Abstract
Relaxation processes in proteins range in time from picoseconds to seconds. Correspondingly, biological electron transfer (ET) could be controlled by slow protein relaxation. We used the Langevin stochastic approach to describe this type of ET dynamics. Two different types of kinetic behavior were revealed, namely: oscillating ET (that could occur at picoseconds) and monotonically relaxing ET. On a longer time scale, the ET dynamics can include two different kinetic components. The faster one reflects the initial, nonadiabatic ET, whereas the slower one is governed by the medium relaxation. We derived a simple relation between the relative extents of these components, the change in the free energy (DeltaG), and the energy of the slow reorganization Lambda. The rate of ET was found to be determined by slow relaxation at -DeltaG < or = Lambda. The application of the developed approach to experimental data on ET in the bacterial photosynthetic reaction centers allowed a quantitative description of the oscillating features in the primary charge separation and yielded values of Lambda for the slower low-exothermic ET reactions. In all cases but one, the obtained estimates of Lambda varied in the range of 70-100 meV. Because the vast majority of the biological ET reactions are only slightly exothermic (DeltaG > or = -100 meV), the relaxationally controlled ET is likely to prevail in proteins.
Full Text
The Full Text of this article is available as a PDF (311.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen J. P., Feher G., Yeates T. O., Komiya H., Rees D. C. Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5730–5734. doi: 10.1073/pnas.84.16.5730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbara P. F., Walker G. C., Smith T. P. Vibrational modes and the dynamic solvent effect in electron and proton transfer. Science. 1992 May 15;256(5059):975–981. doi: 10.1126/science.256.5059.975. [DOI] [PubMed] [Google Scholar]
- Berg A. I., Noks P. P., Kononenko A. A., Frolov E. N., Uspenskaia N. Ia. Konformatsionnaia podvizhnost' i funktsional'naia aktivnost' fotosinteticheskikh reaktsionnykh tsentrov iz Rhodopseudomonas sphaeroides. Mol Biol (Mosk) 1979 Mar-Apr;13(2):469–477. [PubMed] [Google Scholar]
- Brzezinski P., Paddock M. L., Okamura M. Y., Feher G. Light-induced electrogenic events associated with proton uptake upon forming QB- in bacterial wild-type and mutant reaction centers. Biochim Biophys Acta. 1997 Aug 22;1321(2):149–156. doi: 10.1016/s0005-2728(97)00052-2. [DOI] [PubMed] [Google Scholar]
- Cherepanov D. A., Bibikov S. I., Bibikova M. V., Bloch D. A., Drachev L. A., Gopta O. A., Oesterhelt D., Semenov A. Y., Mulkidjanian A. Y. Reduction and protonation of the secondary quinone acceptor of Rhodobacter sphaeroides photosynthetic reaction center: kinetic model based on a comparison of wild-type chromatophores with mutants carrying Arg-->Ile substitution at sites 207 and 217 in the L-subunit. Biochim Biophys Acta. 2000 Jul 20;1459(1):10–34. doi: 10.1016/s0005-2728(00)00110-9. [DOI] [PubMed] [Google Scholar]
- Crofts A. R., Hong S., Ugulava N., Barquera B., Gennis R., Guergova-Kuras M., Berry E. A. Pathways for proton release during ubihydroquinone oxidation by the bc(1) complex. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10021–10026. doi: 10.1073/pnas.96.18.10021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deisenhofer J., Epp O., Miki K., Huber R., Michel H. X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol. 1984 Dec 5;180(2):385–398. doi: 10.1016/s0022-2836(84)80011-x. [DOI] [PubMed] [Google Scholar]
- Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
- Gonzalez MA, Enciso E, Bermejo FJ, Jimenez-Ruiz M, Bee M. Molecular approach to the interpretation of the dielectric relaxation spectrum of a molecular glass former. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Apr;61(4 Pt A):3884–3895. doi: 10.1103/physreve.61.3884. [DOI] [PubMed] [Google Scholar]
- Gopta O. A., Bloch D. A., Cherepanov D. A., Mulkidjanian A. Y. Temperature dependence of the electrogenic reaction in the QB site of the Rhodobacter sphaeroides photosynthetic reaction center: the QA-QB --> QAQB- transition. FEBS Lett. 1997 Aug 4;412(3):490–494. doi: 10.1016/s0014-5793(97)00842-9. [DOI] [PubMed] [Google Scholar]
- Gopta O. A., Cherepanov D. A., Junge W., Mulkidjanian A. Y. Proton transfer from the bulk to the bound ubiquinone Q(B) of the reaction center in chromatophores of Rhodobacter sphaeroides: retarded conveyance by neutral water. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13159–13164. doi: 10.1073/pnas.96.23.13159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graige M. S., Feher G., Okamura M. Y. Conformational gating of the electron transfer reaction QA-.QB --> QAQB-. in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11679–11684. doi: 10.1073/pnas.95.20.11679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray H. B., Winkler J. R. Electron transfer in proteins. Annu Rev Biochem. 1996;65:537–561. doi: 10.1146/annurev.bi.65.070196.002541. [DOI] [PubMed] [Google Scholar]
- Gunner M. R., Alexov E. A pragmatic approach to structure based calculation of coupled proton and electron transfer in proteins. Biochim Biophys Acta. 2000 May 12;1458(1):63–87. doi: 10.1016/s0005-2728(00)00060-8. [DOI] [PubMed] [Google Scholar]
- Gunner M. R., Honig B. Electrostatic control of midpoint potentials in the cytochrome subunit of the Rhodopseudomonas viridis reaction center. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9151–9155. doi: 10.1073/pnas.88.20.9151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holzwarth A. R., Müller M. G. Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study. Biochemistry. 1996 Sep 10;35(36):11820–11831. doi: 10.1021/bi9607012. [DOI] [PubMed] [Google Scholar]
- Karge M., Irrgang K. D., Sellin S., Feinäugle R., Liu B., Eckert H. J., Eichler H. J., Renger G. Effects of hydrogen/deuterium exchange on photosynthetic water cleavage in PS II core complexes from spinach. FEBS Lett. 1996 Jan 8;378(2):140–144. doi: 10.1016/0014-5793(95)01433-0. [DOI] [PubMed] [Google Scholar]
- Kleinfeld D., Okamura M. Y., Feher G. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. Biochemistry. 1984 Nov 20;23(24):5780–5786. doi: 10.1021/bi00319a017. [DOI] [PubMed] [Google Scholar]
- Lavergne J., Matthews C., Ginet N. Electron and proton transfer on the acceptor side of the reaction center in chromatophores of Rhodobacter capsulatus: evidence for direct protonation of the semiquinone state of QB. Biochemistry. 1999 Apr 6;38(14):4542–4552. doi: 10.1021/bi9827621. [DOI] [PubMed] [Google Scholar]
- Li J., Gilroy D., Tiede D. M., Gunner M. R. Kinetic phases in the electron transfer from P+QA-QB to P+QAQB- and the associated processes in Rhodobacter sphaeroides R-26 reaction centers. Biochemistry. 1998 Mar 3;37(9):2818–2829. doi: 10.1021/bi971699x. [DOI] [PubMed] [Google Scholar]
- Li J., Takahashi E., Gunner M. R. -deltaG(AB) and pH dependence of the electron transfer from P(+)Q(A)(-)Q(B) toP(+)Q(A)Q(B)(-) in Rhodobacter sphaeroides reaction centers. Biochemistry. 2000 Jun 27;39(25):7445–7454. doi: 10.1021/bi992591f. [DOI] [PubMed] [Google Scholar]
- Liebl U., Lipowski G., Négrerie M., Lambry J. C., Martin J. L., Vos M. H. Coherent reaction dynamics in a bacterial cytochrome c oxidase. Nature. 1999 Sep 9;401(6749):181–184. doi: 10.1038/43699. [DOI] [PubMed] [Google Scholar]
- Löffler G., Schreiber H., Steinhauser O. Calculation of the dielectric properties of a protein and its solvent: theory and a case study. J Mol Biol. 1997 Jul 18;270(3):520–534. doi: 10.1006/jmbi.1997.1130. [DOI] [PubMed] [Google Scholar]
- Martinez S. E., Huang D., Ponomarev M., Cramer W. A., Smith J. L. The heme redox center of chloroplast cytochrome f is linked to a buried five-water chain. Protein Sci. 1996 Jun;5(6):1081–1092. doi: 10.1002/pro.5560050610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMahon B. H., Müller J. D., Wraight C. A., Nienhaus G. U. Electron transfer and protein dynamics in the photosynthetic reaction center. Biophys J. 1998 May;74(5):2567–2587. doi: 10.1016/S0006-3495(98)77964-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mertz E. L., Krishtalik L. I. Low dielectric response in enzyme active site. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2081–2086. doi: 10.1073/pnas.050316997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moser C. C., Keske J. M., Warncke K., Farid R. S., Dutton P. L. Nature of biological electron transfer. Nature. 1992 Feb 27;355(6363):796–802. doi: 10.1038/355796a0. [DOI] [PubMed] [Google Scholar]
- Mulkidjanian A. Y. Conformationally controlled pK-switching in membrane proteins: one more mechanism specific to the enzyme catalysis? FEBS Lett. 1999 Dec 17;463(3):199–204. doi: 10.1016/s0014-5793(99)01536-7. [DOI] [PubMed] [Google Scholar]
- Okamura M. Y., Paddock M. L., Graige M. S., Feher G. Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta. 2000 May 12;1458(1):148–163. doi: 10.1016/s0005-2728(00)00065-7. [DOI] [PubMed] [Google Scholar]
- Ortega J. M., Mathis P. Effect of temperature on the kinetics of electron transfer from the tetraheme cytochrome to the primary donor in Rhodopseudomonas viridis. FEBS Lett. 1992 Apr 13;301(1):45–48. doi: 10.1016/0014-5793(92)80207-w. [DOI] [PubMed] [Google Scholar]
- Ortega J. M., Mathis P. Electron transfer from the tetraheme cytochrome to the special pair in isolated reaction centers of Rhodopseudomonas viridis. Biochemistry. 1993 Feb 2;32(4):1141–1151. doi: 10.1021/bi00055a020. [DOI] [PubMed] [Google Scholar]
- Paddock M. L., Feher G., Okamura M. Y. Identification of the proton pathway in bacterial reaction centers: replacement of Asp-M17 and Asp-L210 with asn reduces the proton transfer rate in the presence of Cd2+. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1548–1553. doi: 10.1073/pnas.97.4.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page C. C., Moser C. C., Chen X., Dutton P. L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature. 1999 Nov 4;402(6757):47–52. doi: 10.1038/46972. [DOI] [PubMed] [Google Scholar]
- Parson W. W., Chu Z. T., Warshel A. Reorganization energy of the initial electron-transfer step in photosynthetic bacterial reaction centers. Biophys J. 1998 Jan;74(1):182–191. doi: 10.1016/S0006-3495(98)77778-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peloquin J. M., Williams J. C., Lin X., Alden R. G., Taguchi A. K., Allen J. P., Woodbury N. W. Time-dependent thermodynamics during early electron transfer in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1994 Jul 5;33(26):8089–8100. doi: 10.1021/bi00192a014. [DOI] [PubMed] [Google Scholar]
- Sagnella D. E., Straub J. E. A study of vibrational relaxation of B-state carbon monoxide in the heme pocket of photolyzed carboxymyoglobin. Biophys J. 1999 Jul;77(1):70–84. doi: 10.1016/S0006-3495(99)76873-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sagnella D. E., Straub J. E., Jackson T. A., Lim M., Anfinrud P. A. Vibrational population relaxation of carbon monoxide in the heme pocket of photolyzed carbonmonoxy myoglobin: comparison of time-resolved mid-IR absorbance experiments and molecular dynamics simulations. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14324–14329. doi: 10.1073/pnas.96.25.14324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schilstra M. J., Rappaport F., Nugent J. H., Barnett C. J., Klug D. R. Proton/hydrogen transfer affects the S-state-dependent microsecond phases of P680+ reduction during water splitting. Biochemistry. 1998 Mar 17;37(11):3974–3981. doi: 10.1021/bi9713815. [DOI] [PubMed] [Google Scholar]
- Sharp R. E., Chapman S. K. Mechanisms for regulating electron transfer in multi-centre redox proteins. Biochim Biophys Acta. 1999 Jul 13;1432(2):143–158. doi: 10.1016/s0167-4838(99)00109-0. [DOI] [PubMed] [Google Scholar]
- Shopes R. J., Wraight C. A. Charge recombination from the P+QA- state in reaction centers from Rhodopseudomonas viridis. Biochim Biophys Acta. 1987 Oct 7;893(3):409–425. doi: 10.1016/0005-2728(87)90093-4. [DOI] [PubMed] [Google Scholar]
- Stowell M. H., McPhillips T. M., Rees D. C., Soltis S. M., Abresch E., Feher G. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science. 1997 May 2;276(5313):812–816. doi: 10.1126/science.276.5313.812. [DOI] [PubMed] [Google Scholar]
- Takahashi E., Wraight C. A. Proton and electron transfer in the acceptor quinone complex of Rhodobacter sphaeroides reaction centers: characterization of site-directed mutants of the two ionizable residues, GluL212 and AspL213, in the QB binding site. Biochemistry. 1992 Jan 28;31(3):855–866. doi: 10.1021/bi00118a031. [DOI] [PubMed] [Google Scholar]
- Tiede D. M., Vázquez J., Córdova J., Marone P. A. Time-resolved electrochromism associated with the formation of quinone anions in the Rhodobacter sphaeroides R26 reaction center. Biochemistry. 1996 Aug 20;35(33):10763–10775. doi: 10.1021/bi9605907. [DOI] [PubMed] [Google Scholar]
- Vos M. H., Martin J. L. Femtosecond processes in proteins. Biochim Biophys Acta. 1999 Apr 21;1411(1):1–20. doi: 10.1016/s0005-2728(99)00035-3. [DOI] [PubMed] [Google Scholar]
- Vos M. H., Rischel C., Jones M. R., Martin J. L. Electrochromic detection of a coherent component in the formation of the charge pair P(+)H(L)(-) in bacterial reaction centers. Biochemistry. 2000 Jul 25;39(29):8353–8361. doi: 10.1021/bi000759n. [DOI] [PubMed] [Google Scholar]
- Wake R., King G. A tale of two terminators: crystal structures sharpen the debate on DNA replication fork arrest mechanisms. Structure. 1997 Jan 15;5(1):1–5. doi: 10.1016/s0969-2126(97)00160-3. [DOI] [PubMed] [Google Scholar]
- Warshel A., Chu Z. T., Parson W. W. Dispersed polaron simulations of electron transfer in photosynthetic reaction centers. Science. 1989 Oct 6;246(4926):112–116. doi: 10.1126/science.2675313. [DOI] [PubMed] [Google Scholar]
- Warshel A., Russell S. T. Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys. 1984 Aug;17(3):283–422. doi: 10.1017/s0033583500005333. [DOI] [PubMed] [Google Scholar]
- Wraight C. A. Electron acceptors of bacterial photosynthetic reaction centers. II. H+ binding coupled to secondary electron transfer in the quinone acceptor complex. Biochim Biophys Acta. 1979 Nov 8;548(2):309–327. doi: 10.1016/0005-2728(79)90138-5. [DOI] [PubMed] [Google Scholar]
- Yakovlev A. G., Shkuropatov A. Y., Shuvalov V. A. Nuclear wavepacket motion producing a reversible charge separation in bacterial reaction centers. FEBS Lett. 2000 Jan 28;466(2-3):209–212. doi: 10.1016/s0014-5793(00)01081-4. [DOI] [PubMed] [Google Scholar]