Skip to main content
Philosophical Transactions of the Royal Society B: Biological Sciences logoLink to Philosophical Transactions of the Royal Society B: Biological Sciences
. 2001 Jan 29;356(1405):29–39. doi: 10.1098/rstb.2000.0745

Hypermutation in bacteria and other cellular systems.

B A Bridges 1
PMCID: PMC1087688  PMID: 11205327

Abstract

A temporary state of hypermutation can in principle arise through an increase in the rate of polymerase errors (which may or may not be triggered by template damage) and/or through abrogation of fidelity mechanisms such as proofreading and mismatch correction. In bacteria there are numerous examples of transient mutator states, often occurring as a consequence of stress. They may be targeted to certain regions of the DNA, for example by transcription or by recombination. The initial errors are made by various DNA polymerases which vary in their error-proneness: several are inducible and are under the control of the SOS system. There are several structurally related polymerases in mammals that have recently come to light and that have unusual properties, such as the ability to carry out 'accurate' translesion synthesis opposite sites of template damage or the possession of exceedingly high misincorporation rates. In bacteria the initial errors may be genuinely spontaneous polymerase errors or they may be triggered by damage to the template strand, for example as a result of attack by active oxidative species such as singlet oxygen. In mammalian cells, hypermutable states persisting for many generations have been shown to be induced by various agents, not all of them DNA damaging agents. A hypermutable state induced by ionizing radiation in male germ cells in the mouse results in a high rate of sequence errors in certain unstable minisatellite loci; the mechanism is unclear but believed to be associated with recombination events.

Full Text

The Full Text of this article is available as a PDF (200.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D., Cumano A., Dildrop R., Kocks C., Rajewsky K., Rajewsky N., Roes J., Sablitzky F., Siekevitz M. Timing, genetic requirements and functional consequences of somatic hypermutation during B-cell development. Immunol Rev. 1987 Apr;96:5–22. doi: 10.1111/j.1600-065x.1987.tb00506.x. [DOI] [PubMed] [Google Scholar]
  2. Berek C., Milstein C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev. 1987 Apr;96:23–41. doi: 10.1111/j.1600-065x.1987.tb00507.x. [DOI] [PubMed] [Google Scholar]
  3. Betz A. G., Milstein C., González-Fernández A., Pannell R., Larson T., Neuberger M. S. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell. 1994 Apr 22;77(2):239–248. doi: 10.1016/0092-8674(94)90316-6. [DOI] [PubMed] [Google Scholar]
  4. Bloom L. B., Chen X., Fygenson D. K., Turner J., O'Donnell M., Goodman M. F. Fidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies. J Biol Chem. 1997 Oct 31;272(44):27919–27930. doi: 10.1074/jbc.272.44.27919. [DOI] [PubMed] [Google Scholar]
  5. Boesen J. J., Lohman P. H., Simons J. W. Concomitant induction of signal transduction pathways and genetic instability by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Carcinogenesis. 1991 Mar;12(3):487–492. doi: 10.1093/carcin/12.3.487. [DOI] [PubMed] [Google Scholar]
  6. Boesen J. J., Stuivenberg S., Thyssens C. H., Panneman H., Darroudi F., Lohman P. H., Simons J. W. Stress response induced by DNA damage leads to specific, delayed and untargeted mutations. Mol Gen Genet. 1992 Aug;234(2):217–227. doi: 10.1007/BF00283842. [DOI] [PubMed] [Google Scholar]
  7. Bridges B. A. Elevated mutation rate in mutT bacteria during starvation: evidence for DNA turnover? J Bacteriol. 1996 May;178(9):2709–2711. doi: 10.1128/jb.178.9.2709-2711.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bridges B. A., Sekiguchi M., Tajiri T. Effect of mutY and mutM/fpg-1 mutations on starvation-associated mutation in Escherichia coli: implications for the role of 7,8-dihydro-8-oxoguanine. Mol Gen Genet. 1996 Jun 12;251(3):352–357. doi: 10.1007/BF02172526. [DOI] [PubMed] [Google Scholar]
  9. Bridges B. A. Spontaneous mutation in stationary-phase Escherichia coli WP2 carrying various DNA repair alleles. Mutat Res. 1993 Jul;302(3):173–176. doi: 10.1016/0165-7992(93)90045-w. [DOI] [PubMed] [Google Scholar]
  10. Bridges B. A. Starvation-associated mutation in E. coli strains with and without reverse transcriptase. Mutat Res. 1995 Jun;347(1):13–15. doi: 10.1016/0165-7992(95)90026-8. [DOI] [PubMed] [Google Scholar]
  11. Bridges B. A. Starvation-associated mutation in Escherichia coli: a spontaneous lesion hypothesis for "directed" mutation. Mutat Res. 1994 May 1;307(1):149–156. doi: 10.1016/0027-5107(94)90287-9. [DOI] [PubMed] [Google Scholar]
  12. Bridges B. A. The role of DNA damage in stationary phase ('adaptive') mutation. Mutat Res. 1998 Jul;408(1):1–9. doi: 10.1016/s0921-8777(98)00008-1. [DOI] [PubMed] [Google Scholar]
  13. Bridges B. A., Woodgate R. Mutagenic repair in Escherichia coli: products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4193–4197. doi: 10.1073/pnas.82.12.4193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bridges B. A. mutY 'directs' mutation? Nature. 1995 Jun 29;375(6534):741–741. doi: 10.1038/375741a0. [DOI] [PubMed] [Google Scholar]
  15. Brotcorne-Lannoye A., Maenhaut-Michel G. Role of RecA protein in untargeted UV mutagenesis of bacteriophage lambda: evidence for the requirement for the dinB gene. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3904–3908. doi: 10.1073/pnas.83.11.3904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bull H. J., McKenzie G. J., Hastings P. J., Rosenberg S. M. Evidence that stationary-phase hypermutation in the Escherichia coli chromosome is promoted by recombination. Genetics. 2000 Apr;154(4):1427–1437. doi: 10.1093/genetics/154.4.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cairns J., Foster P. L. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics. 1991 Aug;128(4):695–701. doi: 10.1093/genetics/128.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
  19. Chang W. P., Little J. B. Persistently elevated frequency of spontaneous mutations in progeny of CHO clones surviving X-irradiation: association with delayed reproductive death phenotype. Mutat Res. 1992 Nov 16;270(2):191–199. doi: 10.1016/0027-5107(92)90130-t. [DOI] [PubMed] [Google Scholar]
  20. Datta A., Jinks-Robertson S. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science. 1995 Jun 16;268(5217):1616–1619. doi: 10.1126/science.7777859. [DOI] [PubMed] [Google Scholar]
  21. Decuyper-Debergh D., Piette J., Van de Vorst A. Singlet oxygen-induced mutations in M13 lacZ phage DNA. EMBO J. 1987 Oct;6(10):3155–3161. doi: 10.1002/j.1460-2075.1987.tb02626.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Domínguez O., Ruiz J. F., Laín de Lera T., García-Díaz M., González M. A., Kirchhoff T., Martínez-A C., Bernad A., Blanco L. DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J. 2000 Apr 3;19(7):1731–1742. doi: 10.1093/emboj/19.7.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Dubrova Y. E., Jeffreys A. J., Malashenko A. M. Mouse minisatellite mutations induced by ionizing radiation. Nat Genet. 1993 Sep;5(1):92–94. doi: 10.1038/ng0993-92. [DOI] [PubMed] [Google Scholar]
  26. Dubrova Y. E., Plumb M., Brown J., Fennelly J., Bois P., Goodhead D., Jeffreys A. J. Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6251–6255. doi: 10.1073/pnas.95.11.6251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dubrova Y. E., Plumb M., Brown J., Jeffreys A. J. Radiation-induced germline instability at minisatellite loci. Int J Radiat Biol. 1998 Dec;74(6):689–696. doi: 10.1080/095530098140952. [DOI] [PubMed] [Google Scholar]
  28. Dubrova Y. E., Plumb M., Gutierrez B., Boulton E., Jeffreys A. J. Transgenerational mutation by radiation. Nature. 2000 May 4;405(6782):37–37. doi: 10.1038/35011135. [DOI] [PubMed] [Google Scholar]
  29. Escarceller M., Hicks J., Gudmundsson G., Trump G., Touati D., Lovett S., Foster P. L., McEntee K., Goodman M. F. Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation. J Bacteriol. 1994 Oct;176(20):6221–6228. doi: 10.1128/jb.176.20.6221-6228.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Fan Y. J., Wang Z., Sadamoto S., Ninomiya Y., Kotomura N., Kamiya K., Dohi K., Kominami R., Niwa O. Dose-response of a radiation induction of a germline mutation at a hypervariable mouse minisatellite locus. Int J Radiat Biol. 1995 Aug;68(2):177–183. doi: 10.1080/09553009514551081. [DOI] [PubMed] [Google Scholar]
  31. Feng G., Tsui H. C., Winkler M. E. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol. 1996 Apr;178(8):2388–2396. doi: 10.1128/jb.178.8.2388-2396.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Fersht A. R. Fidelity of replication of phage phi X174 DNA by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4946–4950. doi: 10.1073/pnas.76.10.4946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Fersht A. R., Knill-Jones J. W. Contribution of 3' leads to 5' exonuclease activity of DNA polymerase III holoenzyme from Escherichia coli to specificity. J Mol Biol. 1983 Apr 25;165(4):669–682. doi: 10.1016/s0022-2836(83)80273-3. [DOI] [PubMed] [Google Scholar]
  34. Fersht A. R., Knill-Jones J. W. DNA polymerase accuracy and spontaneous mutation rates: frequencies of purine.purine, purine.pyrimidine, and pyrimidine.pyrimidine mismatches during DNA replication. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4251–4255. doi: 10.1073/pnas.78.7.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Fersht A. R., Knill-Jones J. W. Fidelity of replication of bacteriophage phi X174 DNA in vitro and in vivo. J Mol Biol. 1983 Apr 25;165(4):633–654. doi: 10.1016/s0022-2836(83)80271-x. [DOI] [PubMed] [Google Scholar]
  36. Fersht A. R., Knill-Jones J. W., Tsui W. C. Kinetic basis of spontaneous mutation. Misinsertion frequencies, proofreading specificities and cost of proofreading by DNA polymerases of Escherichia coli. J Mol Biol. 1982 Mar 25;156(1):37–51. doi: 10.1016/0022-2836(82)90457-0. [DOI] [PubMed] [Google Scholar]
  37. Foster P. L. Adaptive mutation: the uses of adversity. Annu Rev Microbiol. 1993;47:467–504. doi: 10.1146/annurev.mi.47.100193.002343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Foster P. L., Gudmundsson G., Trimarchi J. M., Cai H., Goodman M. F. Proofreading-defective DNA polymerase II increases adaptive mutation in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7951–7955. doi: 10.1073/pnas.92.17.7951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Foster P. L. Mechanisms of stationary phase mutation: a decade of adaptive mutation. Annu Rev Genet. 1999;33:57–88. doi: 10.1146/annurev.genet.33.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Foster P. L. Nonadaptive mutations occur on the F' episome during adaptive mutation conditions in Escherichia coli. J Bacteriol. 1997 Mar;179(5):1550–1554. doi: 10.1128/jb.179.5.1550-1554.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Foster P. L., Trimarchi J. M. Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolymeric runs. Science. 1994 Jul 15;265(5170):407–409. doi: 10.1126/science.8023164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Foster P. L., Trimarchi J. M. Adaptive reversion of an episomal frameshift mutation in Escherichia coli requires conjugal functions but not actual conjugation. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5487–5490. doi: 10.1073/pnas.92.12.5487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Fujii S., Akiyama M., Aoki K., Sugaya Y., Higuchi K., Hiraoka M., Miki Y., Saitoh N., Yoshiyama K., Ihara K. DNA replication errors produced by the replicative apparatus of Escherichia coli. J Mol Biol. 1999 Jun 18;289(4):835–850. doi: 10.1006/jmbi.1999.2802. [DOI] [PubMed] [Google Scholar]
  44. Galitski T., Roth J. R. A search for a general phenomenon of adaptive mutability. Genetics. 1996 Jun;143(2):645–659. doi: 10.1093/genetics/143.2.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Galitski T., Roth J. R. Evidence that F plasmid transfer replication underlies apparent adaptive mutation. Science. 1995 Apr 21;268(5209):421–423. doi: 10.1126/science.7716546. [DOI] [PubMed] [Google Scholar]
  46. Golovlev E. L. Metastabil'nost' fenotipa u bakterii. Mikrobiologiia. 1998 Mar-Apr;67(2):149–155. [PubMed] [Google Scholar]
  47. Hall B. G. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics. 1990 Sep;126(1):5–16. doi: 10.1093/genetics/126.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Harris R. S., Bull H. J., Rosenberg S. M. A direct role for DNA polymerase III in adaptive reversion of a frameshift mutation in Escherichia coli. Mutat Res. 1997 Apr 14;375(1):19–24. doi: 10.1016/s0027-5107(96)00244-8. [DOI] [PubMed] [Google Scholar]
  49. Harris R. S., Feng G., Ross K. J., Sidhu R., Thulin C., Longerich S., Szigety S. K., Winkler M. E., Rosenberg S. M. Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev. 1997 Sep 15;11(18):2426–2437. doi: 10.1101/gad.11.18.2426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Harris R. S., Longerich S., Rosenberg S. M. Recombination in adaptive mutation. Science. 1994 Apr 8;264(5156):258–260. doi: 10.1126/science.8146657. [DOI] [PubMed] [Google Scholar]
  51. Horst J. P., Wu T. H., Marinus M. G. Escherichia coli mutator genes. Trends Microbiol. 1999 Jan;7(1):29–36. doi: 10.1016/s0966-842x(98)01424-3. [DOI] [PubMed] [Google Scholar]
  52. Ichikawa-Ryo H., Kondo S. Indirect mutagenesis in phage lambda by ultraviolet preirradiation of host bacteria. J Mol Biol. 1975 Sep 5;97(1):77–92. doi: 10.1016/s0022-2836(75)80023-4. [DOI] [PubMed] [Google Scholar]
  53. JACOB F. Mutation d'un bactériophage induite par l'irradiation des seules bactéries-hotes avant l'infection. C R Hebd Seances Acad Sci. 1954 Feb 8;238(6):732–734. [PubMed] [Google Scholar]
  54. Jiricny J. Replication errors: cha(lle)nging the genome. EMBO J. 1998 Nov 16;17(22):6427–6436. doi: 10.1093/emboj/17.22.6427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Johnson R. E., Prakash S., Prakash L. The human DINB1 gene encodes the DNA polymerase Poltheta. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3838–3843. doi: 10.1073/pnas.97.8.3838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 1996 Jun 15;10(12):1433–1442. doi: 10.1101/gad.10.12.1433. [DOI] [PubMed] [Google Scholar]
  57. Korogodin V. I., Korogodina V. L., Fajszi C., Chepurnoy A. I., Mikhova-Tsenova N., Simonyan N. V. On the dependence of spontaneous mutation rates on the functional state of genes. Yeast. 1991 Feb;7(2):105–117. doi: 10.1002/yea.320070204. [DOI] [PubMed] [Google Scholar]
  58. Liu S. K., Eisen J. A., Hanawalt P. C., Tessman I. recA mutations that reduce the constitutive coprotease activity of the RecA1202(Prtc) protein: possible involvement of interfilament association in proteolytic and recombination activities. J Bacteriol. 1993 Oct;175(20):6518–6529. doi: 10.1128/jb.175.20.6518-6529.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Liu S. K., Tessman I. Mutagenesis by proximity to the recA gene of Escherichia coli. J Mol Biol. 1990 Jan 20;211(2):351–358. doi: 10.1016/0022-2836(90)90356-Q. [DOI] [PubMed] [Google Scholar]
  60. Liu S. K., Tseng J. N., Shiuan D., Hanawalt P. C. Preferential mutagenesis of lacZ integrated at unique sites in the Escherichia coli chromosome. Mol Gen Genet. 1997 Aug;255(5):449–459. doi: 10.1007/s004380050517. [DOI] [PubMed] [Google Scholar]
  61. Maizels N. Somatic hypermutation: how many mechanisms diversify V region sequences? Cell. 1995 Oct 6;83(1):9–12. doi: 10.1016/0092-8674(95)90227-9. [DOI] [PubMed] [Google Scholar]
  62. Maor-Shoshani A., Reuven N. B., Tomer G., Livneh Z. Highly mutagenic replication by DNA polymerase V (UmuC) provides a mechanistic basis for SOS untargeted mutagenesis. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):565–570. doi: 10.1073/pnas.97.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Marinus M. G., Morris N. R. Biological function for 6-methyladenine residues in the DNA of Escherichia coli K12. J Mol Biol. 1974 May 15;85(2):309–322. doi: 10.1016/0022-2836(74)90366-0. [DOI] [PubMed] [Google Scholar]
  64. Masutani C., Kusumoto R., Iwai S., Hanaoka F. Mechanisms of accurate translesion synthesis by human DNA polymerase eta. EMBO J. 2000 Jun 15;19(12):3100–3109. doi: 10.1093/emboj/19.12.3100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Matsuda T., Bebenek K., Masutani C., Hanaoka F., Kunkel T. A. Low fidelity DNA synthesis by human DNA polymerase-eta. Nature. 2000 Apr 27;404(6781):1011–1013. doi: 10.1038/35010014. [DOI] [PubMed] [Google Scholar]
  66. McKenzie G. J., Harris R. S., Lee P. L., Rosenberg S. M. The SOS response regulates adaptive mutation. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6646–6651. doi: 10.1073/pnas.120161797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Mittler J. E., Lenski R. E. Experimental evidence for an alternative to directed mutation in the bgl operon. Nature. 1992 Apr 2;356(6368):446–448. doi: 10.1038/356446a0. [DOI] [PubMed] [Google Scholar]
  68. Morey N. J., Greene C. N., Jinks-Robertson S. Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae. Genetics. 2000 Jan;154(1):109–120. doi: 10.1093/genetics/154.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol. 1994 Jan 1;4(1):24–33. doi: 10.1016/s0960-9822(00)00005-1. [DOI] [PubMed] [Google Scholar]
  70. Ninio J. Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates. Genetics. 1991 Nov;129(3):957–962. doi: 10.1093/genetics/129.3.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Niwa O., Fan Y. J., Numoto M., Kamiya K., Kominami R. Induction of a germline mutation at a hypervariable mouse minisatellite locus by 252Cf radiation. J Radiat Res. 1996 Sep;37(3):217–224. doi: 10.1269/jrr.37.217. [DOI] [PubMed] [Google Scholar]
  72. Prival M. J., Cebula T. A. Adaptive mutation and slow-growing revertants of an Escherichia coli lacZ amber mutant. Genetics. 1996 Dec;144(4):1337–1341. doi: 10.1093/genetics/144.4.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. RYAN F. J., NAKADA D., SCHNEIDER M. J. Is DNA replication a necessary condition for spontaneous mutation? Z Vererbungsl. 1961;92:38–41. doi: 10.1007/BF01854099. [DOI] [PubMed] [Google Scholar]
  74. Radicella J. P., Park P. U., Fox M. S. Adaptive mutation in Escherichia coli: a role for conjugation. Science. 1995 Apr 21;268(5209):418–420. doi: 10.1126/science.7716545. [DOI] [PubMed] [Google Scholar]
  75. Rebeck G. W., Samson L. Increased spontaneous mutation and alkylation sensitivity of Escherichia coli strains lacking the ogt O6-methylguanine DNA repair methyltransferase. J Bacteriol. 1991 Mar;173(6):2068–2076. doi: 10.1128/jb.173.6.2068-2076.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Reuven N. B., Arad G., Maor-Shoshani A., Livneh Z. The mutagenesis protein UmuC is a DNA polymerase activated by UmuD', RecA, and SSB and is specialized for translesion replication. J Biol Chem. 1999 Nov 5;274(45):31763–31766. doi: 10.1074/jbc.274.45.31763. [DOI] [PubMed] [Google Scholar]
  77. Riesenfeld C., Everett M., Piddock L. J., Hall B. G. Adaptive mutations produce resistance to ciprofloxacin. Antimicrob Agents Chemother. 1997 Sep;41(9):2059–2060. doi: 10.1128/aac.41.9.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Rosenberg S. M., Longerich S., Gee P., Harris R. S. Adaptive mutation by deletions in small mononucleotide repeats. Science. 1994 Jul 15;265(5170):405–407. doi: 10.1126/science.8023163. [DOI] [PubMed] [Google Scholar]
  79. Ruiz-Rubio M., Bridges B. A. Mutagenic DNA repair in Escherichia coli. XIV. Influence of two DNA polymerase III mutator alleles on spontaneous and UV mutagenesis. Mol Gen Genet. 1987 Jul;208(3):542–548. doi: 10.1007/BF00328153. [DOI] [PubMed] [Google Scholar]
  80. Sadamoto S., Suzuki S., Kamiya K., Kominami R., Dohi K., Niwa O. Radiation induction of germline mutation at a hypervariable mouse minisatellite locus. Int J Radiat Biol. 1994 May;65(5):549–557. doi: 10.1080/09553009414550641. [DOI] [PubMed] [Google Scholar]
  81. Seifert H. S., So M. Genetic mechanisms of bacterial antigenic variation. Microbiol Rev. 1988 Sep;52(3):327–336. doi: 10.1128/mr.52.3.327-336.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Sloane D. L., Goodman M. F., Echols H. The fidelity of base selection by the polymerase subunit of DNA polymerase III holoenzyme. Nucleic Acids Res. 1988 Jul 25;16(14A):6465–6475. doi: 10.1093/nar/16.14.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Slupska M. M., Baikalov C., Lloyd R., Miller J. H. Mutator tRNAs are encoded by the Escherichia coli mutator genes mutA and mutC: a novel pathway for mutagenesis. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4380–4385. doi: 10.1073/pnas.93.9.4380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Stamato T., Weinstein R., Peters B., Hu J., Doherty B., Giaccia A. Delayed mutation in Chinese hamster cells. Somat Cell Mol Genet. 1987 Jan;13(1):57–65. doi: 10.1007/BF02422299. [DOI] [PubMed] [Google Scholar]
  85. Storb U., Klotz E. L., Hackett J., Jr, Kage K., Bozek G., Martin T. E. A hypermutable insert in an immunoglobulin transgene contains hotspots of somatic mutation and sequences predicting highly stable structures in the RNA transcript. J Exp Med. 1998 Aug 17;188(4):689–698. doi: 10.1084/jem.188.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Taddei F., Halliday J. A., Matic I., Radman M. Genetic analysis of mutagenesis in aging Escherichia coli colonies. Mol Gen Genet. 1997 Oct;256(3):277–281. doi: 10.1007/s004380050570. [DOI] [PubMed] [Google Scholar]
  87. Tang M., Bruck I., Eritja R., Turner J., Frank E. G., Woodgate R., O'Donnell M., Goodman M. F. Biochemical basis of SOS-induced mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD'2C mutagenic complex and RecA protein. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9755–9760. doi: 10.1073/pnas.95.17.9755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Tang M., Pham P., Shen X., Taylor J. S., O'Donnell M., Woodgate R., Goodman M. F. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature. 2000 Apr 27;404(6781):1014–1018. doi: 10.1038/35010020. [DOI] [PubMed] [Google Scholar]
  89. Tang M., Shen X., Frank E. G., O'Donnell M., Woodgate R., Goodman M. F. UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8919–8924. doi: 10.1073/pnas.96.16.8919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Taverna P., Sedgwick B. Generation of an endogenous DNA-methylating agent by nitrosation in Escherichia coli. J Bacteriol. 1996 Sep;178(17):5105–5111. doi: 10.1128/jb.178.17.5105-5111.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Tessman E. S., Peterson P. Plaque color method for rapid isolation of novel recA mutants of Escherichia coli K-12: new classes of protease-constitutive recA mutants. J Bacteriol. 1985 Aug;163(2):677–687. doi: 10.1128/jb.163.2.677-687.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Timms A. R., Bridges B. A. Reversion of the tyrosine ochre strain Escherichia coli WU3610 under starvation conditions depends on a new gene tas. Genetics. 1998 Apr;148(4):1627–1635. doi: 10.1093/genetics/148.4.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Timms A. R., Muriel W., Bridges B. A. A UmuD,C-dependent pathway for spontaneous G:C to C:G transversions in stationary phase Escherichia coli mut Y. Mutat Res. 1999 Sep 13;435(1):77–80. doi: 10.1016/s0921-8777(99)00035-x. [DOI] [PubMed] [Google Scholar]
  94. Torkelson J., Harris R. S., Lombardo M. J., Nagendran J., Thulin C., Rosenberg S. M. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 1997 Jun 2;16(11):3303–3311. doi: 10.1093/emboj/16.11.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Wagner J., Gruz P., Kim S. R., Yamada M., Matsui K., Fuchs R. P., Nohmi T. The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol Cell. 1999 Aug;4(2):281–286. doi: 10.1016/s1097-2765(00)80376-7. [DOI] [PubMed] [Google Scholar]
  96. Wood R. D., Hutchinson F. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli host cells irradiated with ultraviolet light. J Mol Biol. 1984 Mar 5;173(3):293–305. doi: 10.1016/0022-2836(84)90122-0. [DOI] [PubMed] [Google Scholar]
  97. Wright B. E. Does selective gene activation direct evolution? FEBS Lett. 1997 Jan 27;402(1):4–8. doi: 10.1016/s0014-5793(96)01479-2. [DOI] [PubMed] [Google Scholar]
  98. Wright B. E., Longacre A., Reimers J. M. Hypermutation in derepressed operons of Escherichia coli K12. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5089–5094. doi: 10.1073/pnas.96.9.5089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Yélamos J., Klix N., Goyenechea B., Lozano F., Chui Y. L., González Fernández A., Pannell R., Neuberger M. S., Milstein C. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature. 1995 Jul 20;376(6537):225–229. doi: 10.1038/376225a0. [DOI] [PubMed] [Google Scholar]
  100. Zhang Q. M., Ishikawa N., Nakahara T., Yonei S. Escherichia coli MutY protein has a guanine-DNA glycosylase that acts on 7,8-dihydro-8-oxoguanine:guanine mispair to prevent spontaneous G:C-->C:G transversions. Nucleic Acids Res. 1998 Oct 15;26(20):4669–4675. doi: 10.1093/nar/26.20.4669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. van den Akker E., Lutgerink J. T., Lafleur M. V., Joenje H., Retèl J. The formation of one-G deletions as a consequence of single-oxygen-induced DNA damage. Mutat Res. 1994 Aug 1;309(1):45–52. doi: 10.1016/0027-5107(94)90041-8. [DOI] [PubMed] [Google Scholar]

Articles from Philosophical Transactions of the Royal Society of London. Series B are provided here courtesy of The Royal Society

RESOURCES