Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 May;64(5):1375–1384. doi: 10.1016/S0006-3495(93)81503-0

Computer simulation of energy migration in the C-phycocyanin of the blue-green algae Agmenellum Quadruplicatum

Andrey A Demidov *, Alexander Yu Borisov
PMCID: PMC1262462  PMID: 19431892

Abstract

Two methods for simulation of energy migration in the C-phycocyanin fragments of PBS were developed. Both methods are based on the statistical analysis of an excitation behavior in modeling complexes with a limited number (up to hundreds) of chromophores using the Monte-Carlo approach and calculation of migration rates for the system of linear balance equations. Energy migration rates were calculated in the case of C-phycocyanin of the blue-green algae Agmenellum quadruplicatum. The main channels of energy migration were determined in a monomer, trimer, hexamer, and in the rods consisting of 2-4 hexamers. The influence of the “screw” angle between two adjoining trimers of hexamer on the rates of energy migration and on its efficiencies in 1-4 hexamers was also estimated. The analysis was made for the average (random) and real orientation of chromophores in the C-phycocyanin. For both cases the optimal angle values were determined and the one for real C-phycocyanin structure was found to be very close (Δø ≤ 5°) to the optimal angle calculated.

Full text

PDF
1378

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dale R. E., Teale F. W. Number and distribution of chromophore types in native phycobiliproteins. Photochem Photobiol. 1970 Aug;12(2):99–117. doi: 10.1111/j.1751-1097.1970.tb06044.x. [DOI] [PubMed] [Google Scholar]
  2. Fisher R. G., Woods N. E., Fuchs H. E., Sweet R. M. Three-dimensional structures of C-phycocyanin and B-phycoerythrin at 5-A resolution. J Biol Chem. 1980 Jun 10;255(11):5082–5089. [PubMed] [Google Scholar]
  3. Glazer A. N., Fang S., Brown D. M. Spectroscopic properties of C-phycocyanin and of its alpha and beta subunits. J Biol Chem. 1973 Aug 25;248(16):5679–5685. [PubMed] [Google Scholar]
  4. Hackert M. L., Abad-Zapatero C., Stevens S. E., Jr, Fox J. L. Crystallization of C-phycocyanin from the marine blue-green alga Agmenellum quadruplicatum. J Mol Biol. 1977 Apr 15;111(3):365–369. doi: 10.1016/s0022-2836(77)80058-2. [DOI] [PubMed] [Google Scholar]
  5. Holzwarth A. R., Wendler J., Suter G. W. Studies on Chromophore Coupling in Isolated Phycobiliproteins: II. Picosecond Energy Transfer Kinetics and Time-Resolved Fluorescence Spectra of C-Phycocyanin from Synechococcus 6301 as a Function of the Aggregation State. Biophys J. 1987 Jan;51(1):1–12. doi: 10.1016/S0006-3495(87)83306-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kobayashi T., Degenkolb E. O., Bersohn R., Rentzepis P. M., MacColl R., Berns D. S. Energy transfer among the chromophores in phycocyanins measured by picosecond kinetics. Biochemistry. 1979 Nov 13;18(23):5073–5078. doi: 10.1021/bi00590a008. [DOI] [PubMed] [Google Scholar]
  7. Porter G., Tredwell C. J., Searle G. F., Barber J. Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact alga. Biochim Biophys Acta. 1978 Feb 9;501(2):232–245. doi: 10.1016/0005-2728(78)90029-4. [DOI] [PubMed] [Google Scholar]
  8. Scheer J. K. Effect of placement in the order of competition on scores of Nebraska high school students. Res Q. 1973 Mar;44(1):79–85. [PubMed] [Google Scholar]
  9. Schirmer T., Bode W., Huber R. Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 A resolution. A common principle of phycobilin-protein interaction. J Mol Biol. 1987 Aug 5;196(3):677–695. doi: 10.1016/0022-2836(87)90040-4. [DOI] [PubMed] [Google Scholar]
  10. Schirmer T., Bode W., Huber R., Sidler W., Zuber H. X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol. 1985 Jul 20;184(2):257–277. doi: 10.1016/0022-2836(85)90379-1. [DOI] [PubMed] [Google Scholar]
  11. Stryer L., Haugland R. P. Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A. 1967 Aug;58(2):719–726. doi: 10.1073/pnas.58.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES