Skip to main content
Genetics logoLink to Genetics
. 2001 Sep;159(1):201–210. doi: 10.1093/genetics/159.1.201

The functional impact of Pgm amino acid polymorphism on glycogen content in Drosophila melanogaster.

B C Verrelli 1, W F Eanes 1
PMCID: PMC1461781  PMID: 11560897

Abstract

Earlier studies of the common PGM allozymes in Drosophila melanogaster reported no in vitro activity differences. However, our study of nucleotide variation observed that PGM allozymes are a heterogeneous mixture of amino acid polymorphisms. In this study, we analyze 10 PGM protein haplotypes with respect to PGM activity, thermostability, and adult glycogen content. We find a twofold difference in activity among PGM protein haplotypes that is associated with a threefold difference in glycogen content. The latitudinal clines for several Pgm amino acid polymorphisms show that high PGM activity, and apparently higher flux to glycogen synthesis, parallel the low activity clines at G6PD for reduced pentose shunt flux in northern latitudes. This suggests that amino acid polymorphism is under selection at this branch point and may be favored for increased metabolic storage associated with stress resistance and adaptation to temperate regions.

Full Text

The Full Text of this article is available as a PDF (191.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P., Rossman M. G., Grau U. M., Zuber H., Frank G., Tratschin J. D. Thermal stability and protein structure. Biochemistry. 1979 Dec 11;18(25):5698–5703. doi: 10.1021/bi00592a028. [DOI] [PubMed] [Google Scholar]
  2. Brown A. J. Physiological correlates of an enzyme polymorphism. Nature. 1977 Oct 27;269(5631):803–804. doi: 10.1038/269803a0. [DOI] [PubMed] [Google Scholar]
  3. Burkhart B. D., Montgomery E., Langley C. H., Voelker R. A. Characterization of Allozyme Null and Low Activity Alleles from Two Natural Populations of DROSOPHILA MELANOGASTER. Genetics. 1984 Jun;107(2):295–306. doi: 10.1093/genetics/107.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carfagna M., Fucci L., Gaudio L., Pontecorvo G., Rubino R. Adaptive value of PGM polymorphism in laboratory populations of Drosophila melanogaster. Genet Res. 1980 Dec;36(3):265–276. doi: 10.1017/s0016672300019881. [DOI] [PubMed] [Google Scholar]
  5. Carter P. A., Watt W. B. Adaptation at specific loci. V. Metabolically adjacent enzyme loci may have very distinct experiences of selective pressures. Genetics. 1988 Aug;119(4):913–924. doi: 10.1093/genetics/119.4.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark A. G. Causes and consequences of variation in energy storage in Drosophila melanogaster. Genetics. 1989 Sep;123(1):131–144. doi: 10.1093/genetics/123.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Connors E. M., Curtsinger J. W. Relationship between alpha-glycerophosphate dehydrogenase activity and metabolic rate during flight in Drosophila melanogaster. Biochem Genet. 1986 Apr;24(3-4):245–257. doi: 10.1007/BF00502792. [DOI] [PubMed] [Google Scholar]
  8. Crawford D. L., Powers D. A. Evolutionary adaptation to different thermal environments via transcriptional regulation. Mol Biol Evol. 1992 Sep;9(5):806–813. doi: 10.1093/oxfordjournals.molbev.a040762. [DOI] [PubMed] [Google Scholar]
  9. Dahlhoff E. P., Rank N. E. Functional and physiological consequences of genetic variation at phosphoglucose isomerase: heat shock protein expression is related to enzyme genotype in a montane beetle. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10056–10061. doi: 10.1073/pnas.160277697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dai J. B., Liu Y., Ray W. J., Jr, Konno M. The crystal structure of muscle phosphoglucomutase refined at 2.7-angstrom resolution. J Biol Chem. 1992 Mar 25;267(9):6322–6337. [PubMed] [Google Scholar]
  11. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  12. Dykhuizen D. E., Dean A. M., Hartl D. L. Metabolic flux and fitness. Genetics. 1987 Jan;115(1):25–31. doi: 10.1093/genetics/115.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eanes W. F., Hey J. IN VIVO Function of Rare G6pd Variants from Natural Populations of DROSOPHILA MELANOGASTER. Genetics. 1986 Jul;113(3):679–693. doi: 10.1093/genetics/113.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Freriksen A., Seykens D., Scharloo W., Heinstra P. W. Alcohol dehydrogenase controls the flux from ethanol into lipids in Drosophila larvae. A 13C NMR study. J Biol Chem. 1991 Nov 15;266(32):21399–21403. [PubMed] [Google Scholar]
  15. Freriksen A., de Ruiter B. L., Scharloo W., Heinstra P. W. Drosophila alcohol dehydrogenase polymorphism and carbon-13 fluxes: opportunities for epistasis and natural selection. Genetics. 1994 Aug;137(4):1071–1078. doi: 10.1093/genetics/137.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fucci L., Gaudio L., Rao R., Spanò A., Carfagna M. Properties of the two common electrophoretic variants of phosphoglucomutase in Drosophila melanogaster. Biochem Genet. 1979 Oct;17(9-10):825–836. doi: 10.1007/BF00504306. [DOI] [PubMed] [Google Scholar]
  17. Guedon E., Desvaux M., Petitdemange H. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture. J Bacteriol. 2000 Apr;182(7):2010–2017. doi: 10.1128/jb.182.7.2010-2017.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hanson K. R., McHale N. A. A Starchless Mutant of Nicotiana sylvestris Containing a Modified Plastid Phosphoglucomutase. Plant Physiol. 1988 Nov;88(3):838–844. doi: 10.1104/pp.88.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hartl D. L., Dykhuizen D. E., Dean A. M. Limits of adaptation: the evolution of selective neutrality. Genetics. 1985 Nov;111(3):655–674. doi: 10.1093/genetics/111.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hoffmann R. J. Properties of allelic variants of phosphoglucomutase from the sea anemone Metridium senile. Biochem Genet. 1985 Dec;23(11-12):859–876. doi: 10.1007/BF00499934. [DOI] [PubMed] [Google Scholar]
  21. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  22. Keightley P. D., Kacser H. Dominance, pleiotropy and metabolic structure. Genetics. 1987 Oct;117(2):319–329. doi: 10.1093/genetics/117.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Keightley P. D. Models of quantitative variation of flux in metabolic pathways. Genetics. 1989 Apr;121(4):869–876. doi: 10.1093/genetics/121.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kirby D. A., Muse S. V., Stephan W. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9047–9051. doi: 10.1073/pnas.92.20.9047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koehn R. K., Newell R. I., Immermann F. Maintenance of an aminopeptidase allele frequency cline by natural selection. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5385–5389. doi: 10.1073/pnas.77.9.5385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kuhlman B., Baker D. Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10383–10388. doi: 10.1073/pnas.97.19.10383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. LaPorte D. C., Walsh K., Koshland D. E., Jr The branch point effect. Ultrasensitivity and subsensitivity to metabolic control. J Biol Chem. 1984 Nov 25;259(22):14068–14075. [PubMed] [Google Scholar]
  28. Labate J., Eanes W. F. Direct measurement of in vivo flux differences between electrophoretic variants of G6PD from Drosophila melanogaster. Genetics. 1992 Nov;132(3):783–787. doi: 10.1093/genetics/132.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Langley C. H., Voelker R. A., Brown A. J., Ohnishi S., Dickson B., Montgomery E. Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster. Genetics. 1981 Sep;99(1):151–156. doi: 10.1093/genetics/99.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Laurie-Ahlberg C. C., Barnes P. T., Curtsinger J. W., Emigh T. H., Karlin B., Morris R., Norman R. A., Wilton A. N. Genetic variability of flight metabolism in Drosophila melanogaster. II. Relationship between power output and enzyme activity levels. Genetics. 1985 Dec;111(4):845–868. doi: 10.1093/genetics/111.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Laurie-Ahlberg C. C., Maroni G., Bewley G. C., Lucchesi J. C., Weir B. S. Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1073–1077. doi: 10.1073/pnas.77.2.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lehmann F. O. Ambient temperature affects free-flight performance in the fruit fly Drosophila melanogaster. J Comp Physiol B. 1999 Apr;169(3):165–171. doi: 10.1007/s003600050207. [DOI] [PubMed] [Google Scholar]
  33. Menéndez-Arias L., Argos P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J Mol Biol. 1989 Mar 20;206(2):397–406. doi: 10.1016/0022-2836(89)90488-9. [DOI] [PubMed] [Google Scholar]
  34. Middleton R. J., Kacser H. Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics. 1983 Nov;105(3):633–650. doi: 10.1093/genetics/105.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. O'Doherty R. M., Lehman D. L., Seoane J., Gómez-Foix A. M., Guinovart J. J., Newgard C. B. Differential metabolic effects of adenovirus-mediated glucokinase and hexokinase I overexpression in rat primary hepatocytes. J Biol Chem. 1996 Aug 23;271(34):20524–20530. doi: 10.1074/jbc.271.34.20524. [DOI] [PubMed] [Google Scholar]
  36. Oakeshott J. G., Chambers G. K., Gibson J. B., Eanes W. F., Willcocks D. A. Geographic variation in G6pd and Pgd allele frequencies in Drosophila melanogaster. Heredity (Edinb) 1983 Feb;50(Pt 1):67–72. doi: 10.1038/hdy.1983.7. [DOI] [PubMed] [Google Scholar]
  37. Oakeshott J. G., Chambers G. K., Gibson J. B., Willcocks D. A. Latitudinal relationships of esterase-6 and phosphoglucomutase gene frequencies in Drosophila melanogaster. Heredity (Edinb) 1981 Dec;47(Pt 3):385–396. doi: 10.1038/hdy.1981.99. [DOI] [PubMed] [Google Scholar]
  38. Parsch J., Tanda S., Stephan W. Site-directed mutations reveal long-range compensatory interactions in the Adh gene of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):928–933. doi: 10.1073/pnas.94.3.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pogson G. H. Expression of overdominance for specific activity at the phosphoglucomutase-2 locus in the Pacific oyster, Crassostrea gigas. Genetics. 1991 May;128(1):133–141. doi: 10.1093/genetics/128.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pontecorvo G., Carfagna M., Fucci L., Gaudio L. Effects of various metabolites on two phosphoglucomutase allozyme activities from Drosophila melanogaster. Biochem Genet. 1986 Jun;24(5-6):397–403. doi: 10.1007/BF00499095. [DOI] [PubMed] [Google Scholar]
  41. Powers D. A., Lauerman T., Crawford D., DiMichele L. Genetic mechanisms for adapting to a changing environment. Annu Rev Genet. 1991;25:629–659. doi: 10.1146/annurev.ge.25.120191.003213. [DOI] [PubMed] [Google Scholar]
  42. Segal J. A., Barnett J. L., Crawford D. L. Functional analyses of natural variation in Sp1 binding sites of a TATA-less promoter. J Mol Evol. 1999 Dec;49(6):736–749. doi: 10.1007/pl00006596. [DOI] [PubMed] [Google Scholar]
  43. Spiller B., Gershenson A., Arnold F. H., Stevens R. C. A structural view of evolutionary divergence. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12305–12310. doi: 10.1073/pnas.96.22.12305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Trinh K. Y., O'Doherty R. M., Anderson P., Lange A. J., Newgard C. B. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J Biol Chem. 1998 Nov 20;273(47):31615–31620. doi: 10.1074/jbc.273.47.31615. [DOI] [PubMed] [Google Scholar]
  45. Verrelli B. C., Eanes W. F. Clinal variation for amino acid polymorphisms at the Pgm locus in Drosophila melanogaster. Genetics. 2001 Apr;157(4):1649–1663. doi: 10.1093/genetics/157.4.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Verrelli B. C., Eanes W. F. Extensive amino acid polymorphism at the pgm locus is consistent with adaptive protein evolution in Drosophila melanogaster. Genetics. 2000 Dec;156(4):1737–1752. doi: 10.1093/genetics/156.4.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Watt W. B. Adaptation at Specific Loci. II. Demographic and Biochemical Elements in the Maintenance of the Colias Pgi Polymorphism. Genetics. 1983 Apr;103(4):691–724. doi: 10.1093/genetics/103.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Watt W. B. Allozymes in evolutionary genetics: self-imposed burden or extraordinary tool? Genetics. 1994 Jan;136(1):11–16. doi: 10.1093/genetics/136.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Watt W. B., Carter P. A., Blower S. M. Adaptation at specific loci. IV. Differential mating success among glycolytic allozyme genotypes of Colias butterflies. Genetics. 1985 Jan;109(1):157–175. doi: 10.1093/genetics/109.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Watt W. B., Cassin R. C., Swan M. S. Adaptation at Specific Loci. III. Field Behavior and Survivorship Differences among Colias Pgi Genotypes Are Predictable from IN VITRO Biochemistry. Genetics. 1983 Apr;103(4):725–739. doi: 10.1093/genetics/103.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Whitehouse D. B., Tomkins J., Lovegrove J. U., Hopkinson D. A., McMillan W. O. A phylogenetic approach to the identification of phosphoglucomutase genes. Mol Biol Evol. 1998 Apr;15(4):456–462. doi: 10.1093/oxfordjournals.molbev.a025942. [DOI] [PubMed] [Google Scholar]
  52. Závodszky P., Kardos J., Svingor, Petsko G. A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7406–7411. doi: 10.1073/pnas.95.13.7406. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES