Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1970 Oct;46(4):500–508. doi: 10.1104/pp.46.4.500

Fat Metabolism in Higher Plants

XL. Synthesis of Fatty Acids in the Initial Stage of Seed Germination

J L Harwood a, P K Stumpf a
PMCID: PMC396625  PMID: 16657495

Abstract

To understand more fully organelle membrane assemblage, the synthesis of the first fatty acids by the germinating pea, Pisum sativum, was studied by the incorporation of either tritiated water or acetate-1-14C into lipids by the intact, initially dry seed. After a lag phase, labeling proceeded linearly. This lag phase ended when uptake of water had increased the seed weight to 185% of its original weight. The first fatty acids synthesized were palmitic and stearic followed shortly after by long chain saturated fatty acids (C20-C26). The synthesis of very long chain acids was consistently characteristic of several other seeds in early stages of germination. The majority of the radioactive acids were present in phospholipids and were localized in particulate fractions. The acyl components of phosphatidyl glycerol were highly labeled. The very long chain acids were found predominantly in the waxes. Pulse labeling indicated little turnover of the labeled fatty acids. Evidence is presented indicating that the enzymes for fatty acid synthesis are already present in the dry seed and participate in the synthesis of fatty acids once a critical water content of the seed is achieved.

Full text

PDF
501

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brunner G., Bygrave F. L. Microsomal marker enzymes and their limitations in distinguishing the outer membrane of rat liver mitochondria from the microsomes. Eur J Biochem. 1969 Apr;8(4):530–534. doi: 10.1111/j.1432-1033.1969.tb00558.x. [DOI] [PubMed] [Google Scholar]
  3. CHAPPELL J. B., GREVILLE G. D. Effect of silver ions on mitochondrial adenosine triphosphatase. Nature. 1954 Nov 13;174(4437):930–931. doi: 10.1038/174930b0. [DOI] [PubMed] [Google Scholar]
  4. DAWSON R. M. A hydrolytic procedure for the identification and estimation of individual phospholipids in biological samples. Biochem J. 1960 Apr;75:45–53. doi: 10.1042/bj0750045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dawson R. M., Clarke N., Quarles R. H. N-acylphosphatidylethanolamine, a phospholipid that is rapidly metabolized during the arly germnation of pea seeds. Biochem J. 1969 Sep;114(2):265–267. doi: 10.1042/bj1140265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drennan C. H., Canvin D. T. Oleic acid synthesis by a particulate preparation from developing castor oil seeds. Biochim Biophys Acta. 1969;187(2):193–200. doi: 10.1016/0005-2760(69)90027-7. [DOI] [PubMed] [Google Scholar]
  7. Foster D. W., Katz J. The distribution of tritium in fatty acids synthesized from tritiated glucose and tritiated water by rat adipose tissue. Biochim Biophys Acta. 1966 Dec 7;125(3):422–427. doi: 10.1016/0005-2760(66)90030-0. [DOI] [PubMed] [Google Scholar]
  8. Galliard T., Stumpf P. K. Fat metabolism in higher plants. 30. Enzymatic synthesis of ricinoleic acid by a microsomal preparation from developing Ricinus communis seeds. J Biol Chem. 1966 Dec 25;241(24):5806–5812. [PubMed] [Google Scholar]
  9. HATCH M. D., TURNER J. F. Glycolysis by an extract from pea seeds. Biochem J. 1958 Aug;69(4):495–501. doi: 10.1042/bj0690495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HEYNDRICKX A. Paper chromatography of choline and the vitamins B1, B2, niacin and niacinamide; preparation of radioactive choline acetate and study of its hydrolysis. J Am Pharm Assoc Am Pharm Assoc. 1953 Nov;42(11):680–681. doi: 10.1002/jps.3030421111. [DOI] [PubMed] [Google Scholar]
  11. HUBSCHER G., HAWTHORNE J. N., KEMP P. The analysis of tissue phospholipids: hydrolysis procedure and results with pig liver. J Lipid Res. 1960 Oct;1:433–438. [PubMed] [Google Scholar]
  12. HUEBSCHER G., WEST G. R. SPECIFIC ASSAYS OF SOME PHOSPHATASES IN SUBCELLULAR FRACTIONS OF SMALL INTESTINAL MUCOSA. Nature. 1965 Feb 20;205:799–800. doi: 10.1038/205799a0. [DOI] [PubMed] [Google Scholar]
  13. Harris P., James A. T. Effect of low temperature on fatty acid biosynthesis in seeds. Biochim Biophys Acta. 1969 Jul 29;187(1):13–18. doi: 10.1016/0005-2760(69)90127-1. [DOI] [PubMed] [Google Scholar]
  14. Harris R. V., James A. T. The fatty acid metabolism of Chlorella vulgaris. Biochim Biophys Acta. 1965 Dec 2;106(3):465–473. doi: 10.1016/0005-2760(65)90063-9. [DOI] [PubMed] [Google Scholar]
  15. Hawke J. C., Stumpf P. K. Fat metabolism in higher plants XXVII. Synthesis of long-chain fatty acids by preparations of Hordeum vulgare L. and other graminae. Plant Physiol. 1965 Nov;40(6):1023–1032. doi: 10.1104/pp.40.6.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hawke J. C., Stumpf P. K. Fat metabolism in higher plants. 28. The biosynthesis of saturated and unsaturated fatty acids by preparations from barley seedlings. J Biol Chem. 1965 Dec;240(12):4746–4752. [PubMed] [Google Scholar]
  17. JAMES A. T., HADAWAY H. C., WEBB J. P. THE BIOSYNTHESIS OF RICINOLEIC ACID. Biochem J. 1965 May;95:448–452. doi: 10.1042/bj0950448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KANFER J., KENNEDY E. P. METABOLISM AND FUNCTION OF BACTERIAL LIPIDS. I. METABOLISM OF PHOSPHOLIPIDS IN ESCHERICHIA COLI B. J Biol Chem. 1963 Sep;238:2919–2922. [PubMed] [Google Scholar]
  19. KATES M. Chromatographic and radioisotopic investigations of the lipid components of runner bean leaves. Biochim Biophys Acta. 1960 Jul 1;41:315–328. doi: 10.1016/0006-3002(60)90015-9. [DOI] [PubMed] [Google Scholar]
  20. Kai M., White G. L., Hawthorne J. N. The phosphatidylinositol kinase of rat brain. Biochem J. 1966 Nov;101(2):328–337. doi: 10.1042/bj1010328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Katayama M., Funahashi S. Metabolic pattern of phospholipids during germination of mung bean, Phaseolus radiatus var. typicus. I. The incorporation of 32P-orthophosphate into phos- pholipids. J Biochem. 1969 Oct;66(4):479–485. doi: 10.1093/oxfordjournals.jbchem.a129172. [DOI] [PubMed] [Google Scholar]
  22. King E. J. The colorimetric determination of phosphorus. Biochem J. 1932;26(2):292–297. doi: 10.1042/bj0260292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kuiper P. J. Effect of lipids on chloride and sodium transport in bean and cotton plants. Plant Physiol. 1969 Jul;44(7):968–972. doi: 10.1104/pp.44.7.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LEPAGE M. THE SEPARATION AND IDENTIFICATION OF PLANT PHOSPHOLIPIDS AND GLYCOLIPIDS BY TWO-DIMENSIONAL THIN-LAYER CHROMATOGRAPHY. J Chromatogr. 1964 Jan;13:99–103. doi: 10.1016/s0021-9673(01)95078-2. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Macey M. J., Stumpf P. K. Fat Metabolism in Higher Plants XXXVI: Long Chain Fatty Acid Synthesis in Germinating Peas. Plant Physiol. 1968 Oct;43(10):1637–1647. doi: 10.1104/pp.43.10.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marrè E. Ribosome and enzyme changes during maturation and germination of the castor bean seed. Curr Top Dev Biol. 1967;2:75–105. doi: 10.1016/s0070-2153(08)60284-7. [DOI] [PubMed] [Google Scholar]
  28. Michell R. H., Hawthorne J. N. The site of diphosphoinositide synthesis in rat liver. Biochem Biophys Res Commun. 1965 Nov 22;21(4):333–338. doi: 10.1016/0006-291x(65)90198-1. [DOI] [PubMed] [Google Scholar]
  29. PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. PORTEOUS J. W., CLARK B. THE ISOLATION AND CHARACTERIZATION OF SUBCELLULAR COMPONENTS OF THE EPITHELIAL CELLS OF RABBIT SMALL INTESTINE. Biochem J. 1965 Jul;96:159–171. doi: 10.1042/bj0960159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  32. Vaskovsky V. E., Kostetsky E. Y. Modified spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res. 1968 May;9(3):396–396. [PubMed] [Google Scholar]
  33. White H. B. Fat Utilization and Composition in Germinating Cotton Seeds. Plant Physiol. 1958 May;33(3):218–226. doi: 10.1104/pp.33.3.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Willemot C., Stumpf P. K. Fat metabolism in higher plants. XXXIV. Development of fatty acid synthetase as a function of protein synthesis in aging potato tuber slices. Plant Physiol. 1967 Mar;42(3):391–397. doi: 10.1104/pp.42.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. YANG S. F., STUMPF P. K. FAT METABOLISM IN HIGHER PLANTS. XXI. BIOSYNTHESIS OF FATTY ACIDS BY AVOCADO MESOCARP ENZYME SYSTEMS. Biochim Biophys Acta. 1965 Feb 1;98:19–26. [PubMed] [Google Scholar]
  36. de Kloet S. R. Ribonucleic acid synthesis in yeast. The effect of cycloheximide on the synthesis of ribonucleic acid in Saccharomyces carlsbergensis. Biochem J. 1966 Jun;99(3):566–581. doi: 10.1042/bj0990566. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES