Abstract
In maize plastids, transcripts are known to be modified at 27 C-to-U RNA editing sites, affecting the expression-of 15 different genes. The relative contribution of editing efficiency versus transcript abundance in regulation of chloroplast gene expression has previously been analyzed for only a few genes. We undertook a comprehensive analysis of the editing efficiency of each of the 27 maize editing sites in 10 different maize tissues, which contain a range of plastid types including chloroplasts, etioplasts, and amyloplasts. Using a reproducible poisoned primer extension assay, we detected variation between RNA editing extent of different sites in the same transcript in the same tissue, and between the same site in different tissues. The most striking editing deficiency is in an editing site in ndhB that is edited at only 8% and 1% in roots and callus plastids respectively, whereas green leaf chloroplasts edit this site at 100%. Editing efficiencies of some sites are not affected by the developmental stages we examined and are always edited close to 80-100%. The relative amounts of transcripts of each of the 10 genes that exhibited variable editing extents were determined by real-time PCR. Seven genes exhibited over 100 times lower transcript abundance in either roots or tissue-cultured cells relative to green leaf tissue. The quantitative analysis indicates that a particular editing site can be efficiently edited over a large range of transcript abundance, resulting in no general correlation of transcript abundance and editing extent. The independent variation of editing efficiency of different sites within the same transcript fits with a model that postulates individual trans-acting factors specific to each editing site. Because tissues where editing efficiency at certain sites is low invariably also exhibited greatly decreased abundance of the transcripts carrying those sites, decrease in the amounts of particular RNAs rather than a lack of editing is predicted to have the most significant impact on gene expression under steady-state conditions. Our data is consistent with the hypothesis that the role of editing in angiosperm plastids is to correct otherwise detrimental mutations rather than to generate significant protein diversity.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bock R., Hermann M., Kössel H. In vivo dissection of cis-acting determinants for plastid RNA editing. EMBO J. 1996 Sep 16;15(18):5052–5059. [PMC free article] [PubMed] [Google Scholar]
- Bock R., Kössel H., Maliga P. Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J. 1994 Oct 3;13(19):4623–4628. doi: 10.1002/j.1460-2075.1994.tb06784.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bock R. Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing. Biochimie. 2000 Jun-Jul;82(6-7):549–557. doi: 10.1016/s0300-9084(00)00610-6. [DOI] [PubMed] [Google Scholar]
- Burrows P. A., Sazanov L. A., Svab Z., Maliga P., Nixon P. J. Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J. 1998 Feb 16;17(4):868–876. doi: 10.1093/emboj/17.4.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catalá R., Sabater B., Guéra A. Expression of the plastid ndhF gene product in photosynthetic and non-photosynthetic tissues of developing barley seedlings. Plant Cell Physiol. 1997 Dec;38(12):1382–1388. doi: 10.1093/oxfordjournals.pcp.a029133. [DOI] [PubMed] [Google Scholar]
- Chaudhuri S., Maliga P. Sequences directing C to U editing of the plastid psbL mRNA are located within a 22 nucleotide segment spanning the editing site. EMBO J. 1996 Nov 1;15(21):5958–5964. [PMC free article] [PubMed] [Google Scholar]
- Corneille S., Lutz K., Maliga P. Conservation of RNA editing between rice and maize plastids: are most editing events dispensable? Mol Gen Genet. 2000 Nov;264(4):419–424. doi: 10.1007/s004380000295. [DOI] [PubMed] [Google Scholar]
- Covello P. S., Gray M. W. On the evolution of RNA editing. Trends Genet. 1993 Aug;9(8):265–268. doi: 10.1016/0168-9525(93)90011-6. [DOI] [PubMed] [Google Scholar]
- Covello P. S., Gray M. W. RNA editing in plant mitochondria. Nature. 1989 Oct 19;341(6243):662–666. doi: 10.1038/341662a0. [DOI] [PubMed] [Google Scholar]
- Driscoll D. M., Wynne J. K., Wallis S. C., Scott J. An in vitro system for the editing of apolipoprotein B mRNA. Cell. 1989 Aug 11;58(3):519–525. doi: 10.1016/0092-8674(89)90432-7. [DOI] [PubMed] [Google Scholar]
- Giegé P., Brennicke A. RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15324–15329. doi: 10.1073/pnas.96.26.15324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gualberto J. M., Lamattina L., Bonnard G., Weil J. H., Grienenberger J. M. RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature. 1989 Oct 19;341(6243):660–662. doi: 10.1038/341660a0. [DOI] [PubMed] [Google Scholar]
- Guéra A., de Nova P. G., Sabater B. Identification of the Ndh (NAD(P)H-plastoquinone-oxidoreductase) complex in etioplast membranes of barley: changes during photomorphogenesis of chloroplasts. Plant Cell Physiol. 2000 Jan;41(1):49–59. doi: 10.1093/pcp/41.1.49. [DOI] [PubMed] [Google Scholar]
- Hiesel R., Wissinger B., Schuster W., Brennicke A. RNA editing in plant mitochondria. Science. 1989 Dec 22;246(4937):1632–1634. doi: 10.1126/science.2480644. [DOI] [PubMed] [Google Scholar]
- Hirose T., Fan H., Suzuki J. Y., Wakasugi T., Tsudzuki T., Kössel H., Sugiura M. Occurrence of silent RNA editing in chloroplasts: its species specificity and the influence of environmental and developmental conditions. Plant Mol Biol. 1996 Feb;30(3):667–672. doi: 10.1007/BF00049342. [DOI] [PubMed] [Google Scholar]
- Hirose T., Wakasugi T., Sugiura M., Kössel H. RNA editing of tobacco petB mRNAs occurs both in chloroplasts and non-photosynthetic proplastids. Plant Mol Biol. 1994 Oct;26(1):509–513. doi: 10.1007/BF00039562. [DOI] [PubMed] [Google Scholar]
- Hoch B., Maier R. M., Appel K., Igloi G. L., Kössel H. Editing of a chloroplast mRNA by creation of an initiation codon. Nature. 1991 Sep 12;353(6340):178–180. doi: 10.1038/353178a0. [DOI] [PubMed] [Google Scholar]
- Hodges P., Scott J. Apolipoprotein B mRNA editing: a new tier for the control of gene expression. Trends Biochem Sci. 1992 Feb;17(2):77–81. doi: 10.1016/0968-0004(92)90506-5. [DOI] [PubMed] [Google Scholar]
- Karcher D., Bock R. Site-selective inhibition of plastid RNA editing by heat shock and antibiotics: a role for plastid translation in RNA editing. Nucleic Acids Res. 1998 Mar 1;26(5):1185–1190. doi: 10.1093/nar/26.5.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kofer W., Koop H. U., Wanner G., Steinmüller K. Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet. 1998 Apr;258(1-2):166–173. doi: 10.1007/s004380050719. [DOI] [PubMed] [Google Scholar]
- Kuntz M., Camara B., Weil J. H., Schantz R. The psbL gene from bell pepper (Capsicum annuum): plastid RNA editing also occurs in non-photosynthetic chromoplasts. Plant Mol Biol. 1992 Dec;20(6):1185–1188. doi: 10.1007/BF00028906. [DOI] [PubMed] [Google Scholar]
- Lu B., Hanson M. R. A single homogeneous form of ATP6 protein accumulates in petunia mitochondria despite the presence of differentially edited atp6 transcripts. Plant Cell. 1994 Dec;6(12):1955–1968. doi: 10.1105/tpc.6.12.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu B., Wilson R. K., Phreaner C. G., Mulligan R. M., Hanson M. R. Protein polymorphism generated by differential RNA editing of a plant mitochondrial rps12 gene. Mol Cell Biol. 1996 Apr;16(4):1543–1549. doi: 10.1128/mcb.16.4.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maier R. M., Neckermann K., Igloi G. L., Kössel H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol. 1995 Sep 1;251(5):614–628. doi: 10.1006/jmbi.1995.0460. [DOI] [PubMed] [Google Scholar]
- Maier R. M., Zeltz P., Kössel H., Bonnard G., Gualberto J. M., Grienenberger J. M. RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol. 1996 Oct;32(1-2):343–365. doi: 10.1007/BF00039390. [DOI] [PubMed] [Google Scholar]
- Mills J. C., Syder A. J., Hong C. V., Guruge J. L., Raaii F., Gordon J. I. A molecular profile of the mouse gastric parietal cell with and without exposure to Helicobacter pylori. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13687–13692. doi: 10.1073/pnas.231332398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakajima Y., Mulligan R. M. Heat stress results in incomplete C-to-U editing of maize chloroplast mRNAs and correlates with changes in chloroplast transcription rate. Curr Genet. 2001 Oct;40(3):209–213. doi: 10.1007/s002940100249. [DOI] [PubMed] [Google Scholar]
- Phreaner C. G., Williams M. A., Mulligan R. M. Incomplete editing of rps12 transcripts results in the synthesis of polymorphic polypeptides in plant mitochondria. Plant Cell. 1996 Jan;8(1):107–117. doi: 10.1105/tpc.8.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powell L. M., Wallis S. C., Pease R. J., Edwards Y. H., Knott T. J., Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell. 1987 Sep 11;50(6):831–840. doi: 10.1016/0092-8674(87)90510-1. [DOI] [PubMed] [Google Scholar]
- Raizada M. N., Walbot V. The late developmental pattern of Mu transposon excision is conferred by a cauliflower mosaic virus 35S -driven MURA cDNA in transgenic maize. Plant Cell. 2000 Jan;12(1):5–21. doi: 10.1105/tpc.12.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reed M. L., Hanson M. R. A heterologous maize rpoB editing site is recognized by transgenic tobacco chloroplasts. Mol Cell Biol. 1997 Dec;17(12):6948–6952. doi: 10.1128/mcb.17.12.6948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reed M. L., Lyi S. M., Hanson M. R. Edited transcripts compete with unedited mRNAs for trans-acting editing factors in higher plant chloroplasts. Gene. 2001 Jul 11;272(1-2):165–171. doi: 10.1016/s0378-1119(01)00545-5. [DOI] [PubMed] [Google Scholar]
- Reed M. L., Peeters N. M., Hanson M. R. A single alteration 20 nt 5' to an editing target inhibits chloroplast RNA editing in vivo. Nucleic Acids Res. 2001 Apr 1;29(7):1507–1513. doi: 10.1093/nar/29.7.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudenko G. N., Walbot V. Expression and post-transcriptional regulation of maize transposable element MuDR and its derivatives. Plant Cell. 2001 Mar;13(3):553–570. doi: 10.1105/tpc.13.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruf S., Kössel H., Bock R. Targeted inactivation of a tobacco intron-containing open reading frame reveals a novel chloroplast-encoded photosystem I-related gene. J Cell Biol. 1997 Oct 6;139(1):95–102. doi: 10.1083/jcb.139.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki Y., Kozaki A., Ohmori A., Iguchi H., Nagano Y. Chloroplast RNA editing required for functional acetyl-CoA carboxylase in plants. J Biol Chem. 2000 Nov 14;276(6):3937–3940. doi: 10.1074/jbc.M008166200. [DOI] [PubMed] [Google Scholar]
- Schiffer H. H., Heinemann S. F. A quantitative method to detect RNA editing events. Anal Biochem. 1999 Dec 15;276(2):257–260. doi: 10.1006/abio.1999.4369. [DOI] [PubMed] [Google Scholar]
- Schiffer H. H., Swanson G. T., Masliah E., Heinemann S. F. Unequal expression of allelic kainate receptor GluR7 mRNAs in human brains. J Neurosci. 2000 Dec 15;20(24):9025–9033. doi: 10.1523/JNEUROSCI.20-24-09025.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitz-Linneweber C., Tillich M., Herrmann R. G., Maier R. M. Heterologous, splicing-dependent RNA editing in chloroplasts: allotetraploidy provides trans-factors. EMBO J. 2001 Sep 3;20(17):4874–4883. doi: 10.1093/emboj/20.17.4874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith H. C., Gott J. M., Hanson M. R. A guide to RNA editing. RNA. 1997 Oct;3(10):1105–1123. [PMC free article] [PubMed] [Google Scholar]
- Smith H. C., Kuo S. R., Backus J. W., Harris S. G., Sparks C. E., Sparks J. D. In vitro apolipoprotein B mRNA editing: identification of a 27S editing complex. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1489–1493. doi: 10.1073/pnas.88.4.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsudzuki T., Wakasugi T., Sugiura M. Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol. 2001 Oct-Nov;53(4-5):327–332. doi: 10.1007/s002390010222. [DOI] [PubMed] [Google Scholar]
- Vogel J., Hübschmann T., Börner T., Hess W. R. Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids: support for MatK as an essential splice factor. J Mol Biol. 1997 Jul 11;270(2):179–187. doi: 10.1006/jmbi.1997.1115. [DOI] [PubMed] [Google Scholar]
- Yoshinaga K., Iinuma H., Masuzawa T., Uedal K. Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Res. 1996 Mar 15;24(6):1008–1014. doi: 10.1093/nar/24.6.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zito F., Kuras R., Choquet Y., Kössel H., Wollman F. A. Mutations of cytochrome b6 in Chlamydomonas reinhardtii disclose the functional significance for a proline to leucine conversion by petB editing in maize and tobacco. Plant Mol Biol. 1997 Jan;33(1):79–86. doi: 10.1023/a:1005734809834. [DOI] [PubMed] [Google Scholar]
- del Campo E. M., Sabater B., Martín M. Transcripts of the ndhH-D operon of barley plastids: possible role of unedited site III in splicing of the ndhA intron. Nucleic Acids Res. 2000 Mar 1;28(5):1092–1098. doi: 10.1093/nar/28.5.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]