Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):1787–1799. doi: 10.1016/S0006-3495(00)76430-7

Sequence evolution and the mechanism of protein folding.

A R Ortiz 1, J Skolnick 1
PMCID: PMC1301072  PMID: 11023886

Abstract

The impact on protein evolution of the physical laws that govern folding remains obscure. Here, by analyzing in silico-evolved sequences subjected to evolutionary pressure for fast folding, it is shown that: First, a subset of residues in the thermodynamic folding nucleus is mainly responsible for modulating the protein folding rate. Second and most important, the protein topology itself is of paramount importance in determining the location of these residues in the structure. Further stabilization of the interactions in this nucleus leads to fast folding sequences. Third, these nucleation points restrict the sequence space available to the protein during evolution. Correlated mutations between positions around these hot spots arise in a statistically significant manner, and most involve contacting residues. When a similar analysis is carried out on real proteins, qualitatively similar results are obtained.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alm E., Baker D. Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11305–11310. doi: 10.1073/pnas.96.20.11305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bahar I., Atilgan A. R., Erman B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des. 1997;2(3):173–181. doi: 10.1016/S1359-0278(97)00024-2. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Demirel M. C., Atilgan A. R., Jernigan R. L., Erman B., Bahar I. Identification of kinetically hot residues in proteins. Protein Sci. 1998 Dec;7(12):2522–2532. doi: 10.1002/pro.5560071205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dinner A. R., So S. S., Karplus M. Use of quantitative structure-property relationships to predict the folding ability of model proteins. Proteins. 1998 Nov 1;33(2):177–203. doi: 10.1002/(sici)1097-0134(19981101)33:2<177::aid-prot4>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  6. Galzitskaya O. V., Finkelstein A. V. A theoretical search for folding/unfolding nuclei in three-dimensional protein structures. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11299–11304. doi: 10.1073/pnas.96.20.11299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Koonin E. V. Big time for small genomes. Genome Res. 1997 May;7(5):418–421. doi: 10.1101/gr.7.5.418. [DOI] [PubMed] [Google Scholar]
  8. Koonin E. V., Tatusov R. L., Galperin M. Y. Beyond complete genomes: from sequence to structure and function. Curr Opin Struct Biol. 1998 Jun;8(3):355–363. doi: 10.1016/s0959-440x(98)80070-5. [DOI] [PubMed] [Google Scholar]
  9. Mirny L. A., Abkevich V. I., Shakhnovich E. I. How evolution makes proteins fold quickly. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4976–4981. doi: 10.1073/pnas.95.9.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Muñoz V., Eaton W. A. A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11311–11316. doi: 10.1073/pnas.96.20.11311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ortiz A. R., Kolinski A., Rotkiewicz P., Ilkowski B., Skolnick J. Ab initio folding of proteins using restraints derived from evolutionary information. Proteins. 1999;Suppl 3:177–185. doi: 10.1002/(sici)1097-0134(1999)37:3+<177::aid-prot22>3.3.co;2-5. [DOI] [PubMed] [Google Scholar]
  12. Ptitsyn O. B. Protein folding and protein evolution: common folding nucleus in different subfamilies of c-type cytochromes? J Mol Biol. 1998 May 8;278(3):655–666. doi: 10.1006/jmbi.1997.1620. [DOI] [PubMed] [Google Scholar]
  13. Sali A., Shakhnovich E., Karplus M. How does a protein fold? Nature. 1994 May 19;369(6477):248–251. doi: 10.1038/369248a0. [DOI] [PubMed] [Google Scholar]
  14. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  15. Shakhnovich E. I. Modeling protein folding: the beauty and power of simplicity. Fold Des. 1996;1(3):R50–R54. doi: 10.1016/s1359-0278(96)00027-2. [DOI] [PubMed] [Google Scholar]
  16. Shakhnovich E. I. Theoretical studies of protein-folding thermodynamics and kinetics. Curr Opin Struct Biol. 1997 Feb;7(1):29–40. doi: 10.1016/s0959-440x(97)80005-x. [DOI] [PubMed] [Google Scholar]
  17. Shakhnovich E., Abkevich V., Ptitsyn O. Conserved residues and the mechanism of protein folding. Nature. 1996 Jan 4;379(6560):96–98. doi: 10.1038/379096a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES