved in resolving R-loops and, thus, protect from tumorigenesis [123,124]. A functional DNA damage response might be necessary to establish MYC-dependent tumors because apoptosis induction is prevented. However, more experimental evidence might be required to fully understand the connection between MYC, transcriptional stress, and DNA damage repair pathways.
4.4. Why Is Targeting MYC So Effective but Difficult to Realize?
MYC overexpression is related to many hallmarks of cancer, ranging from immunosuppression to metabolic and epigenetic reprogramming [1]. Importantly, MYC-overexpressing cancer cells show an “oncogene addiction” to MYC, which implies that targeted inactivation leads to tumor regression [125]. Selective pressure, however, enforces mechanisms such as post-translational modifications or mutations to sustain high MYC levels, which eventually results in tumor relapse [125]. It appears evident that targeting MYC in cancer cells would reverse all oncogene-induced effects, restore physiological cell state, or induce apoptosis. Even relapse might be circumvented when MYC levels are entirely eradicated. However, all cells need physiological levels of MYC or other members of the MYC family. Here, the factors controlling MYC stability and translocation into the nucleus are the key to finding new pharmacological targets.
The proteasomal degradation of MYC can be initiated, for example, by constant HDAC6 inhibition [44]. A reduction by half was sufficient to induce apoptosis and cell cycle arrest in B-NHL cells but did not result in lymphoma remission in mice [44]. A critical factor for successful therapy is the immunological visibility of the tumor. As MYC-driven cancers suppress the autocrine secretion of factors mediating senescence or immune cell invasion [126,127], combining the insights from targeting MYC at the protein level and activating the immune surveillance could define future therapies. Still, the impact of epigenetic reprogramming in MYC-induced lymphoma is unknown regarding persistent changes in gene expression, even after uncoupling from the oncogene MYC.
Another approach to prevent MYC-induced malignant transformation would be to target essential factors involved in this process. Notably, all 48 critical genes for murine MYC-induced lymphomagenesis are expressed in human lymphoid tissue and most are deregulated in the corresponding tumor (Figure 5A). In addition, some genes are frequently mutated in human B-NHL (Figure 5B), leading to significantly reduced progression-free survival when mutated (Figure 5C). Further research is needed to address how mouse model findings can be used to prevent or treat human disease.
Figure 5.
Critical genes for murine MYC-induced lymphoma play a role in human B-NHL. (A) Gene expression of the critical genes from Figure 2 is shown for normal and malignant human lymphoid tissue using the TNMplot tool [128]. (B) The mutation rate of the critical genes was assessed using cBioPortal [129,130]. A total of 41 out of 48 genes showed mutations in B-NHL. A total of 2117 samples from eight studies were included in the analysis. (C) Progression-free survival analysis of B-NHL patients with mutations (n = 81) or no mutations (n = 91) in the 48 critical genes derived from Eµ-Myc mice is shown. Overall survival was unaltered. Data and visualization are derived from cBioPortal [129,130].
5. Outlook
The mechanisms of how MYC drives malignant transformation are well studied. However, there are still under-investigated areas in MYC-induced lymphomagenesis, such as the role of the three-dimensional chromatin organization or the fatty acid metabolism. Studying the chromatin organization beyond the levels of nucleosomes might further explain the origin of the characteristic MYC translocations found in human B-cell lymphoma [131]. First, chromosome loop anchors are fragile sites for genetic rearrangements in B-cells [132]. Second, removing insulators between strong enhancers and oncogenes might allow the ectopic oncogene expression observed in cancer [133]. Third, the increased frequency of R-loops that occur directly at the MYC locus was also associated with MYC translocations [134].
MYC overexpression in cancer was accompanied by remodeling of the glycerophospholipid metabolism [135,136]. For example, loss of the lipoxygenase ALOX12 dramatically decreased the survival of Eµ-Myc transgenic mice [137]. On the contrary, the loss of one Myc allele extended the lifespan of mice characterized by a healthier lipid metabolism [138]. We recently discovered that MYC-induced lymphomagenesis increased the levels of certain polyunsaturated fatty acids, which was associated with elevated mTORC1 activity and impaired autophagy [30]. It would be interesting to test if interfering with lipid remodeling could prevent MYC-induced lymphomagenesis.
At last, the combination of an established MYC-driven cancer mouse model, such as Eµ-Myc (Table 1), with modern-day technologies, such as spatial single-cell sequencing, might be helpful to resolve intercellular differences in MYC expression tracking the acquisition of secondary mutations in vivo and to clarify the role of MYC in the tumor microenvironment All these efforts will eventually be rewarded with a deeper understanding of MYC-dependent lymphomagenesis, pointing toward future therapies.
Table 1.
List of all mouse models analyzed combined with the Eµ-Myc transgene and their respective survival.
| Name | Gene | Function | Model | Survival | [%] | Ref. |
|---|---|---|---|---|---|---|
| µMT (IgM heavy chain) | Ighm | Receptor | Full KO | * CTRL: 120 d, KO: 80 d |
66.67 | [45] |
| 4E-BP1 | Eif4ebp1 | Translation | Dox-inducible KO | * CTRL: 90 d, KO: 145 d |
161.1 | [139] |
| A1/BFL-1 |
Bcl2a1a | Apoptosis | (a) Full KO (b) Transplantation of tamoxifen-inducible KO cells (c) Constitutive miR-shRNA (KD) |
(a) CTRL: 92 d, KO: 94 d (b) Vehicle: 17 d, Tamoxifen: 23 d (c) CTRL: 103 d, KD: 109 d |
(a) 102.2 (b) 135.3 (c) 105.8 |
[140,141] |
| AID |
Aicda
|
DNA damage and repair | Full KO | (a) no effect (b) CTRL: 112 d, KO: 130 d |
(a) 100 (b) 116.1 |
[140,141] |
| ALOX12 | Alox12 | Metabolism | Full heterozygous KO |
CTRL: 220 d, +/−: 70 d |
31.8 | [137] |
| AMD1 |
Amd1
|
Metabolism | Transplanted shRNA transduced FL cells | * CTRL: 112 d, KO: 70 d |
62.5 | [142] |
| EIF5A | Eif5a | Translation | Transplanted shRNA transduced FL cells | * CTRL: 112 d, KO: 56 d |
50 | [142] |
| AMPKα1 | Prkaa1 | Signaling | Full KO |
CTRL: 10 wks, KO: 7 wks |
70 | [51] |
| APAF1 | Apaf1 | Apoptosis | Transplanted FL cells from Eµ-Myc full KO mice | No effect | 100 | [143] |
| ATF2 | Atf2 | Transcription factor | CD19-cre, B-cell-specific KO | No effect | 100 | [144] |
| ATF4 | Atf4 | Transcription factor | Tamoxifen-inducible | * Vehicle: 40 d, Tamoxifen: 80 d | 200 | [145] |
| ATF7 | Atf7 | Transcription factor | CD19-cre, B-cell-specific KO | WT: 105 d, KO: 135 d |
128.6 | [144] |
| BAD | Bad | Apoptosis | Full KO | CTRL: 138 d, WT: 78 d |
56.5 | [146] |
| BAX | Bax | Apoptosis | Full KO | CTRL: 21.7 wks WT: 12.6 wks |
58.1 | [146] |
| BCL-2 |
Bcl2
|
Apoptosis | (a) Full heterozygous KO (b) Transplanted FL cells from Eµ-Myc full KO mice | (a) CTRL: 116 d, KO: 154 d (b) No effect |
(a) 132.8 (b) 100 |
[147,148] |
| BCL-W | Bcl2l2 | Apoptosis | Full KO | CTRL: 90 d, KO: 298.5 s |
331.7 | [106] |
| BCL-x | Bcl2l1 | Apoptosis | (a) Full heterozygous KO (b) Transplantation of tamoxifen-inducible KO cells |
(a) CTRL: 116 d, KO: 174 d (b) CTRL: 19 d, KO: 25 d |
(a) 150 (b) 131.6 |
[107,148] |
| BIF-1 | Sh3glb1 | Apoptosis | Full KO | CTRL: 107 d, KO: 65 d |
60.7 | [149] |
| BIK | Bik | Apoptosis | Full KO | No effect | 100 | [150] |
| BIM |
Bcl2l11
|
Apoptosis | (a) Full KO (b) Mb1-cre, B-cell-specific KO |
(a) CTRL: 15 wks, KO: 8.2 wk (b) CTRL: 72 d, KO: 113 d |
(a) 54.7 (b) 63.7 |
[109,110] |
| BMF | Bmf | Apoptosis | Full KO | CTRL: 138 d, KO: 87 d |
63 | [151] |
| BMI1 |
Bmi1
|
Epigenetic regulator | (a,b) Full heterozygous KO (c) Transplanted overexpressing FL cells |
(a) * CTRL: 150 d, KO: >300 d (b) * CTRL: 100 d, KO: >250 d (c) CTRL: >300 d, OE: 74 d |
(a) >200 (b) >250 (c) 24.7 |
[152,153,154] |
| BOK | Bok | Apoptosis | Full KO | CTRL: 107 d; KO: 121 d |
113.1 | [155] |
| BTK/TEC |
Btk
Tec |
Signaling | Full heterozygous KO: BTK+/− TEC+/− | CTRL: 100 d, KO: 60 d |
60 | [156] |
| BUB1 | Bub1 | PTM | Overexpression of point mutant (T85) |
CTRL: 21 wks, MUT: 13 wks |
61.9 | [157] |
| CAML | Caml | Signaling | Subcutaneous transplant of tamoxifen-inducible full KO | Vehicle: 7 d, Tamoxifen: >25 d |
>357 | [158] |
| Caspase 9 | Casp9 | Apoptosis | FL transplantation of full KO cells | CTRL: 57 wk; KO: 54 wk |
94.7 | [143] |
| Caspase 2 | Casp2 | Apoptosis | Full KO | CTRL: 16 wks, KO: 8 wks |
50 | [159] |
| CBX7 | Cbx7 | Epigenetic regulator | FL cells with overexpression | CTRL: >300 d, OE: 43 d |
<14.3 | [154] |
| CD19 | Cd19 | Receptor | Full KO | CTRL: 13.4 wks, KO: 24.3 wks |
181.3 | [43] |
| CDK4 | Cdk4 | pRB-axis | Full KO | CTRL: 18 wks, KO: 11 wks |
61.1 | [160] |
| CHK1 | Chek1 | DNA damage and repair | (a) Full heterozygous KO (b) Mb1-cre, B-cell-specific KO |
(a) CTRL: 106 d, KO: 205 d (b) CTRL: 106 d, KO: >350 d |
(a) 193 (b) >330 |
[120] |
| CKS1 | Cks1b | pRB-axis | Full KO | CTRL: 91 d, KO: 268 d |
294.5 | [161] |
| CREBBP | Crebbp | Epigenetic regulator | AID-cre + immunization | * CTRL: 85 d, KO: 55 d |
64.7 | [162] |
| cREL | Rel | Transcription factor | Full KO | CTRL: 115 d, KO: 79 d |
68.7 | [163] |
| CSN6 | Cops6 | PTM | Full heterozygous KO | * CTRL: 100 d, KO: 190 d |
190 | [164] |
| CUL9 | Cul9 | PTM | Full KO | CTRL: 126.4 d, KO: 85.1 d |
67.3 | [165] |
| DDX3X | Ddx3x | Helicase | (a) CD19-cre, B-cell-specific KO (b) Vav-cre, B-cell-specific KO |
(a) ♂: CTRL: 83 d, KO: 105 d; ♀: CTRL: 87 d, KO: 212 d (b) ♂: CTRL: 98 d, KO: >350 d ♀: CTRL: 110.5 d; KO: 83 d |
(a)♂: 126.5; ♀: 243.7 (b)♂: >357.1; ♀: 75.1 |
[62] |
| DICER |
Dicer1 | Splicing | CD19-cre, B-cell-specific KO | WT: 194 d, KO: 351 d |
180.9 | [166] |
| DMP1 | Dmp1 | p53-axis | Full KO | * CTRL: 22 wks, KO: 13 wks |
59.1 | [167] |
| DNMT3B | Dnmt3b | Epigenetic regulator | Full heterozygous KO | * CTRL: 125 d, KO: 75 d |
60 | [168] |
| DPY30 | Dpy30 | Epigenetic regulator | Full heterozygous KO | CTRL: 121 d, KO: 180.5 d |
149.2 | [169] |
| E2F1 | E2f1 | pRB-axis | (a,b) Full KO | (a) * CTRL: 24 wks, KO: 16 wks (b) No effect |
(a) 150 (b) 100 |
[78,170] |
| E2F2 | E2f2 | pRB-axis | Full KO | WT: 126 d, KO: 63 d | 50 | [78] |
| E2F3 | E2f3 | pRB-axis | Full KO | No effect | 100 | [78] |
| E2F4 | E2f4 | pRB-axis | Full KO | CTRL: 110 d, KO: 375 d |
340.9 | [78] |
| E6AP | Ube3a | PTM | Full heterozygous KO | CTRL: 103 d, KO: 153 d |
148.5 | [52] |
| EZH2 | Ezh2 | Epigenetic regulator | (a) GOF mutant (b) Transplanted shRNA transduced FL cells |
(a) CTRL: 137.5 d, MUT: 51 d (b) CTRL: 220 d, KD:55 d |
(a) 37.1 (b) 25 |
[86,153] |
| FNIP1 | Fnip1 | Metabolism | Full KO | * CTRL: 110 d, KO: >300 d | >272.7 | [171] |
| FOXO | Foxo4 | TF | Dominant negative mutant, transplanted transduced FL cells | * CTRL: >250 d, MUT: 50 d |
<20 | [172] |
| GCN2 | Eif2ak4 | Translation | Transplanted tamoxifen-inducible lymphoma cells | No effect | 100 | [145] |
| GCN5 | Kat2a | Epigenetic regulator | CD19-cre, B-cell-specific KO | CTRL: 21 wks, KO: 58.4 wks |
278.1 | [83] |
| H2A.X | H2ax | Epigenetic regulator | Full KO | No effect | 100 | [25] |
| HDAC1 | Hdac1 | Epigenetic regulator | Mb1-cre, B-cell-specific KO | CTRL: 161 d, KO: 170 d |
105.6 | [173] |
| HDAC2 | Hdac2 | Epigenetic regulator | Mb1-cre, B-cell-specific KO | CTRL: 161 d, KO: 164 d |
101.9 | [173] |
| IBTK | Ibtk | Signaling | Full KO | CTRL: 90 d, KO: 150 d |
166.7 | [174] |
| ID2 | Id2 | TF | Full KO | No effect | 100 | [175] |
| IL6R (gp130) | Il6ra | Receptor | FL xenograft with CD19-cre deleted cells | CTRL: 277 d, KO: 20 d |
7.2 | [176] |
| IL7R |
Il7r
|
Receptor | (a) LOF (no activation of survival mechanism) (b) Transplanted cells |
(a) CTRL: 15.5 wks, MUT: 66.5 wks (b) No effect |
(a) 429 (b) 100 |
[177] |
| INK4A/P16 | Cdkn2a | p53-axis | Full heterozygous KO | * CTRL: 150 d, KO: 45 d |
30 | [152] |
| INK4C/P18 | Cdkn2c | p53-axis | Full KO | No effect | 100 | [175] |
| KLRK1 | Klrk1 | Receptor | Full KO | WT: 22 wks, KO: 15 wks |
68.2 | [178] |
| KSR1 | Ksr1 | Signaling | Full KO | CTRL: 95 d, KO: 138 d |
145.3 | [179] |
| L24 | Rpl24 | Translation | Full heterozygous KO | * CTRL: 100 d, KO: 210 d |
210 | [180] |
| L38 | Rpl38 | Epigenetic regulator | Full heterozygous KO | * CTRL: 70 d, KO: 110 d |
157.1 | [180] |
| LGL | Llgl1 | Cytoskeleton | Full KO | No effect | 100 | [181] |
| MAD2 | Mad2l1 | Spindle assembly | Transplanted HSCs with overexpression | * CTRL: >350 d, OE: 60 d |
<17.1 | [182] |
| MAX | Max | TF | Mb1-cre, B-cell-specific KO | CTRL: 97 d, KO: 300 d |
309.3 | [92] |
| MCL1 | Mcl1 | Apoptosis | (a) CD19-cre, B-cell-specific KO (b) Rag1-cre, heterozygous KO (c) Transplanted tamoxifen-inducible lymphoma cells (d) Transgene (H2K promoter) (e) Transgene (VavP promoter) |
(a) CTRL: 91 d, KO: 123 d (b) CTRL: 129 d, KO: 346 d (c) WT: 19 d, KO: 35 d (d) WT: 134 d, OE: 72 d (e) WT: 94 d, OE: 30.5 d |
(a) 135.2 (b) 268.2 (c) 184.2 (d) 53.7 (e) 32.4 |
[107,108,183,184] |
| MDM2 | Mdm2 | p53-axis | (a) Full heterozygous KO (b) Point mutation (LOF) C305F |
(a) CTRL: 20.6 wks, KO: 44.3 wks (b) CTRL: 20.7 wks MUT: 11.6 wks |
(a) 215 (b) 56.0 |
[69,74] |
| MDM4 | Mdm4 | p53-axis | (a) Transgene (b) Full heterozygous KO |
(a) CTRL: 31 wks, OE: 34 wks (b) * CTRL: 350 d, KO: >400 d |
109.7 >114.3 |
[185,186] |
| MDMX | Mdmx | Deleted in mice | Point mutation W201S/W202G | * CTRL: 170 d, MUT: 80 d |
47.1 | [73] |
| MGA | Mga | TF | CD19-cre, B-cell-specific KO | CTRL: 97 d, KO: 87 d |
89.7 | [187] |
| MHCII | H2 | Receptor | Full KO + immunization | No effect | 100 | [162] |
| MIF | Mif | Cytokine | Full KO | CTRL: 2.67 months, KO: 3.67 months |
137.5 | [188] |
| miR146a | Mir146 | microRNA | Full KO | CTRL: 104.5 d, KO: 82.5 d |
78.9 | [189] |
| miR-17-92 |
Mir17hg | microRNA | (a) Transplanted overexpressing FL cells (b) Transplanted tamoxifen-inducible KO cells |
(a) * CTRL: >200 d, OE: 125 d (b) * CTRL: 20 d, KO: 33 d |
<62.5 165 |
[190,191] |
| MIZ-1 | Zbtb17 | TF | Mb1-cre, B-cell-specific KO | * CTRL: 110 d, KO: 350 d |
318.2 | [50] |
| MNT | Mnt | TF | (a) Full heterozygous KO (b) Rag1-cre, KO |
(a) CTRL: 17 wks KO: 28 wks (b) CTRL: 86 d, KO: 463 d |
(a) 538.4 (b) 164.7 |
[192,193] |
| MOZ | Kat6a | Epigenetic regulator | Full heterozygous KO | CTRL: 105 d, KO: 411 d |
391.4 | [84] |
| MPL | Mpl | Receptor | Full KO | CTRL: 87 d, KO: 76.5 |
87.9 | [194] |
| MSH2 | Msh2 | DNA damage and repair | (a) Full KO (b) Mutation (G674A) |
(a) * CTRL: 100 d, KO: 40 d (b) * CTRL: 100 d, MUT: 40 d |
(a) 40 (b) 40 |
[45] |
| MTAP | Mtap | Metabolism | Full heterozygous KO | CTRL: 130 d, KO: 87 d |
66.9 | [195] |
| MTBP | Mtbp | p53-axis | Full heterozygous KO | CTRL: 135 d, KO: 270 d |
200 | [196] |
| MYSM1 | Mysm1 | PTM | Tamoxifen-inducible full KO | * CTRL: >150 d, KO: 80 d |
<53.3 | [197] |
| NFKB1/P105 | Nfkb1 | TF | Full KO | No effect | 100 | [198] |
| NFKB2/P100 | Nfkb2 | TF | Full KO | CTRL: 205 d, KO: 171 d |
83.4 | [199] |
| NOXA | Pmaip1 | Apoptosis | Full KO | No effect |
100 | [111] |
| Nucleostemin | Gnl3 | Signaling | Full heterozygous KO | * CTRL: 100 d, KO: 260 d |
260 | [200] |
| ODC | Odc1 | Metabolism | Full heterozygous KO | CTRL: 110 d, KO: 320 d |
290.9 | [201] |
| OGG1 | Ogg1 | DNA damage and repair | Full KO | No effect | 100 | [202] |
| p19/ARF | Cdkn2a | p53-axis | (a) Full heterozygous KO (b) Full KO (c) Full KO |
(a) * CTRL:135 d, KO: 35 d (b) CTRL: 20.7 wks, KO: 10.1 wks (c) CTRL: 89 d, KO: 73 d |
(a) 25.9 (b) 48.8 (c) 82.0 |
[71,72,74] |
| p27 | Cdkn1b | p53-axis |
Full KO | CTRL: 120 d, KO: 80 d |
66.7 | [203] |
| p38 | Mapk14 | Signaling | Heterozygous mutation (T180A, T182F) | CTRL: 77 d, MUT: 85 |
110.4 | [204] |
| p53 | Trp53 | p53-axis |
(a) Full heterozygous KO (b) Full heterozygous KO (c) Full heterozygous KO (d) Full KO (e) Full heterozygous KO (f) Point mutation LOF (G515C) |
(a) CTRL: 20.6 wks, KO: 5.6 wks (b) * CTRL: 137.5 d, KO: 37.5 d (c) * CTRL: 100 d, KO: 30 d (d) CTRL: 89 d, KO: 40 d (e) CTRL: 138 d, KO: 35 d (f) CTRL: 138 d, MUT: 62 d |
(a) 27.2 (b) 27.3 (c) 30 (d) 44.9 (e) 25.4 (f) 44.9 |
[69,70,71,72,111] |
| P73 | Trp73 | TF | Full KO | No effect | 100 | [205] |
| PARP1 | Parp1 | Apoptosis | Full KO | CTRL: 127 d, KO: 90 d |
70.1 | [206] |
| PARP2 | Parp2 | Apoptosis | Full KO | CTRL: 127 d, KO: 326 d |
257 | [206] |
| PARP14 | Parp14 | Metabolism | Full KO | * CTRL: 13 wks, KO: 20 wks |
153.8 | [207] |
| PCGF6 | Pcgf6 | Epigenetic regulator | CD19-cre, B-cell-specific KO | CTRL: 203 d, KO: 65 d |
32.0 | [187] |
| PFP | Prf1 | Apoptosis | Full KO | CTRL: 135 d, KO: 139 d |
103 | [208] |
| PIN1 | Pin1 | Isomerase | Full KO | CTRL: 108 d, KO: 431 d |
399.1 | [101] |
| PLCβ3 | Plcb3 | Signaling | Full heterozygous KO | * CTRL: >365 d, KO: 100 d |
<27.4 | [209] |
| PLCγ2 | Plcg2 | Signaling | Full KO | * CTRL 20 wks, KO: 10 wks |
50 | [210] |
| PML | Pml | Apoptosis, Signaling | Full heterozygous KO | CTRL: 103 d, KO: 153 d |
149 | [52] |
| PRDM11 | Prdm11 | Epigenetic regulator | Full KO | CTRL: 113 d, KO: 94 d |
83.2 | [211] |
| PRDM15 | Prdm15 | Transcription | Tamoxifen-inducible KO | CTRL: 107 d, KO: 332 d |
310.3 | [212] |
| PREP1 | Pknox1 | TF | Tamoxifen-inducible heterozygous KO | CTRL: 58 wks, KO: 23 wks |
39.7 | [213] |
| PRMT5 | Prmt5 | RNA/Splicing | Tamoxifen-inducible heterozygous KO | * CTRL: 90 d, KO: 175 d |
194.4 | [17] |
| PUMA | Bbc3 | Apoptosis | (a) Full KO (b) Full KO |
(a) CTRL: 100 d, KO: 66 d (b) * CTRL: 15 wks, KO: 11 wks |
(a) 66 (b) 73.3 |
[111,214] |
| RAC1 | Rac1 | Signaling | Transplanted, transduced cells | * CTRL: 18 d, KD: 28 d |
155.6 | [215] |
| RAG1 | Rag1 | DNA damage and repair | Full KO | * CTRL 110 d, KO: 90 d |
81.8 | [141] |
| RAIDD | Cradd | Apoptosis | Full KO | * CTRL: 120 d, KO: 110 |
91.7 | [216] |
| RAP1 | Terf2ip | Signaling | Full KO | * CTRL: 15 wks, KO: 12 wks |
80 | [217] |
| RAPTOR | Rptor | Metabolism | CD2-cre | * CTRL: 18 wks, KO: >55 wks |
>305.6 | [218] |
| pRB | Rb1 | pRB-axis | Full heterozygous KO | * CTRL: 135 d, KO: 125 d |
92.6 | [71] |
| RIPK3 | Ripk3 | Signaling | Full KO | CTRL: 118 d, KO: 97 d |
82.2 | [219] |
| RUNX1 | Runx1 | TF | Mx1-cre + pIpC; heterozygous for p53 | No effect | 100 | [220] |
| SAE2 | Uba2 | PTM | Transplanted, transduced lymphoma cells | * CTRL: 35 d, KD: >100 d |
>285.7 | [221] |
| Scribble | Scrib | Scaffold | Transplanted FL cells | * CTRL: 175 d, KO: 280 d |
160 | [222] |
| Septin 4 | Septin4 | Cytoskeleton | Full KO | * CTRL: 270 d, KO: 100 d |
37.0 | [223] |
| Sirtuin 4 | Sirt4 | Epigenetic regulator | Full KO | CTRL: 195 d, KO: 139 d |
71.3 | [224] |
| SKP2 | Skp2 | PTM | Full KO | CTRL: 100 d, KO: 150 d |
150 | [225] |
| SMARCAL1 | Smarcal1 | Helicase | Full KO | CTRL: 187 d, KO: 224 d |
119.8 | [116] |
| SMYD2 | Smyd2 | Epigenetic regulator | CD19-cre, B-cell-specific KO | * CTRL: 150 d, KO: 175 d |
116.7 | [226] |
| SUV39H1 | Suv39h1 | Epigenetic regulator | Full KO | * CTRL: 125 d, KO: 60 d |
48 | [90] |
| SUZ12 | Suz12 | Epigenetic regulator | Heterozygous LOF mutation | CTRL: 103 d, MUT: 72 d |
69.9 | [153] |
| TCRα | Trac | Receptor | Full KO | No effect | 100 | [45] |
| TCRΔ | Trdc | Receptor | Full KO | No effect | 100 | [45] |
| TEL2 | Etv7 | Deleted in mice | Transplanted, transduced cells (overexpression) | CTRL: >16 wks, OE: 13 wks |
81.3 | [227] |
| TIP60 | Kat5 | Epigenetic regulator | Full heterozygous KO | * CTRL: 52 wks, KO: 12 wks |
23.1 | [121] |
| TIS11B | Zfp36l1 | Transcription | Eµ-Tis11b (overexpression) |
* CTRL: 140 d, OE: 100 d |
71.4 | [228] |
| TRAIL-R | Tnfrsf10b | Apoptosis | Full KO | CTRL: 119 d, KO: 82 d |
68.9 | [229] |
| Tristetraprolin | Zfp36 | Transcription | Eµ-TTP (overexpression) |
(a) CTRL: 103.5 d, OE: 194 d (b) CTRL: 121 d, OE: 277 d |
(a) 187.4 (b) 228.9 |
[228] |
| UCH-L1 | Uchl1 | Ubiquitin system | (a) Transgene (b) Full KO |
(a) * CTRL: >60 wks, TG: 45 wks (b) * CTRL: >60 wks, KO: >60 wks |
(a) <75 (b) 100 |
[230] |
| UNG1 | Ung | Repair | Full KO | * CTRL: 110 d, KO: 85 d |
77.3 | [202] |
| UTX | Kdm6a | Epigenetic regulator | CD19-cre, B-cell-specific KO | * ♂: CTRL: 145 d, KO: 120 d; ♀: CTRL: >200 d, KO: 70 d |
♂: 82.8 ♀: <35 |
[231] |
| WIP1 | Ppm1d | Signaling | Full KO | CTRL: 77 d, KO: 138 d |
179.2 | [204] |
| WRN | Wrn | Helicase | Mutation in helicase domain | CTRL: 115 d, KO: 151 d |
131.3 | [232] |
| XPO1 | Xpo1 | Nuclear export | Point mutation (E571K), tamoxifen-inducible | CTRL: 35 d, KO: 28 d |
80 | [233] |
| ZMAT3 | Zmat3 | Transcription | Full KO | CTRL: 125 d, KO: 93 d |
74.4 | [234] |
| ZRANB3 | Zranb3 | Helicase | Full KO | CTRL: 104 d, KO: 138 d |
132.7 | [116] |
Relative survival was calculated based on the control (CTRL) cohort. A symbol (*) designates estimated median survival based on the presented survival curve.
Author Contributions
Writing—original draft preparation, R.W. and C.K.; writing—review and editing, R.W., E.-M.P. and C.K.; visualization, R.W.; supervision, C.K.; funding acquisition, R.W., E.-M.P. and C.K. All authors have read and agreed to the published version of the manuscript.
Conflicts of Interest
The authors declare no conflict of interest.
Funding Statement
This research was funded by the Carl Zeiss Foundation (to R.W.), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), GRK 1715/grant number 177710919 (to C.K.) and by a Landesgraduiertenstipendium, Friedrich Schiller University Jena (to E.-M.P.).
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
References
- 1.Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12:31–46. doi: 10.1158/2159-8290.CD-21-1059. [DOI] [PubMed] [Google Scholar]
- 2.Dang C.V. MYC on the Path to Cancer. Cell. 2012;149:22–35. doi: 10.1016/j.cell.2012.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Lin P., Medeiros L.J. The Impact of MYC Rearrangements and “Double Hit” Abnormalities in Diffuse Large B-Cell Lymphoma. Curr. Hematol. Malig. Rep. 2013;8:243–252. doi: 10.1007/s11899-013-0169-y. [DOI] [PubMed] [Google Scholar]
- 4.Chaudhary S., Brown N., Song J.Y., Yang L., Skrabek P., Nasr M.R., Wong J.T., Bedell V., Murata-Collins J., Kochan L., et al. Relative Frequency and Clinicopathologic Characteristics of MYC-Rearranged Follicular Lymphoma. Hum. Pathol. 2021;114:19–27. doi: 10.1016/j.humpath.2021.04.014. [DOI] [PubMed] [Google Scholar]
- 5.Molyneux E.M., Rochford R., Griffin B., Newton R., Jackson G., Menon G., Harrison C.J., Israels T., Bailey S. Burkitt’s Lymphoma. Lancet. 2012;379:1234–1244. doi: 10.1016/S0140-6736(11)61177-X. [DOI] [PubMed] [Google Scholar]
- 6.Ross J., Miron C.E., Plescia J., Laplante P., McBride K., Moitessier N., Möröy T. Targeting MYC: From Understanding Its Biology to Drug Discovery. Eur. J. Med. Chem. 2021;213:113137. doi: 10.1016/j.ejmech.2020.113137. [DOI] [PubMed] [Google Scholar]
- 7.Baudino T.A., Cleveland J.L. The Max Network Gone Mad. Mol. Cell Biol. 2001;21:691–702. doi: 10.1128/MCB.21.3.691-702.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Poole C.J., van Riggelen J. MYC—Master Regulator of the Cancer Epigenome and Transcriptome. Genes. 2017;8:142. doi: 10.3390/genes8050142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Dang C.V., Lee W.M. Identification of the Human C-Myc Protein Nuclear Translocation Signal. Mol. Cell Biol. 1988;8:4048–4054. doi: 10.1128/mcb.8.10.4048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Zeller K.I., Zhao X., Lee C.W.H., Chiu K.P., Yao F., Yustein J.T., Ooi H.S., Orlov Y.L., Shahab A., Yong H.C., et al. Global Mapping of C-Myc Binding Sites and Target Gene Networks in Human B Cells. Proc. Natl. Acad. Sci. USA. 2006;103:17834–17839. doi: 10.1073/pnas.0604129103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Li Z., Van Calcar S., Qu C., Cavenee W.K., Zhang M.Q., Ren B. A Global Transcriptional Regulatory Role for C-Myc in Burkitt’s Lymphoma Cells. Proc. Natl. Acad. Sci. USA. 2003;100:8164–8169. doi: 10.1073/pnas.1332764100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Sabò A., Kress T.R., Pelizzola M., De Pretis S., Gorski M.M., Tesi A., Morelli M.J., Bora P., Doni M., Verrecchia A., et al. Selective Transcriptional Regulation by Myc in Cellular Growth Control and Lymphomagenesis. Nature. 2014;511:488–492. doi: 10.1038/nature13537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Dominguez-Sola D., Victora G.D., Ying C.Y., Phan R.T., Saito M., Nussenzweig M.C., Dalla-Favera R. The Proto-Oncogene MYC Is Required for Selection in the Germinal Center and Cyclic Reentry. Nat. Immunol. 2012;13:1083–1091. doi: 10.1038/ni.2428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Calado D.P., Sasaki Y., Godinho S.A., Pellerin A., Köchert K., Sleckman B.P., De Alborán I.M., Janz M., Rodig S., Rajewsky K. The Cell-Cycle Regulator c-Myc Is Essential for the Formation and Maintenance of Germinal Centers. Nat. Immunol. 2012;13:1092–1100. doi: 10.1038/ni.2418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Toboso-Navasa A., Gunawan A., Morlino G., Nakagawa R., Taddei A., Damry D., Patel Y., Chakravarty P., Janz M., Kassiotis G., et al. Restriction of Memory b Cell Differentiation at the Germinal Center b Cell Positive Selection Stage. J. Exp. Med. 2020;217:e20191933. doi: 10.1084/jem.20191933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Lin C.Y., Lovén J., Rahl P.B., Paranal R.M., Burge C.B., Bradner J.E., Lee T.I., Young R.A. Transcriptional Amplification in Tumor Cells with Elevated C-Myc. Cell. 2012;151:56–67. doi: 10.1016/j.cell.2012.08.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Koh C.M., Bezzi M., Low D.H.P., Ang W.X., Teo S.X., Gay F.P.H., Al-Haddawi M., Tan S.Y., Osato M., Sabò A., et al. MYC Regulates the Core Pre-MRNA Splicing Machinery as an Essential Step in Lymphomagenesis. Nature. 2015;523:96–100. doi: 10.1038/nature14351. [DOI] [PubMed] [Google Scholar]
- 18.Iritani B.M., Eisenman R.N. C-Myc Enhances Protein Synthesis and Cell Size during B Lymphocyte Development. Proc. Natl. Acad. Sci. USA. 1999;96:13180–13185. doi: 10.1073/pnas.96.23.13180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kieffer-Kwon K.R., Nimura K., Rao S.S.P., Xu J., Jung S., Pekowska A., Dose M., Stevens E., Mathe E., Dong P., et al. Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation. Mol. Cell. 2017;67:566–578.e10. doi: 10.1016/j.molcel.2017.07.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Adhikary S., Eilers M. Transcriptional Regulation and Transformation by Myc Proteins. Nat. Rev. Mol. Cell Biol. 2005;6:635–645. doi: 10.1038/nrm1703. [DOI] [PubMed] [Google Scholar]
- 21.Lourenco C., Resetca D., Redel C., Lin P., MacDonald A.S., Ciaccio R., Kenney T.M.G., Wei Y., Andrews D.W., Sunnerhagen M., et al. MYC Protein Interactors in Gene Transcription and Cancer. Nat. Rev. Cancer. 2021;21:579–591. doi: 10.1038/s41568-021-00367-9. [DOI] [PubMed] [Google Scholar]
- 22.Rickert R.C. New Insights into Pre-BCR and BCR Signalling with Relevance to B Cell Malignancies. Nat. Rev. Immunol. 2013;13:578–591. doi: 10.1038/nri3487. [DOI] [PubMed] [Google Scholar]
- 23.Adams J.M., Harris A.W., Pinkert C.A., Corcoran L.M., Alexander W.S., Cory S., Palmiter R.D., Brinster R.L. The C-Myc Oncogene Driven by Immunoglobulin Enhancers Induces Lymphoid Malignancy in Transgenic Mice. Nature. 1985;318:533–538. doi: 10.1038/318533a0. [DOI] [PubMed] [Google Scholar]
- 24.Lefebure M., Tothill R.W., Kruse E., Hawkins E.D., Shortt J., Matthews G.M., Gregory G.P., Martin B.P., Kelly M.J., Todorovski I., et al. Genomic Characterisation of Eμ-Myc Mouse Lymphomas Identifies Bcor as a Myc Co-Operative Tumour-Suppressor Gene. Nat. Commun. 2017;8:14581. doi: 10.1038/ncomms14581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Fusello A., Horowitz J., Yang-Iott K., Brady B.L., Yin B., Rowh M.A.W., Rappaport E., Bassing C.H. Histone H2AX Suppresses Translocations in Lymphomas of Eμ-c-Myc Transgenic Mice That Contain a Germline Amplicon of Tumor-Promoting Genes. Cell Cycle. 2013;12:2867–2875. doi: 10.4161/cc.25922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Eick D., Bornkamm G.W. Expression of Normal and Translocated C-Myc Alleles in Burkitt’s Lymphoma Cells: Evidence for Different Regulation. EMBO J. 1989;8:1965–1972. doi: 10.1002/j.1460-2075.1989.tb03602.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Bemark M., Neuberger M.S. The C-MYC Allele That Is Translocated into the IgH Locus Undergoes Constitutive Hypermutation in a Burkitt’s Lymphoma Line. Oncogene. 2000;19:3404–3410. doi: 10.1038/sj.onc.1203686. [DOI] [PubMed] [Google Scholar]
- 28.Sidman C.L., Denial T.M., Marshall J.D., Roths J.B. Multiple Mechanisms of Tumorigenesis in Eµ-Myc Transgenic Mice. Cancer Res. 1993;53:1665–1669. [PubMed] [Google Scholar]
- 29.Joshi G., Eberhardt A.O., Lange L., Winkler R., Hoffmann S., Kosan C., Bierhoff H. Dichotomous Impact of Myc on Rrna Gene Activation and Silencing in b Cell Lymphomagenesis. Cancers. 2020;12:3009. doi: 10.3390/cancers12103009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Thürmer M., Gollowitzer A., Pein H., Neukirch K., Gelmez E., Waltl L., Wielsch N., Winkler R., Löser K., Grander J., et al. PI(18:1/18:1) Is a SCD1-Derived Lipokine That Limits Stress Signaling. Nat. Commun. 2022;13:2982. doi: 10.1038/s41467-022-30374-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Wiese K.E., Haikala H.M., von Eyss B., Wolf E., Esnault C., Rosenwald A., Treisman R., Klefström J., Eilers M. Repression of SRF Target Genes Is Critical for Myc-Dependent Apoptosis of Epithelial Cells. EMBO J. 2015;34:1554–1571. doi: 10.15252/embj.201490467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Sauvé S., Naud J.F., Lavigne P. The Mechanism of Discrimination between Cognate and Non-Specific DNA by Dimeric b/HLH/LZ Transcription Factors. J. Mol. Biol. 2007;365:1163–1175. doi: 10.1016/j.jmb.2006.10.044. [DOI] [PubMed] [Google Scholar]
- 33.Ji H., Wu G., Zhan X., Nolan A., Koh C., de Marzo A., Doan H.M., Fan J., Cheadle C., Fallahi M., et al. Cell-Type Independent MYC Target Genes Reveal a Primordial Signature Involved in Biomass Accumulation. PLoS ONE. 2011;6:e26057. doi: 10.1371/journal.pone.0026057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Knudson A.G. Mutation and Cancer: Statistical Study of Retinoblastoma. Proc. Natl. Acad. Sci. USA. 1971;68:820–823. doi: 10.1073/pnas.68.4.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Eischen C.M., Weber J.D., Roussel M.F., Sherr C.J., Cleveland J.L. Disruption of the ARF-Mdm2-P53 Tumor Suppressor Pathway in Myc-Induced Lymphomagenesis. Genes Dev. 1999;13:2658–2669. doi: 10.1101/gad.13.20.2658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Schuster C., Berger A., Hoelzl M.A., Putz E.M., Frenzel A., Simma O., Moritz N., Hoelbl A., Kovacic B., Freissmuth M., et al. The Cooperating Mutation or “Second Hit” Determines the Immunologic Visibility toward MYC-Induced Murine Lymphomas. Blood. 2011;118:4635–4645. doi: 10.1182/blood-2010-10-313098. [DOI] [PubMed] [Google Scholar]
- 37.Vallespinós M., Fernández D., Rodríguez L., Alvaro-Blanco J., Baena E., Ortiz M., Dukovska D., Martínez D., Rojas A., Campanero M.R., et al. B Lymphocyte Commitment Program Is Driven by the Proto-Oncogene c-Myc. J. Immunol. 2011;186:6726–6736. doi: 10.4049/jimmunol.1002753. [DOI] [PubMed] [Google Scholar]
- 38.Croxford J.L., Li M., Tang F., Pan M.F., Huang C.W., Kamran N., Meow C., Phua L., Chng W.J., Ng S.B., et al. ATM-Dependent Spontaneous Regression of Early Em—Myc—Induced Murine B-Cell Leukemia Depends on Natural Killer and T Cells. Blood. 2013;121:2512–2521. doi: 10.1182/blood-2012-08-449025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Granato A., Hayashi E.A., Baptista B.J.A., Bellio M., Nobrega A. IL-4 Regulates Bim Expression and Promotes B Cell Maturation in Synergy with BAFF Conferring Resistance to Cell Death at Negative Selection Checkpoints. J. Immunol. 2014;192:5761–5775. doi: 10.4049/jimmunol.1300749. [DOI] [PubMed] [Google Scholar]
- 40.Ouk C., Roland L., Gachard N., Poulain S., Oblet C., Rizzo D., Saintamand A., Lemasson Q., Carrion C., Thomas M., et al. Continuous MYD88 Activation Is Associated with Expansion and Then Transformation of IgM Differentiating Plasma Cells. Front. Immunol. 2021;12:641692. doi: 10.3389/fimmu.2021.641692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Piskor E.M., Winkler R., Kosan C. Analyzing Lymphoma Development and Progression Using HDACi in Mouse Models. Methods Mol. Biol. 2023;2589:3–15. doi: 10.1007/978-1-0716-2788-4_1. [DOI] [PubMed] [Google Scholar]
- 42.Hunter J.E., Butterworth J., Perkins N.D., Bateson M., Richardson C.A. Using Body Temperature, Food and Water Consumption as Biomarkers of Disease Progression in Mice with Eμ-Myc Lymphoma. Br. J. Cancer. 2014;110:928–934. doi: 10.1038/bjc.2013.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Poe J.C., Minard-Colin V., Kountikov E.I., Haas K.M., Tedder T.F. A C-Myc and Surface CD19 Signaling Amplification Loop Promotes B Cell Lymphoma Development and Progression in Mice. J. Immunol. 2012;189:2318–2325. doi: 10.4049/jimmunol.1201000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Winkler R., Mägdefrau A.S., Piskor E.M., Kleemann M., Beyer M., Linke K., Hansen L., Schaffer A.M., Hoffmann M.E., Poepsel S., et al. Targeting the MYC Interaction Network in B-Cell Lymphoma via Histone Deacetylase 6 Inhibition. Oncogene. 2022;41:4560–4572. doi: 10.1038/s41388-022-02450-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Nepal R.M., Tong L., Kolaj B., Edelmann W., Martin A. Msh2-Dependent DNA Repair Mitigates a Unique Susceptibility of B Cell Progenitors to c-Myc-Induced Lymphomas. Proc. Natl. Acad. Sci. USA. 2009;106:18698–18703. doi: 10.1073/pnas.0905965106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Hilmenyuk T., Ruckstuhl C.A., Hayoz M., Berchtold C., Nuoffer J.M., Solanki S., Keun H.C., Beavis P.A., Riether C., Ochsenbein A.F. T Cell Inhibitory Mechanisms in a Model of Aggressive Non-Hodgkin’s Lymphoma. Oncoimmunology. 2018;7:e1365997. doi: 10.1080/2162402X.2017.1365997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Davila M.L., Kloss C.C., Gunset G., Sadelain M. CD19 CAR-Targeted T Cells Induce Long-Term Remission and B Cell Aplasia in an Immunocompetent Mouse Model of B Cell Acute Lymphoblastic Leukemia. PLoS ONE. 2013;8:e61338. doi: 10.1371/journal.pone.0061338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Mattarollo S.R., West A.C., Steegh K., Duret H., Paget C., Martin B., Matthews G.M., Shortt J., Chesi M., Bergsagel P.L., et al. NKT Cell Adjuvant-Based Tumor Vaccine for Treatment of Myc Oncogene-Driven Mouse B-Cell Lymphoma. Blood. 2012;120:3019–3029. doi: 10.1182/blood-2012-04-426643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Kobayashi T., Doff B.L., Rearden R.C., Leggatt G.R., Mattarollo S.R. NKT Cell-Targeted Vaccination plus Anti-4–1BB Antibody Generates Persistent CD8 T Cell Immunity against B Cell Lymphoma. Oncoimmunology. 2015;4:e990793. doi: 10.4161/2162402X.2014.990793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Ross J., Rashkovan M., Fraszczak J., Joly-Beauparlant C., Vadnais C., Winkler R., Droit A., Kosan C., Moroy T. Deletion of the MIZ-1 POZ Domain Increases Efficacy of Cytarabine Treatment in T- And B-ALL/Lymphoma Mouse Models. Cancer Res. 2019;79:4184–4195. doi: 10.1158/0008-5472.CAN-18-3038. [DOI] [PubMed] [Google Scholar]
- 51.Faubert B., Boily G., Izreig S., Griss T., Samborska B., Dong Z., Dupuy F., Chambers C., Fuerth B.J., Viollet B., et al. AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth in Vivo. Cell. Metab. 2013;17:113–124. doi: 10.1016/j.cmet.2012.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Wolyniec K., Shortt J., de Stanchina E., Levav-Cohen Y., Alsheich-Bartok O., Louria-Hayon I., Corneille V., Kumar B., Woods S.J., Opat S., et al. E6AP Ubiquitin Ligase Regulates PML-Induced Senescence in Myc-Driven Lymphomagenesis. Blood. 2012;120:822–832. doi: 10.1182/blood-2011-10-387647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Mori S., Rempel R.E., Chang J.T., Yao G., Lagoo A.S., Potti A., Bild A., Nevins J.R. Utilization of Pathway Signatures to Reveal Distinct Types of B Lymphoma in the Eμ-Myc Model and Human Diffuse Large B-Cell Lymphoma. Cancer Res. 2008;68:8525–8534. doi: 10.1158/0008-5472.CAN-08-1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Chapuy B., Stewart C., Dunford A.J., Kim J., Kamburov A., Redd R.A., Lawrence M.S., Roemer M.G.M., Li A.J., Ziepert M., et al. Molecular Subtypes of Diffuse Large B Cell Lymphoma Are Associated with Distinct Pathogenic Mechanisms and Outcomes. Nat. Med. 2018;24:679–690. doi: 10.1038/s41591-018-0016-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Wall M., Poortinga G., Stanley K.L., Lindemann R.K., Bots M., Chan C.J., Bywater M.J., Kinross K.M., Astle M.V., Waldeck K., et al. The MTORC1 Inhibitor Everolimus Prevents and Treats Eμ-Myc Lymphoma by Restoring Oncogene-Induced Senescence. Cancer Discov. 2013;3:82–95. doi: 10.1158/2159-8290.CD-12-0404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Witzig T.E., Reeder C.B., Laplant B.R., Gupta M., Johnston P.B., Micallef I.N., Porrata L.F., Ansell S.M., Colgan J.P., Jacobsen E.D., et al. A Phase II Trial of the Oral MTOR Inhibitor Everolimus in Relapsed Aggressive Lymphoma. Leukemia. 2011;25:341–347. doi: 10.1038/leu.2010.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Hartleben G., Müller C., Krämer A., Schimmel H., Zidek L.M., Dornblut C., Winkler R., Eichwald S., Kortman G., Kosan C., et al. Tuberous Sclerosis Complex Is Required for Tumor Maintenance in MYC-driven Burkitt’s Lymphoma. EMBO J. 2018;37:e98589. doi: 10.15252/embj.201798589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Xu W., Berning P., Erdmann T., Grau M., Bettazová N., Zapukhlyak M., Frontzek F., Kosnopfel C., Lenz P., Grondine M., et al. MTOR Inhibition Amplifies the Anti-Lymphoma Effect of PI3Kβ/δ Blockage in Diffuse Large B-Cell Lymphoma. Leukemia. 2022 doi: 10.1038/s41375-022-01749-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Schleich K., Kase J., Dörr J.R., Trescher S., Bhattacharya A., Yu Y., Wailes E.M., Fan D.N.Y., Lohneis P., Milanovic M., et al. H3K9me3-Mediated Epigenetic Regulation of Senescence in Mice Predicts Outcome of Lymphoma Patients. Nat. Commun. 2020;11:3651. doi: 10.1038/s41467-020-17467-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Rickert R.C., Roes J., Rajewsky K. B Lymphocyte-Specific, Cre-Mediated Mutagenesis in Mice. Nucleic Acids Res. 1997;25:1317–1318. doi: 10.1093/nar/25.6.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Hobeika E., Thiemann S., Storch B., Jumaa H., Nielsen P.J., Pelanda R., Reth M. Testing Gene Function Early in the B Cell Lineage in Mb1-Cre Mice. Proc. Natl. Acad. Sci. USA. 2006;103:13789–13794. doi: 10.1073/pnas.0605944103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Lacroix M., Beauchemin H., Fraszczak J., Ross J., Shooshtarizadeh P., Chen R., Möröy T. The X-Linked Helicase DDX3X Is Required for Lymphoid Differentiation and MYC-Driven Lymphomagenesis. Cancer Res. 2022;82:3172–3186. doi: 10.1158/0008-5472.CAN-21-2454. [DOI] [PubMed] [Google Scholar]
- 63.Crouch E.E., Li Z., Takizawa M., Fichtner-Feigl S., Gourzi P., Montaño C., Feigenbaum L., Wilson P., Janz S., Papavasiliou F.N., et al. Regulation of AID Expression in the Immune Response. J. Exp. Med. 2007;204:1145–1156. doi: 10.1084/jem.20061952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Casola S., Cattoretti G., Uyttersprot N., Koralov S.B., Segal J., Hao Z., Waisman A., Egert A., Ghitza D., Rajewsky K. Tracking Germinal Center B Cells Expressing Germ-Line Immunoglobulin Γ1 Transcripts by Conditional Gene Targeting. Proc. Natl. Acad. Sci. USA. 2006;103:7396–7401. doi: 10.1073/pnas.0602353103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Kraus M., Alimzhanov M.B., Rajewsky N., Rajewsky K. Survival of Resting Mature B Lymphocytes Depends on BCR Signaling via the Igα/β Heterodimer. Cell. 2004;117:787–800. doi: 10.1016/j.cell.2004.05.014. [DOI] [PubMed] [Google Scholar]
- 66.Chen E.Y., Tan C.M., Kou Y., Duan Q., Wang Z., Meirelles G.V., Clark N.R., Ma’ayan A. Enrichr: Interactive and Collaborative HTML5 Gene List Enrichment Analysis Tool. BMC Bioinform. 2013;14:128. doi: 10.1186/1471-2105-14-128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Huang R., Grishagin I., Wang Y., Zhao T., Greene J., Obenauer J.C., Ngan D., Nguyen D.T., Guha R., Jadhav A., et al. The NCATS BioPlanet—An Integrated Platform for Exploring the Universe of Cellular Signaling Pathways for Toxicology, Systems Biology, and Chemical Genomics. Front. Pharm. 2019;10:445. doi: 10.3389/fphar.2019.00445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Supek F., Bošnjak M., Škunca N., Šmuc T. Revigo Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Alt J.R., Greiner T.C., Cleveland J.L., Eischen C.M. Mdm2 Haplo-Insufficiency Profoundly Inhibits Myc-Induced Lymphomagenesis. EMBO J. 2003;22:1442–1450. doi: 10.1093/emboj/cdg133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Post S.M., Quintás-Cardama A., Terzian T., Smith C., Eischen C.M., Lozano G. P53-Dependent Senescence Delays E-Myc-Induced B-Cell Lymphomagenesis. Oncogene. 2010;29:1260–1269. doi: 10.1038/onc.2009.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Schmitt C.A., McCurrach M.E., de Stanchina E., Wallace-Brodeur R.R., Lowe S.W. INK4a/ARF Mutations Accelerate Lymphomagenesis and Promote Chemoresistance by Disabling P53. Genes Dev. 1999;13:2670–2677. doi: 10.1101/gad.13.20.2670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Yetil A., Anchang B., Gouw A.M., Adam S.J., Zabuawala T., Parameswaran R., van Riggelen J., Plevritis S., Felsher D.W. P19ARF Is a Critical Mediator of Both Cellular Senescence and an Innate Immune Response Associated with MYC Inactivation in Mouse Model of Acute Leukemia. Oncotarget. 2015;6:3563–3577. doi: 10.18632/oncotarget.2969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Huang Q., Chen L., Yang L., Xie X., Gan L., Cleveland J.L., Chen J. MDMX Acidic Domain Inhibits P53 DNA Binding in Vivo and Regulates Tumorigenesis. Proc. Natl. Acad. Sci. USA. 2018;115:E3368–E3377. doi: 10.1073/pnas.1719090115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Meng X., Carlson N.R., Dong J., Zhang Y. Oncogenic C-Myc-Induced Lymphomagenesis Is Inhibited Non-Redundantly by the P19Arf-Mdm2-P53 and RP-Mdm2-P53 Pathways. Oncogene. 2015;34:5709–5717. doi: 10.1038/onc.2015.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Donehower L.A., Harvey M., Slagle B.L., McArthur M.J., Montgomery C.A., Butel J.S., Bradley A. Mice Deficient for P53 Are Developmentally Normal but Susceptible to Spontaneous Tumours. Nature. 1992;356:215–221. doi: 10.1038/356215a0. [DOI] [PubMed] [Google Scholar]
- 76.Rowh M.A.W., Demicco A., Horowitz J.E., Yin B., Yang-Iott K.S., Fusello A.M., Hobeika E., Reth M., Bassing C.H. Tp53 Deletion in B Lineage Cells Predisposes Mice to Lymphomas with Oncogenic Translocations. Oncogene. 2011;30:4757–4764. doi: 10.1038/onc.2011.191. [DOI] [PubMed] [Google Scholar]
- 77.Gostissa M., Bianco J.M., Malkin D.J., Kutok J.L., Rodig S.J., Morse H.C., Bassing C.H., Alt F.W. Conditional Inactivation of P53 in Mature B Cells Promotes Generation of Nongerminal Center-Derived B-Cell Lymphomas. Proc. Natl. Acad. Sci. USA. 2013;110:2934–2939. doi: 10.1073/pnas.1222570110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Rempel R.E., Mori S., Gasparetto M., Glozak M.A., Andrechek E.R., Adler S.B., Laakso N.M., Lagoo A.S., Storms R., Smith C., et al. A Role for E2F Activities in Determining the Fate of Myc-Induced Lymphomagenesis. PLoS Genet. 2009;5:e1000640. doi: 10.1371/journal.pgen.1000640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Kent L.N., Leone G. The Broken Cycle: E2F Dysfunction in Cancer. Nat. Rev. Cancer. 2019;19:326–338. doi: 10.1038/s41568-019-0143-7. [DOI] [PubMed] [Google Scholar]
- 80.Bouchard C., Dittrich O., Kiermaier A., Dohmann K., Menkel A., Eilers M., Lüscher B. Regulation of Cyclin D2 Gene Expression by the Myc/Max/Mad Network: Myc-Dependent TRRAP Recruitment and Histone Acetylation at the Cyclin D2 Promoter. Genes Dev. 2001;15:2042–2047. doi: 10.1101/gad.907901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Wang C., Lisanti M.P., Liao D.J. Reviewing Once More the C-Myc and Ras Collaboration: Converging at the Cyclin D1-CDK4 Complex and Challenging Basic Concepts of Cancer Biology. Cell Cycle. 2011;10:57–67. doi: 10.4161/cc.10.1.14449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Lai M.-C., Chang W.-C., Shieh S.-Y., Tarn W.-Y. DDX3 Regulates Cell Growth through Translational Control of Cyclin E1. Mol. Cell Biol. 2010;30:5444–5453. doi: 10.1128/MCB.00560-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Farria A.T., Plummer J.B., Salinger A.P., Shen J., Lin K., Lu Y., McBride K.M., Koutelou E., Dent S.Y.R. Transcriptional Activation of MYC-Induced Genes by GCN5 Promotes B-Cell Lymphomagenesis. Cancer Res. 2020;80:5543–5553. doi: 10.1158/0008-5472.CAN-20-2379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Sheikh B.N., Lee S.C.W., El-Saafin F., Vanyai H.K., Hu Y., Pang S.H.M., Grabow S., Strasser A., Nutt S.L., Alexander W.S., et al. MOZ Regulates B-Cell Progenitors and, Consequently, Moz Haploinsufficiency Dramatically Retards MYC-Induced Lymphoma Development. Blood. 2015;125:1910–1921. doi: 10.1182/blood-2014-08-594655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Baell J.B., Leaver D.J., Hermans S.J., Kelly G.L., Brennan M.S., Downer N.L., Nguyen N., Wichmann J., McRae H.M., Yang Y., et al. Inhibitors of Histone Acetyltransferases KAT6A/B Induce Senescence and Arrest Tumour Growth. Nature. 2018;560:253–257. doi: 10.1038/s41586-018-0387-5. [DOI] [PubMed] [Google Scholar]
- 86.Berg T., Thoene S., Yap D., Wee T., Schoeler N., Rosten P., Lim E., Bilenky M., Mungall A.J., Oellerich T., et al. A Transgenic Mouse Model Demonstrating the Oncogenic Role of Mutations in the Polycomb-Group Gene EZH2 in Lymphomagenesis. Blood. 2014;123:3914–3924. doi: 10.1182/blood-2012-12-473439. [DOI] [PubMed] [Google Scholar]
- 87.Schmitz R., Wright G.W., Huang D.W., Johnson C.A., Phelan J.D., Wang J.Q., Roulland S., Kasbekar M., Young R.M., Shaffer A.L., et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2018;378:1396–1407. doi: 10.1056/NEJMoa1801445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Vandel L., Nicolas E., Vaute O., Ferreira R., Ait-Si-Ali S., Trouche D. Transcriptional Repression by the Retinoblastoma Protein through the Recruitment of a Histone Methyltransferase. Mol. Cell Biol. 2001;21:6484–6494. doi: 10.1128/MCB.21.19.6484-6494.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Nielsen S.J., Schneider R., Bauer U.M., Bannister A.J., Morrison A., O’Carroll D., Firestein R., Cleary M., Jenuwein T., Herrera R.E., et al. Rb Targets Histone H3 Methylation and HP1 to Promoters. Nature. 2001;412:561–565. doi: 10.1038/35087620. [DOI] [PubMed] [Google Scholar]
- 90.Reimann M., Lee S., Loddenkemper C., Dörr J.R., Tabor V., Aichele P., Stein H., Dörken B., Jenuwein T., Schmitt C.A. Tumor Stroma-Derived TGF-β Limits Myc-Driven Lymphomagenesis via Suv39h1-Dependent Senescence. Cancer Cell. 2010;17:262–272. doi: 10.1016/j.ccr.2009.12.043. [DOI] [PubMed] [Google Scholar]
- 91.Fernández-serrano M., Winkler R., Santos J.C., le Pannérer M.M., Buschbeck M., Roué G. Histone Modifications and Their Targeting in Lymphoid Malignancies. Int. J. Mol. Sci. 2022;23:253. doi: 10.3390/ijms23010253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Mathsyaraja H., Freie B., Cheng P.F., Babaeva E., Catchpole J.T., Janssens D., Henikoff S., Eisenman R.N. Max Deletion Destabilizes MYC Protein and Abrogates Eµ-Myc Lymphomagenesis. Genes Dev. 2019;33:1252–1264. doi: 10.1101/gad.325878.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Prochownik E.V., Vogt P.K. Therapeutic Targeting of Myc. Genes Cancer. 2010;1:650–659. doi: 10.1177/1947601910377494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Holmes A.G., Parker J.B., Sagar V., Truica M.I., Soni P.N., Han H., Schiltz G.E., Abdulkadir S.A., Chakravarti D. A MYC Inhibitor Selectively Alters the MYC and MAX Cistromes and Modulates the Epigenomic Landscape to Regulate Target Gene Expression. Sci. Adv. 2022;8:eabh3635. doi: 10.1126/sciadv.abh3635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Castell A., Yan Q., Fawkner K., Bazzar W., Zhang F., Wickström M., Alzrigat M., Franco M., Krona C., Cameron D.P., et al. MYCMI-7: A Small MYC-Binding Compound That Inhibits MYC: MAX Interaction and Tumor Growth in a MYC-Dependent Manner. Cancer Res. Commun. 2022;2:182–201. doi: 10.1158/2767-9764.CRC-21-0019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Salghetti S.E., Kim S.Y., Tansey W.P. Destruction of Myc by Ubiquitin-Mediated Proteolysis: Cancer-Associated and Transforming Mutations Stabilize Myc. EMBO J. 1999;18:717–726. doi: 10.1093/emboj/18.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Sears R., Leone G., DeGregori J., Nevins J.R. Ras Enhances Myc Protein Stability. Mol. Cell. 1999;3:169–179. doi: 10.1016/S1097-2765(00)80308-1. [DOI] [PubMed] [Google Scholar]
- 98.Gregory M.A., Hann S.R. C-Myc Proteolysis by the Ubiquitin-Proteasome Pathway: Stabilization of c-Myc in Burkitt’s Lymphoma Cells. Mol Cell Biol. 2000;20:2423–2435. doi: 10.1128/MCB.20.7.2423-2435.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Sears R., Nuckolls F., Haura E., Taya Y., Tamai K., Nevins J.R. Multiple Ras-Dependent Phosphorylation Pathways Regulate Myc Protein Stability. Genes Dev. 2000;14:2501–2514. doi: 10.1101/gad.836800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Cohn G.M., Liefwalker D.F., Langer E.M., Sears R.C. PIN1 Provides Dynamic Control of MYC in Response to Extrinsic Signals. Front. Cell Dev. Biol. 2020;8:224. doi: 10.3389/fcell.2020.00224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.D’Artista L., Bisso A., Piontini A., Doni M., Verrecchia A., Kress T.R., Morelli M.J., del Sal G., Amati B., Campaner S. Pin1 Is Required for Sustained B Cell Proliferation upon Oncogenic Activation of Myc. Oncotarget. 2016;7:21786–21798. doi: 10.18632/oncotarget.7846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021;49:D605–D612. doi: 10.1093/nar/gkaa1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Alexandrova N., Niklinski J., Bliskovsky V., Otterson G.A., Blake M., Kaye F.J., Zajac-Kaye M. The N-Terminal Domain of c-Myc Associates with Alpha-Tubulin and Microtubules in Vivo and in Vitro. Mol. Cell Biol. 1995;15:5188–5195. doi: 10.1128/MCB.15.9.5188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Matsuyama A., Shimazu T., Sumida Y., Saito A., Yoshimatsu Y., Seigneurin-Berny D., Osada H., Komatsu Y., Nishino N., Khochbin S., et al. In Vivo Destabilization of Dynamic Microtubules by HDAC6-Mediated Deacetylation. EMBO J. 2002;21:6820–6831. doi: 10.1093/emboj/cdf682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Miyake Y., Keusch J.J., Wang L., Saito M., Hess D., Wang X., Melancon B.J., Helquist P., Gut H., Matthias P. Structural Insights into HDAC6 Tubulin Deacetylation and Its Selective Inhibition. Nat. Chem. Biol. 2016;12:748–754. doi: 10.1038/nchembio.2140. [DOI] [PubMed] [Google Scholar]
- 106.Adams C.M., Kim A.S., Mitra R., Choi J.K., Gong J.Z., Eischen C.M. BCL-W Has a Fundamental Role in B Cell Survival and Lymphomagenesis. J. Clin. Investig. 2017;127:635–650. doi: 10.1172/JCI89486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Kelly G.L., Grabow S., Glaser S.P., Fitzsimmons L., Aubrey B.J., Okamoto T., Valente L.J., Robati M., Tai L., Douglas Fairlie W., et al. Targeting of MCL-1 Kills MYC-Driven Mouse and Human Lymphomas Even When They Bear Mutations in P53. Genes Dev. 2014;28:58–70. doi: 10.1101/gad.232009.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Grabow S., Kelly G.L., Delbridge A.R.D., Kelly P.N., Bouillet P., Adams J.M., Strasser A. Critical B-Lymphoid Cell Intrinsic Role of Endogenous MCL-1 in c-MYC-Induced Lymphomagenesis. Cell Death Dis. 2016;7:e2132. doi: 10.1038/cddis.2016.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Egle A., Harris A.W., Bouillet P., Cory S. Bim Is a Suppressor of Myc-Induced Mouse B Cell Leukemia. Proc. Natl. Acad. Sci. USA. 2004;101:6164–6169. doi: 10.1073/pnas.0401471101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Liu R., King A., Bouillet P., Tarlinton D.M., Strasser A., Heierhorst J. Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner. Front. Immunol. 2018;8:592. doi: 10.3389/fimmu.2018.00592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Michalak E.M., Jansen E.S., Happo L., Cragg M.S., Tai L., Smyth G.K., Strasser A., Adams J.M., Scott C.L. Puma and to a Lesser Extent Noxa Are Suppressors of Myc-Induced Lymphomagenesis. Cell Death Differ. 2009;16:684–696. doi: 10.1038/cdd.2008.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Patel J.H., McMahon S.B. Targeting of Miz-1 Is Essential for Myc-Mediated Apoptosis. J. Biol. Chem. 2006;281:3283–3289. doi: 10.1074/jbc.M513038200. [DOI] [PubMed] [Google Scholar]
- 113.Patel J.H., McMahon S.B. BCL2 Is a Downstream Effector of MIZ-1 Essential for Blocking c-MYC-Induced Apoptosis. J. Biol. Chem. 2007;282:5–13. doi: 10.1074/jbc.M609138200. [DOI] [PubMed] [Google Scholar]
- 114.Baluapuri A., Wolf E., Eilers M. Target Gene-Independent Functions of MYC Oncoproteins. Nat. Rev. Mol. Cell Biol. 2020;21:255–267. doi: 10.1038/s41580-020-0215-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Murga M., Campaner S., Lopez-Contreras A.J., Toledo L.I., Soria R., Montaña M.F., D’Artista L., Schleker T., Guerra C., Garcia E., et al. Exploiting Oncogene-Induced Replicative Stress for the Selective Killing of Myc-Driven Tumors. Nat. Struct. Mol. Biol. 2011;18:1331–1335. doi: 10.1038/nsmb.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Puccetti M.V., Adams C.M., Kushinsky S., Eischen C.M. SMARCAL1 and ZrAnB3 Protect Replication Forks from MYC-Induced DNA Replication Stress. Cancer Res. 2019;79:1612–1623. doi: 10.1158/0008-5472.CAN-18-2705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Hamperl S., Cimprich K.A. Conflict Resolution in the Genome: How Transcription and Replication Make It Work. Cell. 2016;167:1455–1467. doi: 10.1016/j.cell.2016.09.053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Sollier J., Cimprich K.A. Breaking Bad: R-Loops and Genome Integrity. Trends Cell Biol. 2015;25:514–522. doi: 10.1016/j.tcb.2015.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Hamperl S., Bocek M.J., Saldivar J.C., Swigut T., Cimprich K.A. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell. 2017;170:774–786.e19. doi: 10.1016/j.cell.2017.07.043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Schuler F., Weiss J.G., Lindner S.E., Lohmüller M., Herzog S., Spiegl S.F., Menke P., Geley S., Labi V., Villunger A. Checkpoint Kinase 1 Is Essential for Normal B Cell Development and Lymphomagenesis. Nat. Commun. 2017;8:1697. doi: 10.1038/s41467-017-01850-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Gorrini C., Squatrito M., Luise C., Syed N., Perna D., Wark L., Martinato F., Sardella D., Verrecchia A., Bennett S., et al. Tip60 Is a Haplo-Insufficient Tumour Suppressor Required for an Oncogene-Induced DNA Damage Response. Nature. 2007;448:1063–1067. doi: 10.1038/nature06055. [DOI] [PubMed] [Google Scholar]
- 122.Patel J.H., Du Y., Ard P.G., Phillips C., Carella B., Chen C.-J., Rakowski C., Chatterjee C., Lieberman P.M., Lane W.S., et al. The C-MYC Oncoprotein Is a Substrate of the Acetyltransferases HGCN5/PCAF and TIP60. Mol. Cell Biol. 2004;24:10826–10834. doi: 10.1128/MCB.24.24.10826-10834.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Wang Q., Zhang H., Kajino K., Greene M.I. BRCA1 Binds C-Myc and Inhibits Its Transcriptional and Transforming Activity in Cells. Oncogene. 1998;17:1939–1948. doi: 10.1038/sj.onc.1202403. [DOI] [PubMed] [Google Scholar]
- 124.Herold S., Kalb J., Büchel G., Ade C.P., Baluapuri A., Xu J., Koster J., Solvie D., Carstensen A., Klotz C., et al. Recruitment of BRCA1 Limits MYCN-Driven Accumulation of Stalled RNA Polymerase. Nature. 2019;567:545–549. doi: 10.1038/s41586-019-1030-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Choi P.S., Van Riggelen J., Gentles A.J., Bachireddy P., Rakhra K., Adam S.J., Plevritis S.K., Felsher D.W. Lymphomas That Recur after MYC Suppression Continue to Exhibit Oncogene Addiction. Proc. Natl. Acad. Sci. USA. 2011;108:17432–17437. doi: 10.1073/pnas.1107303108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Van Riggelen J., Müller J., Otto T., Beuger V., Yetil A., Choi P.S., Kosan C., Möröy T., Felsher D.W., Eilers M. The Interaction between Myc and Miz1 Is Required to Antagonize TGFβ-Dependent Autocrine Signaling during Lymphoma Formation and Maintenance. Genes Dev. 2010;24:1281–1294. doi: 10.1101/gad.585710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Muthalagu N., Monteverde T., Raffo-Iraolagoitia X., Wiesheu R., Whyte D., Hedley A., Laing S., Kruspig B., Upstill-Goddard R., Shaw R., et al. Repression of the Type i Interferon Pathway Underlies MYC-and KRAS-Dependent Evasion of NK and B Cells in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2020;10:872–887. doi: 10.1158/2159-8290.CD-19-0620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Bartha Á., Győrffy B. TNMplot.Com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. Int. J. Mol. Sci. 2021;22:2622. doi: 10.3390/ijms22052622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Gao J., Aksoy B.A., Dogrusoz U., Dresdner G., Gross B., Sumer S.O., Sun Y., Jacobsen A., Sinha R., Larsson E., et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the CBioPortal. Sci. Signal. 2013;6 doi: 10.1126/scisignal.2004088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Cerami E., Gao J., Dogrusoz U., Gross B.E., Sumer S.O., Aksoy B.A., Jacobsen A., Byrne C.J., Heuer M.L., Larsson E., et al. The CBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2:401–404. doi: 10.1158/2159-8290.CD-12-0095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Rivas M.A., Melnick A.M. Role of Chromosomal Architecture in Germinal Center B Cells and Lymphomagenesis. Curr. Opin. Hematol. 2019;26:294–302. doi: 10.1097/MOH.0000000000000505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Canela A., Maman Y., Jung S., Wong N., Callen E., Day A., Kieffer-Kwon K.R., Pekowska A., Zhang H., Rao S.S.P., et al. Genome Organization Drives Chromosome Fragility. Cell. 2017;170:507–521.e18. doi: 10.1016/j.cell.2017.06.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Hnisz D., Weintrau A.S., Day D.S., Valton A.L., Bak R.O., Li C.H., Goldmann J., Lajoie B.R., Fan Z.P., Sigova A.A., et al. Activation of Proto-Oncogenes by Disruption of Chromosome Neighborhoods. Science (1979) 2016;351:1454–1458. doi: 10.1126/science.aad9024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Yang Y., McBride K.M., Hensley S., Lu Y., Chedin F., Bedford M.T. Arginine Methylation Facilitates the Recruitment of TOP3B to Chromatin to Prevent R Loop Accumulation. Mol. Cell. 2014;53:484–497. doi: 10.1016/j.molcel.2014.01.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Hall Z., Ament Z., Wilson C.H., Burkhart D.L., Ashmore T., Koulman A., Littlewood T., Evan G.I., Griffin J.L. MYC Expression Drives Aberrant Lipid Metabolism in Lung Cancer. Cancer Res. 2016;76:4608–4618. doi: 10.1158/0008-5472.CAN-15-3403. [DOI] [PubMed] [Google Scholar]
- 136.Eberlin L.S., Gabay M., Fan A.C., Gouw A.M., Tibshirani R.J., Felsher D.W., Zare R.N. Alteration of the Lipid Profile in Lymphomas Induced by MYC Overexpression. Proc. Natl. Acad. Sci. USA. 2014;111:10450–10455. doi: 10.1073/pnas.1409778111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Chu B., Kon N., Chen D., Li T., Liu T., Jiang L., Song S., Tavana O., Gu W. ALOX12 Is Required for P53-Mediated Tumour Suppression through a Distinct Ferroptosis Pathway. Nat. Cell Biol. 2019;21:579–591. doi: 10.1038/s41556-019-0305-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Hofmann J.W., Zhao X., De Cecco M., Peterson A.L., Pagliaroli L., Manivannan J., Hubbard G.B., Ikeno Y., Zhang Y., Feng B., et al. Reduced Expression of MYC Increases Longevity and Enhances Healthspan. Cell. 2015;160:477–488. doi: 10.1016/j.cell.2014.12.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Pourdehnad M., Truitt M.L., Siddiqi I.N., Ducker G.S., Shokat K.M., Ruggero D. Myc and MTOR Converge on a Common Node in Protein Synthesis Control That Confers Synthetic Lethality in Myc-Driven Cancers. Proc. Natl. Acad. Sci. USA. 2013;110:11988–11993. doi: 10.1073/pnas.1310230110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Kotani A., Kakazu N., Tsuruyama T., Okazaki I.M., Muramatsu M., Kinoshita K., Nagaoka H., Yabe D., Honjo T. Activation-Induced Cytidine Deaminase (AID) Promotes B Cell Lymphomagenesis in Emu-Cmyc Transgenic Mice. Proc. Natl. Acad. Sci. USA. 2007;104:1616–1620. doi: 10.1073/pnas.0610732104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Nepal R.M., Zaheen A., Basit W., Li L., Berger S.A., Martin A. AID and RAG1 Do Not Contribute to Lymphomagenesis in Eμ C-Myc Transgenic Mice. Oncogene. 2008;27:4752–4756. doi: 10.1038/onc.2008.111. [DOI] [PubMed] [Google Scholar]
- 142.Scuoppo C., Miething C., Lindqvist L., Reyes J., Ruse C., Appelmann I., Yoon S., Krasnitz A., Teruya-Feldstein J., Pappin D., et al. A Tumour Suppressor Network Relying on the Polyamine-Hypusine Axis. Nature. 2012;487:244–248. doi: 10.1038/nature11126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Scott C.L., Schuler M., Marsden V.S., Egle A., Pellegrini M., Nesic D., Gerondakis S., Nutt S.L., Green D.R., Strasser A. Apaf-1 and Caspase-9 Do Not Act as Tumor Suppressors in Myc-Induced Lymphomagenesis or Mouse Embryo Fibroblast Transformation. J. Cell Biol. 2004;164:89–96. doi: 10.1083/jcb.200310041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Walczynski J., Lyons S., Jones N., Breitwieser W. Sensitisation of C-MYC-Induced B-Lymphoma Cells to Apoptosis by ATF2. Oncogene. 2014;33:1027–1036. doi: 10.1038/onc.2013.28. [DOI] [PubMed] [Google Scholar]
- 145.Tameire F., Verginadis I.I., Leli N.M., Polte C., Conn C.S., Ojha R., Salas Salinas C., Chinga F., Monroy A.M., Fu W., et al. ATF4 Couples MYC-Dependent Translational Activity to Bioenergetic Demands during Tumour Progression. Nat. Cell Biol. 2019;21:889–899. doi: 10.1038/s41556-019-0347-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Eischen C.M., Roussel M.F., Korsmeyer S.J., Cleveland J.L. Bax Loss Impairs Myc-Induced Apoptosis and Circumvents the Selection of P53 Mutations during Myc-Mediated Lymphomagenesis. Mol. Cell Biol. 2001;21:7653–7662. doi: 10.1128/MCB.21.22.7653-7662.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Kelly P.N., Puthalakath H., Adams J.M., Strasser A. Endogenous Bcl-2 Is Not Required for the Development of Eμ-Myc-Induced B-Cell Lymphoma. Blood. 2007;109:4907–4913. doi: 10.1182/blood-2006-10-051847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Kelly P.N., Grabow S., Delbridge A.R.D., Strasser A., Adams J.M. Endogenous Bcl-XL Is Essential for Myc-Driven Lymphomagenesis in Mice. Blood. 2011;118:6380–6386. doi: 10.1182/blood-2011-07-367672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Takahashi Y., Hori T., Cooper T.K., Liao J., Desai N., Serfass J.M., Young M.M., Park S., Izu Y., Wang H.G. Bif-1 Haploinsufficiency Promotes Chromosomal Instability and Accelerates Myc-Driven Lymphomagenesis via Suppression of Mitophagy. Blood. 2013;121:1622–1632. doi: 10.1182/blood-2012-10-459826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Happo L., Phipson B., Smyth G.K., Strasser A., Scott C.L. Neither Loss of Bik Alone, nor Combined Loss of Bik and Noxa, Accelerate Murine Lymphoma Development or Render Lymphoma Cells Resistant to DNA Damaging Drugs. Cell Death Dis. 2012;3:e306. doi: 10.1038/cddis.2012.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.Frenzel A., Labi V., Chmelewskij W., Ploner C., Geley S., Fiegl H., Tzankov A., Villunger A. Suppression of B-Cell Lymphomagenesis by the BH3-Only Proteins Bmf and Bad. Blood. 2010;115:995–1005. doi: 10.1182/blood-2009-03-212670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Jacobs J.J.L., Scheijen B., Voncken J.W., Kieboom K., Berns A., van Lohuizen M. Bmi-1 Collaborates with c-Myc in Tumorigenesis by Inhibiting c-Myc- Induced Apoptosis via INK4a/ARF. Genes Dev. 1999;13:2678–2690. doi: 10.1101/gad.13.20.2678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Lee S.C.W., Phipson B., Hyland C.D., Leong H.S., Allan R.S., Lun A., Hilton D.J., Nutt S.L., Blewitt M.E., Smyth G.K., et al. Polycomb Repressive Complex 2 (PRC2) Suppresses Em-Myc Lymphoma. Blood. 2013;122:2654–2664. doi: 10.1182/blood-2013-02-484055. [DOI] [PubMed] [Google Scholar]
- 154.Scott C.L., Gil J., Hernando E., Teruya-Feldstein J., Narita M., Martínez D., Visakorpi T., Mu D., Cordon-Cardo C., Peters G., et al. Role of the Chromobox Protein CBX7 in Lymphomagenesis. Proc. Natl. Acad. Sci. USA. 2007;104:5389–5394. doi: 10.1073/pnas.0608721104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Ke F., Voss A., Kerr J.B., O’Reilly L.A., Tai L., Echeverry N., Bouillet P., Strasser A., Kaufmann T. BCL-2 Family Member BOK Is Widely Expressed but Its Loss Has Only Minimal Impact in Mice. Cell Death Differ. 2012;19:915–925. doi: 10.1038/cdd.2011.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Habib T., Park H., Tsang M., de Alborán I.M., Nicks A., Wilson L., Knoepfler P.S., Andrews S., Rawlings D.J., Eisenman R.N., et al. Myc Stimulates B Lymphocyte Differentiation and Amplifies Calcium Signaling. J. Cell Biol. 2007;179:717–731. doi: 10.1083/jcb.200704173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Ricke R.M., Jeganathan K.B., van Deursen J.M. Bub1 Overexpression Induces Aneuploidy and Tumor Formation through Aurora B Kinase Hyperactivation. J. Cell Biol. 2011;193:1049–1064. doi: 10.1083/jcb.201012035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Shing J.C., Lindquist L.D., Borgese N., Bram R.J. CAML Mediates Survival of Myc-Induced Lymphoma Cells Independent of Tail-Anchored Protein Insertion. Cell Death Discov. 2017;3:16098. doi: 10.1038/cddiscovery.2016.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Ho L.H., Taylor R., Dorstyn L., Cakouros D., Bouillet P., Kumar S. A Tumor Suppressor Function for Caspase-2. Proc. Natl. Acad. Sci. USA. 2009;106:5336–5341. doi: 10.1073/pnas.0811928106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Lu Y., Wu Y., Feng X., Shen R., Wang J.H., Fallahi M., Li W., Yang C., Hankey W., Zhao W., et al. CDK4 Deficiency Promotes Genomic Instability and Enhances Myc-Driven Lymphomagenesis. J. Clin. Investig. 2014;124:1672–1684. doi: 10.1172/JCI63139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Keller U.B., Old J.B., Dorsey F.C., Nilsson J.A., Nilsson L., MacLean K.H., Chung L., Yang C., Spruck C., Boyd K., et al. Myc Targets Cks1 to Provoke the Suppression of P27Kip1, Proliferation and Lymphomagenesis. EMBO J. 2007;26:2562–2574. doi: 10.1038/sj.emboj.7601691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Hashwah H., Schmid C.A., Kasser S., Bertram K., Stelling A., Manz M.G., Müller A. Inactivation of CREBBP Expands the Germinal Center B Cell Compartment, down-Regulates MHCII Expression and Promotes DLBCL Growth. Proc. Natl. Acad. Sci. USA. 2017;114:9701–9706. doi: 10.1073/pnas.1619555114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Hunter J.E., Butterworth J.A., Zhao B., Sellier H., Campbell K.J., Thomas H.D., Bacon C.M., Cockell S.J., Gewurz B.E., Perkins N.D. The NF-ΚB Subunit c-Rel Regulates Bach2 Tumour Suppressor Expression in B-Cell Lymphoma. Oncogene. 2016;35:3476–3484. doi: 10.1038/onc.2015.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Chen J., Shin J.H., Zhao R., Phan L., Wang H., Xue Y., Post S.M., Ho Choi H., Chen J.S., Wang E., et al. CSN6 Drives Carcinogenesis by Positively Regulating Myc Stability. Nat. Commun. 2014;5:5384. doi: 10.1038/ncomms6384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Pei X.H., Bai F., Li Z., Smith M.D., Whitewolf G., Jin R., Xiong Y. Cytoplasmic CUL9/PARC Ubiquitin Ligase Is a Tumor Suppressor and Promotes P53-Dependent Apoptosis. Cancer Res. 2011;71:2969–2977. doi: 10.1158/0008-5472.CAN-10-4300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166.Arrate M.P., Vincent T., Odvody J., Kar R., Jones S.N., Eischen C.M. MicroRNA Biogenesis Is Required for Myc-Induced b-Cell Lymphoma Development and Survival. Cancer Res. 2010;70:6083–6092. doi: 10.1158/0008-5472.CAN-09-4736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Inoue K., Zindy F., Randle D.H., Rehg J.E., Sherr C.J. Dmp1 Is Haplo-Insufficient for Tumor Suppression and Modifies the Frequencies of Arf and P53 Mutations in Myc-Induced Lymphomas. Genes Dev. 2001;15:2934–2939. doi: 10.1101/gad.929901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Vasanthakumar A., Lepore J.B., Zegarek M.H., Kocherginsky M., Singh M., Davis E.M., Link P.A., Anastasi J., le Beau M.M., Karpf A.R., et al. Dnmt3b Is a Haploinsufficient Tumor Suppressor Gene in Myc-Induced Lymphomagenesis. Blood. 2013;121:2059–2063. doi: 10.1182/blood-2012-04-421065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.Yang Z., Shah K., Busby T., Giles K., Khodadadi-Jamayran A., Li W., Jiang H. Hijacking a Key Chromatin Modulator Creates Epigenetic Vulnerability for MYC-Driven Cancer. J. Clin. Investig. 2018;128:3605–3618. doi: 10.1172/JCI97072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 170.Baudino T.A., Maclean K.H., Brennan J., Parganas E., Yang C., Aslanian A., Lees J.A., Sherr C.J., Roussel M.F., Cleveland J.L. Myc-Mediated Proliferation and Lymphomagenesis, but Not Apoptosis, Are Compromised by E2f1 Loss. Mol. Cell. 2003;11:905–914. doi: 10.1016/S1097-2765(03)00102-3. [DOI] [PubMed] [Google Scholar]
- 171.Park H., Staehling K., Tsang M., Appleby M.W., Brunkow M.E., Margineantu D., Hockenbery D.M., Habib T., Liggitt H.D., Carlson G., et al. Disruption of Fnip1 Reveals a Metabolic Checkpoint Controlling B Lymphocyte Development. Immunity. 2012;36:769–781. doi: 10.1016/j.immuni.2012.02.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Bouchard C., Lee S., Paulus-Hock V., Loddenkemper C., Eilers M., Schmitt C.A. FoxO Transcription Factors Suppress Myc-Driven Lymphomagenesis via Direct Activation of Arf. Genes Dev. 2007;21:2775–2787. doi: 10.1101/gad.453107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 173.Pillonel V., Reichert N., Cao C., Heideman M.R., Yamaguchi T., Matthias G., Tzankov A., Matthias P. Histone Deacetylase 1 Plays a Predominant Pro-Oncogenic Role in Eμ-Myc Driven B Cell Lymphoma. Sci. Rep. 2016;6:37772. doi: 10.1038/srep37772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174.Vecchio E., Golino G., Pisano A., Albano F., Falcone C., Ceglia S., Iaccino E., Mimmi S., Fiume G., Giurato G., et al. IBTK Contributes to B-Cell Lymphomagenesis in Eμ-Myc Transgenic Mice Conferring Resistance to Apoptosis. Cell Death Dis. 2019;10 doi: 10.1038/s41419-019-1557-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175.Nilsson L.M., Keller U.B., Yang C., Nilsson J.A., Cleveland J.L., Roussel M.F. Ink4c Is Dispensable for Tumor Suppression in Myc-Induced B-Cell Lymphomagenesis. Oncogene. 2007;26:2833–2839. doi: 10.1038/sj.onc.1210104. [DOI] [PubMed] [Google Scholar]
- 176.Scherger A.K., Al-Maarri M., Maurer H.C., Schick M., Maurer S., Öllinger R., Gonzalez-Menendez I., Martella M., Thaler M., Pechloff K., et al. Activated Gp130 Signaling Selectively Targets B Cell Differentiation to Induce Mature Lymphoma and Plasmacytoma. JCI Insight. 2019;4:e128435. doi: 10.1172/jci.insight.128435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 177.Osborne L.C., Duthie K.A., Seo J.H., Gascoyne R.D., Abraham N. Selective Ablation of the YxxM Motif of IL-7Rα Suppresses Lymphomagenesis but Maintains Lymphocyte Development. Oncogene. 2010;29:3854–3864. doi: 10.1038/onc.2010.133. [DOI] [PubMed] [Google Scholar]
- 178.Guerra N., Tan Y.X., Joncker N.T., Choy A., Gallardo F., Xiong N., Knoblaugh S., Cado D., Greenberg N.R., Raulet D.H. NKG2D-Deficient Mice Are Defective in Tumor Surveillance in Models of Spontaneous Malignancy. Immunity. 2008;28:571–580. doi: 10.1016/j.immuni.2008.02.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179.Gramling M.W., Eischen C.M. Suppression of Ras/Mapk Pathway Signaling Inhibits Myc-Induced Lymphomagenesis. Cell Death Differ. 2012;19:1220–1227. doi: 10.1038/cdd.2012.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 180.Barna M., Pusic A., Zollo O., Costa M., Kondrashov N., Rego E., Rao P.H., Ruggero D. Suppression of Myc Oncogenic Activity by Ribosomal Protein Haploinsufficiency. Nature. 2008;456:971–975. doi: 10.1038/nature07449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181.Hawkins E.D., Oliaro J., Ramsbottom K.M., Ting S.B., Sacirbegovic F., Harvey M., Kinwell T., Ghysdael J., Johnstone R.W., Humbert P.O., et al. Lethal Giant Larvae 1 Tumour Suppressor Activity Is Not Conserved in Models of Mammalian T and B Cell Leukaemia. PLoS ONE. 2014;9:e87376. doi: 10.1371/journal.pone.0087376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182.Sotillo R., Hernando E., Díaz-Rodríguez E., Teruya-Feldstein J., Cordón-Cardo C., Lowe S.W., Benezra R. Mad2 Overexpression Promotes Aneuploidy and Tumorigenesis in Mice. Cancer Cell. 2007;11:9–23. doi: 10.1016/j.ccr.2006.10.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Brunelle J.K., Ryan J., Yecies D., Opferman J.T., Letai A. MCL-1-Dependent Leukemia Cells Are More Sensitive to Chemotherapy than BCL-2-Dependent Counterparts. J. Cell Biol. 2009;187:429–442. doi: 10.1083/jcb.200904049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 184.Campbell K.J., Bath M.L., Turner M.L., Vandenberg C.J., Bouillet P., Metcalf D., Scott C.L., Cory S. Elevated Mcl-1 Perturbs Lymphopoiesis, Promotes Transformation of Hematopoietic Stem/Progenitor Cells, and Enhances Drug Resistance. Blood. 2010;116:3197–3207. doi: 10.1182/blood-2010-04-281071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.de Clercq S., Gembarska A., Denecker G., Maetens M., Naessens M., Haigh K., Haigh J.J., Marine J.-C. Widespread Overexpression of Epitope-Tagged Mdm4 Does Not Accelerate Tumor Formation In vivo. Mol. Cell Biol. 2010;30:5394–5405. doi: 10.1128/MCB.00330-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 186.Terzian T., Wang Y., van Pelt C.S., Box N.F., Travis E.L., Lozano G. Haploinsufficiency of Mdm2 and Mdm4 in Tumorigenesis and Development. Mol. Cell Biol. 2007;27:5479–5485. doi: 10.1128/MCB.00555-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 187.Tanaskovic N., Dalsass M., Filipuzzi M., Ceccotti G., Verrecchia A., Nicoli P., Doni M., Olivero D., Pasini D., Koseki H., et al. Polycomb Group Ring Finger Protein 6 Suppresses Myc-Induced Lymphomagenesis. Life Sci. Alliance. 2022;5:e202101344. doi: 10.26508/lsa.202101344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 188.Talos F., Mena P., Fingerle-Rowson G., Moll U., Petrenko O. MIF Loss Impairs Myc-Induced Lymphomagenesis. Cell Death Differ. 2005;12:1319–1328. doi: 10.1038/sj.cdd.4401653. [DOI] [PubMed] [Google Scholar]
- 189.Contreras J.R., Palanichamy J.K., Tran T.M., Fernando T.R., Rodriguez-Malave N.I., Goswami N., Arboleda V.A., Casero D., Rao D.S. MicroRNA-146a Modulates B-Cell Oncogenesis by Regulating Egr1. Oncotarget. 2015;6:11023–11037. doi: 10.18632/oncotarget.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 190.Mu P., Han Y.C., Betel D., Yao E., Squatrito M., Ogrodowski P., de Stanchina E., D’Andrea A., Sander C., Ventura A. Genetic Dissection of the MiR-17-92 Cluster of MicroRNAs in Myc-Induced B-Cell Lymphomas. Genes Dev. 2009;23:2806–2811. doi: 10.1101/gad.1872909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 191.Olive V., Sabio E., Bennett M.J., de Jong C.S., Biton A., McGann J.C., Greaney S.K., Sodir N.M., Zhou A.Y., Balakrishnan A., et al. A Component of the Mir-17-92 Polycistronic Oncomir Promotes Oncogene-Dependent Apoptosis. Elife. 2013;2:e00822. doi: 10.7554/eLife.00822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 192.Campbell K.J., Vandenberg C.J., Anstee N.S., Hurlin P.J., Cory S. Mnt Modulates Myc-Driven Lymphomagenesis. Cell Death Differ. 2017;24:2117–2126. doi: 10.1038/cdd.2017.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 193.Nguyen H.V., Vandenberg C.J., Ng A.P., Robati M.R., Anstee N.S., Rimes J., Hawkins E.D., Cory S. Development and Survival of MYC-Driven Lymphomas Require the MYC Antagonist MNT to Curb MYC-Induced Apoptosis. Blood. 2020;135:1019–1031. doi: 10.1182/blood.2019003014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 194.Au A.E., Lebois M., Sim S.A., Cannon P., Corbin J., Gangatirkar P., Hyland C.D., Moujalled D., Rutgersson A., Yassinson F., et al. Altered B-Lymphopoiesis in Mice with Deregulated Thrombopoietin Signaling. Sci. Rep. 2017;7:14953. doi: 10.1038/s41598-017-15023-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 195.Kadariya Y., Tang B., Wang L., Al-Saleem T., Hayakawa K., Slifker M.J., Kruger W.D. Germline Mutations in Mtap Cooperate with Myc to Accelerate Tumorigenesis in Mice. PLoS ONE. 2013;8:e67635. doi: 10.1371/journal.pone.0067635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 196.Odvody J., Vincent T., Arrate M.P., Grieb B., Wang S., Garriga J., Lozano G., Iwakuma T., Haines D.S., Eischen C.M. A Deficiency in Mdm2 Binding Protein Inhibits Myc-Induced B-Cell Proliferation and Lymphomagenesis. Oncogene. 2010;29:3287–3296. doi: 10.1038/onc.2010.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 197.Lin Y.H., Wang H.C., Fiore A., Förster M., Tung L.T., Belle J.I., Robert F., Pelletier J., Langlais D., Nijnik A. Loss of MYSM1 Inhibits the Oncogenic Activity of CMYC in B Cell Lymphoma. J. Cell Mol. Med. 2021;25:7089–7094. doi: 10.1111/jcmm.16554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Keller U., Nilsson J.A., Maclean K.H., Old J.B., Cleveland J.L. Nfkb1 Is Dispensable for Myc-Induced Lymphomagenesis. Oncogene. 2005;24:6231–6240. doi: 10.1038/sj.onc.1208779. [DOI] [PubMed] [Google Scholar]
- 199.Keller U., Huber J., Nilsson J.A., Fallahi M., Hall M.A., Peschel C., Cleveland J.L. Myc Suppression of Nfkb2 Accelerates Lymphomagenesis. BMC Cancer. 2010;10:348. doi: 10.1186/1471-2407-10-348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 200.Zwolinska A.K., Heagle Whiting A., Beekman C., Sedivy J.M., Marine J.C. Suppression of Myc Oncogenic Activity by Nucleostemin Haploinsufficiency. Oncogene. 2012;31:3311–3321. doi: 10.1038/onc.2011.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 201.Nilsson J.A., Keller U.B., Baudino T.A., Yang C., Norton S., Old J.A., Nilsson L.M., Neale G., Kramer D.L., Porter C.W., et al. Targeting Ornithine Decarboxylase in Myc-Induced Lymphomagenesis Prevents Tumor Formation. Cancer Cell. 2005;7:433–444. doi: 10.1016/j.ccr.2005.03.036. [DOI] [PubMed] [Google Scholar]
- 202.Green B., Martin A., Belcheva A. Deficiency in the DNA Glycosylases UNG1 and OGG1 Does Not Potentiate C-Myc-Induced B-Cell Lymphomagenesis. Exp. Hematol. 2018;61:52–58. doi: 10.1016/j.exphem.2018.02.006. [DOI] [PubMed] [Google Scholar]
- 203.Martins C.P., Berns A. Loss of P27Kip1 but Not P21Cip1 Decreases Survival and Synergizes with MYC in Murine Lymphomagenesis. EMBO J. 2002;21:3739–3748. doi: 10.1093/emboj/cdf364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 204.Shreeram S., Weng K.H., Demidov O.N., Kek C., Yamaguchi H., Fornace A.J., Anderson C.W., Appella E., Bulavin D.V. Regulation of ATM/P53-Dependent Suppression of Myc-Induced Lymphomas by Wip1 Phosphatase. J. Exp. Med. 2006;203:2793–2799. doi: 10.1084/jem.20061563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 205.Nemajerova A., Petrenko O., Trümper L., Palacios G., Moll U.M. Loss of P73 Promotes Dissemination of Myc-Induced B Cell Lymphomas in Mice. J. Clin. Investig. 2010;120:2070–2080. doi: 10.1172/JCI40331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 206.Galindo-Campos M.A., Lutfi N., Bonnin S., Martínez C., Velasco-Hernandez T., García-Hernández V., Martín-Caballero J., Ampurdanés C., Gimeno R., Colomo L., et al. Distinct Roles for PARP-1 and PARP-2 in c-Myc–Driven B-Cell Lymphoma in Mice. Blood. 2022;139:228–239. doi: 10.1182/blood.2021012805. [DOI] [PubMed] [Google Scholar]
- 207.Cho S.H., Ahn A.K., Bhargava P., Lee C.H., Eischen C.M., McGuinness O., Boothby M. Glycolytic Rate and Lymphomagenesis Depend on PARP14, an ADP Ribosyltransferase of the B Aggressive Lymphoma (BAL) Family. Proc. Natl. Acad. Sci. USA. 2011;108:15972–15977. doi: 10.1073/pnas.1017082108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 208.Bolitho P., Street S.E.A., Westwood J.A., Edelmann W., MacGregor D., Waring P., Murray W.K., Godfrey D.I., Trapani J.A., Johnstone R.W., et al. Perforin-Mediated Suppression of B-Cell Lymphoma. Proc. Natl. Acad. Sci. USA. 2009;106:2723–2728. doi: 10.1073/pnas.0809008106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 209.Xiao W., Hong H., Kawakami Y., Kato Y., Wu D., Yasudo H., Kimura A., Kubagawa H., Bertoli L.F., Davis R.S., et al. Tumor Suppression by Phospholipase C-Β3 via SHP-1-Mediated Dephosphorylation of Stat5. Cancer Cell. 2009;16:161–171. doi: 10.1016/j.ccr.2009.05.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 210.Wen R., Chen Y., Bai L., Fu G., Schuman J., Dai X., Zeng H., Yang C., Stephan R.P., Cleveland J.L., et al. Essential Role of Phospholipase Cγ2 in Early B-Cell Development and Myc-Mediated Lymphomagenesis. Mol. Cell Biol. 2006;26:9364–9376. doi: 10.1128/MCB.00839-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 211.Fog C.K., Asmar F., Côme C., Jensen K.T., Johansen J.V., Kheir T.B., Jacobsen L., Friis C., Louw A., Rosgaard L., et al. Loss of PRDM11 Promotes MYC-Driven Lymphomagenesis. Blood. 2015;125:1272–1281. doi: 10.1182/blood-2014-03-560805. [DOI] [PubMed] [Google Scholar]
- 212.Mzoughi S., Fong J.Y., Papadopoli D., Koh C.M., Hulea L., Pigini P., di Tullio F., Andreacchio G., Hoppe M.M., Wollmann H., et al. PRDM15 Is a Key Regulator of Metabolism Critical to Sustain B-Cell Lymphomagenesis. Nat. Commun. 2020;11:3520. doi: 10.1038/s41467-020-17064-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 213.Iotti G., Mejetta S., Modica L., Penkov D., Ponzoni M., Blasi F. Reduction of Prep1 Levels Affects Differentiation of Normal and Malignant B Cells and Accelerates Myc Driven Lymphomagenesis. PLoS ONE. 2012;7:e48353. doi: 10.1371/journal.pone.0048353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 214.Garrison S.P., Jeffers J.R., Yang C., Nilsson J.A., Hall M.A., Rehg J.E., Yue W., Yu J., Zhang L., Onciu M., et al. Selection against PUMA Gene Expression in Myc-Driven B-Cell Lymphomagenesis. Mol. Cell Biol. 2008;28:5391–5402. doi: 10.1128/MCB.00907-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 215.Meacham C.E., Ho E.E., Dubrovsky E., Gertler F.B., Hemann M.T. In Vivo RNAi Screening Identifies Regulators of Actin Dynamics as Key Determinants of Lymphoma Progression. Nat. Genet. 2009;41:1133–1137. doi: 10.1038/ng.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 216.Peintner L., Dorstyn L., Kumar S., Aneichyk T., Villunger A., Manzl C. The Tumor-Modulatory Effects of Caspase-2 and Pidd1 Do Not Require the Scaffold Protein Raidd. Cell Death Differ. 2015;22:1803–1811. doi: 10.1038/cdd.2015.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Khattar E., Maung K.Z.Y., Chew C.L., Ghosh A., Mok M.M.H., Lee P., Zhang J., Chor W.H.J., Cildir G., Wang C.Q., et al. Rap1 Regulates Hematopoietic Stem Cell Survival and Affects Oncogenesis and Response to Chemotherapy. Nat. Commun. 2019;10:5349. doi: 10.1038/s41467-019-13082-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 218.Zeng H., Yu M., Tan H., Li Y., Su W., Shi H., Dhungana Y., Guy C., Neale G., Cloer C., et al. Discrete Roles and Bifurcation of PTEN Signaling and MTORC1-Mediated Anabolic Metabolism Underlie IL-7-Driven B Lymphopoiesis. Sci. Adv. 2018;4:eaar5701. doi: 10.1126/sciadv.aar5701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 219.Thijssen R., Alvarez-Diaz S., Grace C., Gao M.Y., Segal D.H., Xu Z., Strasser A., Huang D.C.S. Loss of RIPK3 Does Not Impact MYC-Driven Lymphomagenesis or Chemotherapeutic Drug-Induced Killing of Malignant Lymphoma Cells. Cell Death Differ. 2020;27:2531–2533. doi: 10.1038/s41418-020-0576-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 220.Borland G., Kilbey A., Hay J., Gilroy K., Terry A., Mackay N., Bell M., McDonald A., Mills K., Cameron E., et al. Addiction to Runx1 Is Partially Attenuated by Loss of P53 in the Eμ-Myc Lymphoma Model. Oncotarget. 2016;7:22973–22987. doi: 10.18632/oncotarget.8554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 221.Hoellein A., Fallahi M., Schoeffmann S., Steidle S., Schaub F.X., Rudelius M., Laitinen I., Nilsson L., Goga A., Peschel C., et al. Myc-Induced SUMOylation Is a Therapeutic Vulnerability for B-Cell Lymphoma. Blood. 2014;124:2081–2090. doi: 10.1182/blood-2014-06-584524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 222.Hawkins E.D., Oliaro J., Ramsbottom K.M., Newbold A., Humbert P.O., Johnstone R.W., Russell S.M. Scribble Acts as an Oncogene in Eμ-Myc-Driven Lymphoma. Oncogene. 2016;35:1193–1197. doi: 10.1038/onc.2015.167. [DOI] [PubMed] [Google Scholar]
- 223.García-Fernández M., Kissel H., Brown S., Gorenc T., Schile A.J., Rafii S., Larisch S., Steller H. Sept4/ARTS Is Required for Stem Cell Apoptosis and Tumor Suppression. Genes Dev. 2010;24:2282–2293. doi: 10.1101/gad.1970110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 224.Jeong S.M., Lee A., Lee J., Haigis M.C. SIRT4 Protein Suppresses Tumor Formation in Genetic Models of Myc-Induced B Cell Lymphoma. J. Biol. Chem. 2014;289:4135–4144. doi: 10.1074/jbc.M113.525949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 225.Old J.B., Kratzat S., Hoellein A., Graf S., Nilsson J.A., Nilsson L., Nakayama K.I., Peschel C., Cleveland J.L., Keller U.B. Skp2 Directs Myc-Mediated Suppression of P27Kip1 yet Has Modest Effects on Myc-Driven Lymphomagenesis. Mol. Cancer Res. 2010;8:353–362. doi: 10.1158/1541-7786.MCR-09-0232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 226.Bagislar S., Sabò A., Kress T.R., Doni M., Nicoli P., Campaner S., Amati B. Smyd2 Is a Myc-Regulated Gene Critical for MLL-AF9 Induced Leukemogenesis. Oncotarget. 2016;7:66398–66415. doi: 10.18632/oncotarget.12012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 227.Cardone M., Kandilci A., Carella C., Nilsson J.A., Brennan J.A., Sirma S., Ozbek U., Boyd K., Cleveland J.L., Grosveld G.C. The Novel ETS Factor TEL2 Cooperates with Myc in B Lymphomagenesis. Mol. Cell Biol. 2005;25:2395–2405. doi: 10.1128/MCB.25.6.2395-2405.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 228.Rounbehler R.J., Fallahi M., Yang C., Steeves M.A., Li W., Doherty J.R., Schaub F.X., Sanduja S., Dixon D.A., Blackshear P.J., et al. Tristetraprolin Impairs Myc-Induced Lymphoma and Abolishes the Malignant State. Cell. 2012;150:563–574. doi: 10.1016/j.cell.2012.06.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 229.Finnberg N., Klein-Szanto A.J.P., El-Deiry W.S. TRAIL-R Deficiency in Mice Promotes Susceptibility to Chronic Inflammation and Tumorigenesis. J. Clin. Investig. 2008;118:111–123. doi: 10.1172/JCI29900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 230.Hussain S., Bedekovics T., Liu Q., Hu W., Jeon H., Johnson S.H., Vasmatzis G., May D.G., Roux K.J., Galardy P.J. UCH-L1 Bypasses MTOR to Promote Protein Biosynthesis and Is Required for MYC-Driven Lymphomagenesis in Mice. Blood. 2018;132:2564–2574. doi: 10.1182/blood-2018-05-848515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 231.Li X., Zhang Y., Zheng L., Liu M., Chen C.D., Jiang H. UTX Is an Escape from X-Inactivation Tumor-Suppressor in B Cell Lymphoma. Nat. Commun. 2018;9:2720. doi: 10.1038/s41467-018-05084-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 232.Moser R., Toyoshima M., Robinson K., Gurley K.E., Howie H.L., Davison J., Morgan M., Kemp C.J., Grandori C. MYC-Driven Tumorigenesis Is Inhibited by WRN Syndrome Gene Deficiency. Mol. Cancer Res. 2012;10:535–545. doi: 10.1158/1541-7786.MCR-11-0508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 233.Taylor J., Sendino M., Gorelick A.N., Pastore A., Chang M.T., Penson A.V., Gavrila E.I., Stewart C., Melnik E.M., Chavez F.H., et al. Altered Nuclear Export Signal Recognition as a Driver of Oncogenesis. Cancer Discov. 2019;9:1452–1467. doi: 10.1158/2159-8290.CD-19-0298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 234.Best S.A., Vandenberg C.J., Abad E., Whitehead L., Guiu L., Ding S., Brennan M.S., Strasser A., Herold M.J., Sutherland K.D., et al. Consequences of Zmat3 Loss in C-MYC- and Mutant KRAS-Driven Tumorigenesis. Cell Death Dis. 2020;11:877. doi: 10.1038/s41419-020-03066-9. [DOI] [PMC free article] [PubMed] [Google Scholar]





