Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):3267–3281. doi: 10.1016/S0006-3495(00)76559-3

Biomolecular interactions measured by atomic force microscopy.

O H Willemsen 1, M M Snel 1, A Cambi 1, J Greve 1, B G De Grooth 1, C G Figdor 1
PMCID: PMC1301201  PMID: 11106630

Abstract

Atomic force microscopy (AFM) is nowadays frequently applied to determine interaction forces between biological molecules. Starting with the detection of the first discrete unbinding forces between ligands and receptors by AFM only several years ago, measurements have become more and more quantitative. At the same time, theories have been developed to describe and understand the dynamics of the unbinding process and experimental techniques have been refined to verify this theory. In addition, the detection of molecular recognition forces has been exploited to map and image the location of binding sites. In this review we discuss the important contributions that have led to the development of this field. In addition, we emphasize the potential of chemically well-defined surface modification techniques to further improve reproducible measurements by AFM. This increased reproducibility will pave the way for a better understanding of molecular interactions in cell biology.

Full Text

The Full Text of this article is available as a PDF (468.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S., Chen X., Davies J., Davies M. C., Dawkes A. C., Edwards J. C., Roberts C. J., Sefton J., Tendler S. J., Williams P. M. Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry. 1997 Jun 17;36(24):7457–7463. doi: 10.1021/bi962531z. [DOI] [PubMed] [Google Scholar]
  2. Allen S., Davies J., Dawkes A. C., Davies M. C., Edwards J. C., Parker M. C., Roberts C. J., Sefton J., Tendler S. J., Williams P. M. In situ observation of streptavidin-biotin binding on an immunoassay well surface using an atomic force microscope. FEBS Lett. 1996 Jul 22;390(2):161–164. doi: 10.1016/0014-5793(96)00651-5. [DOI] [PubMed] [Google Scholar]
  3. Baumgartner W., Hinterdorfer P., Ness W., Raab A., Vestweber D., Schindler H., Drenckhahn D. Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4005–4010. doi: 10.1073/pnas.070052697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  5. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  6. Boland T., Ratner B. D. Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5297–5301. doi: 10.1073/pnas.92.12.5297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Butt H. J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J. 1991 Dec;60(6):1438–1444. doi: 10.1016/S0006-3495(91)82180-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carrion-Vazquez M., Marszalek P. E., Oberhauser A. F., Fernandez J. M. Atomic force microscopy captures length phenotypes in single proteins. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11288–11292. doi: 10.1073/pnas.96.20.11288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chilkoti A., Boland T., Ratner B. D., Stayton P. S. The relationship between ligand-binding thermodynamics and protein-ligand interaction forces measured by atomic force microscopy. Biophys J. 1995 Nov;69(5):2125–2130. doi: 10.1016/S0006-3495(95)80083-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. E. Mechanical stability of single DNA molecules. Biophys J. 2000 Apr;78(4):1997–2007. doi: 10.1016/S0006-3495(00)76747-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cleveland JP, Schäffer TE, Hansma PK. Probing oscillatory hydration potentials using thermal-mechanical noise in an atomic-force microscope. Phys Rev B Condens Matter. 1995 Sep 15;52(12):R8692–R8695. doi: 10.1103/physrevb.52.r8692. [DOI] [PubMed] [Google Scholar]
  12. Dammer U., Hegner M., Anselmetti D., Wagner P., Dreier M., Huber W., Güntherodt H. J. Specific antigen/antibody interactions measured by force microscopy. Biophys J. 1996 May;70(5):2437–2441. doi: 10.1016/S0006-3495(96)79814-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dammer U., Popescu O., Wagner P., Anselmetti D., Güntherodt H. J., Misevic G. N. Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science. 1995 Feb 24;267(5201):1173–1175. doi: 10.1126/science.7855599. [DOI] [PubMed] [Google Scholar]
  14. Evans E., Berk D., Leung A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys J. 1991 Apr;59(4):838–848. doi: 10.1016/S0006-3495(91)82296-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Evans E., Ritchie K., Merkel R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J. 1995 Jun;68(6):2580–2587. doi: 10.1016/S0006-3495(95)80441-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Evans E., Ritchie K. Strength of a weak bond connecting flexible polymer chains. Biophys J. 1999 May;76(5):2439–2447. doi: 10.1016/S0006-3495(99)77399-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
  19. Fritz J., Katopodis A. G., Kolbinger F., Anselmetti D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12283–12288. doi: 10.1073/pnas.95.21.12283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub HE. How strong is a covalent bond? . Science. 1999 Mar 12;283(5408):1727–1730. doi: 10.1126/science.283.5408.1727. [DOI] [PubMed] [Google Scholar]
  21. Grubmüller H., Heymann B., Tavan P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science. 1996 Feb 16;271(5251):997–999. doi: 10.1126/science.271.5251.997. [DOI] [PubMed] [Google Scholar]
  22. Henderson E., Haydon P. G., Sakaguchi D. S. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science. 1992 Sep 25;257(5078):1944–1946. doi: 10.1126/science.1411511. [DOI] [PubMed] [Google Scholar]
  23. Hinterdorfer P., Baumgartner W., Gruber H. J., Schilcher K., Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477–3481. doi: 10.1073/pnas.93.8.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hoh J. H., Schoenenberger C. A. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci. 1994 May;107(Pt 5):1105–1114. doi: 10.1242/jcs.107.5.1105. [DOI] [PubMed] [Google Scholar]
  25. Izrailev S., Stepaniants S., Balsera M., Oono Y., Schulten K. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J. 1997 Apr;72(4):1568–1581. doi: 10.1016/S0006-3495(97)78804-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kasas S., Thomson N. H., Smith B. L., Hansma H. G., Zhu X., Guthold M., Bustamante C., Kool E. T., Kashlev M., Hansma P. K. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry. 1997 Jan 21;36(3):461–468. doi: 10.1021/bi9624402. [DOI] [PubMed] [Google Scholar]
  27. Lee G. U., Chrisey L. A., Colton R. J. Direct measurement of the forces between complementary strands of DNA. Science. 1994 Nov 4;266(5186):771–773. doi: 10.1126/science.7973628. [DOI] [PubMed] [Google Scholar]
  28. Lehenkari P. P., Horton M. A. Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem Biophys Res Commun. 1999 Jun 16;259(3):645–650. doi: 10.1006/bbrc.1999.0827. [DOI] [PubMed] [Google Scholar]
  29. Li H., Oberhauser A. F., Fowler S. B., Clarke J., Fernandez J. M. Atomic force microscopy reveals the mechanical design of a modular protein. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6527–6531. doi: 10.1073/pnas.120048697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ludwig M., Dettmann W., Gaub H. E. Atomic force microscope imaging contrast based on molecular recognition. Biophys J. 1997 Jan;72(1):445–448. doi: 10.1016/S0006-3495(97)78685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Marszalek P. E., Lu H., Li H., Carrion-Vazquez M., Oberhauser A. F., Schulten K., Fernandez J. M. Mechanical unfolding intermediates in titin modules. Nature. 1999 Nov 4;402(6757):100–103. doi: 10.1038/47083. [DOI] [PubMed] [Google Scholar]
  32. Marszalek P. E., Oberhauser A. F., Pang Y. P., Fernandez J. M. Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature. 1998 Dec 17;396(6712):661–664. doi: 10.1038/25322. [DOI] [PubMed] [Google Scholar]
  33. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
  34. Moy V. T., Florin E. L., Gaub H. E. Intermolecular forces and energies between ligands and receptors. Science. 1994 Oct 14;266(5183):257–259. doi: 10.1126/science.7939660. [DOI] [PubMed] [Google Scholar]
  35. Mueller H., Butt H. J., Bamberg E. Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope. Biophys J. 1999 Feb;76(2):1072–1079. doi: 10.1016/S0006-3495(99)77272-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Oberhauser A. F., Marszalek P. E., Carrion-Vazquez M., Fernandez J. M. Single protein misfolding events captured by atomic force microscopy. Nat Struct Biol. 1999 Nov;6(11):1025–1028. doi: 10.1038/14907. [DOI] [PubMed] [Google Scholar]
  37. Oberhauser A. F., Marszalek P. E., Erickson H. P., Fernandez J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature. 1998 May 14;393(6681):181–185. doi: 10.1038/30270. [DOI] [PubMed] [Google Scholar]
  38. Oesterhelt F., Oesterhelt D., Pfeiffer M., Engel A., Gaub H. E., Müller D. J. Unfolding pathways of individual bacteriorhodopsins. Science. 2000 Apr 7;288(5463):143–146. doi: 10.1126/science.288.5463.143. [DOI] [PubMed] [Google Scholar]
  39. Putman C. A., van der Werf K. O., de Grooth B. G., van Hulst N. F., Greve J. Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys J. 1994 Oct;67(4):1749–1753. doi: 10.1016/S0006-3495(94)80649-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Raab A., Han W., Badt D., Smith-Gill S. J., Lindsay S. M., Schindler H., Hinterdorfer P. Antibody recognition imaging by force microscopy. Nat Biotechnol. 1999 Sep;17(9):901–905. doi: 10.1038/12898. [DOI] [PubMed] [Google Scholar]
  41. Radmacher M., Cleveland J. P., Fritz M., Hansma H. G., Hansma P. K. Mapping interaction forces with the atomic force microscope. Biophys J. 1994 Jun;66(6):2159–2165. doi: 10.1016/S0006-3495(94)81011-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Radmacher M., Fritz M., Hansma H. G., Hansma P. K. Direct observation of enzyme activity with the atomic force microscope. Science. 1994 Sep 9;265(5178):1577–1579. doi: 10.1126/science.8079171. [DOI] [PubMed] [Google Scholar]
  43. Rief M., Clausen-Schaumann H., Gaub H. E. Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol. 1999 Apr;6(4):346–349. doi: 10.1038/7582. [DOI] [PubMed] [Google Scholar]
  44. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  45. Rief M., Gautel M., Schemmel A., Gaub H. E. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys J. 1998 Dec;75(6):3008–3014. doi: 10.1016/S0006-3495(98)77741-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rief M, Oesterhelt F, Heymann B, Gaub HE. Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy. Science. 1997 Feb 28;275(5304):1295–1297. doi: 10.1126/science.275.5304.1295. [DOI] [PubMed] [Google Scholar]
  47. Ros R., Schwesinger F., Anselmetti D., Kubon M., Schäfer R., Plückthun A., Tiefenauer L. Antigen binding forces of individually addressed single-chain Fv antibody molecules. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7402–7405. doi: 10.1073/pnas.95.13.7402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Strunz T., Oroszlan K., Schäfer R., Güntherodt H. J. Dynamic force spectroscopy of single DNA molecules. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11277–11282. doi: 10.1073/pnas.96.20.11277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Stuart J. K., Hlady V. Reflection interference contrast microscopy combined with scanning force microscopy verifies the nature of protein-ligand interaction force measurements. Biophys J. 1999 Jan;76(1 Pt 1):500–508. doi: 10.1016/S0006-3495(99)77218-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Willemsen O. H., Snel M. M., Kuipers L., Figdor C. G., Greve J., De Grooth B. G. A physical approach to reduce nonspecific adhesion in molecular recognition atomic force microscopy. Biophys J. 1999 Feb;76(2):716–724. doi: 10.1016/S0006-3495(99)77238-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Willemsen O. H., Snel M. M., van der Werf K. O., de Grooth B. G., Greve J., Hinterdorfer P., Gruber H. J., Schindler H., van Kooyk Y., Figdor C. G. Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. Biophys J. 1998 Nov;75(5):2220–2228. doi: 10.1016/S0006-3495(98)77666-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wong S. S., Joselevich E., Woolley A. T., Cheung C. L., Lieber C. M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature. 1998 Jul 2;394(6688):52–55. doi: 10.1038/27873. [DOI] [PubMed] [Google Scholar]
  53. Yang G., Cecconi C., Baase W. A., Vetter I. R., Breyer W. A., Haack J. A., Matthews B. W., Dahlquist F. W., Bustamante C. Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):139–144. doi: 10.1073/pnas.97.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. van Noort S. J., van der Werf K. O., Eker A. P., Wyman C., de Grooth B. G., van Hulst N. F., Greve J. Direct visualization of dynamic protein-DNA interactions with a dedicated atomic force microscope. Biophys J. 1998 Jun;74(6):2840–2849. doi: 10.1016/S0006-3495(98)77991-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES