Skip to main content
Genetics logoLink to Genetics
. 1998 Jul;149(3):1377–1382. doi: 10.1093/genetics/149.3.1377

Mitochondrial DNA haplotype frequencies in natural and experimental populations of Drosophila subobscura.

J García-Martínez 1, J A Castro 1, M Ramón 1, A Latorre 1, A Moya 1
PMCID: PMC1460248  PMID: 9649527

Abstract

The evolution of Drosophila subobscura mitochondrial DNA has been studied in experimental populations, founded with flies from a natural population from Esporles (Majorca, Balearic Islands, Spain). This population, like other European ones, is characterized by the presence of two very common (>96%) mitochondrial haplotypes (called I and II) and rare and endemic haplotypes that appear at very low frequencies. There is no statistical evidence of positive Darwinian selection acting on the mitochondrial DNA variants according to Tajima's neutrality test. Two experimental populations, with one replicate each, were established with flies having a heterogeneous nuclear genetic background, which was representative of the composition of the natural population. Both populations were started with the two most frequent mitochondrial haplotypes, but at different initial frequencies. After 13 to 16 generations, haplotype II reached fixation in three cages and its frequency was 0.89 by generation 25 in the fourth cage. Random drift can be rejected as the force responsible for the observed changes in haplotype frequencies. There is not only statistical evidence of a linear trend favoring a mtDNA (haploid) fitness effect, but also of a significant nonlinear deviation that could be due to a nuclear component.

Full Text

The Full Text of this article is available as a PDF (84.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afonso J. M., Volz A., Hernandez M., Ruttkay H., Gonzalez M., Larruga J. M., Cabrera V. M., Sperlich D. Mitochondrial DNA variation and genetic structure in Old-World populations of Drosophila subobscura. Mol Biol Evol. 1990 Mar;7(2):123–142. doi: 10.1093/oxfordjournals.molbev.a040590. [DOI] [PubMed] [Google Scholar]
  2. Babcock C. S., Asmussen M. A. Effects of differential selection in the sexes on cytonuclear polymorphism and disequilibria. Genetics. 1996 Oct;144(2):839–853. doi: 10.1093/genetics/144.2.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballard J. W., Kreitman M. Unraveling selection in the mitochondrial genome of Drosophila. Genetics. 1994 Nov;138(3):757–772. doi: 10.1093/genetics/138.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark A. G., Lyckegaard E. M. Natural selection with nuclear and cytoplasmic transmission. III. Joint analysis of segregation and mtDNA in Drosophila melanogaster. Genetics. 1988 Mar;118(3):471–481. doi: 10.1093/genetics/118.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. G. Natural selection with nuclear and cytoplasmic transmission. I. A deterministic model. Genetics. 1984 Aug;107(4):679–701. doi: 10.1093/genetics/107.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fos M., Domínguez M. A., Latorre A., Moya A. Mitochondrial DNA evolution in experimental populations of Drosophila subobscura. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4198–4201. doi: 10.1073/pnas.87.11.4198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hutter C. M., Rand D. M. Competition between mitochondrial haplotypes in distinct nuclear genetic environments: Drosophila pseudoobscura vs. D. persimilis. Genetics. 1995 Jun;140(2):537–548. doi: 10.1093/genetics/140.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jenkins T. M., Babcock C. S., Geiser D. M., Anderson W. W. Cytoplasmic incompatibility and mating preference in Colombian Drosophila pseudoobscura. Genetics. 1996 Jan;142(1):189–194. doi: 10.1093/genetics/142.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaneko M., Satta Y., Matsuura E. T., Chigusa S. I. Evolution of the mitochondrial ATPase 6 gene in Drosophila: unusually high level of polymorphism in D. melanogaster. Genet Res. 1993 Jun;61(3):195–204. doi: 10.1017/s0016672300031360. [DOI] [PubMed] [Google Scholar]
  11. Kilpatrick S. T., Rand D. M. Conditional hitchhiking of mitochondrial DNA: frequency shifts of Drosophila melanogaster mtDNA variants depend on nuclear genetic background. Genetics. 1995 Nov;141(3):1113–1124. doi: 10.1093/genetics/141.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Latorre A., Hernández C., Martínez D., Castro J. A., Ramón M., Moya A. Population structure and mitochondrial DNA gene flow in Old World populations of Drosophila subobscura. Heredity (Edinb) 1992 Jan;68(Pt 1):15–24. doi: 10.1038/hdy.1992.2. [DOI] [PubMed] [Google Scholar]
  13. Latorre A., Moya A., Ayala F. J. Evolution of mitochondrial DNA in Drosophila subobscura. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8649–8653. doi: 10.1073/pnas.83.22.8649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MacRae A. F., Anderson W. W. Can mating preferences explain changes in mtDNA haplotype frequencies? Genetics. 1990 Apr;124(4):999–1001. doi: 10.1093/genetics/124.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacRae A. F., Anderson W. W. Evidence for non-neutrality of mitochondrial DNA haplotypes in Drosophila pseudoobscura. Genetics. 1988 Oct;120(2):485–494. doi: 10.1093/genetics/120.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  17. Moya A., Barrio E., Martínez D., Latorre A., González-Candelas F., Ramón M., Castro J. A. Molecular characterization and cytonuclear disequilibria of two Drosophila subobscura mitochondrial haplotypes. Genome. 1993 Oct;36(5):890–898. doi: 10.1139/g93-117. [DOI] [PubMed] [Google Scholar]
  18. Nachman M. W., Boyer S. N., Aquadro C. F. Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6364–6368. doi: 10.1073/pnas.91.14.6364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nachman M. W., Brown W. M., Stoneking M., Aquadro C. F. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics. 1996 Mar;142(3):953–963. doi: 10.1093/genetics/142.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nigro L., Prout T. Is there selection on RFLP differences in mitochondrial DNA? Genetics. 1990 Jul;125(3):551–555. doi: 10.1093/genetics/125.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rand D. M., Dorfsman M., Kann L. M. Neutral and non-neutral evolution of Drosophila mitochondrial DNA. Genetics. 1994 Nov;138(3):741–756. doi: 10.1093/genetics/138.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rozas J., Hernández M., Cabrera V. M., Prevosti A. Colonization of America by Drosophila subobscura: effect of the founder event on the mitochondrial DNA polymorphism. Mol Biol Evol. 1990 Jan;7(1):103–109. doi: 10.1093/oxfordjournals.molbev.a040584. [DOI] [PubMed] [Google Scholar]
  24. Schaffer H. E., Yardley D., Anderson W. W. Drift or Selection: A Statistical Test of Gene Frequency Variation over Generations. Genetics. 1977 Oct;87(2):371–379. doi: 10.1093/genetics/87.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Singh R. S., Hale L. R. Are mitochondrial DNA variants selectively non-neutral? Genetics. 1990 Apr;124(4):995–997. doi: 10.1093/genetics/124.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES