Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2568–2589. doi: 10.1016/S0006-3495(01)76228-5

Kinetics and thermodynamics of protein adsorption: a generalized molecular theoretical approach.

F Fang 1, I Szleifer 1
PMCID: PMC1301446  PMID: 11371435

Abstract

The thermodynamics and kinetics of protein adsorption are studied using a molecular theoretical approach. The cases studied include competitive adsorption from mixtures and the effect of conformational changes upon adsorption. The kinetic theory is based on a generalized diffusion equation in which the driving force for motion is the gradient of chemical potentials of the proteins. The time-dependent chemical potentials, as well as the equilibrium behavior of the system, are obtained using a molecular mean-field theory. The theory provides, within the same theoretical formulation, the diffusion and the kinetic (activated) controlled regimes. By separation of ideal and nonideal contributions to the chemical potential, the equation of motion shows a purely diffusive part and the motion of the particles in the potential of mean force resulting from the intermolecular interactions. The theory enables the calculation of the time-dependent surface coverage of proteins, the dynamic surface tension, and the structure of the adsorbed layer in contact with the approaching proteins. For the case of competitive adsorption from a solution containing a mixture of large and small proteins, a variety of different adsorption patterns are observed depending upon the bulk composition, the strength of the interaction between the particles, and the surface and size of the proteins. It is found that the experimentally observed Vroman sequence is predicted in the case that the bulk solution is at a composition with an excess of the small protein, and that the interaction between the large protein and the surface is much larger than that of the smaller protein. The effect of surface conformational changes of the adsorbed proteins in the time-dependent adsorption is studied in detail. The theory predicts regimes of constant density and dynamic surface tension that are long lived but are only intermediates before the final approach to equilibrium. The implications of the findings to the interpretation of experimental observations is discussed.

Full Text

The Full Text of this article is available as a PDF (239.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooks C. L., 3rd, Gruebele M., Onuchic J. N., Wolynes P. G. Chemical physics of protein folding. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11037–11038. doi: 10.1073/pnas.95.19.11037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chan H. S., Dill K. A. Protein folding in the landscape perspective: chevron plots and non-Arrhenius kinetics. Proteins. 1998 Jan;30(1):2–33. doi: 10.1002/(sici)1097-0134(19980101)30:1<2::aid-prot2>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  3. Chatelier R. C., Minton A. P. Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. Biophys J. 1996 Nov;71(5):2367–2374. doi: 10.1016/S0006-3495(96)79430-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cho D, Narsimhan G, Franses EI. Adsorption Dynamics of Native and Pentylated Bovine Serum Albumin at Air-Water Interfaces: Surface Concentration/ Surface Pressure Measurements. J Colloid Interface Sci. 1997 Jul 15;191(2):312–325. doi: 10.1006/jcis.1997.4963. [DOI] [PubMed] [Google Scholar]
  5. Ghose S., Chase H. Expanded bed chromatography of proteins in small diameter columns. I. Scale down and validation. Bioseparation. 2000;9(1):21–28. doi: 10.1023/a:1008193312969. [DOI] [PubMed] [Google Scholar]
  6. Gidalevitz D., Huang Z., Rice S. A. Protein folding at the air-water interface studied with x-ray reflectivity. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2608–2611. doi: 10.1073/pnas.96.6.2608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Green R. J., Davies M. C., Roberts C. J., Tendler S. J. Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials. 1999 Feb;20(4):385–391. doi: 10.1016/s0142-9612(98)00201-4. [DOI] [PubMed] [Google Scholar]
  8. Hlady V, V, Buijs J. Protein adsorption on solid surfaces. Curr Opin Biotechnol. 1996 Feb 1;7(1):72–77. doi: 10.1016/s0958-1669(96)80098-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ishihara K., Nomura H., Mihara T., Kurita K., Iwasaki Y., Nakabayashi N. Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res. 1998 Feb;39(2):323–330. doi: 10.1002/(sici)1097-4636(199802)39:2<323::aid-jbm21>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  10. Lassen B, Malmsten M. Competitive Protein Adsorption at Plasma Polymer Surfaces. J Colloid Interface Sci. 1997 Feb 1;186(1):9–16. doi: 10.1006/jcis.1996.4529. [DOI] [PubMed] [Google Scholar]
  11. Lüscher E. F., Weber S. The formation of the haemostatic plug--a special case of platelet aggregation. An experiment and a survey of the literature. Thromb Haemost. 1993 Aug 2;70(2):234–237. [PubMed] [Google Scholar]
  12. Minton A. P. Adsorption of globular proteins on locally planar surfaces. II. Models for the effect of multiple adsorbate conformations on adsorption equilibria and kinetics. Biophys J. 1999 Jan;76(1 Pt 1):176–187. doi: 10.1016/S0006-3495(99)77187-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Montdargent B., Letourneur D. Toward new biomaterials. Infect Control Hosp Epidemiol. 2000 Jun;21(6):404–410. doi: 10.1086/501782. [DOI] [PubMed] [Google Scholar]
  14. Norde W., Giacomelli C. E. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J Biotechnol. 2000 May 26;79(3):259–268. doi: 10.1016/s0168-1656(00)00242-x. [DOI] [PubMed] [Google Scholar]
  15. Ravichandran S., Talbot J. Mobility of adsorbed proteins: a Brownian dynamics study. Biophys J. 2000 Jan;78(1):110–120. doi: 10.1016/S0006-3495(00)76577-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Satulovsky J., Carignano M. A., Szleifer I. Kinetic and thermodynamic control of protein adsorption. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9037–9041. doi: 10.1073/pnas.150236197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scheraga H. A. Recent developments in the theory of protein folding: searching for the global energy minimum. Biophys Chem. 1996 Apr 16;59(3):329–339. doi: 10.1016/0301-4622(95)00126-3. [DOI] [PubMed] [Google Scholar]
  18. Shi H., Ratner B. D. Template recognition of protein-imprinted polymer surfaces. J Biomed Mater Res. 2000 Jan;49(1):1–11. doi: 10.1002/(sici)1097-4636(200001)49:1<1::aid-jbm1>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  19. Szleifer I. Protein adsorption on surfaces with grafted polymers: a theoretical approach. Biophys J. 1997 Feb;72(2 Pt 1):595–612. doi: 10.1016/s0006-3495(97)78698-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tanaka M., Motomura T., Kawada M., Anzai T., Kasori Y., Shiroya T., Shimura K., Onishi M., Mochizuki A. Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)--relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials. 2000 Jul;21(14):1471–1481. doi: 10.1016/s0142-9612(00)00031-4. [DOI] [PubMed] [Google Scholar]
  21. Van Tassel PR, Guemouri L, Ramsden JJ, Tarjus G, Viot P, Talbot J. A Particle-Level Model of Irreversible Protein Adsorption with a Postadsorption Transition. J Colloid Interface Sci. 1998 Nov 15;207(2):317–323. doi: 10.1006/jcis.1998.5781. [DOI] [PubMed] [Google Scholar]
  22. Van Tassel PR, Talbot J, Tarjus G, Viot P. Kinetics of irreversible adsorption with a particle conformational change: A density expansion approach. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Jan;53(1):785–798. doi: 10.1103/physreve.53.785. [DOI] [PubMed] [Google Scholar]
  23. Yue K., Fiebig K. M., Thomas P. D., Chan H. S., Shakhnovich E. I., Dill K. A. A test of lattice protein folding algorithms. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):325–329. doi: 10.1073/pnas.92.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES