Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Jun;9(6):1095–1105. doi: 10.1110/ps.9.6.1095

Conformational behavior of ionic self-complementary peptides.

M Altman 1, P Lee 1, A Rich 1, S Zhang 1
PMCID: PMC2144658  PMID: 10892803

Abstract

Several de novo designed ionic peptides that are able to undergo conformational change under the influence of temperature and pH were studied. These peptides have two distinct surfaces with regular repeats of alternating hydrophilic and hydrophobic side chains. This permits extensive ionic and hydrophobic interactions resulting in the formation of stable beta-sheet assemblies. The other defining characteristic of this type of peptide is a cluster of negatively charged aspartic or glutamic acid residues located toward the N-terminus and positively charged arginine or lysine residues located toward the C-terminus. This arrangement of charge balances the alpha-helical dipole moment (C --> N), resulting in a strong tendency to form stable alpha-helices as well. Therefore, these peptides can form both stable alpha-helices and beta-sheets. They are also able to undergo abrupt structural transformations between these structures induced by temperature and pH changes. The amino acid sequence of these peptides permits both stable beta-sheet and alpha-helix formation, resulting in a balance between these two forms as governed by the environment. Some segments in proteins may also undergo conformational changes in response to environmental changes. Analyzing the plasticity and dynamics of this type of peptide may provide insight into amyloid formation. Since these peptides have dynamic secondary structure, they will serve to refine our general understanding of protein structure.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel K., Yoder M. D., Hilgenfeld R., Jurnak F. An alpha to beta conformational switch in EF-Tu. Structure. 1996 Oct 15;4(10):1153–1159. doi: 10.1016/s0969-2126(96)00123-2. [DOI] [PubMed] [Google Scholar]
  2. Aurora R., Rose G. D. Helix capping. Protein Sci. 1998 Jan;7(1):21–38. doi: 10.1002/pro.5560070103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrow C. J., Zagorski M. G. Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition. Science. 1991 Jul 12;253(5016):179–182. doi: 10.1126/science.1853202. [DOI] [PubMed] [Google Scholar]
  4. Blagdon D. E., Goodman M. Letter: Mechanisms of protein and polypeptide helix initiation. Biopolymers. 1975 Jan;14(1):241–245. doi: 10.1002/bip.1975.360140118. [DOI] [PubMed] [Google Scholar]
  5. Blanchard B. J., Konopka G., Russell M., Ingram V. M. Mechanism and prevention of neurotoxicity caused by beta-amyloid peptides: relation to Alzheimer's disease. Brain Res. 1997 Nov 21;776(1-2):40–50. doi: 10.1016/s0006-8993(97)01003-2. [DOI] [PubMed] [Google Scholar]
  6. Blundell T. L. Problems and solutions in protein engineering--towards rational design. Trends Biotechnol. 1994 May;12(5):145–148. doi: 10.1016/0167-7799(94)90073-6. [DOI] [PubMed] [Google Scholar]
  7. Boutonnet N. S., Rooman M. J., Wodak S. J. Automatic analysis of protein conformational changes by multiple linkage clustering. J Mol Biol. 1995 Nov 3;253(4):633–647. doi: 10.1006/jmbi.1995.0578. [DOI] [PubMed] [Google Scholar]
  8. Brack A., Orgel L. E. Beta structures of alternating polypeptides and their possible prebiotic significance. Nature. 1975 Jul 31;256(5516):383–387. doi: 10.1038/256383a0. [DOI] [PubMed] [Google Scholar]
  9. Cao Y., Musah R. A., Wilcox S. K., Goodin D. B., McRee D. E. Protein conformer selection by ligand binding observed with crystallography. Protein Sci. 1998 Jan;7(1):72–78. doi: 10.1002/pro.5560070107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Colson A. O., Perlman J. H., Jinsi-Parimoo A., Nussenzveig D. R., Osman R., Gershengorn M. C. A hydrophobic cluster between transmembrane helices 5 and 6 constrains the thyrotropin-releasing hormone receptor in an inactive conformation. Mol Pharmacol. 1998 Dec;54(6):968–978. doi: 10.1124/mol.54.6.968. [DOI] [PubMed] [Google Scholar]
  11. Cunningham B. C., Henner D. J., Wells J. A. Engineering human prolactin to bind to the human growth hormone receptor. Science. 1990 Mar 23;247(4949 Pt 1):1461–1465. doi: 10.1126/science.247.4949.1461. [DOI] [PubMed] [Google Scholar]
  12. DebBurman S. K., Raymond G. J., Caughey B., Lindquist S. Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13938–13943. doi: 10.1073/pnas.94.25.13938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dobson C. M. Protein misfolding, evolution and disease. Trends Biochem Sci. 1999 Sep;24(9):329–332. doi: 10.1016/s0968-0004(99)01445-0. [DOI] [PubMed] [Google Scholar]
  14. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  15. Han H., Weinreb P. H., Lansbury P. T., Jr The core Alzheimer's peptide NAC forms amyloid fibrils which seed and are seeded by beta-amyloid: is NAC a common trigger or target in neurodegenerative disease? Chem Biol. 1995 Mar;2(3):163–169. doi: 10.1016/1074-5521(95)90071-3. [DOI] [PubMed] [Google Scholar]
  16. Haouz A., Glandieres J. M., Zentz C., Pin S., Ramstein J., Tauc P., Brochon J. C., Alpert B. Solvent effects on horse apomyoglobin dynamics. Biochemistry. 1998 Mar 3;37(9):3013–3019. doi: 10.1021/bi972236u. [DOI] [PubMed] [Google Scholar]
  17. Harper E. T., Rose G. D. Helix stop signals in proteins and peptides: the capping box. Biochemistry. 1993 Aug 3;32(30):7605–7609. doi: 10.1021/bi00081a001. [DOI] [PubMed] [Google Scholar]
  18. Harper J. D., Lansbury P. T., Jr Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem. 1997;66:385–407. doi: 10.1146/annurev.biochem.66.1.385. [DOI] [PubMed] [Google Scholar]
  19. Harper J. D., Lieber C. M., Lansbury P. T., Jr Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein. Chem Biol. 1997 Dec;4(12):951–959. doi: 10.1016/s1074-5521(97)90303-3. [DOI] [PubMed] [Google Scholar]
  20. Hol W. G., Halie L. M., Sander C. Dipoles of the alpha-helix and beta-sheet: their role in protein folding. Nature. 1981 Dec 10;294(5841):532–536. doi: 10.1038/294532a0. [DOI] [PubMed] [Google Scholar]
  21. Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
  22. Huang Z., Prusiner S. B., Cohen F. E. Scrapie prions: a three-dimensional model of an infectious fragment. Fold Des. 1996;1(1):13–19. doi: 10.1016/S1359-0278(96)00007-7. [DOI] [PubMed] [Google Scholar]
  23. Huyghues-Despointes B. M., Scholtz J. M., Baldwin R. L. Helical peptides with three pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings. Protein Sci. 1993 Jan;2(1):80–85. doi: 10.1002/pro.5560020108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jardetzky O. Protein dynamics and conformational transitions in allosteric proteins. Prog Biophys Mol Biol. 1996;65(3):171–219. doi: 10.1016/s0079-6107(96)00010-7. [DOI] [PubMed] [Google Scholar]
  25. Kelly J. W. Amyloid fibril formation and protein misassembly: a structural quest for insights into amyloid and prion diseases. Structure. 1997 May 15;5(5):595–600. doi: 10.1016/s0969-2126(97)00215-3. [DOI] [PubMed] [Google Scholar]
  26. Kirschner D. A., Inouye H., Duffy L. K., Sinclair A., Lind M., Selkoe D. J. Synthetic peptide homologous to beta protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6953–6957. doi: 10.1073/pnas.84.19.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kurzyński M. A synthetic picture of intramolecular dynamics of proteins. Towards a contemporary statistical theory of biochemical processes. Prog Biophys Mol Biol. 1998;69(1):23–82. doi: 10.1016/s0079-6107(97)00033-3. [DOI] [PubMed] [Google Scholar]
  28. Mannella C. A. Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J Struct Biol. 1998;121(2):207–218. doi: 10.1006/jsbi.1997.3954. [DOI] [PubMed] [Google Scholar]
  29. Minor D. L., Jr, Kim P. S. Context-dependent secondary structure formation of a designed protein sequence. Nature. 1996 Apr 25;380(6576):730–734. doi: 10.1038/380730a0. [DOI] [PubMed] [Google Scholar]
  30. Mutter M., Maser F., Altmann K. H., Toniolo C., Bonora G. M. Sequence-dependence of secondary structure formation: conformational studies of host-guest peptides in alpha-helix and beta-structure supporting media. Biopolymers. 1985 Jun;24(6):1057–1074. doi: 10.1002/bip.360240610. [DOI] [PubMed] [Google Scholar]
  31. Nguyen J. T., Inouye H., Baldwin M. A., Fletterick R. J., Cohen F. E., Prusiner S. B., Kirschner D. A. X-ray diffraction of scrapie prion rods and PrP peptides. J Mol Biol. 1995 Sep 29;252(4):412–422. doi: 10.1006/jmbi.1995.0507. [DOI] [PubMed] [Google Scholar]
  32. Nguyen J., Baldwin M. A., Cohen F. E., Prusiner S. B. Prion protein peptides induce alpha-helix to beta-sheet conformational transitions. Biochemistry. 1995 Apr 4;34(13):4186–4192. doi: 10.1021/bi00013a006. [DOI] [PubMed] [Google Scholar]
  33. Osterman D. G., Kaiser E. T. Design and characterization of peptides with amphiphilic beta-strand structures. J Cell Biochem. 1985;29(2):57–72. doi: 10.1002/jcb.240290202. [DOI] [PubMed] [Google Scholar]
  34. Parthasarathy R., Chaturvedi S., Go K. Design of alpha-helical peptides: their role in protein folding and molecular biology. Prog Biophys Mol Biol. 1995;64(1):1–54. doi: 10.1016/0079-6107(95)00009-7. [DOI] [PubMed] [Google Scholar]
  35. Presta L. G., Rose G. D. Helix signals in proteins. Science. 1988 Jun 17;240(4859):1632–1641. doi: 10.1126/science.2837824. [DOI] [PubMed] [Google Scholar]
  36. Prusiner S. B. Molecular biology and pathogenesis of prion diseases. Trends Biochem Sci. 1996 Dec;21(12):482–487. doi: 10.1016/s0968-0004(96)10063-3. [DOI] [PubMed] [Google Scholar]
  37. Reddy V. S., Giesing H. A., Morton R. T., Kumar A., Post C. B., Brooks C. L., 3rd, Johnson J. E. Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses. Biophys J. 1998 Jan;74(1):546–558. doi: 10.1016/S0006-3495(98)77813-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Riek R., Hornemann S., Wider G., Billeter M., Glockshuber R., Wüthrich K. NMR structure of the mouse prion protein domain PrP(121-231). Nature. 1996 Jul 11;382(6587):180–182. doi: 10.1038/382180a0. [DOI] [PubMed] [Google Scholar]
  39. Riek R., Wider G., Billeter M., Hornemann S., Glockshuber R., Wüthrich K. Prion protein NMR structure and familial human spongiform encephalopathies. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11667–11672. doi: 10.1073/pnas.95.20.11667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rigney E., Kojima M., Glithero A., Elliott T. A soluble major histocompatibility complex class I peptide-binding platform undergoes a conformational change in response to peptide epitopes. J Biol Chem. 1998 Jun 5;273(23):14200–14204. doi: 10.1074/jbc.273.23.14200. [DOI] [PubMed] [Google Scholar]
  41. Rippon W. B., Chen H. H., Walton A. G. Spectroscopic characterization of poly(Glu-Ala). J Mol Biol. 1973 Apr 5;75(2):369–375. doi: 10.1016/0022-2836(73)90027-2. [DOI] [PubMed] [Google Scholar]
  42. Schirmer E. C., Lindquist S. Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13932–13937. doi: 10.1073/pnas.94.25.13932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Takahashi Y., Ueno A., Mihara H. Optimization of hydrophobic domains in peptides that undergo transformation from alpha-helix to beta-fibril. Bioorg Med Chem. 1999 Jan;7(1):177–185. doi: 10.1016/s0968-0896(98)00236-3. [DOI] [PubMed] [Google Scholar]
  44. Tan S., Richmond T. J. Crystal structure of the yeast MATalpha2/MCM1/DNA ternary complex. Nature. 1998 Feb 12;391(6668):660–666. doi: 10.1038/35563. [DOI] [PubMed] [Google Scholar]
  45. Wei A., Rubin H., Cooperman B. S., Christianson D. W. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop. Nat Struct Biol. 1994 Apr;1(4):251–258. doi: 10.1038/nsb0494-251. [DOI] [PubMed] [Google Scholar]
  46. West M. W., Wang W., Patterson J., Mancias J. D., Beasley J. R., Hecht M. H. De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11211–11216. doi: 10.1073/pnas.96.20.11211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wood S. J., Chan W., Wetzel R. Seeding of A beta fibril formation is inhibited by all three isotypes of apolipoprotein E. Biochemistry. 1996 Sep 24;35(38):12623–12628. doi: 10.1021/bi961074j. [DOI] [PubMed] [Google Scholar]
  48. Wright H. T. The structural puzzle of how serpin serine proteinase inhibitors work. Bioessays. 1996 Jun;18(6):453–464. doi: 10.1002/bies.950180607. [DOI] [PubMed] [Google Scholar]
  49. Xiong H., Buckwalter B. L., Shieh H. M., Hecht M. H. Periodicity of polar and nonpolar amino acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6349–6353. doi: 10.1073/pnas.92.14.6349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yon J. M., Perahia D., Ghélis C. Conformational dynamics and enzyme activity. Biochimie. 1998 Jan;80(1):33–42. doi: 10.1016/s0300-9084(98)80054-0. [DOI] [PubMed] [Google Scholar]
  51. Zhang S., Holmes T. C., DiPersio C. M., Hynes R. O., Su X., Rich A. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials. 1995 Dec;16(18):1385–1393. doi: 10.1016/0142-9612(95)96874-y. [DOI] [PubMed] [Google Scholar]
  52. Zhang S., Holmes T., Lockshin C., Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3334–3338. doi: 10.1073/pnas.90.8.3334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Zhang S., Lockshin C., Cook R., Rich A. Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers. 1994 May;34(5):663–672. doi: 10.1002/bip.360340508. [DOI] [PubMed] [Google Scholar]
  54. Zhang S., Lockshin C., Herbert A., Winter E., Rich A. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J. 1992 Oct;11(10):3787–3796. doi: 10.1002/j.1460-2075.1992.tb05464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zhang S., Rich A. Direct conversion of an oligopeptide from a beta-sheet to an alpha-helix: a model for amyloid formation. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):23–28. doi: 10.1073/pnas.94.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES