Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Apr;78(4):1895–1905. doi: 10.1016/S0006-3495(00)76738-5

pH modification of human T-type calcium channel gating.

B P Delisle 1, J Satin 1
PMCID: PMC1300783  PMID: 10733969

Abstract

External pH (pH(o)) modifies T-type calcium channel gating and permeation properties. The mechanisms of T-type channel modulation by pH remain unclear because native currents are small and are contaminated with L-type calcium currents. Heterologous expression of the human cloned T-type channel, alpha1H, enables us to determine the effect of changing pH on isolated T-type calcium currents. External acidification from pH(o) 8.2 to pH(o) 5.5 shifts the midpoint potential (V(1/2)) for steady-state inactivation by 11 mV, shifts the V(1/2) for maximal activation by 40 mV, and reduces the voltage dependence of channel activation. The alpha1H reversal potential (E(rev)) shifts from +49 mV at pH(o) 8.2 to +36 mV at pH(o) 5.5. The maximal macroscopic conductance (G(max)) of alpha1H increases at pH(o) 5.5 compared to pH(o) 8.2. The E(rev) and G(max) data taken together suggest that external protons decrease calcium/monovalent ion relative permeability. In response to a sustained depolarization alpha1H currents inactivate with a single exponential function. The macroscopic inactivation time constant is a steep function of voltage for potentials < -30 mV at pH(o) 8.2. At pH(o) 5.5 the voltage dependence of tau(inact) shifts more depolarized, and is also a more gradual function of voltage. The macroscopic deactivation time constant (tau(deact)) is a function of voltage at the potentials tested. At pH(o) 5.5 the voltage dependence of tau(deact) is simply transposed by approximately 40 mV, without a concomitant change in the voltage dependence. Similarly, the delay in recovery from inactivation at V(rec) of -80 mV in pH(o) 5.5 is similar to that with a V(rec) of -120 mV at pH(o) 8.2. We conclude that alpha1H is uniquely modified by pH(o) compared to other calcium channels. Protons do not block alpha1H current. Rather, a proton-induced change in activation gating accounts for most of the change in current magnitude with acidification.

Full Text

The Full Text of this article is available as a PDF (367.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich R. W., Corey D. P., Stevens C. F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983 Dec 1;306(5942):436–441. doi: 10.1038/306436a0. [DOI] [PubMed] [Google Scholar]
  2. Armstrong C. M., Cota G. Calcium block of Na+ channels and its effect on closing rate. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4154–4157. doi: 10.1073/pnas.96.7.4154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong C. M. Distinguishing surface effects of calcium ion from pore-occupancy effects in Na+ channels. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4158–4163. doi: 10.1073/pnas.96.7.4158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Axford T. C., Dearani J. A., Khait I., Park W. M., Patel M. A., Doursounian M., Neuringer L., Valeri C. R., Khuri S. F. Electrode-derived myocardial pH measurements reflect intracellular myocardial metabolism assessed by phosphorus 31-nuclear magnetic resonance spectroscopy during normothermic ischemia. J Thorac Cardiovasc Surg. 1992 May;103(5):902–907. [PubMed] [Google Scholar]
  5. Begenisich T., Danko M. Hydrogen ion block of the sodium pore in squid giant axons. J Gen Physiol. 1983 Nov;82(5):599–618. doi: 10.1085/jgp.82.5.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bénitah J., Balser J. R., Marban E., Tomaselli G. F. Proton inhibition of sodium channels: mechanism of gating shifts and reduced conductance. J Membr Biol. 1997 Jan 15;155(2):121–131. doi: 10.1007/s002329900164. [DOI] [PubMed] [Google Scholar]
  7. Carbone E., Lux H. D. Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones. J Physiol. 1987 May;386:547–570. doi: 10.1113/jphysiol.1987.sp016551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carmeliet E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev. 1999 Jul;79(3):917–1017. doi: 10.1152/physrev.1999.79.3.917. [DOI] [PubMed] [Google Scholar]
  9. Chen C. F., Hess P. Mechanism of gating of T-type calcium channels. J Gen Physiol. 1990 Sep;96(3):603–630. doi: 10.1085/jgp.96.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen X. H., Tsien R. W. Aspartate substitutions establish the concerted action of P-region glutamates in repeats I and III in forming the protonation site of L-type Ca2+ channels. J Biol Chem. 1997 Nov 28;272(48):30002–30008. doi: 10.1074/jbc.272.48.30002. [DOI] [PubMed] [Google Scholar]
  11. Clarke K., Stewart L. C., Neubauer S., Balschi J. A., Smith T. W., Ingwall J. S., Nédélec J. F., Humphrey S. M., Kléber A. G., Springer C. S., Jr Extracellular volume and transsarcolemmal proton movement during ischemia and reperfusion: a 31P NMR spectroscopic study of the isovolumic rat heart. NMR Biomed. 1993 Jul-Aug;6(4):278–286. doi: 10.1002/nbm.1940060407. [DOI] [PubMed] [Google Scholar]
  12. Coulter D. A., Huguenard J. R., Prince D. A. Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol. 1989 Jul;414:587–604. doi: 10.1113/jphysiol.1989.sp017705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cribbs L. L., Lee J. H., Yang J., Satin J., Zhang Y., Daud A., Barclay J., Williamson M. P., Fox M., Rees M. Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res. 1998 Jul 13;83(1):103–109. doi: 10.1161/01.res.83.1.103. [DOI] [PubMed] [Google Scholar]
  14. Daumas P., Andersen O. S. Proton block of rat brain sodium channels. Evidence for two proton binding sites and multiple occupancy. J Gen Physiol. 1993 Jan;101(1):27–43. doi: 10.1085/jgp.101.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Droogmans G., Nilius B. Kinetic properties of the cardiac T-type calcium channel in the guinea-pig. J Physiol. 1989 Dec;419:627–650. doi: 10.1113/jphysiol.1989.sp017890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fox A. P., Nowycky M. C., Tsien R. W. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol. 1987 Dec;394:149–172. doi: 10.1113/jphysiol.1987.sp016864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hagiwara N., Irisawa H., Kameyama M. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol. 1988 Jan;395:233–253. doi: 10.1113/jphysiol.1988.sp016916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hille B., Woodhull A. M., Shapiro B. I. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):301–318. doi: 10.1098/rstb.1975.0011. [DOI] [PubMed] [Google Scholar]
  19. January C. T., Riddle J. M. Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ Res. 1989 May;64(5):977–990. doi: 10.1161/01.res.64.5.977. [DOI] [PubMed] [Google Scholar]
  20. Klöckner U., Mikala G., Schwartz A., Varadi G. Molecular studies of the asymmetric pore structure of the human cardiac voltage- dependent Ca2+ channel. Conserved residue, Glu-1086, regulates proton-dependent ion permeation. J Biol Chem. 1996 Sep 13;271(37):22293–22296. doi: 10.1074/jbc.271.37.22293. [DOI] [PubMed] [Google Scholar]
  21. Krafte D. S., Kass R. S. Hydrogen ion modulation of Ca channel current in cardiac ventricular cells. Evidence for multiple mechanisms. J Gen Physiol. 1988 May;91(5):641–657. doi: 10.1085/jgp.91.5.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuo C. C., Bean B. P. Na+ channels must deactivate to recover from inactivation. Neuron. 1994 Apr;12(4):819–829. doi: 10.1016/0896-6273(94)90335-2. [DOI] [PubMed] [Google Scholar]
  23. Kwan Y. W., Kass R. S. Interactions between H+ and Ca2+ near cardiac L-type calcium channels: evidence for independent channel-associated binding sites. Biophys J. 1993 Sep;65(3):1188–1195. doi: 10.1016/S0006-3495(93)81152-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee J. H., Gomora J. C., Cribbs L. L., Perez-Reyes E. Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H. Biophys J. 1999 Dec;77(6):3034–3042. doi: 10.1016/S0006-3495(99)77134-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nuss H. B., Houser S. R. T-type Ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes. Circ Res. 1993 Oct;73(4):777–782. doi: 10.1161/01.res.73.4.777. [DOI] [PubMed] [Google Scholar]
  26. Nuss H. B., Käb S., Kass D. A., Tomaselli G. F., Marbán E. Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. Am J Physiol. 1999 Jul;277(1 Pt 2):H80–H91. doi: 10.1152/ajpheart.1999.277.1.H80. [DOI] [PubMed] [Google Scholar]
  27. Pietrobon D., Prod'hom B., Hess P. Interactions of protons with single open L-type calcium channels. pH dependence of proton-induced current fluctuations with Cs+, K+, and Na+ as permeant ions. J Gen Physiol. 1989 Jul;94(1):1–21. doi: 10.1085/jgp.94.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Prod'hom B., Pietrobon D., Hess P. Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca2+ channel. Nature. 1987 Sep 17;329(6136):243–246. doi: 10.1038/329243a0. [DOI] [PubMed] [Google Scholar]
  29. Prod'hom B., Pietrobon D., Hess P. Interactions of protons with single open L-type calcium channels. Location of protonation site and dependence of proton-induced current fluctuations on concentration and species of permeant ion. J Gen Physiol. 1989 Jul;94(1):23–42. doi: 10.1085/jgp.94.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sen L., Smith T. W. T-type Ca2+ channels are abnormal in genetically determined cardiomyopathic hamster hearts. Circ Res. 1994 Jul;75(1):149–155. doi: 10.1161/01.res.75.1.149. [DOI] [PubMed] [Google Scholar]
  31. Serrano J. R., Perez-Reyes E., Jones S. W. State-dependent inactivation of the alpha1G T-type calcium channel. J Gen Physiol. 1999 Aug;114(2):185–201. doi: 10.1085/jgp.114.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tombaugh G. C., Somjen G. G. Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons. J Physiol. 1996 Jun 15;493(Pt 3):719–732. doi: 10.1113/jphysiol.1996.sp021417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tytgat J., Nilius B., Carmeliet E. Modulation of the T-type cardiac Ca channel by changes in proton concentration. J Gen Physiol. 1990 Nov;96(5):973–990. doi: 10.1085/jgp.96.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vanheel B., de Hemptinne A., Leusen I. Acidification and intracellular sodium ion activity during stimulated myocardial ischemia. Am J Physiol. 1990 Jul;259(1 Pt 1):C169–C179. doi: 10.1152/ajpcell.1990.259.1.C169. [DOI] [PubMed] [Google Scholar]
  35. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yan G. X., Kléber A. G. Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle. Circ Res. 1992 Aug;71(2):460–470. doi: 10.1161/01.res.71.2.460. [DOI] [PubMed] [Google Scholar]
  37. Zeng J., Rudy Y. Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys J. 1995 Mar;68(3):949–964. doi: 10.1016/S0006-3495(95)80271-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zhou W., Jones S. W. The effects of external pH on calcium channel currents in bullfrog sympathetic neurons. Biophys J. 1996 Mar;70(3):1326–1334. doi: 10.1016/S0006-3495(96)79689-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhou Z., Lipsius S. L. T-type calcium current in latent pacemaker cells isolated from cat right atrium. J Mol Cell Cardiol. 1994 Sep;26(9):1211–1219. doi: 10.1006/jmcc.1994.1139. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES