Abstract
ATP synthase (F(O)F(1)) operates as two rotary motor/generators coupled by a common shaft. Both portions, F(1) and F(O), are rotary steppers. Their symmetries are mismatched (C(3) versus C(10-14)). We used the curvature of fluorescent actin filaments, attached to the rotating c-ring, as a spring balance (flexural rigidity of 8. 10(-26) Nm(2)) to gauge the angular profile of the output torque at F(O) during ATP hydrolysis by F(1) (see theoretical companion article (. Biophys. J. 81:1234-1244.)). The large average output torque (50 +/- 6 pN. nm) proved the absence of any slip. Variations of the torque were small, and the output free energy of the loaded enzyme decayed almost linearly over the angular reaction coordinate. Considering the threefold stepping and high activation barrier of the driving motor proper, the rather constant output torque implied a soft elastic power transmission between F(1) and F(O). It is considered as essential, not only for the robust operation of this ubiquitous enzyme under symmetry mismatch, but also for a high turnover rate of the two counteracting and stepping motor/generators.
Full Text
The Full Text of this article is available as a PDF (302.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
- Adachi K., Yasuda R., Noji H., Itoh H., Harada Y., Yoshida M., Kinosita K., Jr Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7243–7247. doi: 10.1073/pnas.120174297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Al-Shawi M. K., Ketchum C. J., Nakamoto R. K. Energy coupling, turnover, and stability of the F0F1 ATP synthase are dependent on the energy of interaction between gamma and beta subunits. J Biol Chem. 1997 Jan 24;272(4):2300–2306. doi: 10.1074/jbc.272.4.2300. [DOI] [PubMed] [Google Scholar]
- Boyer P. D. The ATP synthase--a splendid molecular machine. Annu Rev Biochem. 1997;66:717–749. doi: 10.1146/annurev.biochem.66.1.717. [DOI] [PubMed] [Google Scholar]
- Cherepanov D. A., Junge W. Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: curvature as an indicator of the torque. Biophys J. 2001 Sep;81(3):1234–1244. doi: 10.1016/S0006-3495(01)75781-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherepanov D. A., Mulkidjanian A. Y., Junge W. Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Lett. 1999 Apr 16;449(1):1–6. doi: 10.1016/s0014-5793(99)00386-5. [DOI] [PubMed] [Google Scholar]
- Dimroth P. Operation of the F(0) motor of the ATP synthase. Biochim Biophys Acta. 2000 May 31;1458(2-3):374–386. doi: 10.1016/s0005-2728(00)00088-8. [DOI] [PubMed] [Google Scholar]
- Gittes F., Mickey B., Nettleton J., Howard J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol. 1993 Feb;120(4):923–934. doi: 10.1083/jcb.120.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hisabori T., Kondoh A., Yoshida M. The gamma subunit in chloroplast F(1)-ATPase can rotate in a unidirectional and counter-clockwise manner. FEBS Lett. 1999 Dec 10;463(1-2):35–38. doi: 10.1016/s0014-5793(99)01602-6. [DOI] [PubMed] [Google Scholar]
- Hunt A. J., Gittes F., Howard J. The force exerted by a single kinesin molecule against a viscous load. Biophys J. 1994 Aug;67(2):766–781. doi: 10.1016/S0006-3495(94)80537-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häsler K., Engelbrecht S., Junge W. Three-stepped rotation of subunits gamma and epsilon in single molecules of F-ATPase as revealed by polarized, confocal fluorometry. FEBS Lett. 1998 Apr 24;426(3):301–304. doi: 10.1016/s0014-5793(98)00358-5. [DOI] [PubMed] [Google Scholar]
- Isambert H., Venier P., Maggs A. C., Fattoum A., Kassab R., Pantaloni D., Carlier M. F. Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem. 1995 May 12;270(19):11437–11444. doi: 10.1074/jbc.270.19.11437. [DOI] [PubMed] [Google Scholar]
- Jones P. C., Fillingame R. H. Genetic fusions of subunit c in the F0 sector of H+-transporting ATP synthase. Functional dimers and trimers and determination of stoichiometry by cross-linking analysis. J Biol Chem. 1998 Nov 6;273(45):29701–29705. doi: 10.1074/jbc.273.45.29701. [DOI] [PubMed] [Google Scholar]
- Junge W. ATP synthase and other motor proteins. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4735–4737. doi: 10.1073/pnas.96.9.4735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Junge W., Lill H., Engelbrecht S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci. 1997 Nov;22(11):420–423. doi: 10.1016/s0968-0004(97)01129-8. [DOI] [PubMed] [Google Scholar]
- Kinosita K., Jr, Yasuda R., Noji H., Adachi K. A rotary molecular motor that can work at near 100% efficiency. Philos Trans R Soc Lond B Biol Sci. 2000 Apr 29;355(1396):473–489. doi: 10.1098/rstb.2000.0589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinosita K., Jr, Yasuda R., Noji H. F1-ATPase: a highly efficient rotary ATP machine. Essays Biochem. 2000;35:3–18. doi: 10.1042/bse0350003. [DOI] [PubMed] [Google Scholar]
- Kinosita K., Jr, Yasuda R., Noji H., Ishiwata S., Yoshida M. F1-ATPase: a rotary motor made of a single molecule. Cell. 1998 Apr 3;93(1):21–24. doi: 10.1016/s0092-8674(00)81142-3. [DOI] [PubMed] [Google Scholar]
- Klionsky D. J., Brusilow W. S., Simoni R. D. In vivo evidence for the role of the epsilon subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli. J Bacteriol. 1984 Dec;160(3):1055–1060. doi: 10.1128/jb.160.3.1055-1060.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo P. H., Ketchum C. J., Nakamoto R. K. Stability and functionality of cysteine-less F(0)F1 ATP synthase from Escherichia coli. FEBS Lett. 1998 Apr 17;426(2):217–220. doi: 10.1016/s0014-5793(98)00337-8. [DOI] [PubMed] [Google Scholar]
- Leslie A. G., Abrahams J. P., Braig K., Lutter R., Menz R. I., Orriss G. L., van Raaij M. J., Walker J. E. The structure of bovine mitochondrial F1-ATPase: an example of rotary catalysis. Biochem Soc Trans. 1999 Feb;27(2):37–42. doi: 10.1042/bst0270037. [DOI] [PubMed] [Google Scholar]
- Leslie A. G., Walker J. E. Structural model of F1-ATPase and the implications for rotary catalysis. Philos Trans R Soc Lond B Biol Sci. 2000 Apr 29;355(1396):465–471. doi: 10.1098/rstb.2000.0588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendelson R., Morris E. P. The structure of the acto-myosin subfragment 1 complex: results of searches using data from electron microscopy and x-ray crystallography. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8533–8538. doi: 10.1073/pnas.94.16.8533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noji H., Häsler K., Junge W., Kinosita K., Jr, Yoshida M., Engelbrecht S. Rotation of Escherichia coli F(1)-ATPase. Biochem Biophys Res Commun. 1999 Jul 14;260(3):597–599. doi: 10.1006/bbrc.1999.0885. [DOI] [PubMed] [Google Scholar]
- Noji H., Yasuda R., Yoshida M., Kinosita K., Jr Direct observation of the rotation of F1-ATPase. Nature. 1997 Mar 20;386(6622):299–302. doi: 10.1038/386299a0. [DOI] [PubMed] [Google Scholar]
- Omote H., Sambonmatsu N., Saito K., Sambongi Y., Iwamoto-Kihara A., Yanagida T., Wada Y., Futai M. The gamma-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7780–7784. doi: 10.1073/pnas.96.14.7780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oster G., Wang H. ATP synthase: two motors, two fuels. Structure. 1999 Apr 15;7(4):R67–R72. doi: 10.1016/s0969-2126(99)80046-x. [DOI] [PubMed] [Google Scholar]
- Panke O, Rumberg B. Kinetic modeling of rotary CF0F1-ATP synthase: storage of elastic energy during energy transduction . Biochim Biophys Acta. 1999 Jun 30;1412(2):118–128. doi: 10.1016/s0005-2728(99)00059-6. [DOI] [PubMed] [Google Scholar]
- Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Enzymol. 1982;85(Pt B):164–181. doi: 10.1016/0076-6879(82)85020-9. [DOI] [PubMed] [Google Scholar]
- Pänke O., Gumbiowski K., Junge W., Engelbrecht S. F-ATPase: specific observation of the rotating c subunit oligomer of EF(o)EF(1). FEBS Lett. 2000 Apr 21;472(1):34–38. doi: 10.1016/s0014-5793(00)01436-8. [DOI] [PubMed] [Google Scholar]
- Sabbert D., Engelbrecht S., Junge W. Functional and idling rotatory motion within F1-ATPase. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4401–4405. doi: 10.1073/pnas.94.9.4401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sabbert D., Junge W. Stepped versus continuous rotatory motors at the molecular scale. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2312–2317. doi: 10.1073/pnas.94.6.2312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sambongi Y., Iko Y., Tanabe M., Omote H., Iwamoto-Kihara A., Ueda I., Yanagida T., Wada Y., Futai M. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science. 1999 Nov 26;286(5445):1722–1724. doi: 10.1126/science.286.5445.1722. [DOI] [PubMed] [Google Scholar]
- Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- Seelert H., Poetsch A., Dencher N. A., Engel A., Stahlberg H., Müller D. J. Structural biology. Proton-powered turbine of a plant motor. Nature. 2000 May 25;405(6785):418–419. doi: 10.1038/35013148. [DOI] [PubMed] [Google Scholar]
- Stahlberg H., Müller D. J., Suda K., Fotiadis D., Engel A., Meier T., Matthey U., Dimroth P. Bacterial Na(+)-ATP synthase has an undecameric rotor. EMBO Rep. 2001 Mar;2(3):229–233. doi: 10.1093/embo-reports/kve047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stock D., Leslie A. G., Walker J. E. Molecular architecture of the rotary motor in ATP synthase. Science. 1999 Nov 26;286(5445):1700–1705. doi: 10.1126/science.286.5445.1700. [DOI] [PubMed] [Google Scholar]
- Syroeshkin A. V., Bakeeva L. E., Cherepanov D. A. Contraction transitions of F1-F0 ATPase during catalytic turnover. Biochim Biophys Acta. 1998 Dec 1;1409(2):59–71. doi: 10.1016/s0005-2728(98)00150-9. [DOI] [PubMed] [Google Scholar]
- Tsuda Y., Yasutake H., Ishijima A., Yanagida T. Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12937–12942. doi: 10.1073/pnas.93.23.12937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsunoda S. P., Aggeler R., Noji H., Kinosita K., Jr, Yoshida M., Capaldi R. A. Observations of rotation within the F(o)F(1)-ATP synthase: deciding between rotation of the F(o)c subunit ring and artifact. FEBS Lett. 2000 Mar 31;470(3):244–248. doi: 10.1016/s0014-5793(00)01336-3. [DOI] [PubMed] [Google Scholar]
- Wang H., Oster G. Energy transduction in the F1 motor of ATP synthase. Nature. 1998 Nov 19;396(6708):279–282. doi: 10.1038/24409. [DOI] [PubMed] [Google Scholar]
- Weber J., Senior A. E. Binding and hydrolysis of TNP-ATP by Escherichia coli F1-ATPase. J Biol Chem. 1996 Feb 16;271(7):3474–3477. doi: 10.1074/jbc.271.7.3474. [DOI] [PubMed] [Google Scholar]
- Wise J. G. Site-directed mutagenesis of the conserved beta subunit tyrosine 331 of Escherichia coli ATP synthase yields catalytically active enzymes. J Biol Chem. 1990 Jun 25;265(18):10403–10409. [PubMed] [Google Scholar]
- Xu J., Schwarz W. H., Käs J. A., Stossel T. P., Janmey P. A., Pollard T. D. Mechanical properties of actin filament networks depend on preparation, polymerization conditions, and storage of actin monomers. Biophys J. 1998 May;74(5):2731–2740. doi: 10.1016/S0006-3495(98)77979-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanagida T., Nakase M., Nishiyama K., Oosawa F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature. 1984 Jan 5;307(5946):58–60. doi: 10.1038/307058a0. [DOI] [PubMed] [Google Scholar]
- Yasuda R., Miyata H., Kinosita K., Jr Direct measurement of the torsional rigidity of single actin filaments. J Mol Biol. 1996 Oct 25;263(2):227–236. doi: 10.1006/jmbi.1996.0571. [DOI] [PubMed] [Google Scholar]
- Yasuda R., Noji H., Kinosita K., Jr, Yoshida M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell. 1998 Jun 26;93(7):1117–1124. doi: 10.1016/s0092-8674(00)81456-7. [DOI] [PubMed] [Google Scholar]
- Yasuda R., Noji H., Yoshida M., Kinosita K., Jr, Itoh H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature. 2001 Apr 19;410(6831):898–904. doi: 10.1038/35073513. [DOI] [PubMed] [Google Scholar]
